JP5098256B2 - Steel sheet for high-strength line pipe with low yield stress reduction due to the Bauschinger effect with excellent hydrogen-induced cracking resistance and method for producing the same - Google Patents

Steel sheet for high-strength line pipe with low yield stress reduction due to the Bauschinger effect with excellent hydrogen-induced cracking resistance and method for producing the same Download PDF

Info

Publication number
JP5098256B2
JP5098256B2 JP2006233190A JP2006233190A JP5098256B2 JP 5098256 B2 JP5098256 B2 JP 5098256B2 JP 2006233190 A JP2006233190 A JP 2006233190A JP 2006233190 A JP2006233190 A JP 2006233190A JP 5098256 B2 JP5098256 B2 JP 5098256B2
Authority
JP
Japan
Prior art keywords
less
temperature
steel sheet
yield stress
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006233190A
Other languages
Japanese (ja)
Other versions
JP2008056962A (en
Inventor
豊久 新宮
茂 遠藤
信行 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006233190A priority Critical patent/JP5098256B2/en
Publication of JP2008056962A publication Critical patent/JP2008056962A/en
Application granted granted Critical
Publication of JP5098256B2 publication Critical patent/JP5098256B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)

Description

本発明は、石油や天然ガス輸送に使用される高強度ラインパイプ用鋼板およびその製造方法として好適な、耐水素誘起割れ性能に優れ、且つバウシンガー効果による、鋼管に成形する前の鋼板の降伏応力から鋼管に成形した後の鋼管周方向の降伏応力の低下が小さい高強度ラインパイプ用鋼板及びその製造方法に関する。   The present invention is suitable as a steel plate for high-strength line pipes used for oil and natural gas transportation and a method for producing the same, and is excellent in hydrogen-induced cracking resistance, and yields of steel plates before being formed into steel pipes by the Bauschinger effect. The present invention relates to a steel plate for high-strength line pipes and a method for producing the same, in which a decrease in yield stress in the circumferential direction of the steel pipe after being formed into a steel pipe from stress is small.

一般に、鋼板に引張もしくは圧縮歪みを付与する冷間加工を施し、その後、逆方向に歪みを付与すると、バウシンガー効果により降伏応力が、冷間加工前の鋼板のそれと比較し低下する。   In general, when cold working is applied to a steel sheet to impart tensile or compressive strain, and then strain is applied in the opposite direction, the yield stress is lowered by the Bauschinger effect compared to that of the steel sheet before cold working.

バウシンガー効果は、最初の変形段階にセメンタイト、パーライト、島状マルテンサイト(以下、MA)等の硬質第2相、介在物、粒界等で発生する局所的な歪勾配による逆応力の発生がその原因とされている。   The Bauschinger effect is caused by the occurrence of reverse stress due to local strain gradients that occur in hard second phases such as cementite, pearlite, and island martensite (hereinafter referred to as MA), inclusions, and grain boundaries in the initial deformation stage. It is the cause.

ラインパイプ用鋼板は、高強度、高靭性に優れたベイナイト組織を得るため、一般的に制御圧延と加速冷却のプロセスで製造されることが多い。加速冷却材では、加速冷却後にベイナイトのラス間や未変態オーステナイト部にCが濃化し、加速冷却後の空冷段階でC濃化部がセメンタイトやMAへと変態するため、ベイナイトのマトリクスに硬質第2相が存在する組織となる。   In order to obtain a bainite structure excellent in high strength and high toughness, the steel sheet for line pipe is generally manufactured by a process of controlled rolling and accelerated cooling in many cases. In the accelerated coolant, C is concentrated between the lath of bainite and untransformed austenite after accelerated cooling, and the C enriched portion is transformed into cementite and MA in the air cooling stage after accelerated cooling. The structure has two phases.

また、一般的に加速冷却材は、表面の冷却速度が板厚中央部と比較し速くなるため、表面硬度と板厚中央部硬度の差が大きくなる。この様な硬質第2相の存在や板厚方向の強度不均一は、UOE鋼管成型時や管周方向で採取した引張試験片の矯正時の局所的な歪み勾配の原因となり、鋼管周方向の降伏強度はバウシンガー効果によって鋼板の降伏強度と比較して低下する。   In general, an accelerated coolant has a surface cooling rate that is higher than that of the central portion of the plate thickness, so that the difference between the surface hardness and the central portion of the plate thickness is increased. The presence of such a hard second phase and uneven strength in the plate thickness direction cause local strain gradients during UOE steel pipe molding and correction of tensile specimens taken in the pipe circumferential direction, and in the steel pipe circumferential direction. The yield strength is reduced by the Bauschinger effect compared to the yield strength of the steel plate.

硫化水素を含む原油や天然ガスの輸送に用いられるラインパイプでは、強度、靭性、溶接性の他に、耐水素誘起割れ性(耐HIC性)や耐応力腐食割れ性(耐SCC性)などのいわゆる耐サワー性が必要とされる。   In line pipes used for transporting crude oil and natural gas containing hydrogen sulfide, in addition to strength, toughness, and weldability, hydrogen-induced crack resistance (HIC resistance), stress corrosion crack resistance (SCC resistance), etc. So-called sour resistance is required.

鋼材の水素誘起割れ(HIC)は、腐食反応による水素イオンが鋼材表面に吸着し、原子状の水素として鋼内部に侵入、鋼中のMnSなどの非金属介在物や硬い第2相組織のまわりに拡散・集積し、その内圧により割れを生ずるものとされており、高強度鋼ほどその感受性が高くなる。   In hydrogen induced cracking (HIC) of steel, hydrogen ions from the corrosion reaction are adsorbed on the surface of the steel, penetrate into the steel as atomic hydrogen, around non-metallic inclusions such as MnS in the steel and hard second phase structure. It diffuses and accumulates on the surface, and is cracked by its internal pressure. The higher the strength of the steel, the higher the sensitivity.

パイプ原板の強度は、バウシンガー効果による降伏強度の低下代を見込んで高めに設計するので、バウシンガー効果による降伏強度低下を低減することは鋼板の強度設計緩和に繋がり、合金元素低減によるコスト削減、溶接熱影響部靭性の向上、更にHIC性能の向上が期待される。   The strength of the pipe blank is designed to be high in anticipation of the yield strength reduction due to the Bauschinger effect, so reducing the decrease in yield strength due to the Bauschinger effect will lead to the relaxation of the strength design of the steel sheet, and cost reduction by reducing alloy elements Improvement of weld heat affected zone toughness and further improvement of HIC performance are expected.

バウシンガー効果による降伏強度低下を抑制する技術として、低C−高Cr系成分組成の鋼を用いる方法が知られている(例えば、特許文献1参照)。しかし、この方法では、多量のCr添加による溶接性の低下やコスト上昇を招く。   As a technique for suppressing a decrease in yield strength due to the Bauschinger effect, a method using steel having a low C-high Cr composition is known (see, for example, Patent Document 1). However, this method causes a decrease in weldability and a cost increase due to the addition of a large amount of Cr.

多量のCr添加に依存しない方法として、制御圧延終了温度と加速冷却停止温度を規定し、鋼板の降伏比、降伏伸びを最適化する方法が知られている(例えば、特許文献2参照)。   As a method that does not depend on the addition of a large amount of Cr, a method is known in which the controlled rolling end temperature and the accelerated cooling stop temperature are defined, and the yield ratio and yield elongation of the steel sheet are optimized (see, for example, Patent Document 2).

しかし、この方法では、鋼板の降伏比を90%以上と高くする必要があり、鋼管の成形性が低下し、生産性の低下を招く。また、表面硬さを低位に抑えるべく、目的とするミクロ組織が軟質なフェライト組織であるため、高強度を得るためには合金元素の添加が必要となり、溶接熱影響部靭性や溶接性の劣化が懸念される。   However, in this method, it is necessary to increase the yield ratio of the steel sheet to 90% or more, which deteriorates the formability of the steel pipe and causes a decrease in productivity. In addition, in order to keep the surface hardness low, the target microstructure is a soft ferrite structure, so it is necessary to add alloying elements to obtain high strength, and deterioration of weld heat affected zone toughness and weldability Is concerned.

また、HIC防止のために、CaやCeを添加し、HICを増長する針状MnSの生成抑制技術や、スラブ均熱処理、冷却方法の適正化によるHIC伝播経路である中心偏析部の硬化組織抑制技術が開示されている(例えば、特許文献3、4参照)。   In addition, in order to prevent HIC, the addition of Ca and Ce to increase the HIC, suppression of the formation of acicular MnS, suppression of the hardened structure of the central segregation part, which is the HIC propagation path by optimizing slab soaking and cooling methods Techniques are disclosed (see, for example, Patent Documents 3 and 4).

しかし、上記の耐HIC性を改善する方法はいずれも中心偏析部が対象である。API X80グレード等のX65グレードを超える高強度鋼板では、中心偏析部のHICへの対策を施した場合でも、硫化物系または酸化物系介在物を起点とした中心偏析部以外のHICをなくすことは困難である。   However, all the methods for improving the above-mentioned HIC resistance are for the center segregation part. For high-strength steel sheets exceeding X65 grade such as API X80 grade, even if measures against HIC in the central segregation part are taken, HIC other than the central segregation part starting from sulfide-based or oxide-based inclusions should be eliminated. It is difficult.

