JP2016125137A - Steel sheet and steel pipe for line pipe excellent in hydrogen-induced crack resistance - Google Patents
Steel sheet and steel pipe for line pipe excellent in hydrogen-induced crack resistance Download PDFInfo
- Publication number
- JP2016125137A JP2016125137A JP2015202378A JP2015202378A JP2016125137A JP 2016125137 A JP2016125137 A JP 2016125137A JP 2015202378 A JP2015202378 A JP 2015202378A JP 2015202378 A JP2015202378 A JP 2015202378A JP 2016125137 A JP2016125137 A JP 2016125137A
- Authority
- JP
- Japan
- Prior art keywords
- slab
- less
- concentration
- amount
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
- C21D8/105—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Steel (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Description
本発明は、天然ガス・原油輸送用ラインパイプや貯蔵用タンクなどに好適な、耐水素誘起割れ性に優れた鋼板、および該鋼板を用いて得られる耐水素誘起割れ性に優れたラインパイプ用鋼管に関する。 The present invention is suitable for natural gas / crude oil transportation line pipes and storage tanks, and has excellent hydrogen-induced crack resistance and line pipe excellent in hydrogen-induced crack resistance obtained using the steel sheet. It relates to steel pipes.
主に石油・ガスなどの輸送用ラインパイプや貯蔵用タンクでは、硫化水素を含有する劣質資源の開発に伴い、耐水素誘起割れ性や耐応力腐食割れ性などのいわゆる耐サワー性が必要とされる。以下では、この耐サワー性を備えた鋼板を「耐サワー鋼板」ということがある。水素誘起割れ(Hydrogen Induced Cracking、以下、「HIC」ということがある)は、上記硫化水素等による腐食反応に伴って鋼材内部に侵入した水素が、MnSやNb(C,N)をはじめとする非金属介在物などに集積し、ガス化により生じる割れであることが知られている。 In line with the development of inferior resources containing hydrogen sulfide, so-called sour resistance, such as resistance to hydrogen-induced cracking and stress corrosion cracking, is required mainly for oil and gas transportation line pipes and storage tanks. The Hereinafter, the steel plate having sour resistance may be referred to as “sour-resistant steel plate”. Hydrogen-induced cracking (hereinafter sometimes referred to as “HIC”) is a phenomenon in which hydrogen that has penetrated into a steel material due to the corrosion reaction caused by hydrogen sulfide or the like starts with MnS or Nb (C, N). It is known that it is a crack that accumulates in non-metallic inclusions and is caused by gasification.
HICは、鋳片の中心偏析、内部割れ等を含む偏析部、特にMnS等の介在物を起点に発生しやすいことが知られている。そこで、従来より、耐HIC性を高める技術について幾つか提案されている。例えば特許文献1には、板厚中心部のMn、Nb、Tiの偏析度を抑制することにより耐HIC性を改善した鋼材が開示されている。また特許文献2には、CaとOとSの含有量からなるパラメータ式によりMnSやCa系酸硫化物を起点としたHICを抑制する方法が開示されている。 It is known that HIC is likely to be generated starting from a segregated portion including center segregation of the slab, internal cracks, etc., particularly inclusions such as MnS. Thus, several techniques for improving the HIC resistance have been proposed. For example, Patent Document 1 discloses a steel material having improved HIC resistance by suppressing the segregation degree of Mn, Nb, and Ti at the center of the plate thickness. Patent Document 2 discloses a method of suppressing HIC starting from MnS or Ca-based oxysulfide by a parameter formula including Ca, O, and S contents.
これらの方法により、多くのHICは抑制されるものの、微細なHICが局所的に多数発生する場合がある。 Although many HICs are suppressed by these methods, a large number of fine HICs may be generated locally.
一方、鋼板は、溶製、鋳造、熱間圧延を経て得られた後、製品として出荷前にHIC試験が実施される。しかし、HIC試験は、結果が判明するまでに数週間を要する。また、上記HIC試験でHICが発生すると、上記鋼板を耐水素誘起割れ性に優れた製品として出荷できず、再度製造、即ち再び溶製から行って得られた製品に対し、再度のHIC試験を行う必要がある。そうすると、製造期間が長期化して納期遅れ等の原因となる。 On the other hand, the steel sheet is obtained through melting, casting, and hot rolling, and then subjected to an HIC test before shipping as a product. However, the HIC test takes several weeks before the results are known. In addition, when HIC occurs in the HIC test, the steel sheet cannot be shipped as a product excellent in hydrogen-induced cracking resistance, and the HIC test is performed again on the product obtained by remanufacturing, that is, remelting. There is a need to do. If it does so, a manufacturing period will become long and it will cause a delay in delivery.
そこで、上記熱間圧延後にHIC試験を行うのではなく、前記鋳造後の鋳片の段階で耐HIC性を評価できれば、製造期間を大幅に短縮できると考えられる。HICは、上述したように、偏析部(中心偏析、内部割れ)やMnS等の介在物を起点に発生するため、鋳片の段階でこれらを評価できれば、その評価結果に基づいて耐HIC性を評価できると考えられる。 Therefore, if the HIC resistance can be evaluated at the stage of the cast slab after the casting instead of performing the HIC test after the hot rolling, it is considered that the manufacturing period can be greatly shortened. As described above, since HIC occurs starting from the segregation part (center segregation, internal crack) and inclusions such as MnS, if these can be evaluated at the stage of the slab, the HIC resistance can be improved based on the evaluation result. It can be evaluated.
例えば、圧延後にHIC試験を行う従来の方法では、鋳造から出荷までに下記の長い工程A−1を経る。これに対し、鋳片の段階で耐HIC性を評価できれば、下記工程B−1の通り、HIC試験を行う場合の「(HIC試験のための)サンプル調整→HIC試験」を省略できるため、製品を早期に出荷できる。
工程A−1:鋳造→圧延→(HIC試験のための)サンプル調整→HIC試験→出荷
工程B−1:鋳造→耐HIC性の評価→圧延→出荷
For example, in the conventional method of performing the HIC test after rolling, the following long process A-1 is performed from casting to shipment. On the other hand, if the HIC resistance can be evaluated at the stage of the slab, it is possible to omit “sample adjustment (for HIC test) → HIC test” when performing the HIC test as shown in the following step B-1. Can be shipped early.
Process A-1: Casting → Rolling → Sample preparation (for HIC test) → HIC test → Shipping process B-1: Casting → HIC resistance evaluation → Rolling → Shipping
また、HIC試験の結果がNGであった場合、従来の方法では、鋳造から再溶製までが長い下記の工程A−2を経る。これに対し、下記工程B−2の通り鋳片の段階で耐HIC性を評価できれば、この評価がNGであったとしても、下記工程A−2における「圧延→(HIC試験のための)サンプル調整→HIC試験」を省略でき、早期に再溶製を開始できる。
工程A−2:鋳造→圧延→(HIC試験のための)サンプル調整→HIC試験→再溶製
工程B−2:鋳造→耐HIC性の評価→再溶製
Further, when the result of the HIC test is NG, in the conventional method, the following process A-2 is long from casting to remelting. On the other hand, if HIC resistance can be evaluated at the slab stage as shown in the following process B-2, even if this evaluation is NG, “rolling → (for HIC test) sample in the following process A-2” “Adjustment → HIC test” can be omitted, and remelting can be started at an early stage.
Step A-2: Casting → Rolling → Sample preparation (for HIC test) → HIC test → Remelting Step B-2: Casting → Evaluation of HIC resistance → Remelting
このような方法として、特許文献3には、鋳片の段階で内部割れを評価する方法が開示されている。この方法では、内部割れの評価結果からHCR(Hot Charge Rolling)操業の可否を判断している。 As such a method, Patent Document 3 discloses a method of evaluating internal cracks at the stage of a slab. In this method, whether or not HCR (Hot Charge Rolling) operation is possible is determined from the evaluation result of the internal crack.
また、CaO介在物を評価するものではないが、特許文献4〜8には圧延前に鋳片の品質を評価する方法が開示されている。例えば、特許文献4〜7では、鋳片やタンディッシュ内溶鋼の介在物量、元素量等から鋳片の品質を評価している。また、特許文献8では、タンディッシュ内溶鋼の分析結果から鋳片の品質を評価し(一次判定)、この判定精度が所定の精度を満たさない場合は鋳片サンプルの分析結果から鋳片の品質を評価している(二次判定)。 Moreover, although it does not evaluate CaO inclusions, Patent Documents 4 to 8 disclose methods for evaluating the quality of a slab before rolling. For example, in Patent Documents 4 to 7, the quality of the slab is evaluated from the amount of inclusions, the amount of elements, etc. of the slab and the molten steel in the tundish. Further, in Patent Document 8, the quality of the slab is evaluated from the analysis result of the molten steel in the tundish (primary determination), and the quality of the slab is determined from the analysis result of the slab sample if this determination accuracy does not satisfy the predetermined accuracy. (Secondary judgment).
特許文献3〜8は、上記の通りCaO介在物を評価するものではないが、CaO介在物の評価方法として、特許文献3〜8のように鋳片やタンディッシュ内溶鋼の介在物量及び元素量等から評価することが考えられる。 Patent Documents 3 to 8 do not evaluate CaO inclusions as described above. However, as an evaluation method for CaO inclusions, the amounts of inclusions and elemental amounts of cast slabs and tundish molten steel as in Patent Documents 3 to 8 are used. It is possible to evaluate from the above.
鋳片の段階でCaO介在物を評価するには、CaO集積帯が発生した位置でCaO量又はCa濃度を分析する必要がある。しかし、CaO集積帯が発生する位置は、鋳片の幅方向、厚さ方向及び鋳造方向にバラつきがあるため、その位置を予測することは難しい。また、鋳片の所定の部分を分析しても、その分析結果が必ずしもCaO集積帯のCaO量とはいえない。したがって、鋳片の分析結果からCaO介在物を評価することができない。 In order to evaluate CaO inclusions at the slab stage, it is necessary to analyze the amount of CaO or the Ca concentration at the position where the CaO accumulation zone is generated. However, the position where the CaO accumulation band is generated varies in the width direction, the thickness direction, and the casting direction of the slab, and it is difficult to predict the position. Further, even if a predetermined portion of the slab is analyzed, the analysis result is not necessarily the amount of CaO in the CaO accumulation zone. Therefore, CaO inclusions cannot be evaluated from the analysis result of the slab.
タンディッシュ内溶鋼の介在物量や元素量等からCaO介在物を評価することも考えられる。しかしCaO介在物は、鋳型に注入以降も凝集・集積する。よって、タンディッシュ内溶鋼のCaO量又はCa濃度からCaO集積帯が存在しないと評価しても、その後、CaO介在物が凝集することによりHICが発生するおそれがある。 It is also conceivable to evaluate CaO inclusions from the amount of inclusions and element amounts of molten steel in the tundish. However, CaO inclusions aggregate and accumulate after injection into the mold. Therefore, even if it is evaluated from the CaO amount or Ca concentration of the molten steel in the tundish that there is no CaO accumulation zone, there is a possibility that HIC may occur due to aggregation of CaO inclusions thereafter.
本発明は上記の様な事情に着目してなされたものであって、その目的は、耐水素誘起割れ性に優れた鋼板や鋼管を実現すること、更には、HIC試験を行うことなく、鋳片の内部品質から耐HIC性を評価できる鋼板や鋼管を実現することにある。 The present invention has been made paying attention to the above-mentioned circumstances, and its purpose is to realize a steel plate and a steel pipe excellent in hydrogen-induced cracking resistance, and further, without carrying out a HIC test, It is to realize a steel plate and a steel pipe that can evaluate the HIC resistance from the internal quality of the piece.
上記課題を解決し得た本発明の耐水素誘起割れ性に優れた鋼板は、
質量%で、
C:0.02〜0.15%、
Si:0.02〜0.50%、
Mn:0.6〜2.0%、
P:0%超0.030%以下、
S:0%超0.003%以下、
Al:0.010〜0.08%、
Ca:0.0003〜0.0060%、
N:0.001〜0.01%、および
O:0%超0.0045%以下を満たし、更に、
REM:0%超0.02%以下、および
Zr:0%超0.010%以下
よりなる群から選択される1種以上の元素を含み、残部が鉄および不可避不純物からなり、
前記Caと前記Sの比(Ca/S)が2.0以上であり、かつ
前記Ca、前記Sおよび前記Oが(Ca−1.25S)/O ≦ 1.80を満たし、
更に、タンディッシュ内溶鋼のCa濃度からスラブのCa濃度を差し引いたCa低下量が閾値Cadropθ以下であり、該閾値Cadropθは、前記スラブを圧延して得た鋼板に水素誘起割れが発生しない最大のCa低下量であるところに特徴を有する。
A steel sheet excellent in hydrogen-induced crack resistance of the present invention that has solved the above problems is
% By mass
C: 0.02 to 0.15%,
Si: 0.02 to 0.50%,
Mn: 0.6 to 2.0%,
P: more than 0% and 0.030% or less,
S: more than 0% and 0.003% or less,
Al: 0.010 to 0.08%,
Ca: 0.0003 to 0.0060%,
N: 0.001 to 0.01%, and O: more than 0% and 0.0045% or less,
Including one or more elements selected from the group consisting of REM: more than 0% and 0.02% or less, and Zr: more than 0% and 0.010%, the balance consisting of iron and inevitable impurities,
The ratio of Ca to S (Ca / S) is 2.0 or more, and the Ca, S and O satisfy (Ca−1.25S) /O≦1.80,
Furthermore, the amount of Ca reduction obtained by subtracting the Ca concentration of the slab from the Ca concentration of the molten steel in the tundish is not more than the threshold value Ca dropθ , and the threshold value Ca dropθ does not cause hydrogen-induced cracking in the steel sheet obtained by rolling the slab. It is characterized by the maximum amount of Ca decrease.
前記閾値Cadropθは、予め、下記(i)〜(iii)の方法で求められた値であってもよい。
(i)タンディッシュ内溶鋼のCa濃度とスラブのCa濃度を測定し、前記タンディッシュ内溶鋼のCa濃度から前記スラブのCa濃度を差し引いてCa低下量を算出する。
(ii)前記スラブと同一の鋳造条件で鋳造したスラブを圧延して得られる鋼板に対して水素誘起割れ試験を行う。
(iii)上記(i)で測定したCa低下量と、上記(ii)の水素誘起割れ試験結果とから、水素誘起割れの発生しない最大のCa低下量を求める。
The threshold value Ca dropθ may be a value obtained in advance by the following methods (i) to (iii).
(I) The Ca concentration of the molten steel in the tundish and the Ca concentration of the slab are measured, and the amount of Ca decrease is calculated by subtracting the Ca concentration of the slab from the Ca concentration of the molten steel in the tundish.
(Ii) A hydrogen-induced cracking test is performed on a steel plate obtained by rolling a slab cast under the same casting conditions as the slab.
