JP6316548B2 - Steel plates and line pipe steel pipes with excellent hydrogen-induced crack resistance and toughness - Google Patents

Steel plates and line pipe steel pipes with excellent hydrogen-induced crack resistance and toughness Download PDF

Info

Publication number
JP6316548B2
JP6316548B2 JP2013138178A JP2013138178A JP6316548B2 JP 6316548 B2 JP6316548 B2 JP 6316548B2 JP 2013138178 A JP2013138178 A JP 2013138178A JP 2013138178 A JP2013138178 A JP 2013138178A JP 6316548 B2 JP6316548 B2 JP 6316548B2
Authority
JP
Japan
Prior art keywords
less
toughness
steel
amount
excluding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013138178A
Other languages
Japanese (ja)
Other versions
JP2015010266A (en
Inventor
加藤 拓
拓 加藤
晴弥 川野
晴弥 川野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2013138178A priority Critical patent/JP6316548B2/en
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to KR1020157036038A priority patent/KR20160013103A/en
Priority to PCT/JP2014/066852 priority patent/WO2015002046A1/en
Priority to EP18189539.2A priority patent/EP3428301A1/en
Priority to CN201480037371.5A priority patent/CN105358724B/en
Priority to EP14819986.2A priority patent/EP3018231A4/en
Priority to KR1020177015001A priority patent/KR20170065677A/en
Publication of JP2015010266A publication Critical patent/JP2015010266A/en
Application granted granted Critical
Publication of JP6316548B2 publication Critical patent/JP6316548B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Description

本発明は、天然ガス・原油輸送用ラインパイプや貯蔵用タンクなどに好適な、耐水素誘起割れ性と靭性に優れた鋼板、および該鋼板を用いて得られる耐水素誘起割れ性と靭性に優れたラインパイプ用鋼管に関する。   The present invention is suitable for natural gas / crude oil transportation line pipes and storage tanks, and has excellent hydrogen-induced crack resistance and toughness, and excellent hydrogen-induced crack resistance and toughness obtained using the steel sheet. The present invention relates to a steel pipe for line pipe.

主に石油・ガスなどの輸送用ラインパイプや貯蔵用タンクでは、安全性の観点から脆性破壊の発生を抑制すると共に、破壊が発生した際に亀裂の伝播を防止・抑制するため、該ラインパイプ等を構成する鋼材には高い靭性が要求される。さらに近年では、硫化水素を含有する劣質資源の開発に伴い、耐水素誘起割れ性(耐HIC性)や耐応力腐食割れ性(耐SSCC性)などのいわゆる耐サワー性も必要とされる。水素誘起割れ(以下、「HIC」ということがある)は、上記硫化水素等による腐食反応に伴って鋼材内部に侵入した水素が、MnSやNb(C,N)をはじめとする非金属介在物などに集積し、ガス化により生じる割れであることが知られている。上記ラインパイプ等の使用中にHICが発生すると、構造物の靭性が低下してしまう。   Mainly for oil and gas transportation line pipes and storage tanks, in order to suppress brittle fracture from the viewpoint of safety, and to prevent and suppress the propagation of cracks when fracture occurs, the line pipe High toughness is required for the steel materials constituting these materials. Furthermore, in recent years, with the development of inferior resources containing hydrogen sulfide, so-called sour resistance such as hydrogen-induced crack resistance (HIC resistance) and stress corrosion crack resistance (SSCC resistance) is also required. Hydrogen-induced cracking (hereinafter sometimes referred to as “HIC”) is caused by non-metallic inclusions such as MnS and Nb (C, N) that are formed by hydrogen that has penetrated into the steel material due to the corrosion reaction caused by hydrogen sulfide or the like. It is known that it is a crack generated by gasification. If HIC occurs during use of the line pipe or the like, the toughness of the structure is lowered.

従来より、耐HIC性を高める技術について幾つか提案されている。例えば特許文献1には、板厚中心部のMn、Nb、Tiの偏析度を抑制することにより水素誘起割れ性を改善した鋼材が開示されている。また特許文献2には、CaとOとSの含有量からなるパラメータ式によりMnSやCa系酸硫化物を起点としたHICを抑制する方法が開示されている。   Conventionally, several techniques for improving the HIC resistance have been proposed. For example, Patent Document 1 discloses a steel material that has improved hydrogen-induced cracking properties by suppressing the segregation degree of Mn, Nb, and Ti at the center of the plate thickness. Patent Document 2 discloses a method of suppressing HIC starting from MnS or Ca-based oxysulfide by a parameter formula including Ca, O, and S contents.

これらの方法により、多くのHICは抑制されるものの、後述する通り、光学顕微鏡レベルでは観察困難な微細なHICが局所的に多数発生する場合があり、HIC試験後(実使用中)の局所的な靭性の低下を招く。よってHIC試験後(実使用中)の靭性の高位安定化が求められている。   Although many HICs are suppressed by these methods, as described later, there are cases where many fine HICs that are difficult to observe at the optical microscope level are locally generated, and local after the HIC test (in actual use). Cause toughness reduction. Therefore, high stabilization of toughness after the HIC test (during actual use) is required.

