WO2009148193A1 - Steel plate excellent in sour resistance and steel pipe for linepipes - Google Patents

Steel plate excellent in sour resistance and steel pipe for linepipes Download PDF

Info

Publication number
WO2009148193A1
WO2009148193A1 PCT/JP2009/060721 JP2009060721W WO2009148193A1 WO 2009148193 A1 WO2009148193 A1 WO 2009148193A1 JP 2009060721 W JP2009060721 W JP 2009060721W WO 2009148193 A1 WO2009148193 A1 WO 2009148193A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel
sour resistance
amount
toughness
Prior art date
Application number
PCT/JP2009/060721
Other languages
French (fr)
Japanese (ja)
Inventor
澤村充
村木太郎
原卓也
朝日均
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to JP2010515956A priority Critical patent/JP4719313B2/en
Priority to CN200980120913.4A priority patent/CN102057070B/en
Priority to BRPI0915520 priority patent/BRPI0915520B1/en
Publication of WO2009148193A1 publication Critical patent/WO2009148193A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Definitions

  • the present invention is a high-strength steel plate that is resistant to hydrogen-induced cracking in an environment containing hydrogen sulfide (H 2 S), that is, excellent in sour resistance, and is used mainly for transportation of oil and natural gas. It relates to steel pipes for strength line pipes. Background art
  • the sour resistance refers to hydrogen-induced crack resistance (HIC resistance) and stress crack resistance (SSCC resistance) in a corrosive environment containing hydrogen sulfide.
  • HIC resistance hydrogen-induced crack resistance
  • SSCC resistance stress crack resistance
  • steel sheets are being strengthened from the perspective of improving transportation efficiency and reducing costs by reducing the thickness, and steel sheets are required to have high toughness in consideration of use in cold regions. Has been.
  • Patent Documents 1 and 2 have proposed a method for producing a high-strength steel sheet with improved low-temperature toughness and sour resistance.
  • reducing the content of C and A 1 and adding Ti embrittlement due to the hard phase is suppressed, and intragranular transformation is promoted to suppress toughness reduction.
  • the addition of a controls the morphology of M n S and improves sour resistance.
  • Patent Documents 3 and 4 propose steel sheets in which the elongation of M n S is suppressed by controlling the Ca content, the O content, and the S content.
  • sulfide inclusions such as M n S
  • steel sheets and steel pipes that suppress the coarsening of N b _ T i _C— N inclusions that are the origin of HIC are, for example, patents Prior art document proposed in Document 5
  • Patent Document 1 Japanese Patent Application Laid-Open No. 0 6-2 9 3 9 1 8
  • Patent Document 2 Japanese Patent Application Laid-Open No. 0 7 — 2 3 3 4 1 5
  • Patent Document 3 Japanese Patent Application Laid-Open No. 0-7 — 2 4 2 9 4 4
  • Patent Document 4 Japanese Patent Laid-Open No. 2 0 0 0-1 0 9 9 4 7
  • Patent Document Japanese Patent Laid-Open No. 2 0 0 6 — 6 3 3 5 1 Patent Summary of the Invention
  • the present invention has been made in view of such a situation, and aims to propose a steel plate excellent in sour resistance and a steel pipe for a line pipe.
  • the present inventors conducted an investigation to clarify the cause of the occurrence of HIC in a steel sheet with reduced S content and addition of Ca. As a result, the amount of S is reduced to 8 ppm or less, and the steel sheet with added Ca Regardless, we found that the starting point of HIC is MnS stretched over 50 m. Therefore, the present inventors further examined this cause and concluded that deoxidation was inappropriate, so that Ca was an oxide and MnS was coarsened. It was.
  • the present invention has been made based on such knowledge, and the gist thereof is as follows.
  • N b 0 • 0 1% or more, 0 • 0 4 7 or less
  • the balance consists of Fe and impurities, and the content [mass%] of A 1 and S i is A 1 ⁇ 0. 0 0 5% and 0.25% ⁇ S 1,
  • the Nb content is 0.01 to 0.02% by mass%, and the heat resistance according to any one of (1) to (4) above Excellent steel plate.
  • the amount of Ca is from 0.020 to 0.040% in terms of mass%, according to any one of the above (1) to (5), Steel sheet with excellent heat resistance.
  • V 0.10% or less
  • the steel sheet having excellent sour resistance according to any one of the above (1) to (8), characterized by comprising:
  • R E M 0.0 5% or less
  • the steel plate having excellent sour resistance according to any one of the above (1) to (10), characterized by containing one or more of the above.
  • the amount of S is reduced, the amount of O (oxygen) is reduced by the addition of an appropriate deoxidizing agent, and the addition of an appropriate amount of Ca suppresses the stretching of M n S.
  • the present invention it is possible to reliably prevent the occurrence of cracks due to the HIC of steel plates and steel pipes.
  • a 1 amount is low By reducing it, it becomes possible to improve the toughness of HAZ. Therefore, according to the present invention, it becomes possible to provide a steel plate and a steel pipe for line pipe excellent in sour resistance and further HA Z toughness, and the present invention has an extremely significant industrial contribution. . Brief Description of Drawings
  • FIG. 1 is a diagram showing an example of M n S stretched in the rolling direction.
  • Figure 2 is a diagram showing the relationship between the maximum length of M n S in steel sheets and 3 x 3 and ⁇ 3 1.
  • FIG. 3 is a view showing ranges of the Si amount and the A 1 amount of the steel sheet of the present invention.
  • HIC generated in the steel sheet with 0.005% Ca added and the amount of S being 0.000% is M n S extending in the rolling direction existing in the center segregation part. Note that% means mass%, and the same applies hereinafter.
  • the length of the stretched M n S exceeds 50 m.
  • This steel plate has 0.039% C, 0.24% Si, 1.20% Mn, and 0.00 as the main components other than S and Ca. 2 Contains 1% of ⁇ (oxygen), and further contains 0.01% or less of A1 and about 0.01% of Nb and Ti.
  • this result means that the fixation of S by Ca becomes insufficient when the oxygen amount exceeds 0.0 0 20%. Therefore, prolapse It is considered that the acid should be strengthened. Addition of A 1 is effective for strengthening deoxidation. On the other hand, when A 1 is added, there is a concern that the low-temperature toughness will decrease due to the increase in inclusions and the suppression of intragranular transformation. With the increase in the amount of A 1, MA is generated especially in HAZ, and it is thought that the low temperature toughness decreases due to this.
  • the present inventors tried to enhance deoxidation by increasing the amount of Si added in order to achieve both sour resistance and low temperature toughness.
  • S 1 is an element that reduces toughness
  • the upper limit of the amount of Si added was also examined.
  • a sample was taken from the location corresponding to the center segregation part of the steel sheet (12 parts in the thickness direction), and M n S was observed with a scanning electron microscope (S E M).
  • S E M scanning electron microscope
  • the lengths of longitudinally extending M n S and spherical M n S present in the field of view in the range of 50 mm square were measured. The measurement was performed at 15 locations on each steel plate, and the maximum measured M n S length was taken as the maximum M n S length of the steel plate.
  • FIG. 2 shows that when S / C a> 0.33, the elongation of M n S cannot be suppressed even if OZ S i is decreased.
  • S / C a ⁇ 0.33 ⁇ S i decreases and the elongation of M n S is remarkably suppressed, and when OS i becomes less than 0.005, M n It can be seen that the maximum length is suppressed to 20; m or less.
  • the resistance to corrosion is correlated with the maximum length of M n,
  • N b 0.0 1% or more, but less than 0.0 4%
  • C a 0.0 0 1 0
  • sour resistance we investigated the material properties of each sample in the TM 0 1 7 7 – 90 Method A environment specified by NA C E and measured the crack occurrence area ratio (C A R).
  • HA Z toughness was evaluated by taking a sample from a steel plate, performing a heat treatment (reproducible thermal cycle test) to simulate the thermal history of HA Z, and conducting a Charpy impact test. The reproducible thermal cycle test was conducted under the condition that induction heating was performed at 1400 and the cooling time from 800 to 50:00 was 3 8 s. The Charpy impact test was performed in accordance with JI S Z 2 2 4 2.
  • a 1 amount is not more than 0.0 0 5%
  • S i amount is more than 0.4 0%, 0.5 0% or less
  • a 1 amount is more than 0.0 0 5%, 0.0
  • the sour resistance is very good, but HA Z toughness is slightly reduced. I understood it.
  • the upper limit of the Si amount is preferably 0.40% or less.
  • the HA Z toughness of region 2 in Fig. 3 was found to be superior to that of region 4, which is inferior to region 1.
  • the amount of Si is 0.1% or more and less than 0 25%, and the amount of A 1 is 0.0 0.
  • the Si amount is 0.1% or more and less than 0.25%
  • the A1 amount is more than 0.050% and less than 0.02%
  • the amount of A1 per mass% This means that the deoxidation capacity is about 10 times that of S i.
  • the amount of A 1 is less than 0.0 0 50%, the amount of Si is less than 0.25%, and the amount of A 1 is more than 0.0 0 50% and less than 0.0 2 0 0% , S i amount is 0.1 0% or more and less than 0.2 5%, A 1 + 0. IS i ⁇ 0. 0 3%
  • S i is the most important element in the present invention, and is used as a deoxidizing agent.
  • H A Z toughness may be impaired.
  • the upper limit is made 0.5% or less.
  • the upper limit of the Si content is preferably set to 0.40% or less.
  • a 1 is a deoxidizing element, and is an effective element for suppressing the formation of Ca oxide and fixing S as C a S. If A 1 is added excessively, the low temperature toughness, particularly the HA Z toughness, is impaired by the formation of inclusions, so the content is limited to 0.040% or less. Since HA Z toughness is improved by reducing the amount of A 1, the upper limit is preferably made 0.020% or less. Furthermore, in order to suppress the formation of MA, and in particular to increase the low temperature toughness of HA Z, it is preferable to limit the amount to less than 0.005%.
  • the amount of A 1 is decreased, Ca oxide may be generated and Ca S may not be generated sufficiently.
  • the amount of A 1 is 0.05% or less, it is necessary to add 1 to 0.25% or more. If the amount of A 1 is more than 0.0 0 5%,
  • C a is an extremely important element that suppresses the formation of M n S and improves sour resistance. Even if the amount of S is reduced, in order to suppress the formation of M n S, addition of 0.0% or more is required. From the viewpoint of H A Z toughness, when the amount of A 1 is reduced, it is preferable to add Ca in an amount of 0.000% or more. On the other hand, if Ca is added excessively, inclusions become coarse and the toughness decreases, so the upper limit is made 0.0%.