(Iii) From the Ca decrease amount measured in (i) above and the hydrogen induced crack test result of (ii) above, the maximum Ca decrease amount at which no hydrogen induced crack occurs is obtained.
前記スラブと同一の鋳造条件で鋳造したスラブは、前記Ca低下量を測定したスラブであってもよい。 The slab cast under the same casting conditions as the slab may be a slab obtained by measuring the Ca decrease amount.
前記スラブのCa濃度は、前記スラブにおいて厚さ方向に異なる2箇所以上の位置でCa濃度を調査し、得られた2つ以上のCa濃度のうちの最小のCa濃度であってもよい。 The Ca concentration of the slab may be the minimum Ca concentration of the two or more Ca concentrations obtained by examining the Ca concentration at two or more positions different in the thickness direction in the slab.
前記閾値Cadropθは4ppm(質量ppm)であってもよい。 The threshold value Ca dropθ may be 4 ppm (mass ppm).
前記鋼板は、更に他の元素として、下記(A)および(B)のうちのいずれか1以上を含んでいてもよい。
(A)質量%で、B:0%超0.005%以下、V:0%超0.1%以下、Cu:0%超1.5%以下、Ni:0%超1.5%以下、Cr:0%超1.5%以下、Mo:0%超1.5%以下、およびNb:0%超0.06%以下よりなる群から選択される1種以上の元素
(B)質量%で、Ti:0%超0.03%以下、およびMg:0%超0.01%以下よりなる群から選択される1種以上の元素
The said steel plate may contain any one or more of following (A) and (B) as another element.
(A) By mass%, B: more than 0% to 0.005% or less, V: more than 0% to 0.1% or less, Cu: more than 0% to 1.5% or less, Ni: more than 0% to 1.5% or less Cr: more than 0% and 1.5% or less, Mo: more than 0% and 1.5% or less, and Nb: more than 0% and 0.06% or less. One or more elements selected from the group consisting of Ti: more than 0% and 0.03% or less and Mg: more than 0% and 0.01% or less
上記鋼板は、ラインパイプ用や圧力容器用として好適である。また本発明には、上記鋼板で形成されるラインパイプ用鋼管も含まれる。 The steel sheet is suitable for line pipes and pressure vessels. The present invention also includes a steel pipe for line pipe formed of the steel plate.
本発明によれば、耐水素誘起割れ性の確実に優れた鋼板や鋼管を提供できる。更には、HIC試験を行うことなく、鋳片の内部品質から耐HIC性を評価できる鋼板や鋼管を提供できる。これらは、天然ガス・原油の輸送用ラインパイプや貯蔵用タンク等の圧力容器などに好適に用いられる。 ADVANTAGE OF THE INVENTION According to this invention, the steel plate and steel pipe which were surely excellent in hydrogen-induced crack resistance can be provided. Furthermore, the steel plate and steel pipe which can evaluate HIC resistance from the internal quality of a slab can be provided, without performing a HIC test. These are suitably used for pressure vessels such as natural gas / crude oil transportation line pipes and storage tanks.
本発明者らは、前記課題を解決するために鋭意研究を重ねた。まず本発明者らは、HICがMnS介在物を起点に発生しやすいことに着目した。その結果、脱硫作用を有する元素である希土類元素あるいはZrを鋼材に含有させることにより、MnSの生成を抑制し耐水素誘起割れ性を高めることが可能であることに想到した。更に、その脱硫作用を効果的に発揮させるために、後述する適切な含有量を見出すに至った。 The inventors of the present invention have made extensive studies to solve the above problems. First, the inventors focused on the fact that HIC is likely to be generated starting from MnS inclusions. As a result, it was conceived that the rare earth element or Zr, which is an element having a desulfurization action, can be contained in the steel material to suppress the generation of MnS and enhance the resistance to hydrogen-induced cracking. Furthermore, in order to effectively exhibit the desulfurization action, an appropriate content described later has been found.
次に本発明者らは、HICが、鋳片製造時に生じるCaO集積部を起点に発生しやすいことに着目した。その結果、CaO集積部の有無を評価できる「タンディッシュ内溶鋼のCa濃度からスラブのCa濃度を差し引いたCa低下量」に注目し、スラブの段階で、このCa低下量を所定の閾値以下に収めれば、耐水素誘起割れ性の高い鋼板が得られ、更には製品を早期に出荷できることを見出した。この点については後に詳述する。 Next, the present inventors paid attention to the fact that HIC is likely to be generated starting from a CaO accumulation portion that is generated when a slab is manufactured. As a result, paying attention to the “Ca reduction amount obtained by subtracting the Ca concentration of the slab from the Ca concentration of the molten steel in the tundish” that can evaluate the presence or absence of the CaO accumulation portion, this Ca reduction amount is made a predetermined threshold value or less at the slab stage It was found that a steel plate with high resistance to hydrogen-induced cracking can be obtained if it is contained, and that the product can be shipped early. This point will be described in detail later.
まずは成分組成について説明する。尚、以下、成分について「%」は「質量%」、「ppm」は「質量ppm」を意味する。 First, the component composition will be described. In the following, “%” means “mass%” and “ppm” means “mass ppm” for the components.
優れた耐HIC性を確保するには、鋼材の成分組成を制御する必要がある。更には、例えばラインパイプ用鋼材として求められるその他の特性として、高強度や優れた溶接性等を確保するにも、鋼板の成分組成を下記の通りとする必要がある。以下、前述した希土類元素およびZrをはじめ、各成分の規定理由について説明する。 In order to ensure excellent HIC resistance, it is necessary to control the composition of the steel material. Furthermore, as another characteristic required as a steel material for line pipes, for example, in order to ensure high strength and excellent weldability, the component composition of the steel sheet needs to be as follows. Hereinafter, the reasons for defining each component including the above-described rare earth element and Zr will be described.
〔成分組成〕
[C:0.02〜0.15%]
Cは、母材および溶接部の強度を確保するために必要不可欠な元素であり、0.02%以上含有させる必要がある。C量は、好ましくは0.03%以上であり、より好ましくは0.05%以上である。一方、C量が多すぎるとHAZ靭性と溶接性が劣化する。またC量が過剰であると、HICの起点や破壊進展経路となるNbCや島状マルテンサイトが生成しやすくなる。よってC量は0.15%以下とする必要がある。好ましくは0.12%以下、より好ましくは0.10%以下である。
(Component composition)
[C: 0.02 to 0.15%]
C is an indispensable element for securing the strength of the base material and the welded portion, and needs to be contained by 0.02% or more. The amount of C is preferably 0.03% or more, and more preferably 0.05% or more. On the other hand, if the amount of C is too large, the HAZ toughness and weldability deteriorate. On the other hand, if the amount of C is excessive, NbC and island-shaped martensite that become the starting point of HIC and the fracture propagation path are likely to be generated. Therefore, the C amount needs to be 0.15% or less. Preferably it is 0.12% or less, More preferably, it is 0.10% or less.
[Si:0.02〜0.50%]
Siは、脱酸作用を有すると共に、母材および溶接部の強度向上に有効な元素である。これらの効果を得るため、Si量を0.02%以上とする。Si量は、好ましくは0.05%以上であり、より好ましくは0.15%以上である。しかし、Si量が多すぎると溶接性や靭性が劣化する。またSi量が過剰であると、島状マルテンサイトが生じてHICが発生・進展する。よってSi量は、0.50%以下に抑える必要がある。Si量は、好ましくは0.45%以下、より好ましくは0.35%以下である。
[Si: 0.02 to 0.50%]
Si is an element that has a deoxidizing action and is effective in improving the strength of the base material and the welded portion. In order to obtain these effects, the Si content is set to 0.02% or more. The amount of Si is preferably 0.05% or more, and more preferably 0.15% or more. However, if the amount of Si is too large, weldability and toughness deteriorate. If the amount of Si is excessive, island martensite is generated and HIC is generated and progresses. Therefore, the amount of Si needs to be suppressed to 0.50% or less. The amount of Si is preferably 0.45% or less, more preferably 0.35% or less.
[Mn:0.6〜2.0%]
Mnは、母材および溶接部の強度向上に有効な元素であり、本発明では0.6%以上含有させる。Mn量は、好ましくは0.8%以上であり、より好ましくは1.0%以上である。しかし、Mn量が多すぎると、MnSが生成されて耐水素誘起割れ性が劣化するだけでなくHAZ靭性や溶接性も劣化する。よってMn量の上限を2.0%とする。Mn量は、好ましくは1.8%以下であり、より好ましくは1.5%以下、さらに好ましくは1.2%以下である。
[Mn: 0.6 to 2.0%]
Mn is an element effective for improving the strength of the base material and the welded portion, and is contained in an amount of 0.6% or more in the present invention. The amount of Mn is preferably 0.8% or more, and more preferably 1.0% or more. However, if the amount of Mn is too large, not only MnS is produced and the hydrogen-induced cracking resistance deteriorates, but also the HAZ toughness and weldability deteriorate. Therefore, the upper limit of the amount of Mn is set to 2.0%. The amount of Mn is preferably 1.8% or less, more preferably 1.5% or less, and still more preferably 1.2% or less.
[P:0%超0.030%以下]
Pは、鋼材中に不可避的に含まれる元素であり、P量が0.030%を超えると母材やHAZ部の靭性劣化が著しく、耐水素誘起割れ性も劣化する。よって本発明ではP量を0.030%以下に抑える。P量は、好ましくは0.020%以下、より好ましくは0.010%以下である。
[P: more than 0% and 0.030% or less]
P is an element inevitably contained in the steel material. If the amount of P exceeds 0.030%, the toughness of the base material and the HAZ part is significantly deteriorated, and the resistance to hydrogen-induced cracking is also deteriorated. Therefore, in the present invention, the amount of P is suppressed to 0.030% or less. The amount of P is preferably 0.020% or less, more preferably 0.010% or less.
[S:0%超0.003%以下]
Sは、多すぎるとMnSを多量に生成し耐水素誘起割れ性を著しく劣化させる元素であるため、本発明ではS量の上限を0.003%とする。S量は、好ましくは0.002%以下であり、より好ましくは0.0015%以下、更に好ましくは0.0010%以下である。この様に耐水素誘起割れ性向上の観点からは少ない方が望ましい。
[S: more than 0% and 0.003% or less]
If S is too much, it is an element that produces a large amount of MnS and significantly deteriorates the resistance to hydrogen-induced cracking. Therefore, in the present invention, the upper limit of the amount of S is set to 0.003%. The amount of S is preferably 0.002% or less, more preferably 0.0015% or less, and still more preferably 0.0010% or less. Thus, the smaller one is desirable from the viewpoint of improving hydrogen-induced crack resistance.
[Al:0.010〜0.08%]
Alは強脱酸元素であり、Al量が少ないと、酸化物中のCa濃度が上昇、即ち、Ca系介在物が鋼板表層部に形成されやすくなり微細なHICが発生する。よって本発明では、Alを0.010%以上とする必要がある。Al量は、好ましくは0.020%以上、より好ましくは0.030%以上である。一方、Al含有量が多すぎると、Alの酸化物がクラスター状に生成し水素誘起割れの起点となる。よってAl量は0.08%以下とする必要がある。Al量は、好ましくは0.06%以下であり、より好ましくは0.05%以下である。
[Al: 0.010 to 0.08%]
Al is a strong deoxidizing element. When the amount of Al is small, the Ca concentration in the oxide increases, that is, Ca inclusions are easily formed in the surface layer portion of the steel sheet and fine HIC is generated. Therefore, in the present invention, Al needs to be 0.010% or more. The amount of Al is preferably 0.020% or more, more preferably 0.030% or more. On the other hand, when there is too much Al content, the oxide of Al will produce | generate in cluster shape and will become the starting point of a hydrogen induced crack. Therefore, the Al amount needs to be 0.08% or less. The amount of Al is preferably 0.06% or less, and more preferably 0.05% or less.
[Ca:0.0003〜0.0060%]
Caは、硫化物の形態を制御する作用があり、CaSを形成することによってMnSの形成を抑制する効果がある。この効果を得るには、Ca量を0.0003%以上とする必要がある。Ca量は、好ましくは0.0005%以上であり、より好ましくは0.0010%以上である。一方、Ca量が0.0060%を超えると、Ca系介在物を起点にHICが多く発生する。よって本発明では、Ca量の上限を0.0060%とする。Ca量は、好ましくは0.0045%以下であり、より好ましくは0.0035%以下、さらに好ましくは0.0025%以下である。
[Ca: 0.0003 to 0.0060%]
Ca has the effect | action which controls the form of sulfide, and there exists an effect which suppresses formation of MnS by forming CaS. In order to obtain this effect, the Ca content needs to be 0.0003% or more. The Ca content is preferably 0.0005% or more, and more preferably 0.0010% or more. On the other hand, when the Ca content exceeds 0.0060%, a large amount of HIC is generated starting from Ca-based inclusions. Therefore, in the present invention, the upper limit of the Ca amount is set to 0.0060%. The Ca content is preferably 0.0045% or less, more preferably 0.0035% or less, and still more preferably 0.0025% or less.
[N:0.001〜0.01%]
Nは、鋼組織中にTiNとして析出し、HAZ部のオーステナイト粒の粗大化を抑制し、さらにフェライト変態を促進させて、HAZ部の靭性を向上させる元素である。この効果を得るにはNを0.001%以上含有させる必要がある。N量は、好ましくは0.003%以上であり、より好ましくは0.0040%以上である。しかしN量が多すぎると、固溶Nの存在によりHAZ靭性がかえって劣化するため、N量は、0.01%以下とする必要がある。好ましくは0.008%以下であり、より好ましくは0.0060%以下である。
[N: 0.001 to 0.01%]
N is an element that precipitates as TiN in the steel structure, suppresses coarsening of the austenite grains in the HAZ part, further promotes ferrite transformation, and improves the toughness of the HAZ part. In order to acquire this effect, it is necessary to contain N 0.001% or more. The N amount is preferably 0.003% or more, and more preferably 0.0040% or more. However, if the amount of N is too large, the HAZ toughness deteriorates due to the presence of solute N, so the amount of N needs to be 0.01% or less. Preferably it is 0.008% or less, More preferably, it is 0.0060% or less.
[O:0%超0.0045%以下]
O(酸素)は、清浄度向上の観点から低いほうが望ましく、Oが多量に含まれる場合、靭性が劣化することに加え、酸化物を起点にHICが発生し、耐水素誘起割れ性が劣化する。この観点から、O量は0.0045%以下とする必要があり、好ましくは0.0030%以下、より好ましくは0.0020%以下である。
[O: more than 0% and 0.0045% or less]
O (oxygen) is preferably low from the viewpoint of improving cleanliness. When a large amount of O is contained, in addition to deterioration of toughness, HIC is generated starting from oxide, and resistance to hydrogen-induced cracking is deteriorated. . From this viewpoint, the amount of O needs to be 0.0045% or less, preferably 0.0030% or less, more preferably 0.0020% or less.