特開2010−209461号公報JP 2010-209461 A 特開平06−136440号公報Japanese Patent Laid-Open No. 06-136440

本発明は上記の様な事情に着目してなされたものであって、その目的は、耐水素誘起割れ性と靭性に優れた鋼板や鋼管を実現することにある。   The present invention has been made paying attention to the above-described circumstances, and an object thereof is to realize a steel plate and a steel pipe excellent in hydrogen-induced crack resistance and toughness.

上記課題を解決し得た本発明の耐水素誘起割れ性と靭性に優れた鋼板は、C:0.02〜0.15%(%は質量%の意味。以下同じ)、Si:0.02〜0.50%、Mn:0.6〜2.0%、P:0.030%以下(0%を含まない)、S:0.003%以下(0%を含まない)、Al:0.010〜0.08%、Ca:0.0003〜0.0060%、N:0.001〜0.01%、およびO(酸素):0.0045%以下(0%を含まない)を満たし、残部が鉄および不可避不純物からなり、前記Caと前記Sの比(Ca/S)が2.0以上であり、かつ前記Ca、前記Sおよび前記Oが(Ca−1.25S)/O ≦ 1.80を満たし、更に、鋼材中のArガス含有量が0.50μL(マイクロリットル)/cm3以下であるところに特徴を有する。
前記鋼板は、更に他の元素として、
(a)B:0.005%以下(0%を含まない)、V:0.1%以下(0%を含まない)、Cu:1.5%以下(0%を含まない)、Ni:1.5%以下(0%を含まない)、Cr:1.5%以下(0%を含まない)、Mo:1.5%以下(0%を含まない)、および
Nb:0.06%以下(0%を含まない)よりなる群から選択される1種以上の元素や、
(b)Ti:0.03%以下(0%を含まない)、Mg:0.01%以下(0%を含まない)、REM:0.02%以下(0%を含まない)、およびZr:0.010%以下(0%を含まない)よりなる群から選択される1種以上の元素を含んでいてもよい。
上記鋼板は、ラインパイプ用として好適である。また本発明には、上記鋼板を用いて製造されるラインパイプ用鋼管も含まれる。
The steel sheet excellent in hydrogen-induced cracking resistance and toughness according to the present invention that has solved the above problems is C: 0.02 to 0.15% (% means mass%, the same applies hereinafter), Si: 0.02 -0.50%, Mn: 0.6-2.0%, P: 0.030% or less (not including 0%), S: 0.003% or less (not including 0%), Al: 0 0.010 to 0.08%, Ca: 0.0003 to 0.0060%, N: 0.001 to 0.01%, and O (oxygen): 0.0045% or less (not including 0%) The balance is made of iron and inevitable impurities, the ratio of Ca to S (Ca / S) is 2.0 or more, and the Ca, S and O are (Ca-1.25S) / O ≤ met 1.80, further, Ar gas content in the steel material 0.50MyuL (microliters) / cm 3 in the are where less With a butterfly.
The steel sheet, as another element,
(A) B: 0.005% or less (not including 0%), V: 0.1% or less (not including 0%), Cu: 1.5% or less (not including 0%), Ni: 1.5% or less (not including 0%), Cr: 1.5% or less (not including 0%), Mo: 1.5% or less (not including 0%), and Nb: 0.06% One or more elements selected from the group consisting of:
(B) Ti: 0.03% or less (not including 0%), Mg: 0.01% or less (not including 0%), REM: 0.02% or less (not including 0%), and Zr : One or more elements selected from the group consisting of 0.010% or less (not including 0%) may be included.
The steel sheet is suitable for line pipes. Moreover, the steel pipe for line pipes manufactured using the said steel plate is also contained in this invention.

本発明によれば、耐水素誘起割れ性と靭性に確実に優れた鋼板や鋼管を提供できる。これらは、天然ガス・原油の輸送用ラインパイプや貯蔵用タンクなどに好適に用いられる。   ADVANTAGE OF THE INVENTION According to this invention, the steel plate and steel pipe which were reliably excellent in hydrogen-induced crack resistance and toughness can be provided. These are suitably used for natural gas / crude oil transportation line pipes and storage tanks.

本発明者らは、前記課題を解決するために鋭意研究を重ねた。まず本発明者らは、種々の鋼板について、NACE(National Association of Corrosion and Engineer)TM0284に規定されたHIC試験を実施し、耐HIC性を評価した。上記NACE試験は、5%NaCl溶液+0.5%酢酸、pH2.7の溶液中に硫化水素ガスを飽和させて、96時間後にHICの発生を評価する試験である。   The inventors of the present invention have made extensive studies to solve the above problems. First, the present inventors performed HIC tests specified in NACE (National Association of Corrosion and Engineer) TM0284 for various steel plates, and evaluated HIC resistance. The NACE test is a test for evaluating the generation of HIC after 96 hours by saturating hydrogen sulfide gas in a solution of 5% NaCl solution + 0.5% acetic acid, pH 2.7.