  • the upper limit of the allowable content is set to 0.0 0 8%.
  • O is an impurity forming a Ca oxide added for controlling the form of sulfide.
  • the upper limit of the allowable content is set to 0.0 0 20%.
  • the content is preferably reduced to 0.001% or less.
  • the present inventors have found that, when Si is added to enhance deoxidation, MnS stretching can be suppressed, and as a result, generation of HIC can be suppressed. Based on this knowledge, the maximum suppression effect of HIC In order to secure the limit, it is necessary to adjust the amount of Ca and S i to be added (mass%, the same shall apply hereinafter) in relation to the amount of S and O. Therefore, the present inventors adopted S ZC a and OZ S i as indices.
  • C a is fixed as C a S and suppresses the generation of M n S. Therefore, it is 0.0 0 1 0% or more, and when the amount of A 1 is reduced, 0.0 0 Add 20% or more, but set the appropriate amount of Ca to be added for S fixation by S ZC a.
  • force S / C a> 0.3 3 is defined as S ZC a ⁇ 0.3 3
  • the amount of Ca is insufficient, and fixing S as C a S is insufficient. Become.
  • S i is added at least 0.1% or more, preferably 0.25% or more in order to sufficiently reduce the amount of O so that no Ca oxide is formed.
  • OZ S i ⁇ 0. 0 0 5 is specified.
  • ZS i> 0. 0 0 5 deoxidation by S i is insufficient, and the added Ca is an oxide. Does not contribute to the fixation of S.
  • OZ Si is more preferably less than 0.05.
  • C is an element that contributes to increasing the strength of the steel, and it is necessary to contain 0.0 1% or more. On the other hand, if C exceeds 0.08%, coarse carbides are formed especially in the central portion, and sour resistance is lowered. Therefore, the upper limit is set to 0.08%. In order to improve toughness, 0.07% or less is preferable.
  • M n is an element that improves hardenability, and is added at 1.0% or more. To improve strength and toughness, 1. 10% or more is preferred Yes. On the other hand, if M n exceeds 1.5%, center segregation becomes prominent and the sour resistance is impaired. Therefore, the upper limit is set to 1.5%. In order to suppress the formation of M n S and hard phase in the central segregation part and improve the sour resistance and toughness, it is preferable to set M n to 1.40% or less.
  • T i is an element that forms carbonitrides and contributes to refinement of the microstructure of steel, and also forms oxides that form the nuclei of intragranular transformation. Add 0.005% or more .
  • Ding 1 exceeds 0.030%, coarse carbonitrides are produced in the center and the sour resistance is lowered, so the upper limit is set to 0.030%.
  • it is 0.0 0.09 to 0.0 2 1%
  • Nb is an element that enhances hardenability and contributes to refinement of the steel structure by forming carbonitrides, and is added in an amount of 0.01% or more.
  • the upper limit is made less than 0.04%.
  • the upper limit is preferably made 0.02%.
  • a more preferable range of the Nb amount is 0.01 2 to 0.015%.
  • the upper limit is set to 0.0 15%. Preferably, it is not more than 0.0 0 1%.
  • N is an impurity, and when it is contained in excess, a nitride is formed in the central part and lowers the heat resistance. Therefore, the upper limit is preferably made 0.08% or less. In order to suppress the formation of nitrides and improve the HA Z toughness, the upper limit of the N content is preferably set to 0.05% or less.
  • V is a source of carbonitride that contributes to refinement of the steel structure. It is prime. In particular, in order to improve the strength and HA Z toughness, it is preferable to add 0.01% or more of V. However, if excessively added, coarse nitrides may be formed and HAZ toughness may be impaired, so the upper limit is preferably made 0.10% or less.
  • B is an element effective for improving hardenability.
  • the upper limit is preferably made 0.0% or less.
  • Mo, Cr, Ni and Cu which contribute to an improvement in intensity
  • Ni is also effective for improving toughness, so 0.15% or more is preferably added.
  • Mo, Cr, Ni, and Cu are added in excess of 0.5%, the weldability may be impaired. Therefore, the upper limit is set to 0.5%. .
  • both are 0.1 to 0.4%.
  • Mo, Cr, Ni, and Cu are elements that contribute to the improvement of corrosion resistance and are effective in improving sour resistance.
  • the upper limit is 0.3. It is preferable to be less than%. Further, with respect to Cr, the upper limit is preferably set to less than 0.3% from the viewpoint of the toughness of the weld heat affected zone and the field weldability.
  • Mg and REM which are effective for refinement of inclusions and control of the form of sulfide, may be added.
  • Mg is an element that forms fine oxides, suppresses the coarsening of the crystal grains in the heat affected zone, and improves toughness.
  • the upper limit of the Mg content is preferably 0.01% or less
  • the content of REM is The upper limit of the amount is preferably 0.05% or less. Since Mg and REM exhibit an effect even in a trace amount, a preferable lower limit of the content is 0.001% or more.
  • the steel is melted and forged by a conventional method, the obtained steel slab is heated, hot-rolled, and then accelerated cooled. Forging is preferably continuous forging from the viewpoint of productivity.
  • the heating temperature of the steel slab is preferably 1 100 or more so that MnS produced during forging is dissolved. On the other hand, if the heating temperature exceeds 1300, the crystal grain size may become coarse, so the heating temperature is preferably 1300 ° C or lower.
  • the finish rolling temperature of hot rolling is less than the Ar 3 transformation point, processed ferrite may be generated and toughness may be reduced.
  • the Ar 3 transformation point varies depending on the chemical composition and air cooling rate, use a sample taken from a steel slab or a sample that has almost the same component, and use a laboratory to simulate hot rolling and air cooling. It is preferable to obtain a three- point Ar by performing heat treatment and measuring transformation expansion.
  • the preferable range of the finish rolling temperature is 770 to 950. If the finish rolling temperature is 770 or more, the formation of C and Mn enriched layers in the center segregation part and the formation of a hardened phase of the metal structure are suppressed, and the resistance to hydrogen-induced cracking is improved. In order to refine the crystal grain size and improve the strength and toughness, the finish rolling temperature is preferably 950 or less.
  • the start temperature of accelerated cooling is less than (A r 3 transformation point 1 1 0 0)
  • a continuous pearlite hardening phase is generated at the center segregation part, which promotes the propagation of hydrogen-induced cracking.
  • the accelerated cooling may be water cooling.
  • the steel plate is formed into a tubular shape, and the seam is arc welded to form a steel pipe.
  • Table 1 Steels with the composition shown in Table 1 were melted and turned into billets by a continuous forging method. Table 1 also shows the composition ratio of S ZC a and OZ S i. The obtained steel slab was hot-rolled under the rolling conditions shown in Table 2 and subjected to accelerated cooling to produce a steel plate.
  • Airborne means no intentional addition.
  • Table 2 Take a specimen from the center of the thickness of the steel sheet and measure the length of M n S in the longitudinal direction existing in the field of view of a range of 5 O mm square at 30 points for each steel sheet using SEM. did.
  • the material property survey of each sample was conducted in the TM 0 1 7 7 — 90 Method A environment specified by NA CE, and the crack initiation area ratio (CAR ) Passed 0%. The results are shown in Table 3.
  • Steel Nos. 1 to 7 which are chemical components that satisfy all the scope of the present invention, have a CAR of less than 1%, and all show that excellent HIC resistance can be obtained.
  • Steel No. 1 0 3 has a high SC a
  • Steel No. 1 0 4 has a small amount of Ca
  • Steel No. 1 0 5 has an excessive amount of S.
  • I 0 5 stretched M n S and hydrogen-induced cracks starting from the stretched M n S were observed.
  • steel plates were piped in the UOE process, and the seam was submerged arc welded to produce steel pipes.
  • steel numbers 1 to 7 have a CAR of less than 1%
  • steel numbers 1001 to 105 have hydrogen-induced cracking starting from stretched MnS. It was. '
  • Table 4 Steels having the composition shown in Table 4 were melted and made into billets by the continuous forging method. Table 4 also shows the composition ratio of 3 3 and 0 3 i. The obtained steel slab was hot-rolled under the rolling conditions shown in Table 2 and subjected to accelerated cooling to produce a steel plate.
  • A1 More than 0.00053 ⁇ 4, less than 0.0200, Si: Only steel with 0.10 or more and less than 0.253 ⁇ 4 showed the calculated value of Al + 0.ISi.
  • HA Z toughness was evaluated by taking a specimen after a reproducible thermal cycle test and conducting a Charpy impact test in accordance with J I S Z 2 2 4 2.
  • the longitudinal direction of the test piece was the width direction of the steel sheet.
  • the regenerative heat cycle test was conducted under the condition of cooling from 8 0 00 to 5 0 00 in 38 seconds after induction heating to 1400.
  • the Charpy impact test was conducted while changing the test temperature, and the 50% fracture surface transition temperature was obtained. The results are shown in Table 5. Table 5
  • Steel Nos. 11 to 26 have a CAR of less than 1%, HA Z 50% fracture surface transition temperature is 0 and below, and sour resistance and HAZ toughness are good. is there.
  • Steel No. 20:! To 2 10 is a comparative example, and sour resistance or HA Z toughness is lowered.
  • Steel No. 2 0 1 has high OZ S i
  • Steel No. 2 0 2 has high S ZC a
  • Steel No. 2 0 3 has a large amount of S
  • HA Z toughness is good, but M n S is stretched The sour resistance is reduced.
  • Steel No. 2 0 4 has a large amount of O and good HA Z toughness, but has low sour resistance.
  • Steel No. 2 0 6 has low A 1 + 0. 1 Si, and Steel No. 2 0 7 has low A 1 and S i contents, so HA Z toughness is good, but sour resistance is reduced. ing.
  • Steel No. 20 07 has a large amount of Si, and steel No. 20 08 has a large amount of A 1, so the sour resistance is good, but the HAZ toughness is reduced.
  • Steel No. 20 9 is an example where the Nb content is high and the HAZ toughness is reduced.
  • Steel No. 2 1 0 has a small amount of Ca and has low sour resistance.
  • steel plates were piped in the UOE process, and the seam was submerged arc welded to produce steel pipes.
  • steel numbers 11 to 26 had good sour resistance and good toughness in the HA Z part.
  • steel numbers 2 0 1 to 2 1 0 were confirmed to have reduced sour resistance or HA Z toughness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