[Ca/S(質量比):2.0以上]
前述の通り、Sは硫化物系介在物としてMnSを形成し、該MnSを起点にHICが発生する。このため、Caを添加して鋼中の硫化物系介在物をCaSとして形態を制御し、耐HIC性に対するSの無害化を図る。この作用効果を十分に発揮させるには、Ca/Sを2.0以上とする必要がある。Ca/Sは、好ましくは2.5以上、より好ましくは3.0以上である。尚、本発明で規定するCa量とS量からCa/Sの上限は17程度となる。
[Ca / S (mass ratio): 2.0 or more]
As described above, S forms MnS as sulfide inclusions, and HIC is generated starting from the MnS. For this reason, Ca is added to control the form of the sulfide inclusions in the steel as CaS, thereby detoxifying S against HIC resistance. In order to fully exhibit this effect, Ca / S needs to be 2.0 or more. Ca / S is preferably 2.5 or more, more preferably 3.0 or more. Incidentally, the upper limit of Ca / S is about 17 from the Ca amount and S amount specified in the present invention.
[(Ca−1.25S)/O ≦ 1.80]
Ca系酸硫化物によるHICの発生を抑制するには、Ca系介在物の中でも特に凝集合体を形成しやすいCaOを抑制することが有効である。そしてそのためには、鋼中全Ca量から硫化物(CaS)として存在するCa分を差し引いたCa量(Ca−1.25S)が、O量に対して過剰とならないようにしなければならない。O量に対してCa量(Ca−1.25S)が過剰であると、酸化物系介在物としてCaOが形成され易くなり、該CaOの凝集合体(粗大なCa系介在物)が鋼板表層部に大量に形成されやすくなる。これらの粗大なCa系介在物はHICの起点となるため、優れた耐HIC性を得るには(Ca−1.25S)/Oを1.80以下とする必要がある。(Ca−1.25S)/Oは、好ましくは1.40以下、より好ましくは1.30以下、更に好ましくは1.20以下、特に好ましくは1.00以下である。尚、CaOと同様に凝集合体を形成しやすいAl2O3を抑制する観点から、(Ca−1.25S)/Oの下限値は0.1程度となる。
[(Ca-1.25S) /O≦1.80]
In order to suppress the generation of HIC due to Ca-based oxysulfides, it is effective to suppress CaO, which easily forms aggregated coal, among Ca-based inclusions. For this purpose, the Ca amount (Ca-1.25S) obtained by subtracting the Ca component existing as sulfide (CaS) from the total Ca amount in the steel must not be excessive with respect to the O amount. When the amount of Ca (Ca-1.25S) is excessive with respect to the amount of O, CaO is likely to be formed as oxide inclusions, and the aggregated coalescence (coarse Ca-based inclusions) of the CaO is the steel sheet surface layer portion. It becomes easy to be formed in large quantities. Since these coarse Ca-based inclusions are the origin of HIC, it is necessary to set (Ca-1.25S) / O to 1.80 or less in order to obtain excellent HIC resistance. (Ca-1.25S) / O is preferably 1.40 or less, more preferably 1.30 or less, still more preferably 1.20 or less, and particularly preferably 1.00 or less. In addition, the lower limit of (Ca-1.25S) / O is about 0.1 from the viewpoint of suppressing Al 2 O 3 that easily forms an aggregated coal as in CaO.
[REM:0%超0.02%以下]
REM(Rare Earth Metal、希土類元素)は、前述の通り、脱硫作用によりMnSの生成を抑制し耐水素誘起割れ性を高めるのに有効な元素である。このような効果を発揮させるには、REMを0.0002%以上含有させることが好ましい。REM量は、より好ましくは0.0005%以上、更に好ましくは0.0010%以上である。一方、REMを多量に含有させても効果が飽和する。よってREM量の上限は0.02%とすることが必要である。鋳造時の浸漬ノズルの閉塞を抑えて生産性を高める観点からは、REM量を0.015%以下とすることが好ましく、より好ましくは0.010%以下、更に好ましくは0.0050%以下である。尚、本発明において、上記REMとは、ランタノイド元素(LaからLuまでの15元素)とSc(スカンジウム)およびYを意味する。
[REM: more than 0% and 0.02% or less]
As described above, REM (Rare Earth Metal) is an element effective for suppressing the generation of MnS by the desulfurization action and enhancing the resistance to hydrogen-induced cracking. In order to exhibit such an effect, it is preferable to contain REM 0.0002% or more. The amount of REM is more preferably 0.0005% or more, and further preferably 0.0010% or more. On the other hand, the effect is saturated even if a large amount of REM is contained. Therefore, the upper limit of the REM amount needs to be 0.02%. From the viewpoint of increasing productivity by suppressing the clogging of the immersion nozzle during casting, the REM content is preferably 0.015% or less, more preferably 0.010% or less, and still more preferably 0.0050% or less. is there. In the present invention, the REM means a lanthanoid element (15 elements from La to Lu), Sc (scandium) and Y.
[Zr:0%超0.010%以下]
Zrは、脱硫作用により耐HIC性を向上させるとともに、酸化物を形成し微細に分散することでHAZ靭性の向上に寄与する元素である。これらの効果を発揮させるには、Zr量を0.0003%以上とすることが好ましい。Zr量は、より好ましくは0.0005%以上、更に好ましくは0.0010%以上、より更に好ましくは0.0015%以上である。一方、Zrを過剰に添加すると粗大な介在物を形成して耐水素誘起割れ性および母材靭性を劣化させる。よってZr量は0.010%以下とすることが必要である。Zr量は、好ましくは0.0070%以下、より好ましくは0.0050%以下、更に好ましくは0.0030%以下である。
[Zr: more than 0% and 0.010% or less]
Zr is an element that contributes to the improvement of HAZ toughness by improving HIC resistance by desulfurization and forming oxides and finely dispersing them. In order to exert these effects, the Zr content is preferably 0.0003% or more. The amount of Zr is more preferably 0.0005% or more, still more preferably 0.0010% or more, and still more preferably 0.0015% or more. On the other hand, when Zr is added excessively, coarse inclusions are formed and the hydrogen-induced crack resistance and the base metal toughness are deteriorated. Therefore, the amount of Zr needs to be 0.010% or less. The amount of Zr is preferably 0.0070% or less, more preferably 0.0050% or less, and still more preferably 0.0030% or less.
本発明の鋼材(鋼板、鋼管)の成分は、上記の通りであり、残部は鉄および不可避不純物からなる。また、上記元素に加えて更に、
(a)下記量のB、V、Cu、Ni、Cr、Mo、およびNbよりなる群から選択される1種類以上の元素を含有させることによって、強度や靭性をより高めたり、
(b)下記量のTiおよびMgよりなる群から選択される1種類以上の元素を含有させることによって、HAZ靭性の向上や、脱硫が促進されて耐HIC性をより改善することができる。以下、これらの元素について詳述する。
The components of the steel material (steel plate, steel pipe) of the present invention are as described above, and the balance consists of iron and inevitable impurities. In addition to the above elements,
(A) By containing one or more elements selected from the group consisting of the following amounts of B, V, Cu, Ni, Cr, Mo, and Nb, the strength and toughness can be further increased,
(B) By containing one or more elements selected from the group consisting of Ti and Mg in the following amounts, the HAZ toughness can be improved and desulfurization can be promoted to further improve the HIC resistance. Hereinafter, these elements will be described in detail.
[B:0%超0.005%以下]
Bは、焼入れ性を高め、母材および溶接部の強度を高めるとともに、溶接時に、加熱されたHAZ部が冷却する過程でNと結合してBNを析出し、オーステナイト粒内からのフェライト変態を促進するため、HAZ靭性を向上させる。この効果を得るには、B量を0.0002%以上含有させることが好ましい。B量は、より好ましくは0.0005%以上であり、更に好ましくは0.0010%以上である。しかし、B含有量が過多になると、母材とHAZ部の靭性が劣化したり、溶接性の劣化を招くため、B量は0.005%以下とすることが好ましい。B量は、より好ましくは0.004%以下、更に好ましくは0.0030%以下である。
[B: more than 0% and 0.005% or less]
B enhances hardenability, enhances the strength of the base metal and the welded part, and bonds with N during the process of cooling the heated HAZ part during welding, thereby precipitating BN and causing ferrite transformation from within the austenite grains. In order to promote, HAZ toughness is improved. In order to acquire this effect, it is preferable to contain B amount 0.0002% or more. The amount of B is more preferably 0.0005% or more, and further preferably 0.0010% or more. However, if the B content is excessive, the toughness between the base material and the HAZ part deteriorates or weldability deteriorates, so the B content is preferably 0.005% or less. The amount of B is more preferably 0.004% or less, and still more preferably 0.0030% or less.
[V:0%超0.1%以下]
Vは、強度の向上に有効な元素であり、この効果を得るには0.003%以上含有させることが好ましい。より好ましくは0.010%以上である。一方、V含有量が0.1%を超えると溶接性と母材靭性が劣化する。よってV量は、0.1%以下とすることが好ましく、より好ましくは0.08%以下である。
[V: more than 0% and 0.1% or less]
V is an element effective for improving the strength. To obtain this effect, V is preferably contained in an amount of 0.003% or more. More preferably, it is 0.010% or more. On the other hand, if the V content exceeds 0.1%, weldability and base metal toughness deteriorate. Therefore, the V amount is preferably 0.1% or less, and more preferably 0.08% or less.
[Cu:0%超1.5%以下]
Cuは、焼入れ性を向上させて強度を高めるのに有効な元素である。この効果を得るにはCuを0.01%以上含有させることが好ましい。Cu量は、より好ましくは0.05%以上、更に好ましくは0.10%以上である。しかし、Cu含有量が1.5%を超えると靭性が劣化するため、1.5%以下とすることが好ましい。Cu量は、より好ましくは1.0%以下、更に好ましくは0.50%以下である。
[Cu: more than 0% and 1.5% or less]
Cu is an element effective for improving the hardenability and increasing the strength. In order to acquire this effect, it is preferable to contain 0.01% or more of Cu. The amount of Cu is more preferably 0.05% or more, and still more preferably 0.10% or more. However, if the Cu content exceeds 1.5%, the toughness deteriorates, so it is preferable to set it to 1.5% or less. The amount of Cu is more preferably 1.0% or less, still more preferably 0.50% or less.
[Ni:0%超1.5%以下]
Niは、母材および溶接部の強度と靭性の向上に有効な元素である。この効果を得るためには、Ni量を0.01%以上とすることが好ましい。Ni量は、より好ましくは0.05%以上、更に好ましくは0.10%以上である。しかしNiが多量に含まれると、構造用鋼材として極めて高価となるため、経済的な観点からNi量は1.5%以下とすることが好ましい。Ni量は、より好ましくは1.0%以下、更に好ましくは0.50%以下である。
[Ni: more than 0% and 1.5% or less]
Ni is an element effective for improving the strength and toughness of the base material and the welded portion. In order to obtain this effect, the Ni content is preferably 0.01% or more. The amount of Ni is more preferably 0.05% or more, and still more preferably 0.10% or more. However, if Ni is contained in a large amount, it becomes extremely expensive as a structural steel material. Therefore, the Ni content is preferably 1.5% or less from an economical viewpoint. The amount of Ni is more preferably 1.0% or less, and still more preferably 0.50% or less.
[Cr:0%超1.5%以下]
Crは、強度の向上に有効な元素であり、この効果を得るには0.01%以上含有させることが好ましい。Cr量は、より好ましくは0.05%以上、更に好ましくは0.10%以上である。一方、Cr量が1.5%を超えるとHAZ靭性が劣化する。よってCr量は1.5%以下とすることが好ましい。Cr量は、より好ましくは1.0%以下、更に好ましくは0.50%以下である。
[Cr: more than 0% and 1.5% or less]
Cr is an element effective for improving the strength, and in order to obtain this effect, it is preferable to contain 0.01% or more. The amount of Cr is more preferably 0.05% or more, and still more preferably 0.10% or more. On the other hand, if the Cr content exceeds 1.5%, the HAZ toughness deteriorates. Therefore, the Cr content is preferably 1.5% or less. The amount of Cr is more preferably 1.0% or less, and still more preferably 0.50% or less.
[Mo:0%超1.5%以下]
Moは、母材の強度と靭性の向上に有効な元素である。この効果を得るには、Mo量を0.01%以上とすることが好ましい。Mo量は、より好ましくは0.05%以上、更に好ましくは0.10%以上である。しかし、Mo量が1.5%を超えるとHAZ靭性および溶接性が劣化する。よってMo量は1.5%以下とすることが好ましく、より好ましくは1.0%以下、更に好ましくは0.50%以下である。
[Mo: more than 0% and 1.5% or less]
Mo is an element effective for improving the strength and toughness of the base material. In order to obtain this effect, the Mo amount is preferably 0.01% or more. The amount of Mo is more preferably 0.05% or more, and still more preferably 0.10% or more. However, if the Mo amount exceeds 1.5%, the HAZ toughness and weldability deteriorate. Therefore, the Mo amount is preferably 1.5% or less, more preferably 1.0% or less, and still more preferably 0.50% or less.
[Nb:0%超0.06%以下]
Nbは、溶接性を劣化させることなく強度と母材靭性を高めるのに有効な元素である。この効果を得るには、Nb量を0.002%以上とすることが好ましい。Nb量は、より好ましくは0.010%以上、更に好ましくは0.020%以上である。しかし、Nb量が0.06%を超えると母材とHAZの靭性が劣化する。よって、本発明ではNb量の上限を0.06%とすることが好ましい。Nb量は、より好ましくは0.050%以下、更に好ましくは0.040%以下、より更に好ましくは0.030%以下である。
[Nb: more than 0% and 0.06% or less]
Nb is an element effective for increasing strength and base metal toughness without degrading weldability. In order to obtain this effect, the Nb content is preferably 0.002% or more. The Nb amount is more preferably 0.010% or more, and still more preferably 0.020% or more. However, if the Nb content exceeds 0.06%, the toughness of the base material and the HAZ deteriorates. Therefore, in the present invention, the upper limit of the Nb amount is preferably 0.06%. The Nb amount is more preferably 0.050% or less, still more preferably 0.040% or less, and still more preferably 0.030% or less.