次に本発明者らは、HIC試験中に特に水素濃度が高くなることが知られている鋼板表層部(例えばCAMP−ISIJ Vol.24(2011)−P671を参照)について、HIC試験後のシャルピー衝撃特性をASTM A370に従い実施した。その結果、シャルピー衝撃吸収エネルギーの値にばらつきがあることが分かった。   Next, the inventors have investigated the steel sheet surface layer portion (for example, see CAMP-ISIJ Vol. 24 (2011) -P671), which is known to have a particularly high hydrogen concentration during the HIC test, and the Charpy after the HIC test. Impact properties were performed according to ASTM A370. As a result, it was found that there was variation in the value of Charpy impact absorption energy.

その原因について調査、特には、シャルピー衝撃吸収エネルギーの値にばらつきがあり、低い値を示す試料について調べたところ、前記NACE試験で規定される100倍での顕微鏡観察では観察されない(観察限界以下の)微細なHICが発生していることがわかった。更に上記微細なHICの発生原因について検討した結果、鋼材中のArガスが原因であることをまず見出した。   Investigation of the cause, particularly when the value of Charpy impact absorption energy varies and the sample showing a low value was examined, it was not observed by microscopic observation at 100 times as specified in the NACE test (below the observation limit). ) It was found that fine HIC was generated. Furthermore, as a result of examining the cause of the generation of the fine HIC, it was first found that the cause was Ar gas in the steel.

そこで、鋼材中のArガスの含有量と、HIC試験後の鋼板表層部の靭性のばらつきの関係について調査したところ、両者には、明確な相関関係が見出された。さらに詳細に調査した結果、上記Arガス含有量が多い場合には、スラブ中に残存したAr気泡が熱間圧延時に完全に圧着されず微細な欠陥として鋼板中に残存しており、これを起点として微細なHICが発生し、シャルピー試験により鋼板表面に平行な割れとなるセパレーションを発生させるため、シャルピー衝撃吸収エネルギーが低下していることが分かった。   Therefore, when the relationship between the Ar gas content in the steel material and the toughness variation of the steel sheet surface layer after the HIC test was investigated, a clear correlation was found between the two. As a result of further detailed investigation, when the Ar gas content is large, the Ar bubbles remaining in the slab are not completely crimped during hot rolling and remain in the steel sheet as fine defects. It was found that Charpy impact absorption energy was reduced because a fine HIC was generated and a separation that caused cracks parallel to the steel sheet surface was generated by the Charpy test.

次いで、後述する実施例で評価の通り、HIC試験後の鋼板表層部の高位安定した靭性を得るには、上記鋼材中のArガス含有量をどの程度抑制すればよいかについて検討した。その結果、上記鋼材中のAr含有量を0.50μL/cm3以下とすればよいことを見出した。上記Ar含有量は、好ましくは0.30μL/cm3以下、より好ましくは0.25μL/cm3以下である。但し、製造工程における例えば注入ノズルの閉塞の抑制、脱ガスのためのRHでの還流や、介在物浮上分離のためのタンディッシュ(TD)内での撹拌等でArを溶鋼中に吹き込む必要があることから、鋼材中のAr含有量をゼロに抑制することは困難である。 Next, as evaluated in the examples described later, it was examined how much Ar gas content in the steel material should be suppressed in order to obtain a highly stable toughness of the steel sheet surface layer after the HIC test. As a result, the present inventors have found that the Ar content in the steel material may be 0.50 μL / cm 3 or less. The Ar content is preferably 0.30μL / cm 3 or less, more preferably 0.25 [mu] L / cm 3 or less. However, it is necessary to blow Ar into the molten steel in the manufacturing process, for example, by suppressing clogging of the injection nozzle, refluxing with RH for degassing, stirring in a tundish (TD) for inclusion floating separation, etc. Therefore, it is difficult to suppress the Ar content in the steel material to zero.

尚、上記「鋼材中のArガス含有量」は、後述する実施例に記載の方法で求められる。   The “Ar gas content in the steel” is determined by the method described in the examples described later.

優れた耐HIC性と靭性を確保するには、上記鋼材中のAr含有量の制御と共に鋼材の成分組成を制御する必要がある。更には例えばラインパイプ用鋼材として求められるその他の特性(高強度や優れた溶接性等)を確保するにも、鋼板の成分組成を下記の通りとする必要がある。以下、各成分の規定理由について説明する。   In order to ensure excellent HIC resistance and toughness, it is necessary to control the component composition of the steel material together with the control of the Ar content in the steel material. Furthermore, in order to ensure other characteristics (such as high strength and excellent weldability) required as steel materials for line pipes, for example, it is necessary to set the component composition of the steel sheet as follows. Hereinafter, the reasons for defining each component will be described.