中心偏析部以外のHIC抑制技術として、ミクロ組織をHIC感受性の低いフェライト単相組織化にする技術が開示されている。(例えば、特許文献5、6)
しかし、上記技術ではフェライト組織を得るために、製造工程が焼入れ焼戻し、冷間加工、再焼戻しと複雑で、さらに強度確保のためにMoを添加する必要があるため、製造能率、製造コストが上昇する。
特公昭53−25801号公報 特開2000−212680号公報 特開昭54−110119号公報 特開昭61−165207号公報 特開昭61−227129号公報 特開平7−70697号公報
As a technique for suppressing the HIC other than the central segregation part, a technique is disclosed in which the microstructure is made into a ferrite single-phase structure with low HIC sensitivity. (For example, Patent Documents 5 and 6)
However, in the above technology, the manufacturing process is complicated with quenching and tempering, cold working and re-tempering in order to obtain a ferrite structure, and it is necessary to add Mo to secure the strength. To do.
Japanese Patent Publication No.53-25801 JP 2000-212680 A Japanese Patent Laid-Open No. 54-110119 JP-A-61-165207 Japanese Patent Laid-Open No. 61-227129 JP-A-7-70697

上述したように、従来の技術では、溶接熱影響部の靭性劣化、生産性低下、コスト上昇を招くことなく、耐水素誘起割れ性能に優れたバウシンガー効果による降伏強度低下が小さい鋼板を製造することは困難であった。   As described above, the conventional technology produces a steel sheet with a small decrease in yield strength due to the Bausinger effect, which has excellent resistance to hydrogen-induced cracking, without incurring toughness deterioration, productivity reduction, and cost increase in the weld heat affected zone. It was difficult.

そこで、本発明は、溶接熱影響部の靭性を劣化させることなく、高生産性、低コストで製造可能な、耐水素誘起割れ性能に優れ、且つバウシンガー効果による降伏強度低下が小さい鋼板及びその製造方法を提供することを目的とする。   Therefore, the present invention is a steel plate that can be manufactured at high productivity and low cost without deteriorating the toughness of the weld heat affected zone, has excellent resistance to hydrogen-induced cracking, and has a small decrease in yield strength due to the Bauschinger effect, and its An object is to provide a manufacturing method.

本発明者等は前記課題を解決するために、鋼板のミクロ組織および当該ミクロ組織を達成するための製造方法、特に制御圧延後に加速冷却、冷却速度5℃/s以上、を行い、その後の再加熱する製造プロセスについて鋭意検討し、以下の知見を得た。   In order to solve the above-mentioned problems, the present inventors performed a microstructure of the steel sheet and a manufacturing method for achieving the microstructure, particularly accelerated cooling after controlled rolling, and a cooling rate of 5 ° C./s or more. The inventors studied diligently about the manufacturing process to be heated and obtained the following knowledge.

1.鋼板のミクロ組織中の硬質第2相であるセメンタイト、パーライト、MAを減少させ、さらに表層部と板厚中心部の硬度差を小さくし板厚方向に均一な強度分布とすることで、鋼管成型段階や引張試験片矯正時に硬質相周辺で発生する局所的な歪勾配を緩和しバウシンガー効果による降伏応力低下を抑制することが可能である。   1. Steel pipe molding by reducing cementite, pearlite, and MA, which are hard second phases in the microstructure of the steel sheet, and further reducing the difference in hardness between the surface layer and the center of the plate thickness to provide a uniform strength distribution in the plate thickness direction. It is possible to relieve the local strain gradient that occurs around the hard phase during stage or tensile specimen correction and to suppress the yield stress drop due to the Bauschinger effect.

2.更に、鋼中のCa、S、P、O量を適正に管理し、且つHIC伝播経路となる硬質第2相の低減、表層硬度の低下、上記バウシンガー効果による降伏応力低下の抑制による鋼板強度設計緩和によって、HIC性能の向上が可能である。   2. Furthermore, steel sheet strength by properly controlling the amount of Ca, S, P, and O in steel and reducing the hard second phase that becomes the HIC propagation path, lowering the surface hardness, and suppressing the yield stress drop due to the Bausinger effect The relaxation of the design can improve the HIC performance.

3.また、加速冷却後直ちに表層部が板厚中心部より高温になるように再加熱することが重要で、このような加熱を実施する装置として誘導加熱装置が好ましく、生産性を低減させることなく、上記鋼板の製造が可能であることも見出した。   3. In addition, it is important to reheat so that the surface layer part becomes higher than the center part of the plate thickness immediately after accelerated cooling, and an induction heating apparatus is preferable as an apparatus for carrying out such heating, without reducing productivity, It has also been found that the steel sheet can be manufactured.

尚、本発明のバウシンガー効果による降伏応力低下が小さいとは、10φ丸棒試験片を1/4厚位置から採取し1〜3%の圧縮予歪みを導入した後、引張試験を行い、当該引張試験で得られる0.5%耐力を圧縮時の0.5%耐力で除した値を耐力比として評価し、耐力比が0.8以上を降伏応力低下が小さいとした。ここで、引張時、圧縮時の0.5%耐力とは、引張試験、圧縮試験の際の相当歪み0.5%時の相当応力を意味しており、応力歪み曲線よりその値を導出した。 In addition, the yield stress reduction by the Bausinger effect of the present invention is small, a 10φ round bar test piece is taken from the 1/4 thickness position, and after introducing a compression pre-strain of 1 to 3%, a tensile test is performed, A value obtained by dividing the 0.5% yield strength obtained by the tensile test by the 0.5% yield strength at the time of compression was evaluated as a yield strength ratio, and a yield strength ratio of 0.8 or more was considered to be small in yield stress reduction. Here, 0.5% proof stress during tension and compression means equivalent stress at equivalent strain of 0.5% during tensile test and compression test, and the value was derived from the stress-strain curve. .

本発明は得られた知見を基に更に検討を加えてなされたもので、すなわち、本発明は、
1.質量%で、C:0.03〜0.06%、Si:0.01〜0.5%、Mn:0.8〜1.5%、P:0.01%以下、S:0.0015%以下、Ti:0.005〜0.04%、Nb:0.005〜0.06%、Al:0.08%以下、Ca:0.001〜0.005%、O:0.0030%以下を含有し、残部Feおよび不可避的不純物からなり、Ca、O、Sの含有量が下記(1)式を満たし、金属組織中の硬質第2相組織の体積分率が0.8%以下であり、表層と板厚中心部のビッカース硬度差が40以内であることを特徴とする耐水素誘起割れ性能に優れたバウシンガー効果による降伏応力低下が小さい高強度ラインパイプ用鋼板。
1.0≦{[Ca]-(0.18+130×[Ca])×[O]}/(1.25×[S])≦4.5 …(1)
但し、[Ca],[O],[S]は含有量(質量%)とする。
2.更に、質量%で、Mo:0.05〜0.4%以下、V:0.005〜0.07%の中から選ばれる1種又は2種を含有することを特徴とする1に記載の耐水素誘起割れ性能に優れたバウシンガー効果による降伏応力低下が小さい高強度ラインパイプ用鋼板。
3.更に、質量%で、Cu:1.0%以下、Ni:1.0%以下、Cr:1.0%以下、B:0.005%以下の中から選ばれる1種又は2種以上を含有することを特徴とする1または2に記載の耐水素誘起割れ性能に優れたバウシンガー効果による降伏応力低下が小さい高強度ラインパイプ用鋼板。
4.更に、質量%で、Mg:0.005%以下、REM:0.02%以下の中から選ばれる1種又は2種を含有することを特徴とする1乃至3のいずれか一つに記載の耐水素誘起割れ性能に優れたバウシンガー効果による降伏応力低下が小さい高強度ラインパイプ用鋼板。
5.1乃至4のいずれか一つに記載の成分組成を有する鋼を、1000〜1300℃の温度に加熱し、Ar変態点温度以上の圧延終了温度で熱間圧延して鋼板とした後、Ar変態点以上の温度から5℃/s以上の冷却速度で400〜600℃まで加速冷却を行い、その後直ちに0.5℃/s以上の昇温速度で鋼板表面温度600℃以上、板厚中心部温度550〜700℃まで再加熱を行い、且つ再加熱終了時の鋼板表面と板厚中心部の温度差を20℃以上とすることを特徴とする耐水素誘起割れ性能に優れたバウシンガー効果による降伏応力低下が小さい高強度ラインパイプ用鋼板の製造方法。
The present invention was made by further study based on the obtained knowledge, that is, the present invention is
1. In mass%, C: 0.03-0.06%, Si: 0.01-0.5%, Mn: 0.8-1.5%, P: 0.01% or less, S: 0.0015 %: Ti: 0.005 to 0.04%, Nb: 0.005 to 0.06%, Al: 0.08% or less, Ca: 0.001 to 0.005%, O: 0.0030% Containing the remainder, Fe and inevitable impurities, the content of Ca, O, S satisfies the following formula (1), the volume fraction of the hard second phase structure in the metal structure is 0.8 % or less A steel sheet for a high-strength line pipe with a low yield stress reduction due to the Bauschinger effect excellent in hydrogen-induced cracking resistance, characterized in that the Vickers hardness difference between the surface layer and the center of the plate thickness is within 40.
1.0 ≦ {[Ca] − (0.18 + 130 × [Ca]) × [O]} / (1.25 × [S]) ≦ 4.5 (1)
However, [Ca], [O], and [S] are the contents (% by mass).
2. Furthermore, it contains 1 type or 2 types chosen from Mo: 0.05-0.4% or less and V: 0.005-0.07% by mass%. Steel plate for high-strength line pipes with low yield stress reduction due to the Bauschinger effect, which has excellent resistance to hydrogen-induced cracking.
3. Furthermore, by mass%, Cu: 1.0% or less, Ni: 1.0% or less, Cr: 1.0% or less, and B: 0.005% or less, containing one or more kinds The steel sheet for high-strength line pipes having a low yield stress reduction due to the Bauschinger effect, which is excellent in hydrogen-resistant cracking performance according to 1 or 2, characterized in that:
4). Furthermore, by mass%, it contains 1 type or 2 types chosen from Mg: 0.005% or less, REM: 0.02% or less, As described in any one of 1 thru | or 3 characterized by the above-mentioned. Steel plate for high-strength line pipes with low yield stress reduction due to the Bauschinger effect, which has excellent resistance to hydrogen-induced cracking.
5.1 to steel having a component composition according to any one of 4, was heated to a temperature of 1000 to 1300 ° C., after the steel sheet was hot rolled at Ar 3 transformation point temperature or more rolling end temperature , Accelerated cooling from 400 ° C. to 600 ° C. at a cooling rate of 5 ° C./s or higher from a temperature not lower than the Ar 3 transformation point, and immediately followed by a temperature rise rate of 0.5 ° C./s or higher at a steel sheet surface temperature of 600 ° C. or higher. A bow with excellent resistance to hydrogen-induced cracking, characterized in that it is reheated to a thickness center temperature of 550 to 700 ° C., and the temperature difference between the steel plate surface and the thickness center at the end of reheating is 20 ° C. or more. A method for producing a steel sheet for high-strength line pipes, in which the yield stress drop due to the singer effect is small.