[Ti:0%超0.03%以下]
Tiは、鋼中にTiNとして析出することで、溶接時のHAZ部でのオーステナイト粒の粗大化を防止しかつフェライト変態を促進するため、HAZ部の靭性を向上させるのに有効な元素である。さらにTiは、脱硫作用を示すため耐HIC性の向上にも有効な元素である。これらの効果を得るには、Tiを0.003%以上含有させることが好ましい。Ti量は、より好ましくは0.005%以上、更に好ましくは0.010%以上である。一方、Ti含有量が過多になると、固溶Tiの増加やTiC析出の増加により母材とHAZ部の靭性が劣化するため、0.03%以下とすることが好ましい。Ti量は、より好ましくは0.02%以下である。
[Ti: more than 0% and 0.03% or less]
Ti is an element effective for improving the toughness of the HAZ part because it precipitates as TiN in the steel to prevent coarsening of austenite grains in the HAZ part during welding and promote ferrite transformation. . Further, Ti is an element effective for improving the HIC resistance since it exhibits a desulfurization action. In order to obtain these effects, it is preferable to contain 0.003% or more of Ti. The amount of Ti is more preferably 0.005% or more, and still more preferably 0.010% or more. On the other hand, if the Ti content is excessive, the toughness of the base material and the HAZ part deteriorates due to an increase in solid solution Ti or an increase in TiC precipitation, so 0.03% or less is preferable. The amount of Ti is more preferably 0.02% or less.
[Mg:0%超0.01%以下]
Mgは、結晶粒の微細化を通じて靭性の向上に有効な元素であり、また脱硫作用を示すため耐HIC性の向上にも有効な元素である。これらの効果を得るには、Mgを0.0003%以上含有させることが好ましい。Mg量は、より好ましくは0.001%以上である。一方、Mgを過剰に含有させても効果が飽和するため、Mg量の上限は0.01%とすることが好ましい。Mg量は、より好ましくは0.005%以下である。
[Mg: more than 0% and 0.01% or less]
Mg is an element effective for improving toughness through refinement of crystal grains, and is an element effective for improving HIC resistance since it exhibits a desulfurization action. In order to acquire these effects, it is preferable to contain 0.0003% or more of Mg. The amount of Mg is more preferably 0.001% or more. On the other hand, since the effect is saturated even if Mg is contained excessively, the upper limit of the amount of Mg is preferably 0.01%. The amount of Mg is more preferably 0.005% or less.
本発明の鋼板は、タンディッシュ内溶鋼のCa濃度からスラブのCa濃度を差し引いたCa低下量が閾値Cadropθ以下であって、耐水素誘起割れ性の高い鋼板である。ここで閾値Cadropθとは、予め求められた、前記スラブを圧延して得た鋼板に水素誘起割れが発生しない最大のCa低下量を意味する。 The steel plate of the present invention is a steel plate having a high hydrogen-induced cracking resistance with a Ca reduction amount obtained by subtracting the Ca concentration of the slab from the Ca concentration of the molten steel in the tundish being equal to or less than the threshold value Ca dropθ . Here, the threshold value Ca dropθ means the maximum amount of Ca decrease that is obtained in advance and does not cause hydrogen-induced cracking in the steel sheet obtained by rolling the slab.
[Ca低下量]
上記の通り、タンディッシュ内溶鋼のCa濃度からスラブのCa濃度を差し引いたCa低下量を所定の閾値以下とすることによって、耐水素誘起割れ性の高い鋼板が得られること、また製品を早期に出荷できることについて説明する。以下では、まず、上記Ca低下量を評価指標とした理由から説明する。
[Ca reduction amount]
As described above, by setting the Ca decrease amount obtained by subtracting the Ca concentration of the slab from the Ca concentration of the molten steel in the tundish to a predetermined threshold value or less, it is possible to obtain a steel plate with high resistance to hydrogen-induced cracking. Explain what can be shipped. Below, it demonstrates from the reason which made the said Ca fall amount the evaluation index first.
本発明者らは、MnS介在物に着目した上で、MnSの生成を抑制するために、Caを二次精錬で溶鋼に添加することに関して研究を進めた。 The present inventors paid attention to MnS inclusions and advanced research on adding Ca to molten steel by secondary refining in order to suppress the formation of MnS.
溶鋼へのCa添加量が適正な場合、溶鋼中にCaO−Al2O3介在物が生成する。CaO−Al2O3は溶鋼との濡れ性が良好であるため、溶鋼中で凝集せず、微細なままであり、耐HIC性に悪影響を及ぼさない。 When the amount of Ca added to the molten steel is appropriate, CaO—Al 2 O 3 inclusions are generated in the molten steel. Since CaO—Al 2 O 3 has good wettability with molten steel, it does not agglomerate in the molten steel, remains fine, and does not adversely affect the HIC resistance.
しかし、溶鋼へのCa添加量が適正でない場合、例えば、MnS生成の抑制及びAl2O3の改質に必要な所要量を超える過剰な添加を行った場合、溶鋼中には、CaO−Al2O3介在物に加えて純粋なCaO介在物も生成する。純粋なCaO介在物は、溶鋼との濡れ性が悪いため溶鋼中で凝集しやすい。凝集合体したCaOは、粗大な介在物となってHICを誘発する。 However, when the amount of Ca added to the molten steel is not appropriate, for example, when excessive addition exceeding the required amount required for the suppression of MnS formation and the modification of Al 2 O 3 is performed, the molten steel contains CaO—Al. In addition to 2 O 3 inclusions, pure CaO inclusions are also produced. Pure CaO inclusions tend to agglomerate in molten steel because of poor wettability with molten steel. Aggregated and coalesced CaO becomes coarse inclusions and induces HIC.
粗大化したCaO介在物は、溶鋼よりも密度が小さいため、大半は浮上分離する。しかし、図1に示すように、一部は鋳型内の溶鋼の流れに乗って鋳片の奥深くまで潜り込みながら浮力を受け、凝固殻に捕捉されてCaO集積帯を形成する。CaO集積帯は、HICの起点となる。 Since the coarsened CaO inclusion has a density lower than that of the molten steel, most of the CaO inclusion floats and separates. However, as shown in FIG. 1, a part of the molten steel flows into the mold and gets into the deep part of the slab, receiving buoyancy and trapped by the solidified shell to form a CaO accumulation zone. The CaO accumulation zone is the starting point of HIC.
そこで、溶鋼への適正なCa添加量を予め決定できれば、CaO介在物によるHIC発生を抑制できる。そのためには、Ca添加前の溶鋼中の介在物量及びその組成並びに硫黄濃度を正確に把握する必要がある。しかしながら実操業では、これらを事前に把握することが不可能であるため、Ca添加量をMnS生成抑制に十分な量としている。その結果、Ca添加量が過剰となりやすく、CaO集積帯が形成されやすい。 Therefore, if an appropriate amount of Ca added to the molten steel can be determined in advance, generation of HIC due to CaO inclusions can be suppressed. For that purpose, it is necessary to grasp | ascertain correctly the amount of inclusions in the molten steel before Ca addition, its composition, and sulfur concentration. However, since it is impossible to grasp these in advance in actual operation, the Ca addition amount is set to a sufficient amount for suppressing MnS generation. As a result, the Ca addition amount tends to be excessive, and a CaO accumulation zone is likely to be formed.
上記CaO集積帯が常に同じ位置に発生すれば、その位置のCa濃度を分析することでCaO介在物の集積度を把握することができる。また、CaO集積度から鋳片にCaO集積帯が発生しているかを推測できる。 If the CaO accumulation band always occurs at the same position, the accumulation degree of CaO inclusions can be grasped by analyzing the Ca concentration at that position. Further, it can be estimated from the degree of CaO accumulation whether a CaO accumulation band is generated in the slab.
しかしCaO集積帯が発生する位置は、前述の通り、鋳造条件(鋳造速度及び浸漬ノズルの吐出孔の角度等)によって鋳片の厚さ方向に異なる。例えば、図2に示すように、鋳造条件(鋳造速度及び浸漬ノズルの吐出孔の角度)が異なる3つのスラブ(A〜C)では、集積帯が発生した高Ca濃度の位置(a〜c)がそれぞれ異なる。このようにCaO集積帯の位置を予測することはできないため、集積度(Ca濃度)からCaO集積帯が発生しているかを評価することは困難である。 However, as described above, the position where the CaO accumulation band is generated varies in the thickness direction of the slab depending on the casting conditions (such as the casting speed and the angle of the discharge hole of the immersion nozzle). For example, as shown in FIG. 2, in the three slabs (A to C) having different casting conditions (casting speed and angle of the discharge hole of the immersion nozzle), the position (ac) where the accumulation band is generated (ac). Are different. Since the position of the CaO accumulation band cannot be predicted in this way, it is difficult to evaluate whether the CaO accumulation band is generated from the degree of accumulation (Ca concentration).
そこで本発明者らは、Ca濃度の調査位置について観点を変え、低Ca濃度となる位置に着目した。CaO集積帯が発生した場合、CaO集積帯ではCa濃度が高くなる一方で、CaO集積帯が発生していない位置ではCa濃度が比較的低くなると考えられる。これを考慮しつつ、CaO集積帯が発生した場合の「スラブの任意の厚さ方向位置のCa濃度」と「タンディッシュ内溶鋼のCa濃度」との関係を調べた。その結果、CaO集積帯が発生していない位置では「スラブのCa濃度」が比較的低いため、『「タンディッシュ内溶鋼のCa濃度」から「スラブのCa濃度」を差し引いた値』、即ち、「タンディッシュからスラブへのCa濃度低下量』が大きくなることがわかった。 Therefore, the present inventors changed the viewpoint for the survey position of the Ca concentration and focused on the position where the Ca concentration becomes low. When the CaO accumulation band is generated, it is considered that the Ca concentration is high in the CaO accumulation band, while the Ca concentration is relatively low in the position where the CaO accumulation band is not generated. In consideration of this, the relationship between “Ca concentration at an arbitrary position in the thickness direction of the slab” and “Ca concentration of molten steel in tundish” when a CaO accumulation zone occurs was examined. As a result, since “Ca concentration of slab” is relatively low at a position where no CaO accumulation zone is generated, “a value obtained by subtracting“ Ca concentration of slab ”from“ Ca concentration of molten steel in tundish ””, that is, It turned out that "the amount of decrease in Ca concentration from tundish to slab" increases.
そうすると、前記『タンディッシュからスラブへのCa濃度低下量』が大きい場合、その位置には集積帯が発生していないが別の位置にCaO集積帯が発生していると考えられるため、HICが発生すると評価できる。一方、前記『タンディッシュからスラブへのCa濃度低下量』が小さい場合、タンディッシュのCa濃度とスラブのCa濃度とには殆ど差がない、つまり、スラブに高Ca濃度の位置がないと推測できる。この場合、スラブにCaO集積帯が発生していないと考えられるため、HICが発生しないと評価できる。 Then, when the “Ca concentration decrease amount from the tundish to the slab” is large, it is considered that an accumulation band is not generated at that position, but a CaO accumulation band is generated at another position. Can be evaluated as it occurs. On the other hand, when the “Ca concentration drop from the tundish to the slab” is small, there is almost no difference between the Ca concentration of the tundish and the Ca concentration of the slab, that is, it is assumed that there is no high Ca concentration position in the slab. it can. In this case, since it is considered that no CaO accumulation band has occurred in the slab, it can be evaluated that no HIC occurs.
本発明では、この様にCaO集積帯の有無と関連する「タンディッシュ内溶鋼のCa濃度」から「スラブのCa濃度」を差し引いた値(以下「Ca低下量」と称する)を用いて、耐HIC性を評価することとした。 In the present invention, a value obtained by subtracting “Ca concentration of slab” from “Ca concentration of molten steel in tundish” related to presence / absence of CaO accumulation zone (hereinafter referred to as “Ca reduction amount”) is used. It was decided to evaluate the HIC property.
[Ca低下量の閾値の決定]
次に、得られる鋼板が優れた耐HIC性を発揮するかを判断するための、前記Ca低下量の閾値Cadropθ、即ち、スラブを圧延して得た鋼板にHICが発生しない最大のCa低下量の求め方について説明する。
[Determining the threshold value of Ca decrease amount]
Next, the threshold value Ca dropθ of the Ca reduction amount for judging whether the obtained steel plate exhibits excellent HIC resistance, that is, the maximum Ca reduction that does not generate HIC in the steel plate obtained by rolling the slab. Explain how to find the quantity.
上記閾値Cadropθは、予め求めておくが、その方法は特に制限されない。閾値Cadropθを求める方法として、予め、下記(i)〜(iii)の方法で求めることが挙げられる。
(i)タンディッシュ内溶鋼のCa濃度とスラブのCa濃度を測定し、前記タンディッシュ内溶鋼のCa濃度から前記スラブのCa濃度を差し引いてCa低下量を算出する。
(ii)前記スラブと同一の鋳造条件で鋳造したスラブを圧延して得られる鋼板に対して水素誘起割れ試験を行う。
(iii)上記(i)で測定したCa低下量と、上記(ii)の水素誘起割れ試験結果とから、水素誘起割れの発生しない最大のCa低下量を求める。
The threshold value Ca dropθ is obtained in advance, but the method is not particularly limited. As a method for obtaining the threshold value Ca dropθ , the following methods (i) to (iii) may be used in advance.
(I) The Ca concentration of the molten steel in the tundish and the Ca concentration of the slab are measured, and the amount of Ca decrease is calculated by subtracting the Ca concentration of the slab from the Ca concentration of the molten steel in the tundish.
(Ii) A hydrogen-induced cracking test is performed on a steel plate obtained by rolling a slab cast under the same casting conditions as the slab.
(Iii) From the Ca decrease amount measured in (i) above and the hydrogen induced crack test result of (ii) above, the maximum Ca decrease amount at which no hydrogen induced crack occurs is obtained.
上記閾値Cadropθを求める方法として具体的に、下記第1実施形態と第2実施形態を例に、以下詳述する。
〔第1実施形態〕
(タンディッシュ内溶鋼のCa濃度の調査)
タンディッシュ内溶鋼を採取し、そのCa濃度(CaTD1)を分析する。タンディッシュ内溶鋼は取鍋から常時供給されるため、Ca濃度(CaTD1)は採取時にかかわらず一定である。
A specific method for obtaining the threshold value Ca dropθ will be described in detail below with reference to the following first and second embodiments.
[First Embodiment]
(Investigation of Ca concentration in molten steel in tundish)
Tundish molten steel is collected and its Ca concentration (Ca TD1 ) is analyzed. Since the molten steel in the tundish is constantly supplied from the ladle, the Ca concentration (Ca TD1 ) is constant regardless of the time of collection.
(スラブのCa濃度の調査)
次に、スラブのCa濃度(CaS1)を調査する。図3(a)に示す通り、スラブの基準側表面から厚さ方向にD/2の範囲の領域R4(以下、「基準側領域R4」と称する)からサンプルを採取し、Ca濃度CaS1を分析する。「基準側領域R4」は、図3(a)に示すように、反基準側表面からスラブの厚さ方向にD/2以上D以下の範囲である。
(Investigation of slab Ca concentration)
Next, the Ca concentration (Ca S1 ) of the slab is investigated. As shown in FIG. 3A, a sample is taken from a region R4 in the D / 2 range in the thickness direction from the reference side surface of the slab (hereinafter referred to as “reference side region R4”), and the Ca concentration Ca S1 is determined. analyse. As shown in FIG. 3A, the “reference side region R4” is a range from D / 2 to D in the thickness direction of the slab from the non-reference side surface.