〔成分組成〕
[C:0.02〜0.15%]
Cは、母材および溶接部の強度を確保するために必要不可欠な元素であり、0.02%以上含有させる必要がある。C量は、好ましくは0.03%以上であり、より好ましくは0.05%以上である。一方、C量が多すぎるとHAZ靭性と溶接性が劣化する。またC量が過剰であると、HICの起点や破壊進展経路となるNbCや島状マルテンサイトが生成しやすくなる。よってC量は0.15%以下とする必要がある。好ましくは0.12%以下、より好ましくは0.10%以下である。
(Component composition)
[C: 0.02 to 0.15%]
C is an indispensable element for securing the strength of the base material and the welded portion, and needs to be contained by 0.02% or more. The amount of C is preferably 0.03% or more, and more preferably 0.05% or more. On the other hand, if the amount of C is too large, the HAZ toughness and weldability deteriorate. On the other hand, if the amount of C is excessive, NbC and island-shaped martensite that become the starting point of HIC and the fracture propagation path are likely to be generated. Therefore, the C amount needs to be 0.15% or less. Preferably it is 0.12% or less, More preferably, it is 0.10% or less.

[Si:0.02〜0.50%]
Siは、脱酸作用を有すると共に、母材および溶接部の強度向上に有効な元素である。これらの効果を得るため、Si量を0.02%以上とする。Si量は、好ましくは0.05%以上であり、より好ましくは0.15%以上である。しかし、Si量が多すぎると溶接性や靭性が劣化する。またSi量が過剰であると、島状マルテンサイトが生じてHICが発生・進展する。よってSi量は、0.50%以下に抑える必要がある。Si量は、好ましくは0.45%以下、より好ましくは0.35%以下である。
[Si: 0.02 to 0.50%]
Si is an element that has a deoxidizing action and is effective in improving the strength of the base material and the welded portion. In order to obtain these effects, the Si content is set to 0.02% or more. The amount of Si is preferably 0.05% or more, and more preferably 0.15% or more. However, if the amount of Si is too large, weldability and toughness deteriorate. If the amount of Si is excessive, island martensite is generated and HIC is generated and progresses. Therefore, the amount of Si needs to be suppressed to 0.50% or less. The amount of Si is preferably 0.45% or less, more preferably 0.35% or less.

[Mn:0.6〜2.0%]
Mnは、母材および溶接部の強度向上に有効な元素であり、本発明では0.6%以上含有させる。Mn量は、好ましくは0.8%以上であり、より好ましくは1.0%以上である。しかし、Mn量が多すぎると、MnSが生成されて耐水素誘起割れ性が劣化するだけでなくHAZ靭性や溶接性も劣化する。よってMn量の上限を2.0%とする。Mn量は、好ましくは1.8%以下であり、より好ましくは1.5%以下、さらに好ましくは1.2%以下である。
[Mn: 0.6 to 2.0%]
Mn is an element effective for improving the strength of the base material and the welded portion, and is contained in an amount of 0.6% or more in the present invention. The amount of Mn is preferably 0.8% or more, and more preferably 1.0% or more. However, if the amount of Mn is too large, not only MnS is produced and the hydrogen-induced cracking resistance deteriorates, but also the HAZ toughness and weldability deteriorate. Therefore, the upper limit of the Mn amount is set to 2.0%. The amount of Mn is preferably 1.8% or less, more preferably 1.5% or less, and still more preferably 1.2% or less.

[P:0.030%以下(0%を含まない)]
Pは、鋼材中に不可避的に含まれる元素であり、P量が0.030%を超えると母材やHAZ部の靭性劣化が著しく、耐水素誘起割れ性も劣化する。よって本発明ではP量を0.030%以下に抑える。P量は、好ましくは0.020%以下、より好ましくは0.010%以下である。
[P: 0.030% or less (excluding 0%)]
P is an element inevitably contained in the steel material. If the amount of P exceeds 0.030%, the toughness of the base material and the HAZ part is significantly deteriorated, and the resistance to hydrogen-induced cracking is also deteriorated. Therefore, in the present invention, the amount of P is suppressed to 0.030% or less. The amount of P is preferably 0.020% or less, more preferably 0.010% or less.

[S:0.003%以下(0%を含まない)]
Sは、多すぎるとMnSを多量に生成し耐水素誘起割れ性を著しく劣化させる元素であるため、本発明ではS量の上限を0.003%とする。S量は、好ましくは0.002%以下であり、より好ましくは0.0015%以下、更に好ましくは0.0010%以下である。この様に耐水素誘起割れ性向上の観点からは少ない方が望ましい。
[S: 0.003% or less (excluding 0%)]
If S is too much, it is an element that produces a large amount of MnS and significantly deteriorates the resistance to hydrogen-induced cracking. Therefore, in the present invention, the upper limit of the amount of S is set to 0.003%. The amount of S is preferably 0.002% or less, more preferably 0.0015% or less, and still more preferably 0.0010% or less. Thus, the smaller one is desirable from the viewpoint of improving hydrogen-induced crack resistance.