本発明によれば、耐水素誘起割れ特性に優れ、且つバウシンガー効果による降伏応力の低下が小さい、すなわち、鋼管に成形する前の鋼板の降伏応力から、鋼管に成形した後に低下する鋼管周方向の降伏応力の低下量が小さい鋼板を、溶接熱影響部の靭性を劣化させたり、生産性を低下させることなく、低コストで製造することが可能で産業上極めて有用である。   According to the present invention, the steel pipe circumferential direction is excellent in hydrogen-induced cracking resistance and has a small decrease in yield stress due to the Bauschinger effect, i.e., the yield stress of the steel sheet before being formed into a steel pipe decreases after being formed into a steel pipe. It is possible to manufacture a steel sheet with a small decrease in yield stress at a low cost without deteriorating the toughness of the weld heat affected zone or reducing the productivity, which is extremely useful industrially.

本発明に係る耐水素誘起割れ特性に優れたバウシンガー効果による降伏応力低下が小さい高強度ラインパイプ用鋼板は、1.成分組成、2.ミクロ組織および3.板厚方向の硬度特性を規定する。   The steel sheet for high-strength line pipes according to the present invention, which has a low yield stress reduction due to the Bauschinger effect, which has excellent resistance to hydrogen-induced cracking, is as follows. Component composition, 2. 2. Microstructure and Specifies the hardness characteristics in the thickness direction.

[ミクロ組織]
本発明では、金属組織中の第2相組織の体積分率を3%以下とする。本発明において第2相組織はセメンタイトやMA等の硬質相であり、HICの伝播やその周辺に発生する局所的な歪勾配による逆応力の発生を防止し、HICの抑制、バウシンガー効果による降伏応力低下を抑制するため金属組織中において体積分率を3%以下とする。
[Micro structure]
In the present invention, the volume fraction of the second phase structure in the metal structure is set to 3% or less. In the present invention, the second phase structure is a hard phase such as cementite or MA, which prevents the propagation of HIC and the occurrence of reverse stress due to the local strain gradient generated around it, suppresses the HIC, and yields due to the Bausinger effect. In order to suppress the stress drop, the volume fraction is set to 3% or less in the metal structure.

体積分率が3%を超えると、HIC性能が劣化するばかりでなく、バウシンガー効果による降伏応力の低下量が増大し、鋼板の強度設計を高くする必要があるため、合金コスト等の製造コスト上昇を招く。バウシンガー効果軽減の観点から、より好ましくは1%以下とする。   If the volume fraction exceeds 3%, not only the HIC performance deteriorates, but also the amount of decrease in yield stress due to the Bausinger effect increases, and it is necessary to increase the strength design of the steel sheet. Invite rise. From the viewpoint of reducing the Bausinger effect, it is more preferably 1% or less.

[板厚方向の硬度特性]
鋼板表面と板厚中心部のビッカース硬度差は40以内とする。鋼板表面と板厚中心部の硬度差を40以内と少なくすることで、鋼管成型やサンプル矯正時の歪み分布が均一となり、局所的な歪み勾配が軽減され、バウシンガー効果を抑制することが出来る。ビッカース硬度試験の試験荷重は98Nとする。
[Hardness characteristics in thickness direction]
The difference in Vickers hardness between the steel plate surface and the center of the plate thickness is 40 or less. By reducing the difference in hardness between the steel plate surface and the center of the plate thickness to within 40, the strain distribution during steel pipe molding and sample correction becomes uniform, the local strain gradient is reduced, and the Bausinger effect can be suppressed. . The test load for the Vickers hardness test is 98N.

また、表面硬化部はHIC感受性が高いため、硬度均一化により表層部でのHIC発生を抑制することが出来る。より均一な歪み分布、耐HIC性能を得る観点から、さらに好適には30以内とする。   In addition, since the surface-cured portion has high HIC sensitivity, generation of HIC in the surface layer portion can be suppressed by uniforming the hardness. From the viewpoint of obtaining a more uniform strain distribution and HIC resistance, it is more preferably within 30.

[成分組成]
以下の説明において%で示す単位は全て質量%とする。

C含有量は0.03〜0.06%とする。Cは焼入れ性を高め強度確保に重要な元素であるが、0.03%未満では十分な強度が確保できない。また、0.06%を超える添加は、組織中のMAやセメンタイトの体積分率を増加させ、耐HICの劣化、バウシンガー効果を大きくするため、C含有量を0.03〜0.06%に規定する。
[Ingredient composition]
In the following description, all units represented by% are mass%.
C
The C content is 0.03 to 0.06%. C is an element that enhances the hardenability and is important for securing the strength, but if it is less than 0.03%, sufficient strength cannot be secured. Moreover, addition over 0.06% increases the volume fraction of MA and cementite in the structure, increases the resistance to HIC, and increases the Bauschinger effect, so the C content is 0.03 to 0.06%. Stipulate.

Si
Si含有量は0.01〜0.5%とする。Siは脱酸のため添加するが、0.01%未満では脱酸効果が十分でなく、0.5%を超えるとMA体積分率の増加や溶接性劣化が起こるため、0.01〜0.5%に規定する。さらに好適には、0.01〜0.3%である。
Si
The Si content is set to 0.01 to 0.5%. Si is added for deoxidation, but if it is less than 0.01%, the deoxidation effect is not sufficient, and if it exceeds 0.5%, the MA volume fraction increases and weldability deteriorates. Set to .5%. More preferably, it is 0.01 to 0.3%.

Mn
Mn含有量は0.8〜1.5%とする。Mnは強度、靭性向上に有効な元素であるが、0.8%未満ではその効果が十分でなく、1.5%を超えると焼入れ性が高まりMA体積分率の増加、表面硬度の上昇を招き、溶接性劣化を招くため、0.8〜1.5%に規定する。MA生成抑制の観点から、さらに好適には0.8〜1.3%とする。
Mn
The Mn content is 0.8 to 1.5%. Mn is an element effective for improving strength and toughness. However, if it is less than 0.8%, the effect is not sufficient, and if it exceeds 1.5%, the hardenability increases and the MA volume fraction increases and the surface hardness increases. In order to cause weldability deterioration, it is defined as 0.8 to 1.5%. From a viewpoint of MA production | generation suppression, it is 0.8 to 1.3% more suitably.


P含有量は0.01%以下とする。Pは溶接性と耐HIC性を劣化させる不可避不純物元素であるため、上限を0.01%に規定する。
P
The P content is 0.01% or less. Since P is an inevitable impurity element that deteriorates weldability and HIC resistance, the upper limit is defined as 0.01%.


S含有量は0.0015%以下とする。Sは一般的には鋼中においてはMnS介在物となり耐HIC特性を劣化させるため少ないほどよい。しかし、0.0015%以下であれば問題ないため、S含有量の上限を0.0015%に規定する。
S
S content shall be 0.0015% or less. In general, S is preferably as small as possible because it becomes MnS inclusions in steel and deteriorates the HIC resistance. However, since there is no problem if it is 0.0015% or less, the upper limit of the S content is specified to be 0.0015%.