前述の通り、CaO介在物の密度は溶鋼の密度より小さいため、溶鋼中のCaO介在物は溶鋼との密度差に起因した浮力を受けて浮上する。曲げ部や水平部が形成された連続鋳造機では、図1に示す通り、CaO介在物が浮上すると反基準側の凝固シェルに捕捉されるため、CaO集積帯はスラブの反基準側に発生し、基準側に発生しない。 As described above, since the density of CaO inclusions is smaller than the density of molten steel, CaO inclusions in the molten steel are levitated due to buoyancy caused by the density difference from the molten steel. As shown in FIG. 1, in a continuous casting machine in which a bent portion and a horizontal portion are formed, when CaO inclusions float, they are captured by the solidified shell on the anti-reference side, so the CaO accumulation zone is generated on the anti-reference side of the slab. Does not occur on the reference side.
そこで本発明では、上記図3(a)の通り、CaO集積帯が発生しない「基準側表面から厚さ方向にD/2の範囲(基準側領域R4)」、即ち後述する実施例では、スラブ厚Dの中心から基準側表面に向かって−0.50Dまでの範囲で、Ca濃度CaS1を調査する。この基準側領域R4のCa濃度CaS1により、CaO集積帯が発生していない位置の「Ca低下量」を算出できるため、CaO集積帯の有無を正確に評価できる。 Therefore, in the present invention, as shown in FIG. 3 (a), the “D / 2 in the thickness direction from the reference side surface (reference side region R4)” where no CaO accumulation band is generated, that is, in the embodiment described later, The Ca concentration Ca S1 is investigated in the range from the center of the thickness D to −0.50 D toward the reference side surface. Since the “Ca reduction amount” at a position where no CaO accumulation band is generated can be calculated from the Ca concentration Ca S1 of the reference side region R4, the presence or absence of the CaO accumulation band can be accurately evaluated.
そして、『タンディッシュ内のCa濃度CaTD1』から『スラブのCa濃度CaS1』を差し引き、「Ca低下量Cadrop1」を算出する。Cadrop1は、以下の式で表される。
Cadrop1=CaTD1−CaS1
Then, the “Ca reduction amount Ca drop1 ” is calculated by subtracting the “Ca concentration Ca S1 of the slab” from the “Ca concentration Ca TD1 in the tundish ”. Ca drop1 is represented by the following equation.
Ca drop1 = Ca TD1 -Ca S1
(圧延)
上記Ca濃度CaS1を測定したスラブと同一の鋳造条件で鋳造したスラブを熱間圧延し、閾値測定用の鋼板を製造する。例えば次の条件で圧延を行うことが挙げられる。即ち、上記スラブを、1050〜1250℃となるよう加熱した後、鋼板の表面温度で900℃以上、下記の通り計算により求められる鋼板平均温度が1000℃以上の累積圧下率が40%以上でかつ1パス当りの圧下率が10%以上であるパスが2パス以上になるよう熱間圧延を行う。その後さらに、700℃以上900℃未満の累積圧下率が20%以上となるよう熱間圧延を行い、圧延終了温度が700℃以上900℃未満となるようする。その後、650℃以上の温度から水冷を開始し、350〜600℃の温度で停止し、更にその後、室温まで空冷する。上記鋼板平均温度は、次の様にして求められる。即ち、圧延中の圧延パススケジュールやパス間の冷却方法(水冷あるいは空冷)などのデータに基づいて、板厚方向の任意の位置における温度を差分法など計算に適した方法を用いて計算し、求められた鋼片の表面から裏面までの温度の平均値を鋼板平均温度とする。
(rolling)
A slab cast under the same casting conditions as the slab in which the Ca concentration Ca S1 is measured is hot-rolled to produce a steel plate for threshold measurement. For example, rolling is performed under the following conditions. That is, after heating the slab to 1050 to 1250 ° C., the steel sheet surface temperature is 900 ° C. or higher, the steel sheet average temperature obtained by calculation as described below is 1000 ° C. or higher, and the cumulative rolling reduction is 40% or higher. Hot rolling is performed so that the pass with a rolling reduction per pass of 10% or more becomes 2 passes or more. Thereafter, hot rolling is performed so that the cumulative rolling reduction at 700 ° C. or more and less than 900 ° C. becomes 20% or more, so that the rolling end temperature becomes 700 ° C. or more and less than 900 ° C. Thereafter, water cooling is started from a temperature of 650 ° C. or higher, stopped at a temperature of 350 to 600 ° C., and then air cooled to room temperature. The steel sheet average temperature is determined as follows. That is, based on data such as a rolling pass schedule during rolling and a cooling method (water cooling or air cooling) between passes, the temperature at an arbitrary position in the plate thickness direction is calculated using a method suitable for calculation such as a difference method, Let the average value of the temperature from the surface of the obtained steel piece to the back surface be steel plate average temperature.
(HIC試験)
そして鋼板に対してHIC試験を行い、HIC発生の有無を調べる。HIC試験は、後述する実施例に示す通り、NACE(National Association of Corrosion and Engineer) standard TM0284−2003に規定された方法で行うことが挙げられる。
(HIC test)
Then, an HIC test is performed on the steel sheet to examine whether or not HIC is generated. The HIC test may be performed by a method defined in NACE (National Association of Corrosion and Engineer) standard TM0284-2003, as shown in the examples described later.
前記HIC試験の対象領域は、図3(b)に示すように、反基準側領域に対応する製品領域R40のうち厚み中心部近傍を除く領域R41とする。前記図1に示す通り、粗大化したCaO集積帯はスラブの反基準側に形成されやすく、CaO起因のHICは、反基準側面近傍に対応する領域に発生しやすいからである。なお、厚み中心部では偏析起因のHICが発生しやすいため、CaO起因のHICと評価できない。そこで、厚み中心部近傍を除く領域R41でHICが発生しているかを調べる。 As shown in FIG. 3B, the target region of the HIC test is a region R41 excluding the vicinity of the thickness center portion in the product region R40 corresponding to the non-reference side region. As shown in FIG. 1, the coarse CaO integrated band is easily formed on the anti-reference side of the slab, and the HIC caused by CaO is likely to occur in the region corresponding to the vicinity of the anti-reference side surface. In addition, since HIC due to segregation is likely to occur at the center of thickness, it cannot be evaluated as HIC due to CaO. Therefore, it is examined whether or not HIC is generated in the region R41 excluding the vicinity of the thickness center portion.
(閾値の決定)
続いて、前記「Ca低下量Cadrop1」と「HIC試験結果」とから、HICが発生しないCa低下量の閾値Cadropθを決定する。複数のCa低下量Cadrop1とHIC試験結果とを対比して、HICが全く発生しないときの最大Ca低下量を「閾値Cadropθ」とする。特に、複数のスラブの測定結果及び試験結果を用いることによって、より正確な閾値を得ることができ、HIC発生有無の誤判定を減らすことができる。
(Determination of threshold)
Subsequently, a threshold value Ca dropθ of a Ca drop amount at which no HIC is generated is determined from the “Ca drop amount Ca drop1 ” and the “HIC test result”. By comparing a plurality of Ca reduction amounts Ca drop1 and the HIC test results, the maximum Ca reduction amount when no HIC is generated is defined as “threshold Ca drop θ ”. In particular, by using a plurality of slab measurement results and test results, a more accurate threshold value can be obtained, and erroneous determination of whether or not HIC has occurred can be reduced.
〔第2実施形態〕
次に、Ca低下量の算出方法が前記第1実施形態と異なる第2実施形態について、図4を参照しつつ説明する。上述した第1実施形態と同一の構成については説明を簡略化する。また前記図4においても、上述した第1実施形態と同一の構成については同一の符号を用い、その説明を適宜省略する。
[Second Embodiment]
Next, a second embodiment in which the Ca decrease amount calculation method is different from the first embodiment will be described with reference to FIG. The description of the same configuration as that of the first embodiment will be simplified. Also in FIG. 4, the same reference numerals are used for the same components as those in the first embodiment described above, and the description thereof is omitted as appropriate.
(タンディッシュ内溶鋼のCa濃度の調査)
タンディッシュ内溶鋼のCa濃度(CaTD1)を調査する。
(Investigation of Ca concentration in molten steel in tundish)
Investigate Ca concentration (Ca TD1 ) of molten steel in tundish.
(スラブのCa濃度の調査)
次に、同一チャージで鋳造したスラブにおいて、図4に示す通り、厚さ方向に異なる2箇所以上の調査位置でサンプルを採取し、各サンプルのCa濃度を分析する。得られた2つ以上のCa濃度(CaS1、CaS2・・・)から最小のCa濃度(Camin1)を選択する。
(Investigation of slab Ca concentration)
Next, in the slab cast with the same charge, as shown in FIG. 4, samples are taken at two or more investigation positions different in the thickness direction, and the Ca concentration of each sample is analyzed. The minimum Ca concentration (Ca min1 ) is selected from the obtained two or more Ca concentrations (Ca S1 , Ca S2 ...).
そして、「タンディッシュ内のCa濃度CaTD1」から「スラブの最小Ca濃度Camin1」を差し引いた値を用いて、「Ca低下量Cadrop11」を算出する。Cadrop11は、以下の式で表される。
Cadrop11=CaTD1−Camin1
Then, “Ca decrease amount Ca drop11 ” is calculated using a value obtained by subtracting “minimum Ca concentration Ca min1 of slab” from “Ca concentration Ca TD1 in tundish ”. Ca drop11 is expressed by the following equation.
Ca drop11 = Ca TD1 -Ca min1
スラブの厚さ方向の全範囲でCa濃度の調査位置を1箇所とした場合、その位置が集積帯であると著しく高いCa濃度が検出される。高Ca濃度から算出したCa低下量は小さいため、CaO集積帯が発生していないと判断し、HICが発生しないと評価してしまう。しかし、実際は集積帯が発生し、これが原因でHICが発生しうることも考えられる。 When the survey position of the Ca concentration is one in the entire range in the thickness direction of the slab, a significantly high Ca concentration is detected when the position is an accumulation zone. Since the amount of Ca decrease calculated from the high Ca concentration is small, it is determined that no CaO accumulation band has occurred, and it is evaluated that no HIC has occurred. However, an integrated band is actually generated, and it is considered that HIC can be generated due to this.
そこで、本実施形態では、スラブの厚さ方向に異なる2箇所以上の位置でCa濃度を調査する。CaO集積帯は鋳造条件によって決まる特定の厚さ方向位置に存在するため、調査位置を厚さ方向に変えることにより、CaO集積帯が発生していない位置を調査対象に含めることができる。 Therefore, in this embodiment, the Ca concentration is investigated at two or more positions that are different in the thickness direction of the slab. Since the CaO accumulation band exists at a specific position in the thickness direction determined by casting conditions, a position where no CaO accumulation band is generated can be included in the investigation object by changing the investigation position in the thickness direction.
また、2つ以上のCa濃度(CaS1、CaS2・・・)には、集積帯のCa濃度や集積帯が発生していない位置のCa濃度が含まれるが、これらのうち最小のCa濃度(Camin1)を選択することにより、集積帯が発生していない位置のCa濃度を選択できる。この濃度から集積帯が発生していない位置でのCa低下量を算出できるため、CaO集積帯の有無を正確に評価できる。 Further, the two or more Ca concentrations (Ca S1 , Ca S2 ...) Include the Ca concentration in the accumulation band and the Ca concentration at the position where the accumulation band is not generated. By selecting (Ca min1 ), it is possible to select the Ca concentration at a position where no accumulation band is generated. Since the amount of Ca decrease at a position where no accumulation band is generated can be calculated from this concentration, the presence or absence of the CaO accumulation band can be accurately evaluated.
ここで、CaO集積帯の生成メカニズムは、CaO介在物とAl2O3介在物とで同一であり、Al2O3介在物の集積帯の厚さは10mmと報告されている(文献:ISIJ International,Vol.43(2003),No.10,p.1548−1555)。この報告からCaO介在物の集積帯の厚さも10mmと推測できる。そうすると、図4に示すように、Ca濃度の各調査位置を厚さ方向に10mmより長く離すと、調査位置の1つが集積帯であっても、その他の調査位置は集積帯が発生していない位置となる。このような理由から、2箇所以上の調査位置は、それぞれ、厚さ方向に10mmを超えて離間していることが好ましい。なお、図4では、調査位置を2箇所とし、2つの調査位置の厚さ方向距離lが10mmを超える場合を示している(2つの調査位置の厚さ方向距離l>10mm)。 Here, the generation mechanism of the CaO accumulation band is the same for CaO inclusions and Al 2 O 3 inclusions, and the thickness of the accumulation band of Al 2 O 3 inclusions is reported to be 10 mm (reference: ISIJ). International, Vol. 43 (2003), No. 10, pp. 1548-1555). From this report, the thickness of the accumulation zone of CaO inclusions can be estimated to be 10 mm. Then, as shown in FIG. 4, when each Ca concentration investigation position is separated from the thickness direction by more than 10 mm, even if one of the investigation positions is an accumulation band, no accumulation band is generated at the other investigation positions. Position. For this reason, it is preferable that the two or more survey positions are separated by more than 10 mm in the thickness direction. Note that FIG. 4 shows a case where there are two survey positions and the thickness direction distance l between the two survey positions exceeds 10 mm (thickness direction distance l between the two survey positions> 10 mm).
また図1に示す通り、鋳造経路の曲げ部近傍では、CaO介在物が広範囲で捕捉されるため、図4に示すスラブの幅方向両端からD/2の領域R1、R2では、CaO集積帯が厚さ方向に広範囲に発生する。したがって、領域R1、R2ではCa濃度の調査位置を厚さ方向に変えても、集積帯が発生していない位置を調査できない可能性がある。そこで、Ca濃度調査位置を、主に広面側だけから冷却される、幅方向両端からD/2を除いた幅W−Dの領域R3とすることが好ましい。 Further, as shown in FIG. 1, since CaO inclusions are captured in a wide range in the vicinity of the bent portion of the casting path, in the regions R1 and R2 of D / 2 from both ends in the width direction of the slab shown in FIG. It occurs in a wide range in the thickness direction. Therefore, in the regions R1 and R2, there is a possibility that even if the Ca concentration investigation position is changed in the thickness direction, a position where no accumulation band is generated cannot be investigated. Therefore, it is preferable to set the Ca concentration investigation position to a region R3 having a width WD excluding D / 2 from both ends in the width direction, which is mainly cooled only from the wide surface side.
(圧延)
上記Ca濃度CaS1等を測定したスラブと同一の鋳造条件で鋳造したスラブを熱間圧延し、閾値測定用の鋼板を製造する。
(rolling)
A slab cast under the same casting conditions as the slab in which the Ca concentration Ca S1 and the like are measured is hot-rolled to produce a steel plate for threshold measurement.