[Al:0.010〜0.08%]
Alは強脱酸元素であり、Al量が少ないと、酸化物中のCa濃度が上昇、即ち、Ca系介在物が鋼板表層部に形成されやすくなり微細なHICが発生する。よって本発明では、Alを0.010%以上とする必要がある。Al量は、好ましくは0.020%以上、より好ましくは0.030%以上である。一方、Al含有量が多すぎると、Alの酸化物がクラスター状に生成し水素誘起割れの起点となる。よってAl量は0.08%以下とする必要がある。Al量は、好ましくは0.06%以下であり、より好ましくは0.05%以下である。
[Al: 0.010 to 0.08%]
Al is a strong deoxidizing element. When the amount of Al is small, the Ca concentration in the oxide increases, that is, Ca inclusions are easily formed in the surface layer portion of the steel sheet and fine HIC is generated. Therefore, in the present invention, Al needs to be 0.010% or more. The amount of Al is preferably 0.020% or more, more preferably 0.030% or more. On the other hand, when there is too much Al content, the oxide of Al will produce | generate in cluster shape and will become the starting point of a hydrogen induced crack. Therefore, the Al amount needs to be 0.08% or less. The amount of Al is preferably 0.06% or less, and more preferably 0.05% or less.

[Ca:0.0003〜0.0060%]
Caは、硫化物の形態を制御する作用があり、CaSを形成することによってMnSの形成を抑制する効果がある。この効果を得るには、Ca量を0.0003%以上とする必要がある。Ca量は、好ましくは0.0005%以上であり、より好ましくは0.0010%以上である。一方、Ca量が0.0060%を超えると、Ca系介在物を起点にHICが多く発生する。よって本発明では、Ca量の上限を0.0060%とする。Ca量は、好ましくは0.0045%以下であり、より好ましくは0.0035%以下、さらに好ましくは0.0025%以下である。
[Ca: 0.0003 to 0.0060%]
Ca has the effect | action which controls the form of sulfide, and there exists an effect which suppresses formation of MnS by forming CaS. In order to obtain this effect, the Ca content needs to be 0.0003% or more. The Ca content is preferably 0.0005% or more, and more preferably 0.0010% or more. On the other hand, when the Ca content exceeds 0.0060%, a large amount of HIC is generated starting from Ca-based inclusions. Therefore, in the present invention, the upper limit of the Ca amount is set to 0.0060%. The Ca content is preferably 0.0045% or less, more preferably 0.0035% or less, and still more preferably 0.0025% or less.

[N:0.001〜0.01%]
Nは、鋼組織中にTiNとして析出し、HAZ部のオーステナイト粒の粗大化を抑制し、さらにフェライト変態を促進させて、HAZ部の靭性を向上させる元素である。この効果を得るにはNを0.001%以上含有させる必要がある。N量は、好ましくは0.003%以上であり、より好ましくは0.0040%以上である。しかしN量が多すぎると、固溶Nの存在によりHAZ靭性がかえって劣化するため、N量は、0.01%以下とする必要がある。好ましくは0.008%以下であり、より好ましくは0.0060%以下である。
[N: 0.001 to 0.01%]
N is an element that precipitates as TiN in the steel structure, suppresses coarsening of the austenite grains in the HAZ part, further promotes ferrite transformation, and improves the toughness of the HAZ part. In order to acquire this effect, it is necessary to contain N 0.001% or more. The N amount is preferably 0.003% or more, and more preferably 0.0040% or more. However, if the amount of N is too large, the HAZ toughness deteriorates due to the presence of solute N, so the amount of N needs to be 0.01% or less. Preferably it is 0.008% or less, More preferably, it is 0.0060% or less.

[O:0.0045%以下(0%を含まない)]
O(酸素)は、清浄度向上の観点から低いほうが望ましく、Oが多量に含まれる場合、靭性が劣化することに加え、酸化物を起点にHICが発生し、耐水素誘起割れ性が劣化する。この観点から、O量は0.0045%以下とする必要があり、好ましくは0.0030%以下、より好ましくは0.0020%以下である。
[O: 0.0045% or less (excluding 0%)]
O (oxygen) is preferably low from the viewpoint of improving cleanliness. When a large amount of O is contained, in addition to deterioration of toughness, HIC is generated starting from oxide, and resistance to hydrogen-induced cracking is deteriorated. . From this viewpoint, the amount of O needs to be 0.0045% or less, preferably 0.0030% or less, more preferably 0.0020% or less.

[Ca/S(質量比):2.0以上]
前述の通り、Sは硫化物系介在物としてMnSを形成し、該MnSを起点にHICが発生する。このため、Caを添加して鋼中の硫化物系介在物をCaSとして形態を制御し、耐HIC性に対するSの無害化を図る。この作用効果を十分に発揮させるには、Ca/Sを2.0以上とする必要がある。Ca/Sは、好ましくは2.5以上、より好ましくは3.0以上である。尚、本発明で規定するCa量とS量からCa/Sの上限は17程度となる。
[Ca / S (mass ratio): 2.0 or more]
As described above, S forms MnS as sulfide inclusions, and HIC is generated starting from the MnS. For this reason, Ca is added to control the form of the sulfide inclusions in the steel as CaS, thereby detoxifying S against HIC resistance. In order to fully exhibit this effect, Ca / S needs to be 2.0 or more. Ca / S is preferably 2.5 or more, more preferably 3.0 or more. Incidentally, the upper limit of Ca / S is about 17 from the Ca amount and S amount specified in the present invention.