Provided are a steel plate excellent in sour resistance and a steel pipe for linepipes.  The steel plate and the steel pipe are characterized by containing by mass C: 0.01 to 0.08%, Si: 0.10 to 0.50%, Mn: 1.00 to 1.50%, Ti: 0.005 to 0.030%, Nb: 0.01 to less than 0.04%, Ca: 0.0010 to 0.0040%, P: 0.015% or less, S: 0.0008% or less, O: 0.0020% or less, Al: 0.040% or less, with the balance being Fe and impurities, and are characterized in that the contents (in mass%) of Al and Si satisfy the relationships: Al < 0.005% and 0.25% < Si, or the relationships: Al > 0.005 and Al + 0.1Si > 0.03% and the contents (in mass%) of S, O, Si, and Ca satisfy the relationships: S/Ca < 0.33 and O/Si < 0.005.

Description

明 細 書 発明の名称  Description Title of Invention
耐サワー性に優れた鋼板及びラインパイプ用鋼管 技術分野  Steel sheet and line pipe excellent in sour resistance
本発明は、 硫化水素 (H 2 S ) を含んだ環境における耐水素誘起 割れ性、 即ち、 耐サワー性に優れた高強度鋼板、 更に、 主に石油や 天然ガスなどの輸送に使用される高強度ライ ンパイプ用鋼管に関す るものである。 背景技術 The present invention is a high-strength steel plate that is resistant to hydrogen-induced cracking in an environment containing hydrogen sulfide (H 2 S), that is, excellent in sour resistance, and is used mainly for transportation of oil and natural gas. It relates to steel pipes for strength line pipes. Background art
硫化水素を含むサワーオイル、 サワーガスを輸送するライ ンパイ プに使用される鋼管や、 パイプラインの付属設備などに使用される 鋼板には、 耐サワー性が要求される。 なお、 耐サワー性とは、 硫化 水素を含む腐食環境における耐水素誘起割れ性 (耐 H I C性) 及び 耐応力割れ性 (耐 S S C性) である。 また、 輸送効率の向上や薄肉 化によるコス ト低減などの観点から、 鋼板の高強度化が進められて おり、 鋼板には、 寒冷地での使用を考慮して、 高靭性であることも 要求されている。  Steel pipes used for sour oils containing hydrogen sulfide, line pipes for transporting sour gas, and steel pipes used in pipeline accessory equipment are required to have sour resistance. The sour resistance refers to hydrogen-induced crack resistance (HIC resistance) and stress crack resistance (SSCC resistance) in a corrosive environment containing hydrogen sulfide. In addition, steel sheets are being strengthened from the perspective of improving transportation efficiency and reducing costs by reducing the thickness, and steel sheets are required to have high toughness in consideration of use in cold regions. Has been.
このような問題に対して、 低温靭性と耐サワー性を向上させた高 強度鋼板の製造方法が、 例えば、 特許文献 1 、 2 に提案されている 。 これらは、 C及び A 1 の含有量の低減及び T i 添加によって、 硬 質相による脆化を抑制し、 粒内変態を促進して靭性の低下を抑制し 、 更に、 S量の低減及び C aの添加によって M n Sの形態を制御し 、 耐サワー性を向上させたものである。  For such problems, for example, Patent Documents 1 and 2 have proposed a method for producing a high-strength steel sheet with improved low-temperature toughness and sour resistance. By reducing the content of C and A 1 and adding Ti, embrittlement due to the hard phase is suppressed, and intragranular transformation is promoted to suppress toughness reduction. The addition of a controls the morphology of M n S and improves sour resistance.
更に、 鋼板の圧延方向に延伸した M n Sが耐サワー性の低下の原 因となることから、 C a量、 〇量、 及び、 S量の制御によって M n Sの延伸を抑制した鋼板が、 例えば、 特許文献 3、 4に提案されて いる。 また、 M n Sのような硫化物系介在物に加えて、 H I Cの起 点となる N b _ T i _ C— N系介在物の粗大化を抑制した鋼板や鋼 管が、 例えば 、 特許文献 5に提案されている 先行技術文献 Furthermore, MnS stretched in the rolling direction of the steel plate is the cause of the reduction in sour resistance. For this reason, for example, Patent Documents 3 and 4 propose steel sheets in which the elongation of M n S is suppressed by controlling the Ca content, the O content, and the S content. In addition to sulfide inclusions such as M n S, steel sheets and steel pipes that suppress the coarsening of N b _ T i _C— N inclusions that are the origin of HIC are, for example, patents Prior art document proposed in Document 5
特許文献 Patent Literature
特許文献 1 特開平 0 6 — 2 9 3 9 1 8号公報  Patent Document 1 Japanese Patent Application Laid-Open No. 0 6-2 9 3 9 1 8
特許文献 2 特開平 0 7 — 2 3 3 4 1 5 公報  Patent Document 2 Japanese Patent Application Laid-Open No. 0 7 — 2 3 3 4 1 5
特許文献 3 特開平 0 7 — 2 4 2 9 4 4号公報  Patent Document 3 Japanese Patent Application Laid-Open No. 0-7 — 2 4 2 9 4 4
特許文献 4 特開 2 0 0 0— 1 0 9 9 4 7号公報  Patent Document 4 Japanese Patent Laid-Open No. 2 0 0 0-1 0 9 9 4 7
o 「  o "
特許文献 特開 2 0 0 6 — 6 3 3 5 1 公報 発明の概要  Patent Document Japanese Patent Laid-Open No. 2 0 0 6 — 6 3 3 5 1 Patent Summary of the Invention
発明が解決しょうとする課題 Problems to be solved by the invention
S量の低減及び C aの添加により、 M n Sの延伸を抑制すると、 鋼板の耐サ y一性を向上させることがでさる 。 しかし、 低 S化して も、 例えば 、 厚肉の鋼板及び鋼管の一部に 、 H I Cに起因する割れ が生じることがあった。 本発明は、 このよ な実情に鑑みてなされ たものであ Ό 、 耐サワー性に優れた鋼板 、 更に、 ラインパイプ用鋼 管を提案することを課題とするものである 課題を解決するための手段  If the elongation of M n S is suppressed by reducing the amount of S and adding Ca, the thermal resistance of the steel sheet can be improved. However, even when the S content is lowered, for example, cracks due to HIC may occur in some thick steel plates and steel pipes. The present invention has been made in view of such a situation, and aims to propose a steel plate excellent in sour resistance and a steel pipe for a line pipe. Means
本発明者らは、 S量を低減し、 C aを添加した鋼板において、 H I Cが発生する原因を明らかにするため、 調査を行った。 その結果 、 S量を 8 p p m以下に低減し、 C a添加を行った鋼板であるにも かかわらず、 H I Cの起点が、 5 0 m超に延伸した M n Sである ことを知見した。 そこで、 本発明者らは、 更に、 この原因について 検討を行い、 脱酸が不適切であったため、 C aが酸化物となり、 M n Sが粗大化することが原因であるとの結論に至った。 The present inventors conducted an investigation to clarify the cause of the occurrence of HIC in a steel sheet with reduced S content and addition of Ca. As a result, the amount of S is reduced to 8 ppm or less, and the steel sheet with added Ca Regardless, we found that the starting point of HIC is MnS stretched over 50 m. Therefore, the present inventors further examined this cause and concluded that deoxidation was inappropriate, so that Ca was an oxide and MnS was coarsened. It was.
更に、 脱酸を強化するために A 1 を添加すると、 マルテンサイ ト とオーステナイ トの混成物 (M a r t e n s i t e — A u s t e n i t e C o n s t i t u e n t : MA) が生じやすく、 特に、 溶 接熱影響部 (HA Z ) において靭性が低下することがわかった。 本 発明者らは、 靭性が要求される場合には、 A 1 を低減し、 適量の S i を添加して脱酸を強化し、 M n Sの延伸を抑制することに成功し た。  Furthermore, when A 1 is added to enhance deoxidation, a mixture of martensite and austenite (MA) is likely to occur, especially in the weld heat affected zone (HA Z). It has been found that toughness is reduced. When the toughness is required, the present inventors have succeeded in reducing A 1, adding an appropriate amount of S i to enhance deoxidation, and suppressing M n S stretching.
本発明は、 このような知見に基づいてなされたものであり、 その 要旨は、 以下のとおりである。  The present invention has been made based on such knowledge, and the gist thereof is as follows.
( 1 ) 質量%で、  (1) By mass%
C : 0 • 0 1 0 . 0 8 % 、  C: 0 • 0 1 0.0 0.08%,
S i : 0 - 1 0 0. 5 0 、  S i: 0-1 0 0. 5 0,
M n : 1 0 0 〜 1. 5 0 % 、  M n: 1 00 to 1.5 50%,
T i : 0 • 0 0 「  T i: 0 • 0 0 “
O 〜 0. 0 3 0 % 、  O ~ 0.0 3 0%,
N b : 0 • 0 1 %以上、 0 • 0 4 7 満、  N b: 0 • 0 1% or more, 0 • 0 4 7 or less,
C a : 0 0 0 1 0〜 0 • 0 0 4 0 %  C a: 0 0 0 1 0 to 0 • 0 0 4 0%
を含有し 、 Containing
P : 0 • 0 1 5 %以下、  P: 0 • 0 1 5% or less,
S : 0 • 0 0 0 8 %以下 、  S: 0 • 0 0 0 8% or less,
〇 : 0 • 0 0 2 0 %以下 、  ○: 0 • 0 0 2 0% or less
A 1 : 0 0 4 0 %以下  A 1: 0 0 40 0% or less
に制限し、 残部が F e及び不純物からなり、 更に、 A 1 、 S i の含 有量 [質量%] が、 A 1 ≤ 0. 0 0 5 %、 かつ、 0. 2 5 %≤ S 1 、 The balance consists of Fe and impurities, and the content [mass%] of A 1 and S i is A 1 ≤ 0. 0 0 5% and 0.25% ≤ S 1,
または、 Or
A 1 > 0. 0 0 5 %、 かつ、 A 1 + 0. 1 S i ≥ 0. 0 3 % の一方を満足し、 更に、 S、 O 、 S i 、 C aの含有量 [質量%] が A 1> 0. 0 0 5% and one of A 1 + 0. 1 S i ≥ 0. 0 3% is satisfied, and the contents of S, O, S i, and C a [mass%] But
,
S / C a≤ 0. 3 3、  S / C a≤ 0. 3 3,
O / S i ≤ 0. 0 0 5  O / S i ≤ 0. 0 0 5
を満足することを特徴とする耐サワー性に優れた鋼板。 A steel plate with excellent sour resistance characterized by satisfying
( 2 ) A 1 量を、 質量%で 、 0. 0 2 0 0 %以下に制限したこと を特徴とする上記 ( 1 ) に記載の耐サヮ一性に優れた鋼板  (2) The steel sheet having excellent thermal resistance according to the above (1), wherein the amount of A 1 is limited to 0.020% or less in terms of mass%.
( 3 ) A 1 量を、 質量%で 、 0. 0 0 o 0 %以下に制限したこと を特徴とする上記 ( 1 ) 又は ( 2 ) に記載の耐サワー性に優れた鋼 板。  (3) The steel plate having excellent sour resistance as described in (1) or (2) above, wherein the amount of A 1 is limited to 0.0 0 0% or less by mass%.
( 4 ) S i 量が、 質量%で 、 0. 2 5 〜 0. 4 0 %であることを 特徴とする上記 ( 3 ) に記載の耐サワー性に優れた鋼板。  (4) The steel sheet having excellent sour resistance as described in (3) above, wherein the Si amount is 0.225 to 0.40% by mass%.
( 5 ) N b量が、 質量%で 、 0. 0 1 〜 0. 0 2 %であることを 特徴とする上記 ( 1 ) 〜 ( 4 ) の何れか 1項に記載の耐サヮ一性に 優れた鋼板。  (5) The Nb content is 0.01 to 0.02% by mass%, and the heat resistance according to any one of (1) to (4) above Excellent steel plate.
( 6 ) C a量が、 質量%で 、 0. 0 0 2 0〜 0. 0 0 4 0 %であ ることを特徴とする上記 ( 1 ) 〜 ( 5 ) の何れか 1項に記載の耐サ ヮー性に優れた鋼板。  (6) The amount of Ca is from 0.020 to 0.040% in terms of mass%, according to any one of the above (1) to (5), Steel sheet with excellent heat resistance.
( 7 ) 質量%で、  (7) By mass%
N : 0. 0 0 8 %以下  N: 0. 0 0 8% or less
に制限したことを特徴とする上記 ( 1 ) ( 6 ) の何れか 1項に記 載の耐サワー性に優れた鋼板。 The steel sheet having excellent sour resistance as described in any one of the above (1) and (6), characterized in that it is limited to
( 8 ) さらに、 質量%で、  (8) Furthermore, in mass%,
B : 0. 0 0 2 0 %以下 を含有することを特徴とする上記 ( 1 ) 〜 ( 7 ) の何れか 1項 載の耐サワー性に優れた鋼板。 B: 0. 0 0 2 0% or less The steel sheet having excellent sour resistance as set forth in any one of (1) to (7) above, characterized by comprising:
( 9 ) さ らに、 質量%で、  (9) Furthermore, in mass%,