Al
Al含有量は0.08%以下とする。Alは脱酸剤として添加されるが、0.08%を超えると鋼の清浄度が低下し、靱性が劣化するため、0.08%以下に規定する。好ましくは、0.01〜0.08%とする。
Al
Al content shall be 0.08% or less. Al is added as a deoxidizer, but if it exceeds 0.08%, the cleanliness of the steel decreases and the toughness deteriorates, so it is specified to be 0.08% or less. Preferably, the content is 0.01 to 0.08%.

Ca
Ca含有量は0.001〜0.005%とする。Caは硫化物系介在物の形態制御による耐HIC特性向上に有効な元素であるが、0.001%未満ではその効果が十分でなく、0.005%を超えて添加しても効果が飽和し、むしろ、鋼の清浄度の低下により耐HIC性を劣化させるので、添加する場合は0.001〜0.0050%に規定する。
Ca
The Ca content is 0.001 to 0.005%. Ca is an element effective for improving the HIC resistance by controlling the form of sulfide inclusions, but the effect is not sufficient if it is less than 0.001%, and the effect is saturated even if added over 0.005%. However, since the HIC resistance is deteriorated due to a decrease in the cleanliness of the steel, the content is specified to be 0.001 to 0.0050%.


O含有量は0.003%以下とする。0.003%を超えると、CaやAl系酸化物のクラスターが生成し耐HIC性能が劣化するため、0.003%以下とする。
O
The O content is 0.003% or less. If it exceeds 0.003%, clusters of Ca and Al-based oxides are generated and the HIC resistance is deteriorated, so the content is made 0.003% or less.

1.0≦(1−130×[O])×[Ca]/(1.25×[S])≦4.5・・・(1)
本パラメータ式は、鋼中のCa、O、Sの含有量の相互の関係を耐HIC性を向上させるため規定するもので、通常、CaはHICやラミネーションの原因となるMnS生成を抑制し、無害なCaS化するために鋼中のS量に対し化学量論的に余るように添加されている。
1.0 ≦ (1-130 × [O]) × [Ca] / (1.25 × [S]) ≦ 4.5 (1)
This parameter formula defines the mutual relationship between the contents of Ca, O, and S in steel in order to improve the HIC resistance. Usually, Ca suppresses the generation of MnS that causes HIC and lamination, In order to form harmless CaS, it is added so as to be stoichiometrically surplus with respect to the amount of S in the steel.

しかし、HIC性能確保にはCaO生成分を除いた有効Ca量が重要であり、(1)式に示ようにO、Ca、S量の適正化が必要である。(1−130×[O])×[Ca]/(1.25×[S])の値が1.0未満だと、Sが過剰であり、MnSが生成し、HIC性能が劣化する。   However, the effective Ca amount excluding CaO generation is important for securing the HIC performance, and it is necessary to optimize the O, Ca, and S amounts as shown in the equation (1). When the value of (1-130 × [O]) × [Ca] / (1.25 × [S]) is less than 1.0, S is excessive, MnS is generated, and the HIC performance is deteriorated.

一方、4.5を超えると、Caが過剰であり、CaOの粗大なクラスターによりHIC劣化が起こるため、(1−130×[O])×[Ca]/(1.25×[S])の値を1.0〜4.5とする。(1)式において、各元素は含有量(質量%)とする。   On the other hand, when it exceeds 4.5, Ca is excessive, and HIC deterioration occurs due to coarse clusters of CaO, so (1-130 × [O]) × [Ca] / (1.25 × [S]) The value of 1.0 to 4.5. In the formula (1), each element has a content (mass%).

以上が基本成分組成であるが、鋼板の強度靱性をさらに改善する目的で、以下に示すMo、Ti、Nb、Vの1種又は2種以上を含有することが可能である。   The above is the basic component composition, but it is possible to contain one or more of Mo, Ti, Nb, and V shown below for the purpose of further improving the strength toughness of the steel sheet.

Mo
Moは焼入れ性を向上し強度上昇に大きく寄与する元素である。しかし、0.05%未満ではその効果が得られず、0.4%を超える添加はMA体積分率の増加や溶接熱影響部靭性の劣化を招くため、Moを添加する場合は、含有量を0.05〜0.4%に規定する。さらに好適には0.3%以下とする。
Mo
Mo is an element that improves hardenability and greatly contributes to an increase in strength. However, if less than 0.05%, the effect cannot be obtained, and addition exceeding 0.4% leads to an increase in the MA volume fraction and deterioration of the weld heat affected zone toughness. Is specified to be 0.05 to 0.4%. More preferably, it is 0.3% or less.

Ti
TiはTiNのピニング効果により加熱時のオーステナイトの粗大化を抑制し、母材や溶接熱影響部の靭性を改善するために有効な元素である。しかし、0.005%未満では効果が無く、0.04%を超える添加はTiNが粗大化し、逆に溶接熱影響部靭性の劣化を招くため、Tiを添加する場合は、含有量は0.005〜0.04%に規定する。さらに、Ti含有量を0.02%未満にすると、より優れた靭性を示す。
Ti
Ti is an effective element for suppressing the austenite coarsening during heating due to the pinning effect of TiN and improving the toughness of the base metal and the weld heat affected zone. However, if it is less than 0.005%, there is no effect, and if it exceeds 0.04%, TiN becomes coarse and conversely deteriorates the weld heat affected zone toughness. Therefore, when Ti is added, the content is 0.0. It is specified to be 005 to 0.04%. Furthermore, when the Ti content is less than 0.02%, more excellent toughness is exhibited.

Nb
Nbは制御圧延の効果を高め、組織細粒化により強度、靭性を向上させる元素である。しかし、0.005%未満では効果がなく、0.06%を超えると溶接熱影響部の靭性が劣化するため、Nbを添加する場合は、含有量は0.005〜0.06%に規定する。
Nb
Nb is an element that enhances the effect of controlled rolling and improves strength and toughness by refining the structure. However, if it is less than 0.005%, there is no effect, and if it exceeds 0.06%, the toughness of the weld heat affected zone deteriorates. Therefore, when Nb is added, the content is specified to be 0.005 to 0.06%. To do.


Vは強度上昇に寄与する元素である。しかし、0.005%未満では効果がなく、0.07%を超えると溶接熱影響部の靭性が劣化するため、Vを添加する場合は、含有量は0.005〜0.07%に規定する。
V
V is an element contributing to an increase in strength. However, if it is less than 0.005%, there is no effect, and if it exceeds 0.07%, the toughness of the weld heat-affected zone deteriorates. Therefore, when V is added, the content is specified to be 0.005 to 0.07%. To do.

更に、鋼板の強度靱性を向上させる場合、Cu、Ni、Cr、B、Mg、REMの1種又は2種以上を含有してもよい。   Furthermore, when improving the strength toughness of a steel plate, you may contain 1 type (s) or 2 or more types of Cu, Ni, Cr, B, Mg, and REM.

Cu
Cuは靭性の改善と強度の上昇に有効な元素である。その効果を得るためには、0.1%以上添加することが好ましいが、多く添加すると溶接性の劣化やMA体積分率の増加を招くため、添加する場合は1.0%を上限とする。
Cu
Cu is an element effective for improving toughness and increasing strength. In order to obtain the effect, it is preferable to add 0.1% or more, but adding a large amount causes deterioration of weldability and an increase in the MA volume fraction. .

Ni
Niは靭性の改善と強度の上昇に有効な元素である。その効果を得るためには、0.1%以上添加することが好ましいが、多く添加するとコスト的に不利になり、また、溶接熱影響部靱性が劣化するため、添加する場合は1.0%を上限とする。
Ni
Ni is an element effective for improving toughness and increasing strength. In order to obtain the effect, it is preferable to add 0.1% or more, but adding a large amount is disadvantageous in terms of cost, and the weld heat affected zone toughness deteriorates. Is the upper limit.

Cr
CrはMnと同様に低Cでも十分な強度を得るために有効な元素である。その効果を得るためには、0.1%以上添加することが好ましいが、多く添加すると溶接性が劣化やMA体積分率の増加を招くため、添加する場合は1.0%を上限とする。
Cr
Cr, like Mn, is an element effective for obtaining sufficient strength even at low C. In order to obtain the effect, it is preferable to add 0.1% or more, but adding a large amount causes deterioration of weldability and an increase in the MA volume fraction. .


Bは強度上昇、HAZ靭性改善に寄与する元素である。その効果を得るためには、0.0005%以上添加することが好ましいが、0.005%を超えて添加すると溶接性を劣化させるため、添加する場合は0.005%以下とする。
B
B is an element contributing to strength increase and HAZ toughness improvement. In order to obtain the effect, it is preferable to add 0.0005% or more, but if added over 0.005%, the weldability is deteriorated, so when added, the content is made 0.005% or less.