[(Ca−1.25S)/O ≦ 1.80]
Ca系酸硫化物によるHICの発生を抑制するには、Ca系介在物の中でも特に凝集合体を形成しやすいCaOを抑制することが有効である。そしてそのためには、鋼中全Ca量から硫化物(CaS)として存在するCa分を差し引いたCa量(Ca−1.25S)が、O量に対して過剰とならないようにしなければならない。O量に対してCa量(Ca−1.25S)が過剰であると、酸化物系介在物としてCaOが形成され易くなり、該CaOの凝集合体(粗大なCa系介在物)が鋼板表層部に大量に形成されやすくなる。これを抑制するため、本発明者らは、(Ca−1.25S)/Oと靭性との関係について検討したところ、優れた靭性を得るには(Ca−1.25S)/Oを1.80以下とする必要があることを見出した。(Ca−1.25S)/Oは、好ましくは1.40以下、より好ましくは1.30以下、更に好ましくは1.20以下、特に好ましくは1.00以下である。尚、CaOと同様に凝集合体を形成しやすいAl23を抑制する観点から、(Ca−1.25S)/Oの下限値は0.1程度となる。
[(Ca-1.25S) /O≦1.80]
In order to suppress the generation of HIC due to Ca-based oxysulfides, it is effective to suppress CaO, which easily forms aggregated coal, among Ca-based inclusions. For this purpose, the Ca amount (Ca-1.25S) obtained by subtracting the Ca component existing as sulfide (CaS) from the total Ca amount in the steel must not be excessive with respect to the O amount. When the amount of Ca (Ca-1.25S) is excessive with respect to the amount of O, CaO is likely to be formed as oxide inclusions, and the aggregated coalescence (coarse Ca-based inclusions) of the CaO is the steel sheet surface layer portion. It becomes easy to be formed in large quantities. In order to suppress this, the present inventors examined the relationship between (Ca-1.25S) / O and toughness, and in order to obtain excellent toughness, (Ca-1.25S) / O is 1. It was found that it was necessary to make it 80 or less. (Ca-1.25S) / O is preferably 1.40 or less, more preferably 1.30 or less, still more preferably 1.20 or less, and particularly preferably 1.00 or less. In addition, the lower limit of (Ca-1.25S) / O is about 0.1 from the viewpoint of suppressing Al 2 O 3 that easily forms an aggregated coal as in CaO.

本発明の鋼材(鋼板、鋼管)の成分は、上記の通りであり、残部は鉄および不可避不純物からなる。また、上記元素に加えて更に、
(a)下記量のB、V、Cu、Ni、Cr、Mo、およびNbよりなる群から選択される1種類以上の元素を含有させることによって、強度や靭性をより高めたり、
(b)下記量のTi、Mg、REM、およびZrよりなる群から選択される1種類以上の元素を含有させることによって、HAZ靭性の向上や、脱硫が促進されて耐HIC性をより改善することができる。以下、これらの元素について詳述する。
The components of the steel material (steel plate, steel pipe) of the present invention are as described above, and the balance consists of iron and inevitable impurities. In addition to the above elements,
(A) By containing one or more elements selected from the group consisting of the following amounts of B, V, Cu, Ni, Cr, Mo, and Nb, the strength and toughness can be further increased,
(B) By including one or more elements selected from the group consisting of Ti, Mg, REM, and Zr in the following amounts, the HAZ toughness is improved and desulfurization is promoted to further improve the HIC resistance. be able to. Hereinafter, these elements will be described in detail.

[B:0.005%以下(0%を含まない)]
Bは、焼入れ性を高め、母材および溶接部の強度を高めるとともに、溶接時に、加熱されたHAZ部が冷却する過程でNと結合してBNを析出し、オーステナイト粒内からのフェライト変態を促進するため、HAZ靭性を向上させる。この効果を得るには、B量を0.0002%以上含有させることが好ましい。B量は、より好ましくは0.0005%以上であり、更に好ましくは0.0010%以上である。しかし、B含有量が過多になると、母材とHAZ部の靭性が劣化したり、溶接性の劣化を招くため、B量は0.005%以下とすることが好ましい。B量は、より好ましくは0.004%以下、更に好ましくは0.0030%以下である。
[B: 0.005% or less (excluding 0%)]
B enhances hardenability, enhances the strength of the base metal and the welded part, and bonds with N during the process of cooling the heated HAZ part during welding, thereby precipitating BN and causing ferrite transformation from within the austenite grains. In order to promote, HAZ toughness is improved. In order to acquire this effect, it is preferable to contain B amount 0.0002% or more. The amount of B is more preferably 0.0005% or more, and further preferably 0.0010% or more. However, if the B content is excessive, the toughness between the base material and the HAZ part deteriorates or weldability deteriorates, so the B content is preferably 0.005% or less. The amount of B is more preferably 0.004% or less, and still more preferably 0.0030% or less.