V : 0. 1 0 %以下 V: 0.10% or less
を含有することを特徴とする上記 ( 1 ) 〜 ( 8 ) の何れか 1項 載の耐サワー性に優れた鋼板。 The steel sheet having excellent sour resistance according to any one of the above (1) to (8), characterized by comprising:
( 1 0 ) さ らに、 質量%で、  (1 0) Furthermore, in mass%,
M g : 0. 0 1 %以下、 M g: 0.0 1% or less,
R E M : 0. 0 5 %以下 R E M: 0.0 5% or less
の一方又は双方を含有することを特徴とする上記 ( 1 ) 〜 ( 9 ) 何れか 1項に記載の耐サワー性に優れた鋼板。 The steel plate excellent in sour resistance as described in any one of the above (1) to (9), wherein one or both of the above are contained.
( 1 1 ) さ らに 、 質量%で、  (1 1) Furthermore, in mass%,
M o : 0. 0 5〜 0 . 5 %、  M o: 0.05 to 0.5%,
N i : 0. 0 5〜 0 . 5 %、  N i: 0.05 to 0.5%,
C u : 0. 0 5〜 0 . 5 %、  Cu: 0.05 to 0.5%
C r : 0. 0 5〜 0 . 5 %  C r: 0.05-0.5%
の 1種又は 2種以上を含有することを特徴とする上記 ( 1 ) 〜 ( 1 0 ) の何れか 1項に記載の耐サワー性に優れた鋼板。 The steel plate having excellent sour resistance according to any one of the above (1) to (10), characterized by containing one or more of the above.
( 1 2 ) 母材が、 上記 ( 1 ) 〜 ( 1 1 ) の何れか 1項に記載の耐 サワー性に優れた鋼板からなることを特徴とする耐サワー性に優れ たライ ンパイプ用鋼管。 発明の効果  (1 2) A steel pipe for a line pipe excellent in sour resistance, wherein the base material is made of the steel plate excellent in sour resistance described in any one of (1) to (11) above. The invention's effect
本発明は、 S量を低減し、 適正な脱酸剤の添加によって〇 (酸素 ) 量を低減し、 更に、 適量の C aの添加によって、 M n Sの延伸を 抑制するものである。 本発明により、 鋼板及び鋼管の H I Cに起因 する割れの発生を確実に防止することができる。 更に、 A 1 量の低 減によって、 H A Zの靭性を向上させることが可能になる。 したが つて、 本発明によって、 耐サワー性、 更には HA Zの靭性に優れた 鋼板、 及び、 ラインパイプ用鋼管を提供することが可能になり、 本 発明は産業上の貢献が極めて顕著である。 図面の簡単な説明 In the present invention, the amount of S is reduced, the amount of O (oxygen) is reduced by the addition of an appropriate deoxidizing agent, and the addition of an appropriate amount of Ca suppresses the stretching of M n S. According to the present invention, it is possible to reliably prevent the occurrence of cracks due to the HIC of steel plates and steel pipes. In addition, A 1 amount is low By reducing it, it becomes possible to improve the toughness of HAZ. Therefore, according to the present invention, it becomes possible to provide a steel plate and a steel pipe for line pipe excellent in sour resistance and further HA Z toughness, and the present invention has an extremely significant industrial contribution. . Brief Description of Drawings
図 1 は、 圧延方向に延伸した M n Sの一例を示す図である。  FIG. 1 is a diagram showing an example of M n S stretched in the rolling direction.
図 2は、 鋼板の M n Sの最大長さと、 3 じ 3及び〇ノ 3 1 との 関係を示す図である。  Figure 2 is a diagram showing the relationship between the maximum length of M n S in steel sheets and 3 x 3 and ○ 3 1.
図 3は 、 本発明の鋼板の S i 量及び A 1 量の範囲を示す図である  FIG. 3 is a view showing ranges of the Si amount and the A 1 amount of the steel sheet of the present invention.
発明を実施するための形態 BEST MODE FOR CARRYING OUT THE INVENTION
S量を 0. 0 0 0 3 %とし、 0 . 0 0 2 5 %の C aを添加した鋼 板に発生した H I Cの起点は、 中心偏析部に存在する圧延方向に延 伸した M n Sである なお、 %は 、 質量%を意味し 、 以下、 同様で ある。  The origin of HIC generated in the steel sheet with 0.005% Ca added and the amount of S being 0.000% is M n S extending in the rolling direction existing in the center segregation part. Note that% means mass%, and the same applies hereinafter.
図 1 に例示するように、 延伸した M n Sの長さは 5 0 mを超え る。 なお、 この鋼板は、 S、 C a以外の主な成分として、 0. 0 3 9 %の C , 0. 2 4 %の S i , 1. 2 0 %の M n、 及び、 0. 0 0 2 1 %の〇 (酸素) を含有し、 さらに、 0. 0 0 6 %以下の A 1 と 、 0. 0 1 %程度の N b及び T i とを含有している。  As illustrated in Fig. 1, the length of the stretched M n S exceeds 50 m. This steel plate has 0.039% C, 0.24% Si, 1.20% Mn, and 0.00 as the main components other than S and Ca. 2 Contains 1% of ○ (oxygen), and further contains 0.01% or less of A1 and about 0.01% of Nb and Ti.
このように、 S量と〇量を低減し、 十分な量の C aを添加しても 、 酸素量が 0. 0 0 2 0 %を超えるような場合、 中心偏析部に M n Sが生成することは、 予想し得ないことであった。  In this way, the amount of S and the amount of O are reduced, and even if a sufficient amount of Ca is added, if the amount of oxygen exceeds 0.020%, M n S is generated in the center segregation part. To do was unpredictable.
即ち、 この結果は、 酸素量が 0. 0 0 2 0 %を超えると、 C aに よる Sの固定が不十分になることを意味している。 したがって、 脱 酸を強化すればよいと考えられる。 脱酸め強化には、 A 1 の添加が 有効である。 一方、 A 1 を添加すると、 介在物の増加や、 粒内変態 の抑制によって、 低温靭性の低下が懸念される。 A 1 量の増加によ つて、 特に、 H A Zでは M Aが発生し、 これに起因して、 低温靭性 が低下すると考えられる。 In other words, this result means that the fixation of S by Ca becomes insufficient when the oxygen amount exceeds 0.0 0 20%. Therefore, prolapse It is considered that the acid should be strengthened. Addition of A 1 is effective for strengthening deoxidation. On the other hand, when A 1 is added, there is a concern that the low-temperature toughness will decrease due to the increase in inclusions and the suppression of intragranular transformation. With the increase in the amount of A 1, MA is generated especially in HAZ, and it is thought that the low temperature toughness decreases due to this.
そこで、 本発明者らは、 耐サワー性と低温靭性とを両立させるた め、 S i 添加量を増加させて、 脱酸の強化を試みた。 一方で、 S 1 は、 靭性を低下させる元素であるため、 S i の添加量の上限につい ても検討を行った。  Therefore, the present inventors tried to enhance deoxidation by increasing the amount of Si added in order to achieve both sour resistance and low temperature toughness. On the other hand, since S 1 is an element that reduces toughness, the upper limit of the amount of Si added was also examined.
具体的には、 C : 0. 0 1〜 0. 0 8 %、 M n : l . 0 0〜 : 1. 5 0 %、 T 1 : 0. 0 0 5〜 0. 0 3 0 %、 N b : 0. 0 1〜 0. 0 2 %を含有し、 P : 0. 0 1 5 %以下、 A 1 : 0. 0 0 5 0 %以 下に制限し、 ! 及び ^の添加量、 S量及び〇量を変化させた鋼 板を熱間圧延によって製造し、 M n Sの長さを測定した。  Specifically, C: 0.0 1 to 0.0 8%, M n: l. 0 0 to: 1.5 0%, T 1: 0. 0 0 5 to 0.0 3 0%, N b: 0. 0 1 to 0. 0 2%, P: 0. 0 1 5% or less, A 1: 0. 0 0 5 0% or less,! And steel plates with varying amounts of addition of ^, S and O were produced by hot rolling, and the length of M n S was measured.
鋼板の中心偏析部相当箇所 (板厚方向の 1 2部) から試料を採 取し、 M n Sを走査型電子顕微鏡 ( S E M) によって観察した。 5 0 mm角の範囲の視野に存在する、 長手方向に延伸した M n S及び 球状の M n Sの長さを測定した。 測定は、 各鋼板について 1 5箇所 で行い、 計測された M n Sの最大長さを、 その鋼板の最大 M n S長 さとした。  A sample was taken from the location corresponding to the center segregation part of the steel sheet (12 parts in the thickness direction), and M n S was observed with a scanning electron microscope (S E M). The lengths of longitudinally extending M n S and spherical M n S present in the field of view in the range of 50 mm square were measured. The measurement was performed at 15 locations on each steel plate, and the maximum measured M n S length was taken as the maximum M n S length of the steel plate.
その結果、 図 2 に示すように、 鋼板の M n Sの最大長さと、 Sノ C a及び〇ノ S i には相関が見られることがわかった。 図 2から、 S / C a > 0. 3 3の場合は、 OZ S i を低下させても、 M n Sの 延伸化を抑制することができないことがわかる。 これに対して、 S / C a≤ 0. 3 3の場合は、 〇 S i の低下とともに著しく M n S の延伸化が抑制され、 O S i が 0. 0 0 5以下になると、 M nの 最大長さが 2 0 ; m以下に抑制されることがわかる。 また、 耐サヮ一性は、 M nの最大長さと相関があり、 As a result, as shown in Fig. 2, it was found that there was a correlation between the maximum length of M n S in the steel sheet and S no C a and 〇 S i. FIG. 2 shows that when S / C a> 0.33, the elongation of M n S cannot be suppressed even if OZ S i is decreased. On the other hand, in the case of S / C a ≤ 0.33, 〇 S i decreases and the elongation of M n S is remarkably suppressed, and when OS i becomes less than 0.005, M n It can be seen that the maximum length is suppressed to 20; m or less. In addition, the resistance to corrosion is correlated with the maximum length of M n,
S / C a≤ 0. 3 3、  S / C a≤ 0. 3 3,
O / S i ≤ 0. 0 0 5  O / S i ≤ 0. 0 0 5
を満足すると、 鋼板の M n Sの最大長さが極めて抑制され、 水素誘 起割れの割れ発生面積率 (C A R ) が 0 %となることがわかつた。 更に、 S i 量及び A 1 量と耐サワー性及び H A Z靭性との関係に ついて、 詳細に検討を行つた 具体的には、 C : 0. 0 1〜 0. 0When satisfying the above, it was found that the maximum length of M n S of the steel sheet was extremely suppressed, and the crack-induced area ratio (C A R) of hydrogen-induced cracking was 0%. In addition, the relationship between S i amount and A 1 amount and sour resistance and H A Z toughness was examined in detail. C: 0.0 1 to 0.0
8 % , M n : 1. 0 0〜 1. o 「 0 % T 1 : 0. 0 0 5〜 0 . 0 38%, M n: 1. 0 0 to 1. o “0% T 1: 0.0 0 5 to 0.0 3
0 %、 N b : 0. 0 1 %以上 0 . 0 4 %未満、 C a : 0. 0 0 1 00%, N b: 0.0 1% or more, but less than 0.0 4%, C a: 0.0 0 1 0
〜 0. 0 0 4 0 %を含有し、 P : 0. 0 1 5 %以下、 S : 0 . 0 0~ 0. 0 0 40 0%, P: 0. 0 15% or less, S: 0. 0 0
0 8 %以下、 〇 : 0. 0 0 2 0 %以下に制限し、 0 8% or less, 〇: Limit to 0. 0 0 2 0% or less,
S / C a≤ 0. 3 3、  S / C a≤ 0. 3 3,
O / S i ≤ 0. 0 0 5  O / S i ≤ 0. 0 0 5
を満足し、 S i 量及び A 1 量を変化させた鋼板によって評価した。 鋼板は、 熱間圧延によって製造し、 得られた鋼板から試料を採取 して、 耐サワー性と H A Zの靭性を評価した。 耐サワー性は、 NA C Eで規定されている TM 0 1 7 7 — 9 0 M e t h o d A環境 で各サンプルの材質特性調査を実施し、 割れ発生面積率 (C A R) を測定した。 また、 HA Z靱性は、 鋼板から試料を採取し、 HA Z の熱履歴を模擬する熱処理 (再現熱サイクル試験) を施し、 シャル ピー衝撃試験を実施して評価した。 再現熱サイクル試験は、 1 4 0 0でに誘導加熱し、 8 0 0でから 5 0 0でまでの冷却時間を 3 8 s とする条件で行った。 シャルピー衝撃試験は、 J I S Z 2 2 4 2に準拠して行った。 Was satisfied, and the evaluation was made using a steel sheet in which the Si and A 1 contents were changed. The steel plates were manufactured by hot rolling, and samples were taken from the obtained steel plates to evaluate the sour resistance and HAZ toughness. For the sour resistance, we investigated the material properties of each sample in the TM 0 1 7 7 – 90 Method A environment specified by NA C E and measured the crack occurrence area ratio (C A R). In addition, HA Z toughness was evaluated by taking a sample from a steel plate, performing a heat treatment (reproducible thermal cycle test) to simulate the thermal history of HA Z, and conducting a Charpy impact test. The reproducible thermal cycle test was conducted under the condition that induction heating was performed at 1400 and the cooling time from 800 to 50:00 was 3 8 s. The Charpy impact test was performed in accordance with JI S Z 2 2 4 2.