Mg
Mgはアルミナクラスター(Al)を、Al、Mg系酸化物として微細分散させることで母材靭性向上に寄与する元素である。0.005%を越える添加では酸化物の増加により母材靭性の低下が起こるため、添加する場合は0.005%以下とする。
Mg
Mg is an element that contributes to improving the toughness of the base material by finely dispersing alumina clusters (Al 2 O 3 ) as Al and Mg-based oxides. If the amount exceeds 0.005%, the toughness of the base metal decreases due to an increase in oxide, so when added, the amount is made 0.005% or less.

REM
REMはCaと同様、MnSの形態制御に有効な元素であり、母材靭性の向上に寄与する。0.02%超えの添加は、REMの酸硫化物が過剰に生成し、母材靭性を劣化させるため、添加する場合は0.02%以下とする。
REM
REM, like Ca, is an element that is effective in controlling the morphology of MnS and contributes to the improvement of the base material toughness. Addition exceeding 0.02% causes excessive generation of REM oxysulfide and deteriorates base metal toughness.

上記以外の残部はFeおよび不可避的不純物で、Nは本発明において不可避的不純物として扱うが、0.007%を越えると、溶接熱影響部靭性が劣化するため、好ましくは0.007%以下に制限する。   The balance other than the above is Fe and unavoidable impurities, and N is treated as an unavoidable impurity in the present invention. However, if it exceeds 0.007%, the weld heat affected zone toughness deteriorates, so preferably 0.007% or less. Restrict.

さらに、Ti量とN量の比であるTi/Nを最適化することで、TiN粒子により溶接熱影響部のオーステナイト粗大化を抑制し、良好な溶接熱影響部靭性を得ることが出来るため、好ましくはTi/Nを2〜8、さらに好ましくは2〜5とする。   Furthermore, by optimizing Ti / N which is the ratio of Ti amount and N amount, it is possible to suppress austenite coarsening of the weld heat affected zone by TiN particles, and to obtain good weld heat affected zone toughness, Preferably Ti / N is set to 2-8, more preferably 2-5.

次に、本発明に係る高強度鋼板の好適な製造方法について説明する。製造方法においては、スラブ加熱温度、熱間圧延、加速冷却、および加速冷却後の再加熱条件を規定する。   Next, the suitable manufacturing method of the high strength steel plate which concerns on this invention is demonstrated. In the manufacturing method, slab heating temperature, hot rolling, accelerated cooling, and reheating conditions after accelerated cooling are defined.

加熱温度、圧延終了温度、冷却停止温度の温度は鋼板の平均温度とする。平均温度は、スラブもしくは鋼板の表面温度より、板厚、熱伝導率等のパラメータを考慮して、計算により求める。   The heating temperature, rolling end temperature, and cooling stop temperature are the average temperature of the steel sheet. The average temperature is obtained by calculation from the surface temperature of the slab or steel plate, taking into account parameters such as plate thickness and thermal conductivity.

また、冷却速度は、冷却開始後、冷却停止温度までの温度差をその冷却を行うのに要した時間で割った平均冷却速度とする。   The cooling rate is an average cooling rate obtained by dividing the temperature difference from the start of cooling to the cooling stop temperature by the time required to perform the cooling.

[スラブ加熱温度]
スラブ加熱温度は1000〜1300℃とする。加熱温度が1000℃未満では十分な強度が得られず、1300℃を超えると母材靭性が劣化するため、1000〜1300℃とする。
[Slab heating temperature]
Slab heating temperature shall be 1000-1300 degreeC. If the heating temperature is less than 1000 ° C., sufficient strength cannot be obtained, and if it exceeds 1300 ° C., the base material toughness deteriorates, so the temperature is set to 1000 to 1300 ° C.

[熱間圧延条件]
熱間圧延は圧延終了温度:Ar変態点温度以上とする。本発明では硬質相の少ない均一な組織とすることが重要であるが、圧延終了温度がAr変態点温度未満であると、初析フェライトが生成し冷却後の金属組織がフェライトとベイナイトの混合組織となりバウシンガー効果の増大、HICの劣化が起こるため、圧延終了温度はAr変態点温度以上とする。
[Hot rolling conditions]
The hot rolling is performed at a rolling end temperature: Ar 3 transformation point temperature or higher. In the present invention, it is important to have a uniform structure with few hard phases. However, if the rolling end temperature is lower than the Ar 3 transformation point temperature, proeutectoid ferrite is formed, and the metal structure after cooling is a mixture of ferrite and bainite. Since the Bausinger effect increases and the HIC deteriorates, the rolling end temperature is set to the Ar 3 transformation temperature or higher.

[加速冷却条件]
圧延終了後、Ar変態点温度以上から直ちに5℃/s以上の冷却速度で加速冷却する。冷却開始温度がAr変態点温度未満となると初析フェライトが生成し混合組織となるためバウシンガー効果が大きくなり、さらに強度不足を招く。
[Accelerated cooling conditions]
Immediately after the end of rolling, accelerated cooling is performed at a cooling rate of 5 ° C./s or higher immediately above the Ar 3 transformation point temperature. When the cooling start temperature is lower than the Ar 3 transformation point temperature, pro-eutectoid ferrite is generated and becomes a mixed structure, so that the Bauschinger effect is increased and the strength is further insufficient.

また冷却速度が5℃/s未満では冷却時に硬質相であるパーライトが生成するため、冷却開始をAr変態点温度以上、圧延終了後の冷却速度を5℃/s以上に規定する。 Further, when the cooling rate is less than 5 ° C./s, pearlite which is a hard phase is generated at the time of cooling. Therefore, the cooling start is defined as the Ar 3 transformation point temperature or more, and the cooling rate after the rolling is finished is 5 ° C./s or more.

加速冷却停止温度は400〜600℃とする。加速冷却停止温度が400℃未満では冷却中に島状マルテンサイトが生成し、その後の再加熱で分解しても凝集したセメンタイトが生成する。さらに、400℃未満となると表面硬度が上昇する。
一方、600℃を超えると加速冷却停止時の未変態オーステナイト分率が高くなり、再加熱後の空冷時にMAやパーライトが生成する。このような凝集したセメンタイトやパーライトは、HICの伝播経路や局所的な歪勾配の原因となり、HIC性能劣化や鋼管成型時のバウシンガー効果による降伏応力低下が大きくなるため、加速冷却停止温度を400〜600℃に規定する。より好ましくは400〜530℃である。
The accelerated cooling stop temperature is 400 to 600 ° C. If the accelerated cooling stop temperature is less than 400 ° C., island martensite is generated during cooling, and aggregated cementite is generated even if decomposed by subsequent reheating. Furthermore, when it becomes less than 400 degreeC, surface hardness will rise.
On the other hand, when it exceeds 600 ° C., the untransformed austenite fraction at the time of accelerating cooling stop increases, and MA and pearlite are generated during air cooling after reheating. Such agglomerated cementite and pearlite cause the HIC propagation path and local strain gradient, and the HIC performance deteriorates and the yield stress decreases due to the Bausinger effect during steel pipe molding. Specified at ~ 600 ° C. More preferably, it is 400-530 degreeC.

冷却設備は製造プロセスによって任意の冷却設備を用いることが可能であり、例えば水冷方式の加速冷却設備が利用できる。   As the cooling equipment, any cooling equipment can be used depending on the manufacturing process. For example, a water cooling type accelerated cooling equipment can be used.

[加速冷却後の再加熱条件]
前述したように、加速冷却材におけるセメンタイトやMAの硬質相は、加速冷却後の空冷時にCが濃化した未変態オーステナイトやベイナイトラス間で生成する。
[Reheating conditions after accelerated cooling]
As described above, the cementite and MA hard phases in the accelerated coolant are generated between untransformed austenite and bainite lath where C is concentrated during air cooling after accelerated cooling.

本発明では、加速冷却直後の再加熱中に微細な炭窒化物を析出させ、Cを消費することで、未変態オーステナイトへのC濃化を抑え、MAやセメンタイトの生成を抑制する。
さらに、再加熱時に鋼板表面温度を板厚中心部温度より高くすることで、表面を軟化させることが可能であり、均一な板厚方向の硬度分布が得られる。
In the present invention, fine carbonitride is precipitated during reheating immediately after accelerated cooling and C is consumed, thereby suppressing C concentration to untransformed austenite and suppressing formation of MA and cementite.
Furthermore, by making the steel plate surface temperature higher than the plate thickness center temperature during reheating, the surface can be softened and a uniform hardness distribution in the plate thickness direction can be obtained.

そのため、加速冷却後直ちに0.5℃/s以上の昇温速度で鋼板表面温度600℃以上、板厚中心部温度550〜700℃まで再加熱を行い、且つ加熱終了時の鋼板表面と板厚中心部の温度差を20℃以上とする。尚、昇温速度は板表面と板中央部で0.5℃/s以上とする。   Therefore, immediately after accelerated cooling, reheating is performed to a steel plate surface temperature of 600 ° C. or higher and a plate thickness center temperature of 550 to 700 ° C. at a temperature rising rate of 0.5 ° C./s or more. The temperature difference at the center is set to 20 ° C. or more. The rate of temperature rise is 0.5 ° C./s or more at the plate surface and the plate center.