(HIC試験)
そして鋼板に対してHIC試験を行い、「反基準側面近傍に対応する領域R41」でのHIC発生有無を調べる。HIC試験は、後述する実施例に示す通り、NACE standard TM0284−2003に規定された方法で行うことが挙げられる。
(HIC test)
Then, an HIC test is performed on the steel sheet, and the presence or absence of HIC occurrence in the “region R41 corresponding to the vicinity of the anti-reference side surface” is examined. The HIC test can be performed by a method defined in NACE standard TM0284-2003, as shown in Examples described later.
(閾値の決定)
続いて、「Ca低下量Cadrop11」と「HIC試験結果」とから、HICが発生しないCa低下量の閾値Cadropθを決定する。本実施形態では、HICが全く発生しないときの最大Ca低下量を「閾値Cadropθ」とする。
(Determination of threshold)
Subsequently, a threshold value Ca dropθ of the Ca reduction amount at which HIC does not occur is determined from “Ca reduction amount Ca drop11 ” and “HIC test result”. In the present embodiment, the maximum Ca decrease amount when no HIC occurs is defined as “threshold Ca drop θ ”.
[判定対象チャージのCa低下量の測定]
判定対象チャージのタンディッシュ内溶鋼のCa濃度CaTD11を調査する。例えば前記第2実施形態と同様に、同一チャージで鋳造したスラブにおいて厚さ方向に異なる2箇所以上でCa濃度を調査し、2つ以上のCa濃度(CaS11、CaS12・・・)から最小のCa濃度(Camin11)を選択する。2箇所以上の調査位置は、それぞれ、厚さ方向に10mmより長く離間していることが好ましい。
[Measurement of Ca decrease in judgment target charge]
The Ca concentration Ca TD11 of the molten steel in the tundish of the determination target charge is investigated. For example, as in the second embodiment, in a slab cast with the same charge, the Ca concentration is investigated at two or more different locations in the thickness direction, and the minimum is determined from two or more Ca concentrations (Ca S11 , Ca S12 ...). The Ca concentration (Ca min11 ) is selected. It is preferable that two or more investigation positions are spaced apart from each other by more than 10 mm in the thickness direction.
そして、「タンディッシュ内のCa濃度CaTD11」から「スラブの最小Ca濃度Camin11」を差し引き、判定対象の「Ca低下量Cadrop」を算出する。Cadropは、以下の式で表される。
Cadrop=CaTD11−Camin11
Then, subtracted "minimum Ca concentration Ca Min11 slab" from "Ca concentration Ca TD11 in the tundish", it calculates the "Ca decrease Ca drop" to be determined. Ca drop is represented by the following equation.
Ca drop = Ca TD11 -Ca min11
[判定対象チャージのCa低下量の評価]
上記判定対象のCadropと、閾値Cadropθとを対比し、Cadropが閾値Cadropθ以下の場合、得られる鋼板は耐HIC性に優れていると判断し、Cadropが閾値Cadropθを超えている場合、得られる鋼板は耐HIC性に劣ると判断する。
[Evaluation of Ca decrease in judgment target charge]
When the determination target Ca drop is compared with the threshold value Ca drop θ, and the Ca drop is equal to or less than the threshold value Ca drop θ , it is determined that the obtained steel sheet has excellent HIC resistance, and the Ca drop exceeds the threshold value Ca drop θ. If it is, the obtained steel sheet is judged to be inferior in HIC resistance.
スラブの調査位置(調査面)は定常部が好ましいが、非定常部でもよい。「非定常部」とは、鋳造条件の変化時に鋳造された部分であり、鋳造速度の上昇時といった鋳造初期や、鋳造速度の下降時といった鋳造末期に鋳造された部分等が挙げられる。非定常部で調査する場合、図5に示すように、HIC試験を実施する部位に隣接する部分を調査することが好ましい。このような部分はHIC試験結果と同様な耐HIC性を示すため、より正確な評価を行うことができる。 The slab investigation position (survey surface) is preferably a stationary part, but may be an unsteady part. The “unsteady portion” is a portion cast when a casting condition is changed, and includes a portion cast at an early stage of casting such as when the casting speed is increased, or a portion cast at the end of casting such as when the casting speed is decreased. When investigating in the unsteady part, it is preferable to investigate the part adjacent to the site where the HIC test is performed, as shown in FIG. Since such a part shows the same HIC resistance as the HIC test result, more accurate evaluation can be performed.
本発明の鋼板は、その圧延前の状態であるスラブの段階において、タンディッシュ内のCa濃度からスラブのCa濃度を差し引いて「Ca低下量Cadrop」を算出し、その「Ca低下量Cadrop」が、Cadrop≦閾値Cadropθを満たす鋼板である。本発明の鋼板は、上記Cadrop≦閾値Cadropθを満たしており、スラブにCaO集積帯が発生していないと考えられるため、HICが発生しない。 Steel sheet of the present invention, at the stage of the slab that is a state before rolling, by subtracting the Ca concentration of the slab from the Ca concentration in the tundish and calculating the "Ca decrease Ca drop", the "Ca decrease Ca drop Is a steel sheet satisfying Ca drop ≦ threshold Ca drop θ . The steel plate of the present invention satisfies the above Ca drop ≦ threshold Ca drop θ, and it is considered that no CaO accumulation band is generated in the slab, so that no HIC is generated.
このように、本実施形態では、耐HIC性の評価に「タンディッシュからスラブへのCa濃度低下量」を用いている。これから鋳片の内部品質(CaO介在物の集積度)を正確に評価できるため、この評価結果を基に鋳片の段階で耐HIC性を評価できる。これにより、数週間を要するHIC試験を省略できるため、製造から出荷までの期間を大幅に短縮することができる。 As described above, in this embodiment, “Ca concentration decrease from tundish to slab” is used for the evaluation of HIC resistance. Since the internal quality of the slab (accumulation degree of CaO inclusions) can be accurately evaluated from this, the HIC resistance can be evaluated at the stage of the slab based on this evaluation result. Thereby, since the HIC test which requires several weeks can be omitted, the period from manufacture to shipment can be greatly shortened.
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.
(1)鋳造
表1−1〜表4および図6、7には、閾値を決定するための実験条件および実験結果を示す。連続鋳造により、スラブ厚Dが280mmであってスラブ幅Wが2100mmであるスラブを得た。第1実施形態の鋳造条件を表1−1および表1−2に、第2実施形態の鋳造条件を表2−1および表2−2にそれぞれ示す。本実施例では、API(The American Petroleum Institute)X65グレードの鋼板と、APIX70グレードの鋼板を得るべく、それぞれ25チャージの製造を行った。
(1) Casting Tables 1-1 to 4 and FIGS. 6 and 7 show experimental conditions and experimental results for determining the threshold. By continuous casting, a slab having a slab thickness D of 280 mm and a slab width W of 2100 mm was obtained. The casting conditions of the first embodiment are shown in Table 1-1 and Table 1-2, and the casting conditions of the second embodiment are shown in Table 2-1 and Table 2-2, respectively. In this example, 25 charges were manufactured to obtain API (The American Petroleum Institute) X65 grade steel plate and APIX70 grade steel plate.
ここで、表1−1、表1−2、表2−1および表2−2に示す条件を説明する。
<タンディッシュ内溶鋼の成分>
C、Mn、Nb、P、Caの濃度を発光分光分析法によって測定した。S濃度は低いため、発光分光分析法による測定が困難であった。そこで、S濃度の測定には燃焼−赤外線吸収法を用いた。
<鋳造条件>
・比水量
比水量=(鋳型直下から連鋳機最終ロールまでの単位時間当たりの全二次冷却水量[l/min.])/(単位時間当たりの鋳造鋳片重量[kg/min.])
・鋳造速度
鋳片の引き抜き速度[m/min.]であり、鋳片に接触するロール(メジャーロール)の直径(周長)と回転速度(単位時間当たりの回転数)から算出した。
Here, the conditions shown in Table 1-1, Table 1-2, Table 2-1, and Table 2-2 will be described.
<Components of molten steel in tundish>
The concentrations of C, Mn, Nb, P, and Ca were measured by emission spectroscopy. Since the S concentration was low, it was difficult to measure by emission spectroscopic analysis. Therefore, a combustion-infrared absorption method was used for measuring the S concentration.
<Casting conditions>
Specific water amount Specific water amount = (total secondary cooling water amount per unit time from directly under the mold to the final roll of the continuous caster [l / min.]) / (Cast slab weight per unit time [kg / min.])
・ Casting speed Pulling speed of slab [m / min. It was calculated from the diameter (peripheral length) of the roll (major roll) in contact with the slab and the rotation speed (number of rotations per unit time).
(2)Ca低下量の調査
スラブの全長が10mとなった時点でタンディッシュ内の溶鋼を採取し、タンディッシュ内溶鋼のCa濃度CaTD1を調査した。鋳造後、スラブのCa濃度Cas1またはCamin1を調査した。表1−1および表1−2には、スラブの基準側領域R4でCa濃度を調査したときの調査位置とCa濃度Cas1を示している。表3−1、表3−2および表4には、スラブの厚さ方向に異なる2〜10箇所(表3−1、表3−2および表4に示す合計N数=2〜10)でCa濃度を調査したときの調査位置と各箇所でのCa濃度を示している。表3−1、表3−2および表4のうち、試験No.51〜57、69〜100は、2箇所で測定した。試験No.58〜64は3〜8箇所、試験No.65〜68は10箇所を調査した。そして複数のCa濃度のうちの最小Ca濃度Camin1を示している。前記2〜10箇所は、それぞれ厚さ方向に10mmを超えて離間した位置である。
(2) Investigation of Ca decrease amount When the total length of the slab reached 10 m, the molten steel in the tundish was collected, and the Ca concentration Ca TD1 of the molten steel in the tundish was investigated. After casting, the Ca concentration Ca s1 or Ca min1 of the slab was investigated. Table 1-1 and Table 1-2 show the survey position and the Ca concentration Ca s1 when the Ca concentration is investigated in the reference side region R4 of the slab. In Table 3-1, Table 3-2, and Table 4, 2-10 places (total number of N shown in Table 3-1, Table 3-2, and Table = 2-10) differing in the thickness direction of the slab. The survey position when the Ca concentration is investigated and the Ca concentration at each location are shown. Among Table 3-1, Table 3-2 and Table 4, Test Nos. 51 to 57 and 69 to 100 were measured at two locations. Test No. 58-64 are 3-8 locations, test no. 65-68 investigated 10 places. And the minimum Ca density | concentration Camin1 is shown among several Ca density | concentrations. The 2 to 10 positions are positions separated by more than 10 mm in the thickness direction.
(3)圧延
その後、上記スラブを、1050〜1250℃となるよう加熱した後、鋼板の表面温度で900℃以上、計算により求められる鋼板平均温度が1000℃以上の累積圧下率が40%以上でかつ1パス当りの圧下率が10%以上であるパスが2パス以上になるよう熱間圧延を行い、その後さらに、700℃以上900℃未満の累積圧下率が20%以上となるよう熱間圧延を行い、圧延終了表面温度が850℃となるようにした。その後、冷却開始表面温度:950℃から平均冷却速度:10℃/sで冷却を開始し、350〜600℃の温度で停止し、更にその後、室温まで空冷して、種々の成分組成であって、サイズが9〜50mm板厚×2000〜3500mm幅×12000〜35000mm長さの鋼板を得た。
(3) Rolling Then, after heating the slab to 1050 to 1250 ° C., the surface temperature of the steel plate is 900 ° C. or higher, the average steel plate temperature calculated by calculation is 1000 ° C. or higher, and the cumulative rolling reduction is 40% or higher. In addition, hot rolling is performed so that a pass having a reduction rate of 10% or more per pass becomes 2 passes or more, and then, hot rolling is performed so that a cumulative reduction rate of 700 ° C. or more and less than 900 ° C. becomes 20% or more. The surface temperature at the end of rolling was set to 850 ° C. Thereafter, cooling is started at a cooling start surface temperature: 950 ° C. at an average cooling rate: 10 ° C./s, stopped at a temperature of 350 to 600 ° C., and then air-cooled to room temperature to obtain various component compositions A steel plate having a size of 9 to 50 mm plate thickness × 2000 to 3500 mm width × 12000 to 35000 mm length was obtained.
(4)HIC試験
閾値tθ決定のために、本実施例では圧延後にHIC試験を行った。
(a)圧延後の各鋼板からサンプルを切り出し、HIC試験を実施した。HIC試験はNACE standard TM0284−2003に規定された方法に従って実施した。
(b)HIC試験後、サンプルを3箇所で切断し、各断面(3断面)を顕微鏡で観察し、HICの有無を確認した。観察領域は、図3(b)に示した「反基準側領域に対応する製品領域R40」における、製品の厚み中心から板厚±5.3%以内の範囲を除く領域R41とした。
(4) HIC test In order to determine the threshold value tθ, in this example, an HIC test was performed after rolling.
(A) A sample was cut out from each steel sheet after rolling, and an HIC test was performed. The HIC test was performed according to the method specified in NACE standard TM0284-2003.
(B) After the HIC test, the sample was cut at three locations, and each cross section (three cross sections) was observed with a microscope to confirm the presence or absence of HIC. The observation region was defined as a region R41 excluding a range within ± 5.3% of the plate thickness from the product thickness center in the “product region R40 corresponding to the anti-reference side region” shown in FIG.
(5)Ca低下量の閾値の決定
図6は、第1実施形態の閾値決定結果を示しており、前記(2)で調査した「タンディッシュ内溶鋼のCa濃度CaTD1」ならびに表1−1および表1−2の「スラブのCa濃度CaS1」と、HIC試験結果との関係を示す。また図7は、第2実施形態の閾値決定結果を示しており、前記(2)で調査した「タンディッシュ内溶鋼のCa濃度CaTD1」、ならびに表3−1、表3−2および表4のスラブの最小Ca濃度Camin1と、HIC試験結果との関係を示す。
(5) Determination of Ca Decrease Amount Threshold FIG. 6 shows the threshold determination result of the first embodiment. “Ca concentration Ca TD1 of molten steel in tundish” and Table 1-1 investigated in (2) above. And the relationship between the “IC concentration Ca S1 of the slab” in Table 1-2 and the HIC test results is shown. FIG. 7 shows the threshold value determination result of the second embodiment. “Ca concentration Ca TD1 of molten steel in tundish” investigated in the above (2), and Table 3-1, Table 3-2 and Table 4 The relationship between the minimum Ca concentration Ca min1 of the slab and the HIC test results is shown.