S i 量及び A 1 量と、 HA Z靭性及び耐サワー性との関係につい て、 定性的に説明する。 まず、 S i 量が 0. 2 5〜 0 : 4 0 %、 A 1 量が 0. 0 0 5 0 %以下の範囲 (図 3の領域 1 ) では、 鋼板の H A Z靭性及び耐サワー性が、 極めて良好であることがわかった。 次 に、 3 1 量カ 0. 1 0.〜 0. 5 0 %、 A 1 量が 0. 0 2 0 0 %超の 範囲 (図 3の領域 4 ) では、 耐サワー性は極めて良好であるものの 、 H A Z靭性が、 若干、 低下することがわかった。 Qualitatively explain the relationship between the S i and A 1 contents and the HA Z toughness and sour resistance. First, in the range where the S i amount is 0.25 to 0 : 40% and the A1 amount is 0.05 50% or less (region 1 in Fig. 3), the H AZ toughness and sour resistance were found to be very good. Next, the sour resistance is very good in the range of 0.11 to 0.50% and the amount of A1 exceeding 0.020.0% (area 4 in Fig. 3). However, it was found that the HAZ toughness slightly decreased.
次に、 A 1 量が 0. 0 0 5 %以下、 S i 量が 0. 4 0 %超、 0. 5 0 %以下、 及び、 A 1 量が 0. 0 0 5 %超、 0. 0 2 0 0 %以下 、 S i 量が 0. 2 5〜 0. 5 0 %である範囲 (図 3の領域 2 ) では 、 耐サワー性は極めて良好であるものの、 HA Z靭性が少し低下す ることがわかった。 なお、 H A Z靭性を向上させるには、 S i 量の 上限を 0. 4 0 %以下にすることが好ましいという知見が得られた 。 また、 図 3の領域 2の HA Z靭性は、 領域 1 より も劣る力^ 領域 4より も優れることがわかった。  Next, A 1 amount is not more than 0.0 0 5%, S i amount is more than 0.4 0%, 0.5 0% or less, and A 1 amount is more than 0.0 0 5%, 0.0 In the range of 20% or less and Si content of 0.25 to 0.50% (region 2 in Fig. 3), the sour resistance is very good, but HA Z toughness is slightly reduced. I understood it. In addition, in order to improve the HAZ toughness, it was found that the upper limit of the Si amount is preferably 0.40% or less. In addition, the HA Z toughness of region 2 in Fig. 3 was found to be superior to that of region 4, which is inferior to region 1.
更に、 S i 量が 0. 1 %以上 0 2 5 %未満、 A 1 量が 0. 0 0 Furthermore, the amount of Si is 0.1% or more and less than 0 25%, and the amount of A 1 is 0.0 0.
5 0 %超、 0. 0 2 %以下、 かつ 、 More than 50%, 0.02% or less, and,
A 1 + 0. 1 S i ≥ 0. 0 3 %  A 1 + 0. 1 S i ≥ 0. 0 3%
を満足する範囲 (図 3の領域 3 ) で 、 極めて良好な耐サヮ一性が得 られることがわかった 。 し れ 、 S i 量が 0. 1 %以上 0 . 2 5 % 未満、 A 1 量が 0. 0 0 5 0 %超 、 0 . 0 2 %以下の範囲では、 質 量%あたりの A 1 の脱酸能力が、 S i の脱酸能力の 1 0倍程度であ ることを意味する。 It was found that extremely good thermal resistance can be obtained within the range that satisfies the above (region 3 in FIG. 3). However, when the Si amount is 0.1% or more and less than 0.25%, the A1 amount is more than 0.050% and less than 0.02%, the amount of A1 per mass% This means that the deoxidation capacity is about 10 times that of S i.
また、 領域 3の HA Z靭性は、 領域 1 に比べると若干劣るものの 、 領域 2及び領域 4より も若干良好であることがわかった。 耐サヮ 一性は、 領域 3より も、 領域 1、 領域 2及び領域 4の方が、 若千優 れていることがわかった。  It was also found that the HAZ toughness of region 3 was slightly better than regions 2 and 4, although it was slightly inferior to region 1. It was found that the resistance to saliency was higher in region 1, region 2 and region 4 than in region 3.
一方、 A 1 量が 0. 0 0 5 0 %以下、 S i 量が 0. 2 5 %未満の 範囲、 及び、 A 1 量が 0. 0 0 5 0 %超 0. 0 2 0 0 %以下、 S i 量が 0. 1 0 %以上 0. 2 5 %未満、 A 1 + 0. I S i < 0. 0 3 % On the other hand, the amount of A 1 is less than 0.0 0 50%, the amount of Si is less than 0.25%, and the amount of A 1 is more than 0.0 0 50% and less than 0.0 2 0 0% , S i amount is 0.1 0% or more and less than 0.2 5%, A 1 + 0. IS i <0. 0 3%
の範囲では、 領域 1〜 4に比べて、 耐サワー性が劣化することがわ かった。 In the range of, it was found that the sour resistance deteriorates compared to the areas 1 to 4.
以下、 本発明について詳細に説明する。  Hereinafter, the present invention will be described in detail.
S i は、 本発明において、 最も重要な元素であり、 脱酸剤として 使用され、 一方、 過剰に添加すると、 H A Z靭性を損なうことがあ る。 耐サワー性を確保するためには、 1 を 0. 1 0 %以上添加す ることが必要である。 更に、 O量を低減して、 耐サワー性を向上さ せるためには、 0. 2 5 %以上を添加することが好ましい。 一方、 S i を過剰に添加すると、 靭性を損なうため、 上限を 0. 5 0 %以 下とする。 HA Z靭性を向上させるには、 S i 量の上限を 0. 4 0 %以下とすることが好ましい。  S i is the most important element in the present invention, and is used as a deoxidizing agent. On the other hand, if added excessively, H A Z toughness may be impaired. In order to secure sour resistance, it is necessary to add 1 to 0.1% or more. Furthermore, in order to reduce the amount of O and improve the sour resistance, it is preferable to add 0.25% or more. On the other hand, excessive addition of S i impairs the toughness, so the upper limit is made 0.5% or less. In order to improve HA Z toughness, the upper limit of the Si content is preferably set to 0.40% or less.
A 1 は、 脱酸元素であり、 C a酸化物の生成を抑制し、 Sを C a Sとして固定するために、 有効な元素である。 A 1 を過剰に添加す ると、 介在物の生成によって、 低温靭性、 特に HA Z靭性を損なう ため、 含有量を 0. 0 4 0 %以下に制限する。 HA Z靭性は、 A 1 量の低減によって向上するため、 上限を 0. 0 2 0 %以下にするこ とが好ましい。 更に、 M Aの生成を抑制し、 特に、 HA Zの低温靭 性を高めるには、 八 1 量を 0. 0 0 5 %以下に制限することが好ま しい。  A 1 is a deoxidizing element, and is an effective element for suppressing the formation of Ca oxide and fixing S as C a S. If A 1 is added excessively, the low temperature toughness, particularly the HA Z toughness, is impaired by the formation of inclusions, so the content is limited to 0.040% or less. Since HA Z toughness is improved by reducing the amount of A 1, the upper limit is preferably made 0.020% or less. Furthermore, in order to suppress the formation of MA, and in particular to increase the low temperature toughness of HA Z, it is preferable to limit the amount to less than 0.005%.
更に、 A 1 量を低下させると、 C a酸化物が生成して、 C a Sの 生成が不十分になることがある。 C a酸化物の生成を抑制するため 、 A 1 量が 0. 0 0 5 %以下である場合は、 1 を 0. 2 5 %以上 添加することが必要である。 また、 A 1 量が 0. 0 0 5 %超である 場合は、  Furthermore, if the amount of A 1 is decreased, Ca oxide may be generated and Ca S may not be generated sufficiently. In order to suppress the formation of Ca oxide, when the amount of A 1 is 0.05% or less, it is necessary to add 1 to 0.25% or more. If the amount of A 1 is more than 0.0 0 5%,
A 1 + 0. I S i ≥ 0. 0 3 %  A 1 + 0. I S i ≥ 0. 0 3%
を満足することが必要である。 これにより、 耐サワー性を向上させ ることができる。 It is necessary to satisfy This improves sour resistance Can.
以上のことから、 A l 、 S i の含有量 [質量%] は、  From the above, the content [% by mass] of A l and S i is
A 1 ≤ 0. 0 0 5 %、 かつ、 0. 2 5 %≤ S i 、 A 1 ≤ 0. 0 0 5%, and 0.25% ≤ S i,
または、 Or
A 1 > 0. 0 0 5 %、 かつ、 A 1 + 0. 1 S i ≥ 0. 0 3 %  A 1> 0. 0 0 5% and A 1 + 0. 1 S i ≥ 0. 0 3%
の一方を満足することが必要である。 It is necessary to satisfy one of these.
C aは、 M n Sの生成を抑制し、 耐サワー性を向上させる極めて 重要な元素である。 S量を低減しても、 M n Sの生成を抑制するに は、 0. 0 0 1 0 %以上の添加が必要である。 H A Z靭性の観点か ら A 1 量を低減した場合は、 C aを 0. 0 0 2 0 %以上添加するこ とが好ましい。 一方、 C aを過剰に添加すると、 介在物が粗大化し 、 靭性が低下するため、 上限を 0. 0 0 4 0 %とする。  C a is an extremely important element that suppresses the formation of M n S and improves sour resistance. Even if the amount of S is reduced, in order to suppress the formation of M n S, addition of 0.0% or more is required. From the viewpoint of H A Z toughness, when the amount of A 1 is reduced, it is preferable to add Ca in an amount of 0.000% or more. On the other hand, if Ca is added excessively, inclusions become coarse and the toughness decreases, so the upper limit is made 0.0%.
Sは、 含有量の増加とともに、 H I Cの起点となる M n Sの生成 を促進する不純物であり、 本発明では、 許容し得る含有量の上限を 0. 0 0 0 8 %とする。 M n Sの生成を抑制するためには、 含有量 を 0. 0 0 0 5 %以下に低減することが好ましい。  S is an impurity that promotes the generation of M n S as a starting point of H IC as the content increases. In the present invention, the upper limit of the allowable content is set to 0.0 0 8%. In order to suppress the formation of M n S, it is preferable to reduce the content to 0.05% or less.
〇は、 硫化物の形態制御のために添加した C aの酸化物を形成す る不純物であり、 本発明では、 許容し得る含有量の上限を 0. 0 0 2 0 %とする。 なお、 C a添加の効果を有効に発現させ、 M n Sの 生成を抑制するためには、 含有量を 0. 0 0 1 3 %以下に低減する ことが好ましい。  O is an impurity forming a Ca oxide added for controlling the form of sulfide. In the present invention, the upper limit of the allowable content is set to 0.0 0 20%. In order to effectively exhibit the effect of Ca addition and suppress the formation of M n S, the content is preferably reduced to 0.001% or less.
更に、 本発明では、 延伸した M n Sの生成を抑制するために、 Furthermore, in the present invention, in order to suppress the formation of stretched M n S,
S / C a≤ 0. 3 3、 及び、 OZ S i ≤ 0. 0 0 5 S / C a≤ 0. 3 3 and OZ S i ≤ 0. 0 0 5
を満足することが必要である。 It is necessary to satisfy
前述したように、 本発明者らは、 S i を添加して脱酸を強化する と、 M n Sの延伸を抑制でき、 その結果、 H I Cの発生を抑制でき ることを知見した。 この知見に基づく H I Cの発生抑制効果を最大 限に確保するためには、 添加する C a及び S i の量 (質量%、 以下 同じ) を、 S及び Oの量との関係で調整する必要がある。 そこで、 本発明者らは、 指標として、 S ZC a、 及び、 OZ S i を採用した As described above, the present inventors have found that, when Si is added to enhance deoxidation, MnS stretching can be suppressed, and as a result, generation of HIC can be suppressed. Based on this knowledge, the maximum suppression effect of HIC In order to secure the limit, it is necessary to adjust the amount of Ca and S i to be added (mass%, the same shall apply hereinafter) in relation to the amount of S and O. Therefore, the present inventors adopted S ZC a and OZ S i as indices.