昇温速度が0.5℃/s未満では、目的の再加熱温度に達するまでに長時間を要するため製造効率が悪化し、またパーライト変態が生じるため、バウシンガー効果が大きくなる。   When the rate of temperature rise is less than 0.5 ° C./s, it takes a long time to reach the target reheating temperature, so that the production efficiency is deteriorated and pearlite transformation occurs, so that the Bausinger effect is increased.

板厚中心部の再加熱温度が550℃未満ではセメンタイトや炭窒化物の十分な析出が得られずMAが生成する。700℃を超えるとセメンタイトの凝集、粗大化が起こるため、板厚中心部の再加熱温度を550〜700℃に規定する。   If the reheating temperature at the center of the plate thickness is less than 550 ° C., sufficient precipitation of cementite and carbonitride cannot be obtained and MA is generated. When the temperature exceeds 700 ° C., cementite aggregation and coarsening occur, so the reheating temperature at the center of the plate thickness is regulated to 550 to 700 ° C.

更に、鋼板表面温度が600℃未満で、鋼板表面と板厚中心部の温度差が20℃未満の場合、表面硬度を低下させることが出来ず、表面が硬化した不均一な板厚方向硬度分布となりHIC性能が劣化するばかりかバウジンガー効果が大きくなるので、鋼板表面温度を600℃以上、且つ鋼板表面と板厚中心部の温度差を20℃以上とする。再加熱後の冷却過程は特に規定しないが、空冷とすることが望ましい。   Furthermore, when the steel sheet surface temperature is less than 600 ° C. and the temperature difference between the steel sheet surface and the center of the plate thickness is less than 20 ° C., the surface hardness cannot be reduced, and the uneven thickness distribution in the thickness direction in which the surface is cured. Thus, not only the HIC performance is deteriorated but also the Baudinger effect is increased, so that the steel plate surface temperature is set to 600 ° C. or higher and the temperature difference between the steel plate surface and the plate thickness center portion is set to 20 ° C. or higher. The cooling process after reheating is not particularly defined, but it is desirable to use air cooling.

また、加速冷却後は、Cが濃化したベイナイトのラス間や未変態オーステナイト部が、空冷によりセメンタイトやMAへと変態するため、直ちに再加熱のための加熱を開始する必要がある。本発明で直ちにとは180秒以内で好ましくは、120秒以内である。   In addition, after accelerated cooling, the lath of bainite enriched with C and the untransformed austenite part are transformed into cementite and MA by air cooling, and thus it is necessary to immediately start heating for reheating. In the present invention, “immediately” means within 180 seconds, preferably within 120 seconds.

加速冷却後の再加熱を行うための設備として、冷却設備の下流側に加熱装置を設置する。加熱装置としては、板厚中央部の加熱に対して、鋼板表面の加熱が容易で、加速冷却後の温度差を解消させることが容易な誘導加熱装置を用いる事が好ましい。   As equipment for performing reheating after accelerated cooling, a heating device is installed on the downstream side of the cooling equipment. As the heating device, it is preferable to use an induction heating device that can easily heat the surface of the steel plate and easily eliminate the temperature difference after the accelerated cooling as compared with the heating at the center of the plate thickness.

上述した製造方法を実施する設備として、圧延ラインの上流から下流側に向かって熱間圧延機、冷却装置、誘導加熱装置、ホットレベラーを逐次配置したものが好適である。   As equipment for carrying out the manufacturing method described above, it is preferable to sequentially arrange a hot rolling mill, a cooling device, an induction heating device, and a hot leveler from the upstream side to the downstream side of the rolling line.

誘導加熱装置あるいは他の熱処理装置を、圧延設備である熱間圧延機およびその出側に配置される冷却装置と同一ライン上に設置する事によって、圧延、加速冷却終了後迅速に再加熱処理が行えるので、加速冷却後の鋼板温度を過度に低下させることなく加熱することが可能である。   By installing an induction heating device or other heat treatment device on the same line as the hot rolling mill that is the rolling equipment and the cooling device arranged on the outlet side, the reheating treatment can be performed quickly after the completion of rolling and accelerated cooling. Since it can be performed, it is possible to heat the steel sheet after accelerated cooling without excessively reducing the steel sheet temperature.

上述した製造方法と成分組成の組合わせにより製造した本発明鋼板では金属組織中の島状マルテンサイト分率が3%以下、更に表面と板厚中央部の硬度差として40以下が得られる。   In the steel sheet of the present invention manufactured by the combination of the manufacturing method and the component composition described above, the island-like martensite fraction in the metal structure is 3% or less, and further, a hardness difference of 40 or less is obtained as the hardness difference between the surface and the center of the plate thickness.

表1に示す化学成分の鋼(鋼種A〜L)を連続鋳造法によりスラブとし、表2に示す製造条件を用い、板厚18、26mmの厚鋼板(No.1〜18)を製造した。   Steels (steel types A to L) having chemical components shown in Table 1 were made into slabs by a continuous casting method, and steel plates (Nos. 1 to 18) having thicknesses of 18 and 26 mm were manufactured using the manufacturing conditions shown in Table 2.

Figure 0005098256
Figure 0005098256

Figure 0005098256
Figure 0005098256

加熱したスラブを熱間圧延により圧延した後、直ちに水冷型の冷却設備を用いて加速冷却を行い、誘導加熱炉を用いて再加熱を行った。誘導加熱炉は冷却設備と同一ライン上に設置した。   After the heated slab was rolled by hot rolling, it was immediately subjected to accelerated cooling using a water-cooling type cooling facility, and then reheated using an induction heating furnace. The induction heating furnace was installed on the same line as the cooling equipment.

なお、加熱温度、圧延終了温度、冷却開始および停止温度は鋼板の平均温度とした。平均温度は、スラブもしくは鋼板の表面温度より、板厚、熱伝導率等のパラメータ、計算により求めた。   The heating temperature, rolling end temperature, cooling start and stop temperature were the average temperature of the steel sheet. The average temperature was determined from the surface temperature of the slab or steel plate by parameters and calculations such as plate thickness and thermal conductivity.

加速冷却速度は、加速冷却開始後、加速冷却停止温度まで冷却に必要な温度差をその冷却を行うのに要した時間で除した平均冷却速度とした。   The accelerated cooling rate was an average cooling rate obtained by dividing the temperature difference required for cooling to the accelerated cooling stop temperature by the time required for the cooling after the accelerated cooling was started.

再加熱昇温速度は、加速冷却後、板厚中心部の再加熱温度までの再加熱に必要な温度差を再加熱するのに要した時間で除した平均昇温速度とした。   The reheating temperature increase rate was the average temperature increase rate divided by the time required for reheating the temperature difference required for reheating up to the reheating temperature at the center of the plate thickness after accelerated cooling.

再加熱終了時の鋼板表面温度は、放射温度計で測定し、鋼板板厚中心部温度は、鋼板の表面温度より、板厚、熱伝導率等のパラメータ、計算により求めた。   The steel plate surface temperature at the end of reheating was measured with a radiation thermometer, and the steel plate thickness center temperature was determined from the surface temperature of the steel plate by parameters such as plate thickness and thermal conductivity, and calculation.

以上の条件で製造した鋼板を用い、表面と板厚中心部の硬度差測定、引張特性測定、バウシンガー試験を実施した。測定結果を表2に併せて示す。   Using the steel plate manufactured under the above conditions, a hardness difference measurement, a tensile property measurement, and a Bausinger test were conducted between the surface and the center of the plate thickness. The measurement results are also shown in Table 2.

硬度差は、荷重10kgfのビッカース硬さの値で表層の硬度(鋼板幅方向断面の表面から板厚中心方向1mmの位置の硬度)と板厚中心部の硬度の差を示している。   The hardness difference is a value of a Vickers hardness with a load of 10 kgf, and indicates a difference between the hardness of the surface layer (the hardness at a position 1 mm from the surface of the cross section in the width direction of the steel sheet) and the hardness at the center of the thickness.

引張特性は、圧延垂直方向の全厚引張試験片を2本採取し、引張試験を行い、引張特性を測定し、その平均値で評価した。引張強度540MPa以上を本発明に必要な強度とした。   Tensile properties were obtained by collecting two full thickness tensile test specimens in the vertical direction of rolling, performing a tensile test, measuring the tensile properties, and evaluating the average value. The tensile strength of 540 MPa or more was determined as the strength required for the present invention.

バウシンガー試験は、10φ丸棒試験片を1/4厚位置から採取し1〜3%の圧縮予歪みを導入した後、引張試験を行い、当該引張試験で得られた0.5%耐力を圧縮時の0.5%耐力で除した値を耐力比として評価した。耐力比が高いほどバウシンガー効果による降伏応力低下が小さいと評価でき、耐力比が0.8以上を本発明に必要な値とした。   In the Bausinger test, a 10φ round bar test piece was sampled from a 1/4 thickness position, and after introducing a compression pre-strain of 1 to 3%, a tensile test was performed, and the 0.5% yield strength obtained in the tensile test was measured. The value divided by 0.5% proof stress during compression was evaluated as the proof stress ratio. It can be evaluated that the yield stress reduction due to the Bauschinger effect is smaller as the yield strength ratio is higher, and the yield strength ratio is set to a value necessary for the present invention of 0.8 or more.