前記図6から、第1実施形態の判定方法ではCa低下量が4ppm以下のとき、HICが発生しなかった。一方、Ca低下量が4ppmを超えたとき、HICが発生した場合と発生しなかった場合とが混在した。この結果から、HICの発生を確実に抑制できるのは、Ca低下量≦4ppmのときであることがわかった。そこで、第1実施形態の実施例では、Ca低下量の閾値を4ppm、即ちCadropθ=4ppmとした。 From the said FIG. 6, in the determination method of 1st Embodiment, when Ca fall amount was 4 ppm or less, HIC did not generate | occur | produce. On the other hand, when Ca fall amount exceeded 4 ppm, the case where HIC generate | occur | produced and the case where it did not occur were mixed. From this result, it was found that the occurrence of HIC can be reliably suppressed when the amount of Ca decrease is ≦ 4 ppm. Therefore, in the example of the first embodiment, the threshold value for the Ca decrease amount is 4 ppm, that is, Ca dropθ = 4 ppm.
また、図7から、第2実施形態の判定方法でも、Ca低下量が4ppm以下のとき、HICが発生しなかった。一方、Ca低下量が4ppmを超えたとき、HICが発生した場合と発生しなかった場合とが混在した。この結果から、HICの発生を確実に抑制できるのは、Ca低下量≦4ppmのときであることがわかった。そこで、第2実施形態の実施例でも、Ca低下量の閾値を4ppm、即ちCadropθ=4ppmとした。 Further, from FIG. 7, even in the determination method of the second embodiment, no HIC was generated when the Ca decrease amount was 4 ppm or less. On the other hand, when Ca fall amount exceeded 4 ppm, the case where HIC generate | occur | produced and the case where it did not occur were mixed. From this result, it was found that the occurrence of HIC can be reliably suppressed when the amount of Ca decrease is ≦ 4 ppm. Therefore, also in the example of the second embodiment, the threshold value of the Ca decrease amount is set to 4 ppm, that is, Ca dropθ = 4 ppm.
なお、「Ca低下量の閾値」は強度グレードに関係なく全ての製品から決定している。粗大なCaOによるHICの発生のしやすさは、製品の強度グレードに関係しないためである。 The “Ca reduction threshold value” is determined for all products regardless of the strength grade. This is because the ease of occurrence of HIC due to coarse CaO is not related to the strength grade of the product.
(6)判定対象スラブの評価
上記閾値を用いて、表5に示す成分組成の判定対象スラブの耐HIC性を評価した。
(6) Evaluation of determination target slab Using the above threshold, the HIC resistance of the determination target slab having the component composition shown in Table 5 was evaluated.
表5に示す成分組成の鋼を溶製し、連続鋳造により、スラブ厚Dが280mmであってスラブ幅Wが2100mmであるスラブを得た。 Steels having the composition shown in Table 5 were melted, and a slab having a slab thickness D of 280 mm and a slab width W of 2100 mm was obtained by continuous casting.
判定対象チャージのタンディッシュ内溶鋼のCa濃度CaTD11を調査すると共に、判定対象のスラブの最小のCa濃度(Camin11)を求め、判定対象のスラブのCa低下量Cadropを上述の通り算出した。そして、上記(5)の第1、2実施形態から求めた閾値Cadropθ=4ppmを用いて、判定対象のスラブのCa低下量Cadropが4ppm以下のときCaO起因のHICが発生しない、即ち、耐HIC性評価がOKと判断し、Ca低下量Cadropが4ppm超のときCaO起因のHICが発生する、即ち、耐HIC性評価がNGと判断した。この結果を表6に示す。 With investigating determination target charge tundish molten steel Ca concentration Ca TD11, determining the minimum of the Ca concentration of the slab to be determined (Ca min11), the Ca decrease Ca drop of the slab to be determined and calculated as described above . And, using the threshold value Ca dropθ = 4 ppm obtained from the first and second embodiments of (5) above, no HIC due to CaO occurs when the Ca drop amount Ca drop of the judgment target slab is 4 ppm or less, The HIC resistance evaluation was determined to be OK, and when the Ca drop amount Ca drop was more than 4 ppm, HIC due to CaO was generated, that is, the HIC resistance evaluation was determined to be NG. The results are shown in Table 6.
その後、上記スラブを、1050〜1250℃となるよう加熱した後、表6の「熱間圧延・冷却方法」の欄に「TMCP」または「QT」と示す通り、2パターンの熱間圧延・冷却方法により、成分組成が種々の鋼板(9〜90mm板厚×2000〜3500mm幅×12000〜35000mm長さ)を得た。前記「TMCP」は、鋼板の表面温度で900℃以上、計算により求められる鋼板平均温度が1000℃以上の累積圧下率が40%以上でかつ1パス当りの圧下率が10%以上であるパスが2パス以上になるよう熱間圧延を行い、その後さらに、700℃以上900℃未満の累積圧下率が20%以上となるよう熱間圧延を行い、圧延終了表面温度が850℃となるようにし後、冷却開始表面温度:950℃から平均冷却速度:10℃/sで冷却を開始し、350〜600℃の温度で停止し、更にその後、室温まで空冷する方法である。前記「QT」は、熱間圧延した後室温まで空冷し、850℃以上950℃以下の温度に再加熱して焼入れした後、600〜700℃で焼き戻し処理を行う方法である。 Thereafter, the slab was heated to 1050 to 1250 ° C., and then “TMCP” or “QT” in the column of “Hot rolling / cooling method” in Table 6, two patterns of hot rolling / cooling. By the method, various steel compositions (9 to 90 mm plate thickness x 2000 to 3500 mm width x 12000 to 35000 mm length) were obtained. The “TMCP” is a pass in which the cumulative rolling reduction when the steel plate surface temperature is 900 ° C. or higher, the average steel plate temperature calculated by calculation is 1000 ° C. or higher is 40% or higher, and the rolling reduction per pass is 10% or higher. After hot rolling so that it becomes 2 passes or more, after that, hot rolling is performed so that the cumulative rolling reduction of 700 ° C. or more and less than 900 ° C. becomes 20% or more, and the rolling finish surface temperature becomes 850 ° C. The cooling start surface temperature is 950 ° C., the cooling is started at an average cooling rate of 10 ° C./s, stopped at a temperature of 350 to 600 ° C., and then cooled to room temperature. The “QT” is a method in which after hot rolling, air-cooled to room temperature, reheated to a temperature of 850 ° C. or higher and 950 ° C. or lower, quenched, and then tempered at 600 to 700 ° C.
上記鋼板を用い、NACE standard TM0284−2003に規定された方法に従ってHIC試験を実施し、耐HIC性試験での割れの有無を確認した。その結果を表6に示す。 Using the steel plate, an HIC test was performed according to the method specified in NACE standard TM0284-2003, and the presence or absence of cracks in the HIC resistance test was confirmed. The results are shown in Table 6.
表5および表6より次のことがわかる。鋼種No.1〜7、10〜16は、規定の成分組成を満たし、かつスラブのCa低下量が閾値以下に抑えられており、耐HIC性に優れた本発明の鋼板である。 Table 5 and Table 6 show the following. Steel type no. Nos. 1 to 7 and 10 to 16 are steel plates of the present invention that satisfy the prescribed component composition and have a reduced amount of Ca in the slab that is suppressed to a threshold value or less and that have excellent HIC resistance.
これに対し、鋼種No.9および18はスラブのCa低下量が閾値を超えているため、スラブの耐HIC性評価はNGであった。また圧延後に行うHIC試験では、鋼板に割れが生じ、耐HIC性に劣ることを確認した。また鋼種No.9および18は、鋼板の化学成分組成が本発明の規定を外れた例である。即ち、鋼種No.9の鋼板は、REMおよびZrが0%であり、かつ、(Ca−1.25S)/Oの値が規定を外れたため、耐HIC性に劣った。鋼種No.18は(Ca−1.25S)/Oの値が規定を外れたため、耐HIC性に劣った。鋼種No.8および17は、スラブのCa低下量が閾値よりも小さく抑えられているものの、鋼板の化学成分組成が本発明の規定を外れた例である。即ち、鋼種No.8はREMおよびZrが0%であり、かつ、(Ca/S)の値が規定を外れているため、耐HIC性に劣った。また鋼種No.17は(Ca/S)の値が規定を外れているため、耐HIC性に劣った。 On the other hand, steel grade No. In Nos. 9 and 18, since the amount of Ca decrease in the slab exceeded the threshold value, the HIC resistance evaluation of the slab was NG. Further, in the HIC test performed after rolling, it was confirmed that the steel plate was cracked and inferior in HIC resistance. Steel grade No. 9 and 18 are examples in which the chemical composition of the steel sheet deviates from the definition of the present invention. That is, the steel type No. Steel plate No. 9 was inferior in HIC resistance because REM and Zr were 0%, and the value of (Ca-1.25S) / O was out of specification. Steel type no. No. 18 was inferior in HIC resistance because the value of (Ca-1.25S) / O was out of specification. Steel type no. 8 and 17 are examples in which the chemical component composition of the steel sheet deviates from the definition of the present invention, although the amount of Ca decrease in the slab is suppressed to be smaller than the threshold value. That is, the steel type No. No. 8 was inferior in HIC resistance because REM and Zr were 0% and the value of (Ca / S) was out of specification. Steel grade No. No. 17 was inferior in HIC resistance because the value of (Ca / S) was not specified.
スラブでの耐HIC性評価がOKであった例では、鋳造開始から製品である鋼板、即ち、耐サワー鋼板の出荷までの期間(鋳造→圧延→出荷)が19日であった。これに対し、圧延後に得られた鋼板を用いてHIC試験を行い、耐HIC性を評価した場合には、鋳造開始から出荷までの期間(鋳造→圧延→HIC試験→出荷)が28日と長期間を要した。本実施例では、前記圧延後のHIC試験を省略できたため、鋳造開始から出荷までの期間を28日→19日へ大幅に短縮できた。 In the example in which the HIC resistance evaluation on the slab was OK, the period (casting → rolling → shipment) from the start of casting to the shipment of the product steel plate, that is, the sour-resistant steel plate, was 19 days. On the other hand, when the HIC test is performed using the steel sheet obtained after rolling and the HIC resistance is evaluated, the period from casting start to shipping (casting → rolling → HIC test → shipping) is as long as 28 days. It took a period. In this example, since the HIC test after rolling could be omitted, the period from the start of casting to shipment could be greatly shortened from 28 days to 19 days.
また、スラブでの耐HIC性評価がNGであった例では、スラブの段階で再溶製を開始したところ、鋳造開始から製品である鋼板、即ち、耐サワー鋼板の出荷までの期間(鋳造→再溶製→圧延→出荷)は54日であった。これに対し、圧延後に得られた鋼板を用いてHIC試験を行い、製品の耐HIC性を評価した結果、評価がNGであった場合は、上記HIC試験を行った後に再溶製を開始したため、鋳造開始から製品である鋼板の出荷までの期間(鋳造→圧延→HIC試験→再溶製→圧延→HIC試験→出荷)が72日と長期間を要した。本実施例では、前記圧延後のHIC試験を省略できたため、再溶製が必要な場合であっても、鋳造開始から出荷までの期間を72日→54日へ大幅に短縮できた。 Further, in the case where the HIC resistance evaluation on the slab was NG, when remelting was started at the slab stage, the period from the start of casting to the shipment of the product steel plate, that is, the sour steel plate (casting → Remelting → rolling → shipping) was 54 days. On the other hand, as a result of performing the HIC test using the steel sheet obtained after rolling and evaluating the HIC resistance of the product, if the evaluation is NG, remelting was started after the HIC test was performed. The period from the start of casting to the shipment of the steel sheet as a product (casting → rolling → HIC test → remelting → rolling → HIC test → shipping) required 72 days. In this example, since the HIC test after rolling could be omitted, even when remelting was necessary, the period from the start of casting to shipment could be greatly shortened from 72 days to 54 days.
以上のように、本発明によると、圧延後のHIC試験を行うことなく、鋳片であるスラブの段階で耐HIC性を評価できたため、製造リードタイムを大幅に短縮できた。尚、本実施例では、スラブの耐HIC性評価用閾値決定のためのHIC試験と、確認用のHIC試験とが同じであったため、本発明の判定方法は精度が高いといえる。 As described above, according to the present invention, since the HIC resistance could be evaluated at the stage of the slab, which is a slab, without performing the HIC test after rolling, the manufacturing lead time could be greatly shortened. In this example, the determination method of the present invention is highly accurate because the HIC test for determining the threshold for evaluating the HIC resistance of the slab and the HIC test for confirmation are the same.
Claims (10)
C:0.02〜0.15%、
Si:0.02〜0.50%、
Mn:0.6〜2.0%、
P:0%超0.030%以下、
S:0%超0.003%以下、
Al:0.010〜0.08%、
Ca:0.0003〜0.0060%、
N:0.001〜0.01%、および
O:0%超0.0045%以下を満たし、更に、
REM:0%超0.02%以下、および
Zr:0%超0.010%以下
よりなる群から選択される1種以上の元素を含み、残部が鉄および不可避不純物からなり、
前記Caと前記Sの比(Ca/S)が2.0以上であり、かつ
前記Ca、前記Sおよび前記Oが(Ca−1.25S)/O ≦ 1.80を満たし、
更に、タンディッシュ内溶鋼のCa濃度からスラブのCa濃度を差し引いたCa低下量が閾値Cadropθ以下であり、該閾値Cadropθは、前記スラブを圧延して得た鋼板に水素誘起割れが発生しない最大のCa低下量であることを特徴とする耐水素誘起割れ性に優れた鋼板。 % By mass
C: 0.02 to 0.15%,
Si: 0.02 to 0.50%,
Mn: 0.6 to 2.0%,
P: more than 0% and 0.030% or less,
S: more than 0% and 0.003% or less,
Al: 0.010 to 0.08%,
Ca: 0.0003 to 0.0060%,
N: 0.001 to 0.01%, and O: more than 0% and 0.0045% or less,
Including one or more elements selected from the group consisting of REM: more than 0% and 0.02% or less, and Zr: more than 0% and 0.010%, the balance consisting of iron and inevitable impurities,
The ratio of Ca to S (Ca / S) is 2.0 or more, and the Ca, S and O satisfy (Ca−1.25S) /O≦1.80,
Furthermore, the amount of Ca reduction obtained by subtracting the Ca concentration of the slab from the Ca concentration of the molten steel in the tundish is not more than the threshold value Ca dropθ , and the threshold value Ca dropθ does not cause hydrogen-induced cracking in the steel sheet obtained by rolling the slab. A steel sheet excellent in hydrogen-induced crack resistance, characterized by being the maximum amount of Ca decrease.
(i)タンディッシュ内溶鋼のCa濃度とスラブのCa濃度を測定し、前記タンディッシュ内溶鋼のCa濃度から前記スラブのCa濃度を差し引いてCa低下量を算出する。
(ii)前記スラブと同一の鋳造条件で鋳造したスラブを圧延して得られる鋼板に対して水素誘起割れ試験を行う。
(iii)上記(i)で測定したCa低下量と、上記(ii)の水素誘起割れ試験結果とから、水素誘起割れの発生しない最大のCa低下量を求める。 The steel sheet according to claim 1, wherein the threshold value Ca dropθ is a value obtained in advance by the following methods (i) to (iii).