C aは、 前述したように、 Sを C a S として固定し、 M n Sの生 成を抑制するため、 0. 0 0 1 0 %以上、 A 1 量を低減した場合は 0. 0 0 2 0 %以上添加するが、 S ZC aにより、 S固定のために 添加する C aの適正量を設定する。 本発明では、 S ZC a≤ 0. 3 3 と規定する力^ S / C a > 0. 3 3であれば、 C a量が不足し、 Sを C a S として固定することが不十分となる。 As described above, C a is fixed as C a S and suppresses the generation of M n S. Therefore, it is 0.0 0 1 0% or more, and when the amount of A 1 is reduced, 0.0 0 Add 20% or more, but set the appropriate amount of Ca to be added for S fixation by S ZC a. In the present invention, if force S / C a> 0.3 3 is defined as S ZC a ≤ 0.3 3, the amount of Ca is insufficient, and fixing S as C a S is insufficient. Become.
S i は、 前述したように、 C a酸化物が生成しないように、 O量 を充分低減するため、 少なく とも 0. 1 0 %以上、 好ましくは 0. 2 5 %以上添加するが、 その適正量を、 OZ S i で設定する。 本発 明では、 OZ S i ≤ 0. 0 0 5 と規定するが、 〇Z S i > 0. 0 0 5であれば、 S i による脱酸が不十分となり、 添加した C aは、 酸 化物を形成して、 Sの固定に寄与しない。 なお、 OZ S i は、 0. 0 0 5未満とすることが更に好ましい。  As described above, S i is added at least 0.1% or more, preferably 0.25% or more in order to sufficiently reduce the amount of O so that no Ca oxide is formed. Set the amount with OZ S i. In the present invention, OZ S i ≤ 0. 0 0 5 is specified. However, if ZS i> 0. 0 0 5, deoxidation by S i is insufficient, and the added Ca is an oxide. Does not contribute to the fixation of S. Note that OZ Si is more preferably less than 0.05.
したがって、 H I Cの発生抑制効果を最大限に確保するめには、 S / C a≤ 0. 3 3、 及び、 OZ S i ≤ 0. 0 0 5の両方を満足す る必要がある。  Therefore, it is necessary to satisfy both S / C a ≤ 0.33 and OZ S i ≤ 0.0 0 5 in order to ensure the maximum suppression effect of H IC generation.
Cは、 鋼の強度の上昇に寄与する元素であり、 0. 0 1 %以上を 含有させることが必要である。 一方、 Cが 0. 0 8 %を超えると、 特に中心部では、 粗大な炭化物を形成して、 耐サワー性が低下する ので、 上限を 0. 0 8 %とする。 靭性の向上のためには、 0. 0 7 %以下が好ましい。  C is an element that contributes to increasing the strength of the steel, and it is necessary to contain 0.0 1% or more. On the other hand, if C exceeds 0.08%, coarse carbides are formed especially in the central portion, and sour resistance is lowered. Therefore, the upper limit is set to 0.08%. In order to improve toughness, 0.07% or less is preferable.
M nは、 焼入れ性を高める元素であり、 1. 0 0 %以上を添加す る。 強度及び靭性の向上のために、 1. 1 0 %以上の添加が好まし い。 一方、 M nが 1. 5 0 %を超えると、 中心偏析が顕著になり、 耐サワー性を損なうので、 上限を 1. 5 0 %とする。 中心偏析部の M n S、 硬質相の生成を抑制し、 耐サワー性及び靱性を向上させる には、 M nを 1. 4 0 %以下とすることが好ましい。 M n is an element that improves hardenability, and is added at 1.0% or more. To improve strength and toughness, 1. 10% or more is preferred Yes. On the other hand, if M n exceeds 1.5%, center segregation becomes prominent and the sour resistance is impaired. Therefore, the upper limit is set to 1.5%. In order to suppress the formation of M n S and hard phase in the central segregation part and improve the sour resistance and toughness, it is preferable to set M n to 1.40% or less.
T i は、 炭窒化物を生成して鋼の組織の微細化に寄与し、 また、 粒内変態の生成核となる酸化物を形成する元素であり、 0. 0 0 5 %以上を添加する。 一方、 丁 1 が 0. 0 3 0 %を超えると、 中心部 に粗大な炭窒化物を生じて耐サワー性を低下させるので、 上限を 0 . 0 3 0 %とする。 好ましくは、 0. 0 0 9〜 0. 0 2 1 %である  T i is an element that forms carbonitrides and contributes to refinement of the microstructure of steel, and also forms oxides that form the nuclei of intragranular transformation. Add 0.005% or more . On the other hand, if Ding 1 exceeds 0.030%, coarse carbonitrides are produced in the center and the sour resistance is lowered, so the upper limit is set to 0.030%. Preferably, it is 0.0 0.09 to 0.0 2 1%
N bは、 焼入れ性を高め、 また、 炭窒化物を生成して鋼の組織の 微細化に寄与する元素であり、 0. 0 1 %以上を添加する。 一方、 0. 0 4 %以上の N bを添加すると、 HA Z靭性が低下するため、 上限を 0. 0 4 %未満とする。 また、 N bが 0. 0 2 %を超えると 、 中心部に粗大な炭窒化物を生じて耐サワー性が低下することがあ るので、 上限を 0. 0 2 %とすることが好ましい。 更に好ましい N b量の範囲は、 0. 0 1 2〜 0. 0 1 5 %である。 Nb is an element that enhances hardenability and contributes to refinement of the steel structure by forming carbonitrides, and is added in an amount of 0.01% or more. On the other hand, when 0.04% or more of Nb is added, the HA Z toughness decreases, so the upper limit is made less than 0.04%. Further, if Nb exceeds 0.02%, coarse carbonitrides are produced in the center portion and sour resistance may be lowered, so the upper limit is preferably made 0.02%. A more preferable range of the Nb amount is 0.01 2 to 0.015%.
Pは、 不純物であり、 中心部に偏析して、 靭性を低下させるので 、 上限を 0. 0 1 5 %とする。 好ましくは、 0. 0 0 1 %以下であ る。  P is an impurity, and segregates in the central part to reduce toughness. Therefore, the upper limit is set to 0.0 15%. Preferably, it is not more than 0.0 0 1%.
更に、 耐サワー性や HA Z靭性の向上のためには、 N量を制限す ることが好ましい。 Nは、 不純物であり、 過剰に含有すると、 特に 、 中心部に窒化物を生じて、 耐サヮ一性を低下させるため、 上限を 0. 0 0 8 %以下とすることが好ましい。 また、 窒化物の生成を抑 制し、 HA Z靭性を向上させるためには、 N量の上限を、 0. 0 0 5 %以下とすることが好ましい。  Furthermore, to improve sour resistance and HA Z toughness, it is preferable to limit the amount of N. N is an impurity, and when it is contained in excess, a nitride is formed in the central part and lowers the heat resistance. Therefore, the upper limit is preferably made 0.08% or less. In order to suppress the formation of nitrides and improve the HA Z toughness, the upper limit of the N content is preferably set to 0.05% or less.
また、 Vは、 炭窒化物を生成して鋼の組織の微細化に寄与する元 素である。 特に、 強度及び HA Z靭性を向上させるためには、 0. 0 1 %以上の Vを添加することが好ましい。 しかし、 過剰に添加す ると、 粗大な窒化物を生じて、 H A Z靭性を損なう ことがあるため 、 上限を 0. 1 0 %以下とすることが好ましい。 V is a source of carbonitride that contributes to refinement of the steel structure. It is prime. In particular, in order to improve the strength and HA Z toughness, it is preferable to add 0.01% or more of V. However, if excessively added, coarse nitrides may be formed and HAZ toughness may be impaired, so the upper limit is preferably made 0.10% or less.
Bは、 焼入れ性の向上に有効な元素である。 特に、 優れた強度が 要求される場合には、 0. 0 0 0 3 %以上を添加することが好まし い。 しかし、 過剰に含有すると、 耐サワー性を低下させるため、 上 限を 0. 0 0 2 0 %以下とすることが好ましい。  B is an element effective for improving hardenability. In particular, when excellent strength is required, it is preferable to add 0.003% or more. However, if contained excessively, sour resistance is lowered, so the upper limit is preferably made 0.0% or less.
更に、 強度及び靭性の向上に寄与する M o、 C r、 N i 、 C uの 1種又は 2種以上を添加してもよい。 鋼の強度及び靭性を向上させ るには、 M o、 C r、 N i 、 及び、 C uは、 それぞれ、 0. 0 5 % 以上を添加することが好ましい。 なお、 N i は、 靭性の向上にも有 効であるため、 0. 1 5 %以上を添加することが好ましい。 一方、 M o、 C r、 N i 、 及び、 C uは、 それぞれ、 0. 5 %超を添加す ると、 溶接性を損なうことがあるので、 いずれも、 上限を 0. 5 % とする。 好ましくは、 いずれも、 0. 1〜 0. 4 %である。  Furthermore, you may add 1 type (s) or 2 or more types of Mo, Cr, Ni, and Cu which contribute to an improvement in intensity | strength and toughness. In order to improve the strength and toughness of the steel, it is preferable to add 0.05% or more of Mo, Cr, Ni and Cu, respectively. Ni is also effective for improving toughness, so 0.15% or more is preferably added. On the other hand, if Mo, Cr, Ni, and Cu are added in excess of 0.5%, the weldability may be impaired. Therefore, the upper limit is set to 0.5%. . Preferably, both are 0.1 to 0.4%.
また、 M o、 C r、 N i 、 C uは、 耐食性の向上に寄与する元素 であり、 耐サワー性の向上にも有効であるが、 高価な元素であるた め、 上限を 0. 3 %未満とすることが好ましい。 更に、 C r につい ては、 溶接熱影響部の靭性や、 現地溶接性の観点からも、 上限を 0 . 3 %未満とすることが好ましい。  Mo, Cr, Ni, and Cu are elements that contribute to the improvement of corrosion resistance and are effective in improving sour resistance. However, since they are expensive elements, the upper limit is 0.3. It is preferable to be less than%. Further, with respect to Cr, the upper limit is preferably set to less than 0.3% from the viewpoint of the toughness of the weld heat affected zone and the field weldability.
更に、 介在物の微細化や、 硫化物の形態の制御に有効である M g 、 R E Mの一方又は双方を添加してもよい。 特に、 M gは、 微細な 酸化物を形成して、 溶接熱影響部の結晶粒の粗大化を抑制し、 靭性 を向上させる元素である。 しかし、 M g、 R E Mを過剰に含有させ ると、 粗大な介在物を生じて、 靭性を損なうことがある。 したがつ て、 M gの含有量の上限は 0. 0 1 %以下が好ましく、 R E Mの含 有量の上限は、 0 . 0 5 %以下が好ましい。 M g、 R E Mは、 微量 でも効果を発現するため、 含有量の好ましい下限は、 0 . 0 0 0 1 %以上である。 Furthermore, one or both of Mg and REM, which are effective for refinement of inclusions and control of the form of sulfide, may be added. In particular, Mg is an element that forms fine oxides, suppresses the coarsening of the crystal grains in the heat affected zone, and improves toughness. However, if Mg and REM are contained excessively, coarse inclusions may be formed and the toughness may be impaired. Therefore, the upper limit of the Mg content is preferably 0.01% or less, and the content of REM is The upper limit of the amount is preferably 0.05% or less. Since Mg and REM exhibit an effect even in a trace amount, a preferable lower limit of the content is 0.001% or more.
次に、 本発明の鋼板の好ましい製造方法について説明する。  Next, the preferable manufacturing method of the steel plate of this invention is demonstrated.
常法で鋼を溶製して铸造し、 得られた鋼片を加熱し、 熱間圧延し 、 その後、 加速冷却することが好ましい。 铸造は、 生産性の観点か ら、 連続铸造が好ましい。  It is preferable that the steel is melted and forged by a conventional method, the obtained steel slab is heated, hot-rolled, and then accelerated cooled. Forging is preferably continuous forging from the viewpoint of productivity.
鋼片の加熱温度は、 特に、 铸造時に生成した M n S を固溶させる ため、 1 1 0 0 以上とすることが好ましい。 一方、 加熱温度が 1 3 0 0でを超えると、 結晶粒径が粗大化することがあるので、 加熱 温度は、 1 3 0 0 °C以下が好ましい。  The heating temperature of the steel slab is preferably 1 100 or more so that MnS produced during forging is dissolved. On the other hand, if the heating temperature exceeds 1300, the crystal grain size may become coarse, so the heating temperature is preferably 1300 ° C or lower.