耐HIC特性はNACE Standard TM−02−84に準じた浸漬時間96時間のHIC試験を行い、割れが認められない場合を耐HIC性良好と判断して○で、割れが発生した場合を×で示した。   The HIC resistance was evaluated by performing an HIC test with an immersion time of 96 hours in accordance with NACE Standard TM-02-84. If no cracks were observed, the HIC resistance was judged good. Indicated.

溶接熱影響部(HAZ)靭性については、再現熱サイクル装置によって入熱40kJ/cmに相当する熱履歴を加えた試験片を用いてシャルピー試験を行った。試験温度−10℃でのシャルピー吸収エネルギーが100J以上を良好とした。   For the weld heat affected zone (HAZ) toughness, a Charpy test was performed using a test piece to which a heat history corresponding to a heat input of 40 kJ / cm was added by a reproducible heat cycle apparatus. Charpy absorption energy at a test temperature of −10 ° C. was 100 J or more.

第2相体積分率は、倍率1000倍で組織観察した5枚のSEM写真の画像解析から面積分率を平均して求め、鋼板中に均一に第2相が分散していると仮定して、体積分率とした。   The second phase volume fraction is obtained by averaging the area fraction from image analysis of five SEM photographs observed at a magnification of 1000 times, and it is assumed that the second phase is uniformly dispersed in the steel sheet. And volume fraction.

表3に得られた結果を示す。比較例No.8〜18は本発明例No.1〜7と比較すると何れかの特性が劣る。 Table 3 shows the results obtained. Comparative Example No. Nos. 8 to 18 are Examples Nos. Any characteristic is inferior compared with 1-7.

Figure 0005098256
Figure 0005098256

Claims (5)

質量%で、C:0.03〜0.06%、Si:0.01〜0.5%、Mn:0.8〜1.5%、P:0.01%以下、S:0.0015%以下、Ti:0.005〜0.04%、Nb:0.005〜0.06%、Al:0.08%以下、Ca:0.001〜0.005%、O:0.0030%以下を含有し、残部Feおよび不可避的不純物からなり、Ca、O、Sの含有量が下記(1)式を満たし、金属組織中の硬質第2相組織の体積分率が0.8%以下であり、表層と板厚中心部のビッカース硬度差が40以内であることを特徴とする耐水素誘起割れ性能に優れたバウシンガー効果による降伏応力低下が小さい高強度ラインパイプ用鋼板。
1.0≦{[Ca]-(0.18+130×[Ca])×[O]}/(1.25×[S])≦4.5 …(1)
但し、[Ca],[O],[S]は含有量(質量%)とする。
In mass%, C: 0.03-0.06%, Si: 0.01-0.5%, Mn: 0.8-1.5%, P: 0.01% or less, S: 0.0015 %: Ti: 0.005 to 0.04%, Nb: 0.005 to 0.06%, Al: 0.08% or less, Ca: 0.001 to 0.005%, O: 0.0030% Containing the remainder, Fe and inevitable impurities, the content of Ca, O, S satisfies the following formula (1), the volume fraction of the hard second phase structure in the metal structure is 0.8 % or less A steel sheet for a high-strength line pipe with a low yield stress reduction due to the Bauschinger effect excellent in hydrogen-induced cracking resistance, characterized in that the Vickers hardness difference between the surface layer and the center of the plate thickness is within 40.
1.0 ≦ {[Ca] − (0.18 + 130 × [Ca]) × [O]} / (1.25 × [S]) ≦ 4.5 (1)
However, [Ca], [O], and [S] are the contents (% by mass).
更に、質量%で、Mo:0.05〜0.4%以下、V:0.005〜0.07%の中から選ばれる1種又は2種を含有することを特徴とする請求項1に記載の耐水素誘起割れ性能に優れたバウシンガー効果による降伏応力低下が小さい高強度ラインパイプ用鋼板。   Furthermore, it contains 1 type or 2 types chosen from Mo: 0.05-0.4% or less and V: 0.005-0.07% by the mass%. Steel sheet for high-strength line pipes with low yield stress reduction due to the Bauschinger effect, which has excellent hydrogen-induced cracking resistance. 更に、質量%で、Cu:1.0%以下、Ni:1.0%以下、Cr:1.0%以下、B:0.005%以下の中から選ばれる1種又は2種以上を含有することを特徴とする請求項1または2に記載の耐水素誘起割れ性能に優れたバウシンガー効果による降伏応力低下が小さい高強度ラインパイプ用鋼板。   Furthermore, by mass%, Cu: 1.0% or less, Ni: 1.0% or less, Cr: 1.0% or less, and B: 0.005% or less, containing one or more kinds The steel sheet for high-strength line pipes according to claim 1 or 2, wherein the decrease in yield stress due to the Bauschinger effect is excellent in hydrogen-resistant cracking resistance. 更に、質量%で、Mg:0.005%以下、REM:0.02%以下の中から選ばれる1種又は2種を含有することを特徴とする請求項1乃至3のいずれか一つに記載の耐水素誘起割れ性能に優れたバウシンガー効果による降伏応力低下が小さい高強度ラインパイプ用鋼板。   Furthermore, by mass%, it contains 1 type or 2 types chosen from Mg: 0.005% or less and REM: 0.02% or less. Steel sheet for high-strength line pipes with low yield stress reduction due to the Bauschinger effect, which has excellent hydrogen-induced cracking resistance. 請求項1乃至4のいずれか一つに記載の成分組成を有する鋼を、1000〜1300℃の温度に加熱し、Ar変態点温度以上の圧延終了温度で熱間圧延して鋼板とした後、Ar変態点以上の温度から5℃/s以上の冷却速度で400〜600℃まで加速冷却を行い、その後直ちに0.5℃/s以上の昇温速度で鋼板表面温度600℃以上、板厚中心部温度550〜700℃まで再加熱を行い、且つ再加熱終了時の鋼板表面と板厚中心部の温度差を20℃以上とすることを特徴とする耐水素誘起割れ性能に優れたバウシンガー効果による降伏応力低下が小さい高強度ラインパイプ用鋼板の製造方法。 After the steel having the component composition according to any one of claims 1 to 4, and heated to a temperature of 1000 to 1300 ° C., was steel and hot rolled at Ar 3 transformation point temperature or more rolling end temperature , Accelerated cooling from 400 ° C. to 600 ° C. at a cooling rate of 5 ° C./s or higher from a temperature not lower than the Ar 3 transformation point, and immediately followed by a temperature rise rate of 0.5 ° C./s or higher at a steel sheet surface temperature of 600 ° C. or higher. A bow with excellent resistance to hydrogen-induced cracking, characterized in that it is reheated to a thickness center temperature of 550 to 700 ° C., and the temperature difference between the steel plate surface and the thickness center at the end of reheating is 20 ° C. or more. A method for producing a steel sheet for high-strength line pipes, in which the yield stress drop due to the singer effect is small.
JP2006233190A 2006-08-30 2006-08-30 Steel sheet for high-strength line pipe with low yield stress reduction due to the Bauschinger effect with excellent hydrogen-induced cracking resistance and method for producing the same Active JP5098256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006233190A JP5098256B2 (en) 2006-08-30 2006-08-30 Steel sheet for high-strength line pipe with low yield stress reduction due to the Bauschinger effect with excellent hydrogen-induced cracking resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006233190A JP5098256B2 (en) 2006-08-30 2006-08-30 Steel sheet for high-strength line pipe with low yield stress reduction due to the Bauschinger effect with excellent hydrogen-induced cracking resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008056962A JP2008056962A (en) 2008-03-13
JP5098256B2 true JP5098256B2 (en) 2012-12-12