(I) The Ca concentration of the molten steel in the tundish and the Ca concentration of the slab are measured, and the amount of Ca decrease is calculated by subtracting the Ca concentration of the slab from the Ca concentration of the molten steel in the tundish.
(Ii) A hydrogen-induced cracking test is performed on a steel plate obtained by rolling a slab cast under the same casting conditions as the slab.
(Iii) From the Ca decrease amount measured in (i) above and the hydrogen induced crack test result of (ii) above, the maximum Ca decrease amount at which no hydrogen induced crack occurs is obtained.
B:0%超0.005%以下、
V:0%超0.1%以下、
Cu:0%超1.5%以下、
Ni:0%超1.5%以下、
Cr:0%超1.5%以下、
Mo:0%超1.5%以下、および
Nb:0%超0.06%以下
よりなる群から選択される1種以上の元素を含む請求項1〜5のいずれかに記載の鋼板。 Furthermore, as other elements,
B: more than 0% and 0.005% or less,
V: more than 0% and 0.1% or less,
Cu: more than 0% and 1.5% or less,
Ni: more than 0% and 1.5% or less,
Cr: more than 0% and 1.5% or less,
The steel plate according to any one of claims 1 to 5, comprising one or more elements selected from the group consisting of Mo: more than 0% and 1.5% or less, and Nb: more than 0% and 0.06% or less.
Ti:0%超0.03%以下、および
Mg:0%超0.01%以下
よりなる群から選択される1種以上の元素を含む請求項1〜6のいずれかに記載の鋼板。 Furthermore, as other elements,
The steel plate according to any one of claims 1 to 6, comprising one or more elements selected from the group consisting of Ti: more than 0% and 0.03% or less, and Mg: more than 0% and 0.01% or less.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/085869 WO2016104526A1 (en) | 2014-12-26 | 2015-12-22 | Steel plate having excellent hydrogen-induced cracking resistance and steel pipe for line pipe |
EP15873094.5A EP3239319A4 (en) | 2014-12-26 | 2015-12-22 | Steel plate having excellent hydrogen-induced cracking resistance and steel pipe for line pipe |
KR1020177019238A KR20170093964A (en) | 2014-12-26 | 2015-12-22 | Steel plate having excellent hydrogen-induced cracking resistance and steel pipe for line pipe |
CN201580070001.6A CN107109566A (en) | 2014-12-26 | 2015-12-22 | The excellent steel plate of hydrogen induced cracking resistance and line-pipes steel pipe |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014266491 | 2014-12-26 | ||
JP2014266491 | 2014-12-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016125137A true JP2016125137A (en) | 2016-07-11 |
Family
ID=56359036
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015202378A Pending JP2016125137A (en) | 2014-12-26 | 2015-10-13 | Steel sheet and steel pipe for line pipe excellent in hydrogen-induced crack resistance |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3239319A4 (en) |
JP (1) | JP2016125137A (en) |
KR (1) | KR20170093964A (en) |
CN (1) | CN107109566A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016125140A (en) * | 2014-12-26 | 2016-07-11 | 株式会社神戸製鋼所 | Steel sheet and steel pipe for line pipe excellent in hydrogen-induced crack resistance and toughness |
JP2016125139A (en) * | 2014-12-26 | 2016-07-11 | 株式会社神戸製鋼所 | Steel sheet and steel pipe for line pipe excellent in hydrogen-induced crack resistance |
CN109952387A (en) * | 2016-11-16 | 2019-06-28 | 株式会社神户制钢所 | Steel plate and line-pipes steel pipe and its manufacturing method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111220614B (en) * | 2018-11-27 | 2023-05-09 | 宝山钢铁股份有限公司 | Method for rapidly evaluating quality of molten steel |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06293915A (en) * | 1993-04-07 | 1994-10-21 | Nippon Steel Corp | Production of low alloy steel plate for line pipe excellent in co2 corrosion resistance and sour resistance |
JPH0941083A (en) * | 1995-07-28 | 1997-02-10 | Nkk Corp | Resistance welded tube excellent in hic resistance and sscc resistance and its production |
JP2008056962A (en) * | 2006-08-30 | 2008-03-13 | Jfe Steel Kk | Steel sheet for high strength line pipe which is excellent in resistance to crack induced by hydrogen and has small reduction in yield stress due to bauschinger effect, and manufacturing method therefor |
WO2009148193A1 (en) * | 2008-06-06 | 2009-12-10 | 新日本製鐵株式会社 | Steel plate excellent in sour resistance and steel pipe for linepipes |
JP2010209460A (en) * | 2009-02-12 | 2010-09-24 | Nippon Steel Corp | High-strength steel sheet and high-strength steel pipe having excellent hydrogen-induced cracking resistance for use in line pipe |
JP2010209461A (en) * | 2009-02-12 | 2010-09-24 | Nippon Steel Corp | High-strength steel sheet and high-strength steel pipe having excellent hydrogen-induced cracking resistance for use in line pipe |
JP2011001607A (en) * | 2009-06-19 | 2011-01-06 | Sumitomo Metal Ind Ltd | Thick steel plate having excellent hydrogen-induced cracking resistance and brittle crack arrest property |
JP2012036462A (en) * | 2010-08-09 | 2012-02-23 | Nippon Steel Corp | Steel material excelling in hydrogen-induced cracking resistance |
WO2013147197A1 (en) * | 2012-03-30 | 2013-10-03 | 新日鐵住金株式会社 | High-strength steel pipe for line pipe having excellent hydrogen-induced cracking resistance, high-strength steel pipe for line pipe using same, and method for manufacturing same |
JP2013213242A (en) * | 2012-03-30 | 2013-10-17 | Kobe Steel Ltd | Steel sheet excellent in hydrogen-induced cracking resistance and production method therefor |
JP2013237101A (en) * | 2012-04-20 | 2013-11-28 | Kobe Steel Ltd | Steel having excellent hydrogen induced cracking resistance and method for producing the same |
JP2014173892A (en) * | 2013-03-06 | 2014-09-22 | Kobe Steel Ltd | METHOD OF DETERMINING QUALITY OF SOUR-RESISTANT STEEL SLAB USING Ca CONCENTRATION ANALYSIS RESULTS AT DIFFERENT PLATE THICKNESS POSITIONS IN THE SLAB |
JP2014208891A (en) * | 2013-03-29 | 2014-11-06 | 株式会社神戸製鋼所 | Steel sheet and line pipe steel pipe excellent in hydrogen-induced crack resistance and heat affected zone toughness |
JP2014208892A (en) * | 2013-03-29 | 2014-11-06 | 株式会社神戸製鋼所 | Steel sheet and line pipe steel pipe excellent in hydrogen-induced crack resistance and toughness |
JP2014214371A (en) * | 2013-04-30 | 2014-11-17 | 株式会社神戸製鋼所 | Steel sheet excellent in sour resistance and haz toughness |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH075968B2 (en) * | 1990-02-13 | 1995-01-25 | 新日本製鐵株式会社 | Method for producing steel sheet excellent in hydrogen-induced cracking resistance, sulfide stress corrosion cracking resistance and low temperature toughness |
JP5157030B2 (en) * | 2001-03-23 | 2013-03-06 | Jfeスチール株式会社 | Manufacturing method of high strength line pipe steel with excellent HIC resistance |
JP5262075B2 (en) * | 2007-11-14 | 2013-08-14 | 新日鐵住金株式会社 | Method for producing steel for pipes with excellent sour resistance |
JP2014173893A (en) * | 2013-03-06 | 2014-09-22 | Kobe Steel Ltd | METHOD OF DETERMINING QUALITY OF SOUR-RESISTANT SLAB USING Ca CONCENTRATION ANALYSIS RESULT AT PLATE THICKNESS POSITION WITHIN SPECIFIC RANGE IN THE SLAB |
JP6316548B2 (en) * | 2013-07-01 | 2018-04-25 | 株式会社神戸製鋼所 | Steel plates and line pipe steel pipes with excellent hydrogen-induced crack resistance and toughness |
-
2015
- 2015-10-13 JP JP2015202378A patent/JP2016125137A/en active Pending
- 2015-12-22 CN CN201580070001.6A patent/CN107109566A/en active Pending
- 2015-12-22 KR KR1020177019238A patent/KR20170093964A/en not_active Application Discontinuation
- 2015-12-22 EP EP15873094.5A patent/EP3239319A4/en not_active Withdrawn
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06293915A (en) * | 1993-04-07 | 1994-10-21 | Nippon Steel Corp | Production of low alloy steel plate for line pipe excellent in co2 corrosion resistance and sour resistance |
JPH0941083A (en) * | 1995-07-28 | 1997-02-10 | Nkk Corp | Resistance welded tube excellent in hic resistance and sscc resistance and its production |
JP2008056962A (en) * | 2006-08-30 | 2008-03-13 | Jfe Steel Kk | Steel sheet for high strength line pipe which is excellent in resistance to crack induced by hydrogen and has small reduction in yield stress due to bauschinger effect, and manufacturing method therefor |
WO2009148193A1 (en) * | 2008-06-06 | 2009-12-10 | 新日本製鐵株式会社 | Steel plate excellent in sour resistance and steel pipe for linepipes |
JP2010209460A (en) * | 2009-02-12 | 2010-09-24 | Nippon Steel Corp | High-strength steel sheet and high-strength steel pipe having excellent hydrogen-induced cracking resistance for use in line pipe |
JP2010209461A (en) * | 2009-02-12 | 2010-09-24 | Nippon Steel Corp | High-strength steel sheet and high-strength steel pipe having excellent hydrogen-induced cracking resistance for use in line pipe |
JP2011001607A (en) * | 2009-06-19 | 2011-01-06 | Sumitomo Metal Ind Ltd | Thick steel plate having excellent hydrogen-induced cracking resistance and brittle crack arrest property |
JP2012036462A (en) * | 2010-08-09 | 2012-02-23 | Nippon Steel Corp | Steel material excelling in hydrogen-induced cracking resistance |
WO2013147197A1 (en) * | 2012-03-30 | 2013-10-03 | 新日鐵住金株式会社 | High-strength steel pipe for line pipe having excellent hydrogen-induced cracking resistance, high-strength steel pipe for line pipe using same, and method for manufacturing same |
JP2013213242A (en) * | 2012-03-30 | 2013-10-17 | Kobe Steel Ltd | Steel sheet excellent in hydrogen-induced cracking resistance and production method therefor |
JP2013237101A (en) * | 2012-04-20 | 2013-11-28 | Kobe Steel Ltd | Steel having excellent hydrogen induced cracking resistance and method for producing the same |
JP2014173892A (en) * | 2013-03-06 | 2014-09-22 | Kobe Steel Ltd | METHOD OF DETERMINING QUALITY OF SOUR-RESISTANT STEEL SLAB USING Ca CONCENTRATION ANALYSIS RESULTS AT DIFFERENT PLATE THICKNESS POSITIONS IN THE SLAB |
JP2014208891A (en) * | 2013-03-29 | 2014-11-06 | 株式会社神戸製鋼所 | Steel sheet and line pipe steel pipe excellent in hydrogen-induced crack resistance and heat affected zone toughness |
JP2014208892A (en) * | 2013-03-29 | 2014-11-06 | 株式会社神戸製鋼所 | Steel sheet and line pipe steel pipe excellent in hydrogen-induced crack resistance and toughness |
JP2014214371A (en) * | 2013-04-30 | 2014-11-17 | 株式会社神戸製鋼所 | Steel sheet excellent in sour resistance and haz toughness |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016125140A (en) * | 2014-12-26 | 2016-07-11 | 株式会社神戸製鋼所 | Steel sheet and steel pipe for line pipe excellent in hydrogen-induced crack resistance and toughness |
JP2016125139A (en) * | 2014-12-26 | 2016-07-11 | 株式会社神戸製鋼所 | Steel sheet and steel pipe for line pipe excellent in hydrogen-induced crack resistance |
CN109952387A (en) * | 2016-11-16 | 2019-06-28 | 株式会社神户制钢所 | Steel plate and line-pipes steel pipe and its manufacturing method |
EP3543366A4 (en) * | 2016-11-16 | 2020-05-27 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Steel sheet, steel pipe for line pipe, and production method therefor |
Also Published As
Publication number | Publication date |
---|---|
EP3239319A4 (en) | 2018-06-27 |
KR20170093964A (en) | 2017-08-16 |
CN107109566A (en) | 2017-08-29 |
EP3239319A1 (en) | 2017-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6165088B2 (en) | Steel sheets and line pipe steel pipes with excellent resistance to hydrogen-induced cracking and toughness of weld heat affected zone | |
US9068253B2 (en) | Steel plate with excellent hydrogen induced cracking resistance, and manufacturing method of the same | |
JP2016125140A (en) | Steel sheet and steel pipe for line pipe excellent in hydrogen-induced crack resistance and toughness | |
JP6584912B2 (en) | Steel plate and line pipe steel pipe with excellent hydrogen-induced crack resistance | |
JP4725437B2 (en) | Continuous cast slab for thick steel plate, method for producing the same, and thick steel plate | |
JP6316548B2 (en) | Steel plates and line pipe steel pipes with excellent hydrogen-induced crack resistance and toughness | |
JP6169025B2 (en) | Steel plates and line pipe steel pipes with excellent hydrogen-induced crack resistance and toughness | |
JP2006063351A (en) | High strength steel plate with excellent hydrogen induced cracking resistance, its manufacturing method, and steel pipe for line pipe | |
KR20170083158A (en) | Thick-walled high-strength sour-resistant line pipe | |
WO2010104165A1 (en) | Hic-resistant thick steel sheet and uoe steel pipe | |
JP2011063840A (en) | Steel sheet having excellent hic resistance and uoe steel pipe | |
CN103189538A (en) | High-strength steel sheet having excellent fracture resistance performance and HIC resistance performance | |
JP2016125137A (en) | Steel sheet and steel pipe for line pipe excellent in hydrogen-induced crack resistance | |
JP2016125139A (en) | Steel sheet and steel pipe for line pipe excellent in hydrogen-induced crack resistance | |
WO2016104528A1 (en) | Steel plate having excellent toughness and resistance to hydrogen-induced cracking, and steel pipe for line pipe | |
KR20190119089A (en) | Wire rod and flat wire | |
WO2016104527A1 (en) | Steel plate having excellent hydrogen-induced cracking resistance and steel pipe for line pipe | |
WO2016104526A1 (en) | Steel plate having excellent hydrogen-induced cracking resistance and steel pipe for line pipe | |
WO2016104529A1 (en) | Steel plate having excellent resistance to hydrogen-induced cracking, and steel pipe for line pipe | |
JP6126503B2 (en) | Redirecting method based on quality judgment of sour line pipe steel slabs | |
JP2020084250A (en) | Steel material for seamless steel pipe | |
JP6086036B2 (en) | Steel plate with excellent weld heat-affected zone toughness and its melting method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20170210 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20170321 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170901 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180703 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20180823 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181026 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20181218 |