熱間圧延の仕上圧延温度は、 A r 3 変態点未満になると、 加工さ れたフェライ トが生成し、 靭性が低下することがある。 なお、 A r 3 変態点は、 化学成分や空冷速度によって変化するので、 鋼片から 採取した試料か、 ほぼ同一の成分を有する試料を用いて、 実験室で 熱間圧延と空冷を模擬した加工熱処理を施し、 変態膨張測定を行つ て、 A r 3 点を求めることが好ましい。 When the finish rolling temperature of hot rolling is less than the Ar 3 transformation point, processed ferrite may be generated and toughness may be reduced. Since the Ar 3 transformation point varies depending on the chemical composition and air cooling rate, use a sample taken from a steel slab or a sample that has almost the same component, and use a laboratory to simulate hot rolling and air cooling. It is preferable to obtain a three- point Ar by performing heat treatment and measuring transformation expansion.
特に、 仕上圧延温度の好ましい範囲は 7 7 0 〜 9 5 0でである。. 仕上圧延温度を 7 7 0 以上にすれば、 中心偏析部における Cや M n濃化層の形成や、 金属組織の硬化相の形成が抑制され、 耐水素誘 起割れ感受性が向上する。 また、 結晶粒径を微細化して、 強度及び 靭性を向上させるためには、 仕上圧延温度を 9 5 0 以下にするこ とが好ましい。  In particular, the preferable range of the finish rolling temperature is 770 to 950. If the finish rolling temperature is 770 or more, the formation of C and Mn enriched layers in the center segregation part and the formation of a hardened phase of the metal structure are suppressed, and the resistance to hydrogen-induced cracking is improved. In order to refine the crystal grain size and improve the strength and toughness, the finish rolling temperature is preferably 950 or less.
熱間圧延後、 加速冷却を行う ことが好ましい。 加速冷却の開始温 度は、 (A r 3 変態点一 1 0 0 ) 未満であると、 中心偏析部に連 続的なパーライ ト硬化相が生成し、 水素誘起割れの伝播を促進させ ることがある。 加速冷却は、 水冷でよい。 更に、 鋼板を管状に成形して、 シーム部をアーク溶接し、 鋼管と する。 It is preferable to perform accelerated cooling after hot rolling. If the start temperature of accelerated cooling is less than (A r 3 transformation point 1 1 0 0), a continuous pearlite hardening phase is generated at the center segregation part, which promotes the propagation of hydrogen-induced cracking. There is. The accelerated cooling may be water cooling. Furthermore, the steel plate is formed into a tubular shape, and the seam is arc welded to form a steel pipe.
鋼板の成形は、 U〇 E工程で行う ことが好ましい。 また、 生産性 の観点から、 シーム部のアーク溶接は、 サブマージ ドアーク溶接が 好ましい。 実施例  It is preferable to form the steel sheet in the UOE process. Further, from the viewpoint of productivity, submerged arc welding is preferable for arc welding of the seam portion. Example
実施例 1 Example 1
表 1 に示す成分組成を有する鋼を溶製し、 連続錶造法で鋼片とし た。 表 1 には、 S ZC a及び OZ S i の組成比も記載した。 得られ た鋼片を、 表 2に示す圧延条件で熱間圧延し、 加速冷却を行って、 鋼板を製造した。 Steels with the composition shown in Table 1 were melted and turned into billets by a continuous forging method. Table 1 also shows the composition ratio of S ZC a and OZ S i. The obtained steel slab was hot-rolled under the rolling conditions shown in Table 2 and subjected to accelerated cooling to produce a steel plate.
表 1 table 1
Figure imgf000019_0001
Figure imgf000019_0001
空櫊は意図的に添加していないことを意味する。 Airborne means no intentional addition.
表 2
Figure imgf000020_0001
鋼板の板厚の中央部から試験片を採取し、 S E Mを用いて、 各鋼 板について 3 0箇所ずつ、 5 O mm角の範囲の視野に存在する長手 方向の M n Sの長さを測定した。 水素誘起割れ特性調査では、 NA C Eで規定されている TM 0 1 7 7 — 9 0 M e t h o d A環境 で各サンプルの材質特性調査を実施し、 水素誘起割れ判定基準とし て割れ発生面積率 (C A R) が 0 %を合格とした。 結果を表 3 に示 す。 表 3
Table 2
Figure imgf000020_0001
Take a specimen from the center of the thickness of the steel sheet and measure the length of M n S in the longitudinal direction existing in the field of view of a range of 5 O mm square at 30 points for each steel sheet using SEM. did. In the hydrogen induced cracking property survey, the material property survey of each sample was conducted in the TM 0 1 7 7 — 90 Method A environment specified by NA CE, and the crack initiation area ratio (CAR ) Passed 0%. The results are shown in Table 3. Table 3
Figure imgf000020_0002
表 3に示すように、 本発明の範囲を全て満足する化学成分である 鋼番 1 〜 7は C A Rが 1 %未満であり、 いずれも優れた耐 H I C性 が得られることがわかる。 一方、 本発明の範囲から外れる鋼番 1 0 1〜: 1 0 5の比較例のうち、 鋼番 1 0 1 は OZ S i が高く、 鋼番 1 0 2は S i 量の不足のために〇量が低下せず、 OZ S i も高くなつ た例である。 鋼番 1 0 3は S C aが高く、 鋼番 1 0 4は C a量が 少なく、 鋼番 1 0 5は S量が過剰な例である。 これら比較例の鋼 1 0 1〜 : I 0 5には、 延伸した M n S、 及び、 延伸した M n Sを起点 にする水素誘起割れが観察された。
Figure imgf000020_0002
As shown in Table 3, Steel Nos. 1 to 7, which are chemical components that satisfy all the scope of the present invention, have a CAR of less than 1%, and all show that excellent HIC resistance can be obtained. On the other hand, the steel number deviating from the scope of the present invention 1 0 1 to: Of the comparative examples of 1 0 5, steel number 1 0 1 has high OZ S i, and steel number 1 0 2 does not decrease due to insufficient S i amount, and OZ S i is also high This is an example. Steel No. 1 0 3 has a high SC a, Steel No. 1 0 4 has a small amount of Ca, and Steel No. 1 0 5 has an excessive amount of S. In these steels of Comparative Examples 101 to 10: I 0 5, stretched M n S and hydrogen-induced cracks starting from the stretched M n S were observed.
これらの鋼板を、 UO E工程で造管し、 シーム部をサブマージド アーク溶接して、 鋼管を製造した。 鋼管から、 鋼板と同様にサンプ ルを採取し、 C A Rを測定した。 その結果、 表 3 と、 ほぼ同様に、 鋼番 1 〜 7は C A Rが 1 %未満であり、 鋼番 1 0 1 〜 1 0 5は延伸 した M n Sを起点にする水素誘起割れが観察された。 '  These steel plates were piped in the UOE process, and the seam was submerged arc welded to produce steel pipes. A sample was taken from the steel pipe in the same manner as the steel plate, and the CAR was measured. As a result, almost the same as in Table 3, steel numbers 1 to 7 have a CAR of less than 1%, and steel numbers 1001 to 105 have hydrogen-induced cracking starting from stretched MnS. It was. '
実施例 2 Example 2
表 4に示す成分組成を有する鋼を溶製し、 連続铸造法で鋼片とし た。 表 4には、 3 じ 3及び〇 3 i の組成比も記載した。 得られ た鋼片を、 表 2に示す圧延条件で熱間圧延し、 加速冷却を行って、 鋼板を製造した。 Steels having the composition shown in Table 4 were melted and made into billets by the continuous forging method. Table 4 also shows the composition ratio of 3 3 and 0 3 i. The obtained steel slab was hot-rolled under the rolling conditions shown in Table 2 and subjected to accelerated cooling to produce a steel plate.
Figure imgf000022_0002
Figure imgf000022_0002
Figure imgf000022_0001
Figure imgf000022_0001
A1 : 0. 0050¾超、 0. 0200以下、 Si: 0. 10以上、 0. 25¾未満の鋼のみ、 Al+0. ISiの計算値を示した。 A1: More than 0.0005¾, less than 0.0200, Si: Only steel with 0.10 or more and less than 0.25¾ showed the calculated value of Al + 0.ISi.
M n Sの長さ測定および水素誘起割れ特性調査は実施例 1 と同様 にして行った。 HA Z靱性は、 再現熱サイクル試験後、 試験片を採 取し、 J I S Z 2 2 4 2 に準拠してシャルピー衝撃試験を行つ て評価した。 試験片の長手方向は、 鋼板の幅方向とした。 また、 再 現熱サイクル試験は、 1 4 0 0 に誘導加熱した後、 8 0 0でから 5 0 0でまでを 3 8秒で冷却する条件で行った。 シャルピー衝撃試 験は試験温度を変化させて実施し、 5 0 %破面遷移温度を求めた。 結果を表 5 に示す。 表 5 The length measurement of M n S and the investigation of hydrogen-induced cracking characteristics were performed in the same manner as in Example 1. HA Z toughness was evaluated by taking a specimen after a reproducible thermal cycle test and conducting a Charpy impact test in accordance with J I S Z 2 2 4 2. The longitudinal direction of the test piece was the width direction of the steel sheet. In addition, the regenerative heat cycle test was conducted under the condition of cooling from 8 0 00 to 5 0 00 in 38 seconds after induction heating to 1400. The Charpy impact test was conducted while changing the test temperature, and the 50% fracture surface transition temperature was obtained. The results are shown in Table 5. Table 5
Figure imgf000023_0001
表 5 に示すように、 鋼番 1 1〜 2 6は C ARが 1 %未満であり、 HA Zの 5 0 %破面遷移温度も 0で以下であり、 耐サワー性及び H A Z靱性が良好である。 一方、 鋼番 2 0 :!〜 2 1 0は比較例であり 、 耐サワー性又は HA Z靭性が低下している。 鋼番 2 0 1 は OZ S i が高く、 鋼番 2 0 2は S ZC aが高く、 鋼番 2 0 3は S量が多く 、 HA Z靭性は良好であるものの、 M n Sが延伸化し、 耐サワー性 が低下している。
Figure imgf000023_0001
As shown in Table 5, Steel Nos. 11 to 26 have a CAR of less than 1%, HA Z 50% fracture surface transition temperature is 0 and below, and sour resistance and HAZ toughness are good. is there. On the other hand, Steel No. 20:! To 2 10 is a comparative example, and sour resistance or HA Z toughness is lowered. Steel No. 2 0 1 has high OZ S i, Steel No. 2 0 2 has high S ZC a, Steel No. 2 0 3 has a large amount of S, and HA Z toughness is good, but M n S is stretched The sour resistance is reduced.
鋼番 2 0 4は、 O量が多く、 HA Z靭性は良好であるものの、 耐 サワー性が低下している。 鋼番 2 0 6は A 1 + 0. 1 S i が低く、 鋼番 2 0 7は、 A 1 量及び S i 量が低いため、 HA Z靭性は良好で あるものの、 耐サワー性が低下している。  Steel No. 2 0 4 has a large amount of O and good HA Z toughness, but has low sour resistance. Steel No. 2 0 6 has low A 1 + 0. 1 Si, and Steel No. 2 0 7 has low A 1 and S i contents, so HA Z toughness is good, but sour resistance is reduced. ing.
鋼番 2 0 7は S i 量が多く、 鋼番 2 0 8は A 1 量が多いため、 耐 サワー性は良好であるものの、 H A Z靭性が低下している。 また、 鋼番 2 0 9は N b量が多く、 H A Z靭性が低下した例である。 鋼番 2 1 0は C a量が少なく、 耐サワー性が低下している。  Steel No. 20 07 has a large amount of Si, and steel No. 20 08 has a large amount of A 1, so the sour resistance is good, but the HAZ toughness is reduced. Steel No. 20 9 is an example where the Nb content is high and the HAZ toughness is reduced. Steel No. 2 1 0 has a small amount of Ca and has low sour resistance.
これらの鋼板を、 U〇 E工程で造管し、 シーム部をサブマージド アーク溶接して、 鋼管を製造した。 鋼管から、 鋼板と同様にサンプ ルを採取し、 C A Rを測定した。 その結果、 表 5 とほぼ同様に、 鋼 番 1 1〜 2 6は耐サワー性及び HA Z部の靱性が良好であった。 一 方、 鋼番 2 0 1〜 2 1 0は、 耐サワー性又は HA Z靱性の低下が確 認された。  These steel plates were piped in the UOE process, and the seam was submerged arc welded to produce steel pipes. A sample was taken from the steel pipe in the same manner as the steel plate, and the CAR was measured. As a result, as in Table 5, steel numbers 11 to 26 had good sour resistance and good toughness in the HA Z part. On the other hand, steel numbers 2 0 1 to 2 1 0 were confirmed to have reduced sour resistance or HA Z toughness.