Family

ID=39240059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006233190A Active JP5098256B2 (en) 2006-08-30 2006-08-30 Steel sheet for high-strength line pipe with low yield stress reduction due to the Bauschinger effect with excellent hydrogen-induced cracking resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP5098256B2 (en)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5211843B2 (en) * 2008-05-15 2013-06-12 Jfeスチール株式会社 Welded steel pipe with excellent crush resistance and method for producing the same
RU2493284C2 (en) 2008-07-31 2013-09-20 ДжФЕ СТИЛ КОРПОРЕЙШН Thick-walled high-strength hot-rolled steel plate with excellent low-temperature impact strength and its production method
JP5369639B2 (en) * 2008-11-25 2013-12-18 Jfeスチール株式会社 High strength steel material excellent in welding heat-affected zone toughness and HIC resistance and manufacturing method thereof
JP5499731B2 (en) * 2009-01-30 2014-05-21 Jfeスチール株式会社 Thick high-tensile hot-rolled steel sheet with excellent HIC resistance and method for producing the same
KR20160057492A (en) * 2009-01-30 2016-05-23 제이에프이 스틸 가부시키가이샤 Heavy gauge, high tensile strength, hot rolled steel sheet with excellent hic resistance and manufacturing method therefor
WO2010087511A1 (en) 2009-01-30 2010-08-05 Jfeスチール株式会社 Thick high-tensile-strength hot-rolled steel sheet with excellent low-temperature toughness and process for production of same
JP5418251B2 (en) * 2009-01-30 2014-02-19 Jfeスチール株式会社 Manufacturing method of thick-walled high-tensile hot-rolled steel sheet with excellent HIC resistance
KR101511615B1 (en) 2009-11-25 2015-04-13 제이에프이 스틸 가부시키가이샤 Method for manufacturing welded steel pipe for linepipe having high compressive strength and high fracture toughness
US9181609B2 (en) 2009-11-25 2015-11-10 Jfe Steel Corporation Welded steel pipe for linepipe having high compressive strength and excellent sour gas resistance and manufacturing method thereof
US9089919B2 (en) 2009-11-25 2015-07-28 Jfe Steel Corporation Welded steel pipe for linepipe with high compressive strength and manufacturing method thereof
JP5672916B2 (en) * 2010-09-30 2015-02-18 Jfeスチール株式会社 High-strength steel sheet for sour line pipes, method for producing the same, and high-strength steel pipe using high-strength steel sheets for sour line pipes
JP5246280B2 (en) * 2011-02-15 2013-07-24 新日鐵住金株式会社 Steel sheet for high strength steel pipe and high strength steel pipe
JP5803270B2 (en) * 2011-05-24 2015-11-04 Jfeスチール株式会社 High strength sour line pipe excellent in crush resistance and manufacturing method thereof
JP5751013B2 (en) * 2011-05-24 2015-07-22 Jfeスチール株式会社 Manufacturing method of high-strength line pipe with excellent crush resistance and sour resistance
JP5796351B2 (en) * 2011-05-24 2015-10-21 Jfeスチール株式会社 High strength sour line pipe excellent in crush resistance and manufacturing method thereof
JP5751012B2 (en) * 2011-05-24 2015-07-22 Jfeスチール株式会社 Manufacturing method of high-strength line pipe with excellent crush resistance and sour resistance
JP5796368B2 (en) * 2011-06-23 2015-10-21 Jfeスチール株式会社 Tempered low-yield-thickness steel plate with excellent sour resistance and manufacturing method thereof
JP5796369B2 (en) * 2011-06-23 2015-10-21 Jfeスチール株式会社 Tempered low-yield-thickness steel plate with excellent sour resistance and manufacturing method thereof
JP5776377B2 (en) * 2011-06-30 2015-09-09 Jfeスチール株式会社 High-strength hot-rolled steel sheet for welded steel pipes for line pipes with excellent sour resistance and method for producing the same
JP5991175B2 (en) * 2011-12-09 2016-09-14 Jfeスチール株式会社 High-strength steel sheet for line pipes with excellent material uniformity in the steel sheet and its manufacturing method
JP5991174B2 (en) * 2011-12-09 2016-09-14 Jfeスチール株式会社 High-strength steel sheet for sour-resistant pipes with excellent material uniformity in the steel sheet and its manufacturing method
RU2484147C1 (en) * 2012-03-11 2013-06-10 Общество с ограниченной ответственностью "Северсталь-Проект" (ООО "Северсталь-Проект") Method of making strips from low-alloy steel
IN2014KN02286A (en) 2012-06-18 2015-05-01 Jfe Steel Corp
KR20170083158A (en) 2012-07-09 2017-07-17 제이에프이 스틸 가부시키가이샤 Thick-walled high-strength sour-resistant line pipe
JP5928405B2 (en) * 2013-05-09 2016-06-01 Jfeスチール株式会社 Tempered steel sheet excellent in resistance to hydrogen-induced cracking and method for producing the same
JP6079611B2 (en) * 2013-12-18 2017-02-15 Jfeスチール株式会社 Ni alloy clad steel plate excellent in low temperature toughness and HAZ toughness of base metal and corrosion resistance of laminated material, and method for producing the same
WO2016051727A1 (en) * 2014-09-30 2016-04-07 Jfeスチール株式会社 Welded steel pipe, steel plate, and manufacturing method therefor
JP2016125137A (en) * 2014-12-26 2016-07-11 株式会社神戸製鋼所 Steel sheet and steel pipe for line pipe excellent in hydrogen-induced crack resistance
JP6584912B2 (en) * 2014-12-26 2019-10-02 株式会社神戸製鋼所 Steel plate and line pipe steel pipe with excellent hydrogen-induced crack resistance
JP2017078221A (en) * 2015-10-21 2017-04-27 株式会社神戸製鋼所 Steel plate and joined body
CN105803325B (en) * 2016-04-28 2017-10-27 江阴兴澄特种钢铁有限公司 A kind of low-crackle sensitive low yield strength ratio super-thick steel plate and preparation method thereof
JP6844691B2 (en) * 2017-03-30 2021-03-17 Jfeスチール株式会社 High-strength steel sheets for sour-resistant pipes and their manufacturing methods, and high-strength steel pipes using high-strength steel sheets for sour-resistant pipes
JP6635231B2 (en) 2018-01-30 2020-01-22 Jfeスチール株式会社 Steel material for line pipe, method for manufacturing the same, and method for manufacturing line pipe
KR102447054B1 (en) 2018-01-30 2022-09-23 제이에프이 스틸 가부시키가이샤 Steel material for line pipe, manufacturing method thereof, and manufacturing method of line pipe
EP3872219A4 (en) * 2018-10-26 2021-12-15 Posco High-strength steel having excellent resistance to sulfide stress cracking, and method for manufacturing same
KR102648172B1 (en) 2019-03-28 2024-03-14 제이에프이 스틸 가부시키가이샤 Steel materials for line pipes and their manufacturing method, and line pipes and their manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033310A (en) * 1983-07-30 1985-02-20 Nippon Steel Corp Manufacture of steel plate efficient in hydrogen induced crack resistance and sulfide stress corrosion crack resistance
JPS62112722A (en) * 1985-11-13 1987-05-23 Nippon Steel Corp Production of steel sheet having excellent resistance to hydrogen induced cracking and resistance to sulfide stress corrosion cracking
JP2655911B2 (en) * 1989-04-07 1997-09-24 川崎製鉄株式会社 Linepipe steel with excellent hydrogen-induced cracking resistance and sulfide stress corrosion cracking resistance

Also Published As

Publication number Publication date
JP2008056962A (en) 2008-03-13

Similar Documents

Publication Publication Date Title
JP5098256B2 (en) Steel sheet for high-strength line pipe with low yield stress reduction due to the Bauschinger effect with excellent hydrogen-induced cracking resistance and method for producing the same
JP4940886B2 (en) High strength steel plate for line pipe with excellent HIC resistance and method for producing the same
JP5776398B2 (en) Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
JP5728836B2 (en) Manufacturing method of high strength seamless steel pipe for oil wells with excellent resistance to sulfide stress cracking
EP2484792B1 (en) Steel plate with low yield ratio, high strength, and high toughness and process for producing same
EP1870484B1 (en) High-strength steel plate and process for production thereof, and high-strength steel pipe
JP5900303B2 (en) High-strength steel sheet for sour-resistant pipes with excellent material uniformity in the steel sheet and its manufacturing method
WO2010093053A1 (en) High-strength steel sheet and high-strength steel pipe having excellent hydrogen-induced cracking resistance for use in line pipe
JP5245476B2 (en) Steel plate for line pipe
JP5928405B2 (en) Tempered steel sheet excellent in resistance to hydrogen-induced cracking and method for producing the same
JP5141073B2 (en) X70 grade or less low yield ratio high strength high toughness steel pipe and method for producing the same
JP2008248328A (en) Low yield ratio, high strength and high toughness steel sheet, and method for producing the same
JP2007262477A (en) Low yield-ratio high-strength thick steel plate and its production method
JP4254551B2 (en) High strength steel plate for line pipe with excellent HIC resistance and method for producing the same
WO2016056216A1 (en) Steel sheet for line pipe, method for manufacturing same, and steel tube for line pipe
JP4677883B2 (en) Steel sheet for high-strength line pipe with low yield stress reduction due to the Bauschinger effect and method for producing the same
JP5348382B2 (en) A steel plate for high toughness linepipe with a low yield stress reduction due to the Bauschinger effect and a method for producing the same.
JP5211843B2 (en) Welded steel pipe with excellent crush resistance and method for producing the same
JP2015143398A (en) Thick steel plate for ship, marine structure and hydraulic steel pipe having excellent brittle crack arrest properties, and method for producing same
JP4419744B2 (en) High strength steel plate for line pipes with excellent HIC resistance and weld heat affected zone toughness and method for producing the same
JP4314873B2 (en) High strength steel plate for line pipe with excellent HIC resistance and method for producing the same
JP5991174B2 (en) High-strength steel sheet for sour-resistant pipes with excellent material uniformity in the steel sheet and its manufacturing method
JP4273826B2 (en) High strength steel plate for line pipe with excellent HIC resistance and method for producing the same
JP2010235987A (en) High strength steel sheet for pipe-line excellent in hic-resistant characteristics and toughness in welded-heat affecting part, and manufacturing method therefor
WO2019064459A1 (en) High-strength steel plate for sour resistant line pipe, method for manufacturing same, and high-strength steel pipe using high-strength steel plate for sour resistant line pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110916

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5098256

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250