[V:0.1%以下(0%を含まない)]
Vは、強度の向上に有効な元素であり、この効果を得るには0.003%以上含有させることが好ましい。より好ましくは0.010%以上である。一方、V含有量が0.1%を超えると溶接性と母材靭性が劣化する。よってV量は、0.1%以下とすることが好ましく、より好ましくは0.08%以下である。
[V: 0.1% or less (excluding 0%)]
V is an element effective for improving the strength. To obtain this effect, V is preferably contained in an amount of 0.003% or more. More preferably, it is 0.010% or more. On the other hand, if the V content exceeds 0.1%, weldability and base metal toughness deteriorate. Therefore, the V amount is preferably 0.1% or less, and more preferably 0.08% or less.

[Cu:1.5%以下(0%を含まない)]
Cuは、焼入れ性を向上させて強度を高めるのに有効な元素である。この効果を得るにはCuを0.01%以上含有させることが好ましい。Cu量は、より好ましくは0.05%以上、更に好ましくは0.10%以上である。しかし、Cu含有量が1.5%を超えると靭性が劣化するため、1.5%以下とすることが好ましい。Cu量は、より好ましくは1.0%以下、更に好ましくは0.50%以下である。
[Cu: 1.5% or less (excluding 0%)]
Cu is an element effective for improving the hardenability and increasing the strength. In order to acquire this effect, it is preferable to contain 0.01% or more of Cu. The amount of Cu is more preferably 0.05% or more, and still more preferably 0.10% or more. However, if the Cu content exceeds 1.5%, the toughness deteriorates, so it is preferable to set it to 1.5% or less. The amount of Cu is more preferably 1.0% or less, still more preferably 0.50% or less.

[Ni:1.5%以下(0%を含まない)]
Niは、母材および溶接部の強度と靭性の向上に有効な元素である。この効果を得るためには、Ni量を0.01%以上とすることが好ましい。より好ましくは0.05%以上、更に好ましくは0.10%以上である。しかしNiが多量に含まれると、構造用鋼材として極めて高価となるため、経済的な観点からNi量は1.5%以下とすることが好ましい。Ni量は、より好ましくは1.0%以下、更に好ましくは0.50%以下である。
[Ni: 1.5% or less (excluding 0%)]
Ni is an element effective for improving the strength and toughness of the base material and the welded portion. In order to obtain this effect, the Ni content is preferably 0.01% or more. More preferably, it is 0.05% or more, More preferably, it is 0.10% or more. However, if Ni is contained in a large amount, it becomes extremely expensive as a structural steel material. Therefore, the Ni content is preferably 1.5% or less from an economical viewpoint. The amount of Ni is more preferably 1.0% or less, and still more preferably 0.50% or less.

[Cr:1.5%以下(0%を含まない)]
Crは、強度の向上に有効な元素であり、この効果を得るには0.01%以上含有させることが好ましい。Cr量は、より好ましくは0.05%以上、更に好ましくは0.10%以上である。一方、Cr量が1.5%を超えるとHAZ靭性が劣化する。よってCr量は1.5%以下とすることが好ましい。Cr量は、より好ましくは1.0%以下、更に好ましくは0.50%以下である。
[Cr: 1.5% or less (excluding 0%)]
Cr is an element effective for improving the strength, and in order to obtain this effect, it is preferable to contain 0.01% or more. The amount of Cr is more preferably 0.05% or more, and still more preferably 0.10% or more. On the other hand, if the Cr content exceeds 1.5%, the HAZ toughness deteriorates. Therefore, the Cr content is preferably 1.5% or less. The amount of Cr is more preferably 1.0% or less, and still more preferably 0.50% or less.

[Mo:1.5%以下(0%を含まない)]
Moは、母材の強度と靭性の向上に有効な元素である。この効果を得るには、Mo量を0.01%以上とすることが好ましい。Mo量は、より好ましくは0.05%以上、更に好ましくは0.10%以上である。しかし、Mo量が1.5%を超えるとHAZ靭性および溶接性が劣化する。よってMo量は1.5%以下とすることが好ましく、より好ましくは1.0%以下、更に好ましくは0.50%以下である。
[Mo: 1.5% or less (excluding 0%)]
Mo is an element effective for improving the strength and toughness of the base material. In order to obtain this effect, the Mo amount is preferably 0.01% or more. The amount of Mo is more preferably 0.05% or more, and still more preferably 0.10% or more. However, if the Mo amount exceeds 1.5%, the HAZ toughness and weldability deteriorate. Therefore, the Mo amount is preferably 1.5% or less, more preferably 1.0% or less, and still more preferably 0.50% or less.