Claims

請 求 の 範 囲 請求項 1 Claim scope Claim 1
%で、  %so,
C : 0 0 1 〜 0. 0 8 %,  C: 0 0 1 to 0. 0 8%,
S i : 0 . 1 0 〜 0. 5 0 % 、  S i: 0.10 to 0.50%,
M n : 1 . 0 0. 〜 1. 5 0 % 、  M n: 1.0 0. to 1.550%,
T i : 0 . 0 0 5〜 0. 0 3 0 %、  T i: 0.0 0 5 to 0.0 30%,
N b : 0 . 0 1 %以上、 0. 0 4 %未満、  Nb: 0.01% or more, less than 0.04%,
C a : 0 . 0 0 1 0〜 0. 0 0 4 0 %  C a: 0. 0 0 1 0 to 0.0. 0 0 4 0%
を含有し 、 Containing
P : 0 0 1 o 「  P: 0 0 1 o “
%以下、  %Less than,
S : 0 0 0 0 8 %以下、  S: 0 0 0 0 8% or less,
O : 0 0 0 2 0 %以下、  O: 0 0 0 2 0% or less,
A 1 : 0 . 0 4 0 %以下  A 1: 0.0 40% or less
に制限し 、 残部が F e及び不純物からなり、 更に The remainder consists of Fe and impurities, and
有量 [質 ] が、 The quantity [quality]
A 1 ≤ 0 . 0 0 5 %、 かつ、 0. 2 5 %≤ S i 、  A 1 ≤ 0. 0 0 5%, and 0.25% ≤ S i,
または、 Or
A 1 > 0. 0 0 5 %、 かつ、 A 1 + 0. 1 S 1 ≥ 0. 0 3 % の一方を満足し、 更に、 S、 0、 S i 、 C aの含有量 [質量%] が  A 1> 0. 0 0 5% and one of A 1 + 0. 1 S 1 ≥ 0. 0 3% is satisfied, and the contents of S, 0, S i, and Ca [mass%] But
S / C a≤ 0. 3 3、 S / C a≤ 0. 3 3,
O / S i ≤ 0. 0 0 5  O / S i ≤ 0. 0 0 5
を満足することを特徴とする耐サワー性に優れた鋼板。 A steel plate with excellent sour resistance characterized by satisfying
請求項 2 Claim 2
A 1 量を、 質量%で、 0. 0 2 0 0 %以下に制限したことを特徴 とする請求項 1 に記載の耐サワー性に優れた鋼板。 A 1 content is limited to 0.0 2 0 0% or less by mass% The steel plate excellent in sour resistance according to claim 1.
請求項 3 Claim 3
A 1 量を、 質量%で、 0. 0 0 5 0 %以下に制限したことを特徴 とする請求項 1又は 2に記載の耐サワー性に優れた鋼板。  The steel sheet with excellent sour resistance according to claim 1 or 2, wherein the amount of A 1 is limited to not more than 0.050% by mass%.
請求項 4 Claim 4
S i 量が、 質量%で、 0. 2 5〜 0. 4 0 %であることを特徴と する請求項 3に記載の耐サワー性に優れた鋼板。  The steel sheet having excellent sour resistance according to claim 3, wherein the amount of Si is 0.25 to 0.40% by mass%.
請求項 5 Claim 5
N b量が、 質量%で、 0. 0 1〜 0. 0 2 %であることを特徴と する請求項 1〜 4の何れか 1項に記載の耐サワー性に優れた鋼板。 請求項 6  The steel sheet having excellent sour resistance according to any one of claims 1 to 4, wherein the Nb content is 0.01 to 0.02% by mass. Claim 6
C a量が、 質量%で、 0. 0 0 2 0〜 0. 0 0 4 0 %であること を特徴とする請求項 1〜 5の何れか 1項に記載の耐サワー性に優れ た鋼板。  The steel sheet having excellent sour resistance according to any one of claims 1 to 5, wherein the amount of Ca is from 0.0% to 20% in mass%. .
請求項 7 Claim 7
質量%で、  % By mass
N : 0. 0 0 8 %以下 N: 0. 0 0 8% or less
に制限したことを特徴とする請求項 1〜 6の何れか 1項に記載の耐 サワー性に優れた鋼板。 The steel plate having excellent sour resistance according to any one of claims 1 to 6, wherein the steel plate is excellent in sour resistance.
請求項 8 Claim 8
さらに、 質量%で、  Furthermore, in mass%,
B : 0. 0 0 2 0 %以下 B: 0. 0 0 2 0% or less
を含有することを特徴とする請求項 1〜 7の何れか 1項に記載の耐 サワー性に優れた鋼板。 The steel plate excellent in sour resistance according to any one of claims 1 to 7, characterized by comprising:
請求項 9 Claim 9
さらに、 質量%で、  Furthermore, in mass%,
V : 0. 1 0 %以下 を含有することを特徴とする請求項 1〜 8の何れか 1項に記載の耐 サワー性に優れた鋼板。 V: 0.10% or less The steel sheet having excellent sour resistance according to any one of claims 1 to 8, wherein the steel sheet contains.
請求項 1 0 Claim 1 0
さ らに、 質量%で、  Furthermore, in mass%,
M g : 0. 0 1 %以下、 M g: 0. 0 1% or less,
R E M : 0. 0 5 %以下 R E M: 0.0 5% or less
の一方又は双方を含有することを特徴とする請求項 1〜 9の何れか 1項に記載の耐サワー性に優れた鋼板。 One or both of these are contained, The steel plate excellent in sour resistance of any one of Claims 1-9 characterized by the above-mentioned.
請求項 1 1 Claim 1 1
さ らに、 胃 %で、  Furthermore, in the stomach%
M o : 0. 0 「  M o: 0.0 “
O 〜 0. 「  O ~ 0.
o  o
N i : 0. 0 「  N i: 0.0 “
o 〜 0. 5 0 、  o to 0.50,
C u : 0. 0 5 「  C u: 0.0 5 "
〜 0. o /o、  ~ 0.o / o,
C r : 0. 0 o 〜 0. 5 0  C r: 0.0 0 to 0.5 0
の 1種又は 2種以上を含有することを特徴とする請求項 1〜 1 0の 何れか 1項に記載の耐サワー性に優れた鋼板。 1 or 2 types or more of these are contained, The steel plate excellent in sour resistance of any one of Claims 1-10 characterized by the above-mentioned.
請求項 1 2 Claim 1 2
母材が、 請求項 1〜 1 1の何れか 1項に記載の耐サワー性に優れ た鋼板からなることを特徴とする耐サワー性に優れたライ ンパイプ 用鋼管。  A steel pipe for a line pipe excellent in sour resistance, wherein the base material is made of the steel plate excellent in sour resistance described in any one of claims 1 to 11.
PCT/JP2009/060721 2008-06-06 2009-06-05 Steel plate excellent in sour resistance and steel pipe for linepipes WO2009148193A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010515956A JP4719313B2 (en) 2008-06-06 2009-06-05 Steel plate and line pipe steel pipe with excellent sour resistance
CN200980120913.4A CN102057070B (en) 2008-06-06 2009-06-05 Steel plate excellent in sour resistance and steel pipe for linepipes
BRPI0915520 BRPI0915520B1 (en) 2008-06-06 2009-06-05 corrosion-resistant sheet steel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008149708 2008-06-06
JP2008-149708 2008-06-06

Publications (1)

Publication Number Publication Date
WO2009148193A1 true WO2009148193A1 (en) 2009-12-10

Family

ID=41398260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060721 WO2009148193A1 (en) 2008-06-06 2009-06-05 Steel plate excellent in sour resistance and steel pipe for linepipes

Country Status (4)

Country Link
JP (1) JP4719313B2 (en)
CN (1) CN102057070B (en)
BR (1) BRPI0915520B1 (en)
WO (1) WO2009148193A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013124398A (en) * 2011-12-15 2013-06-24 Jfe Steel Corp Steel sheet for high strength sour resistant line pipe, and material therefor
CN103499011A (en) * 2013-09-24 2014-01-08 中国石油集团工程设计有限责任公司 Sulphur-resistant thick plate and welding technology thereof
JP2016125137A (en) * 2014-12-26 2016-07-11 株式会社神戸製鋼所 Steel sheet and steel pipe for line pipe excellent in hydrogen-induced crack resistance
JP2016125138A (en) * 2014-12-26 2016-07-11 株式会社神戸製鋼所 Steel sheet and steel pipe for line pipe excellent in hydrogen-induced crack resistance

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113106354A (en) * 2021-03-31 2021-07-13 五矿营口中板有限责任公司 Easily-welded oil-gas corrosion-resistant shipbuilding structural steel and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006063351A (en) * 2004-08-24 2006-03-09 Sumitomo Metal Ind Ltd High strength steel plate with excellent hydrogen induced cracking resistance, its manufacturing method, and steel pipe for line pipe
JP2006274338A (en) * 2005-03-29 2006-10-12 Jfe Steel Kk Hot rolled steel sheet for sour resistant high strength electric resistance welded pipe having excellent hic resistance and weld zone toughness, and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306749A (en) * 2002-04-19 2003-10-31 Nippon Steel Corp Method for manufacturing high strength steel tube of excellent deformability and steel plate for steel tube
CN100587098C (en) * 2007-10-15 2010-02-03 莱芜钢铁集团有限公司 Micro-alloying steel for oil gas transport seamless pipeline and its preparation method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006063351A (en) * 2004-08-24 2006-03-09 Sumitomo Metal Ind Ltd High strength steel plate with excellent hydrogen induced cracking resistance, its manufacturing method, and steel pipe for line pipe
JP2006274338A (en) * 2005-03-29 2006-10-12 Jfe Steel Kk Hot rolled steel sheet for sour resistant high strength electric resistance welded pipe having excellent hic resistance and weld zone toughness, and method for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013124398A (en) * 2011-12-15 2013-06-24 Jfe Steel Corp Steel sheet for high strength sour resistant line pipe, and material therefor
CN103499011A (en) * 2013-09-24 2014-01-08 中国石油集团工程设计有限责任公司 Sulphur-resistant thick plate and welding technology thereof
CN103499011B (en) * 2013-09-24 2015-10-28 中国石油集团工程设计有限责任公司 A kind of sulfur resistive slab and welding procedure thereof
JP2016125137A (en) * 2014-12-26 2016-07-11 株式会社神戸製鋼所 Steel sheet and steel pipe for line pipe excellent in hydrogen-induced crack resistance
JP2016125138A (en) * 2014-12-26 2016-07-11 株式会社神戸製鋼所 Steel sheet and steel pipe for line pipe excellent in hydrogen-induced crack resistance

Also Published As

Publication number Publication date
BRPI0915520B1 (en) 2019-12-10
JPWO2009148193A1 (en) 2011-11-04
CN102057070B (en) 2015-07-01
CN102057070A (en) 2011-05-11
JP4719313B2 (en) 2011-07-06
BRPI0915520A2 (en) 2016-01-26

Similar Documents

Publication Publication Date Title
JP5098256B2 (en) Steel sheet for high-strength line pipe with low yield stress reduction due to the Bauschinger effect with excellent hydrogen-induced cracking resistance and method for producing the same
KR101044161B1 (en) Low yield ratio, high strength, high toughness, thick steel plate and welded steel pipe
US7879287B2 (en) Hot-rolled steel sheet for high-strength electric-resistance welded pipe having sour-gas resistance and excellent weld toughness, and method for manufacturing the same
JP5353256B2 (en) Hollow member and manufacturing method thereof
JP5353156B2 (en) Steel pipe for line pipe and manufacturing method thereof
JP5423324B2 (en) Steel plate for high-strength line pipe and steel pipe for high-strength line pipe with excellent resistance to hydrogen-induced cracking
WO2013147197A1 (en) High-strength steel pipe for line pipe having excellent hydrogen-induced cracking resistance, high-strength steel pipe for line pipe using same, and method for manufacturing same
JP5748032B1 (en) Steel plate for line pipe and line pipe
JP7147960B2 (en) Steel plate and its manufacturing method
JP5141073B2 (en) X70 grade or less low yield ratio high strength high toughness steel pipe and method for producing the same
WO2009125863A1 (en) High-strength steel plate excellent in low-temperature toughness, steel pipe, and processes for production of both
JPWO2002070767A1 (en) ERW welded steel tube for hollow stabilizer
JP2010196164A (en) Thick, high-tension, hot-rolled steel sheet excellent in low-temperature toughness, and manufacturing method therefor
JP5124854B2 (en) Steel plate for line pipe, method for producing the same, and line pipe
WO2007080646A1 (en) Cryogenic steel
JP4700740B2 (en) Manufacturing method of steel plate for sour line pipe
KR20150088320A (en) HOT-ROLLED STEEL PLATE FOR HIGH-STRENGTH LINE PIPE AND HAVING TENSILE STRENGTH OF AT LEAST 540 MPa
WO2007105752A1 (en) Steel sheet for submerged arc welding
JP5509654B2 (en) High-strength steel sheet excellent in PWHT resistance and uniform elongation characteristics and method for producing the same
JP5181697B2 (en) High strength steel plate with excellent PWHT resistance and method for producing the same
WO2009148193A1 (en) Steel plate excellent in sour resistance and steel pipe for linepipes
JP3941211B2 (en) Manufacturing method of steel plate for high-strength line pipe with excellent HIC resistance
JP4677883B2 (en) Steel sheet for high-strength line pipe with low yield stress reduction due to the Bauschinger effect and method for producing the same
WO2007080645A1 (en) Cryogenic steel excelling in ctod performance of weld heat-affected zone
JP5157030B2 (en) Manufacturing method of high strength line pipe steel with excellent HIC resistance

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980120913.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09758460

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010515956

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09758460

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0915520

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101206