[Nb:0.06%以下(0%を含まない)]
Nbは、溶接性を劣化させることなく強度と母材靭性を高めるのに有効な元素である。この効果を得るには、Nb量を0.002%以上とすることが好ましい。Nb量は、より好ましくは0.010%以上、更に好ましくは0.020%以上である。しかし、Nb量が0.06%を超えると母材とHAZの靭性が劣化する。よって、本発明ではNb量の上限を0.06%とすることが好ましい。Nb量は、より好ましくは0.050%以下、更に好ましくは0.040%以下、より更に好ましくは0.030%以下である。
[Nb: 0.06% or less (excluding 0%)]
Nb is an element effective for increasing strength and base metal toughness without degrading weldability. In order to obtain this effect, the Nb content is preferably 0.002% or more. The Nb amount is more preferably 0.010% or more, and still more preferably 0.020% or more. However, if the Nb content exceeds 0.06%, the toughness of the base material and the HAZ deteriorates. Therefore, in the present invention, the upper limit of the Nb amount is preferably 0.06%. The Nb amount is more preferably 0.050% or less, still more preferably 0.040% or less, and still more preferably 0.030% or less.

[Ti:0.03%以下(0%を含まない)]
Tiは、鋼中にTiNとして析出することで、溶接時のHAZ部でのオーステナイト粒の粗大化を防止しかつフェライト変態を促進するため、HAZ部の靭性を向上させるのに有効な元素である。さらにTiは、脱硫作用を示すため耐HIC特性の向上にも有効な元素である。これらの効果を得るには、Tiを0.003%以上含有させることが好ましい。より好ましくは0.005%以上、更に好ましくは0.010%以上である。一方、Ti含有量が過多になると、固溶TiやTiCが析出して母材とHAZ部の靭性が劣化するため、0.03%以下とすることが好ましい。Ti量は、より好ましくは0.02%以下である。
[Ti: 0.03% or less (excluding 0%)]
Ti is an element effective for improving the toughness of the HAZ part because it precipitates as TiN in the steel to prevent coarsening of austenite grains in the HAZ part during welding and promote ferrite transformation. . Further, Ti is an element effective for improving the HIC resistance because it exhibits a desulfurization action. In order to obtain these effects, it is preferable to contain 0.003% or more of Ti. More preferably it is 0.005% or more, and still more preferably 0.010% or more. On the other hand, if the Ti content is excessive, solid solution Ti or TiC is precipitated and the toughness of the base material and the HAZ part is deteriorated. Therefore, the content is preferably 0.03% or less. The amount of Ti is more preferably 0.02% or less.

[Mg:0.01%以下(0%を含まない)]
Mgは、結晶粒の微細化を通じて靭性の向上に有効な元素であり、また脱硫作用を示すため耐HIC特性の向上にも有効な元素である。これらの効果を得るには、Mgを0.0003%以上含有させることが好ましい。より好ましくは0.001%以上である。一方、Mgを過剰に含有させても効果が飽和するため、Mg量の上限は0.01%とすることが好ましい。Mg量は、より好ましくは0.005%以下である。
[Mg: 0.01% or less (excluding 0%)]
Mg is an element effective for improving toughness through refinement of crystal grains, and is also an element effective for improving HIC resistance since it exhibits a desulfurization action. In order to acquire these effects, it is preferable to contain 0.0003% or more of Mg. More preferably, it is 0.001% or more. On the other hand, since the effect is saturated even if Mg is contained excessively, the upper limit of the amount of Mg is preferably 0.01%. The amount of Mg is more preferably 0.005% or less.

[REM:0.02%以下(0%を含まない)]
REM(希土類元素)は、脱硫作用によりMnSの生成を抑制し耐水素誘起割れ性を高めるのに有効な元素である。このような効果を発揮させるには、REMを0.0002%以上含有させることが好ましい。REM量は、より好ましくは0.0005%以上、更に好ましくは0.0010%以上である。一方、REMを多量に含有させても効果が飽和する。よってREM量の上限は0.02%とすることが好ましい。鋳造時の浸漬ノズルの閉塞を抑えて生産性を高める観点からは、REM量を0.015%以下とすることがより好ましく、更に好ましくは0.010%以下、より更に好ましくは0.0050%以下である。尚、本発明において、上記REMとは、ランタノイド元素(LaからLuまでの15元素)とSc(スカンジウム)およびYを意味する。
[REM: 0.02% or less (excluding 0%)]
REM (rare earth element) is an element effective for suppressing the formation of MnS by the desulfurization action and enhancing the resistance to hydrogen-induced cracking. In order to exhibit such an effect, it is preferable to contain REM 0.0002% or more. The amount of REM is more preferably 0.0005% or more, and further preferably 0.0010% or more. On the other hand, the effect is saturated even if a large amount of REM is contained. Therefore, the upper limit of the REM amount is preferably 0.02%. From the viewpoint of increasing productivity by suppressing the clogging of the immersion nozzle during casting, the REM content is more preferably 0.015% or less, still more preferably 0.010% or less, and still more preferably 0.0050%. It is as follows. In the present invention, the REM means a lanthanoid element (15 elements from La to Lu), Sc (scandium) and Y.

[Zr:0.010%以下(0%を含まない)]
Zrは、脱硫作用により耐HIC特性を向上させるとともに、酸化物を形成し微細に分散することでHAZ靭性の向上に寄与する元素である。これらの効果を発揮させるには、Zr量を0.0003%以上とすることが好ましい。Zr量は、より好ましくは0.0005%以上、更に好ましくは0.0010%以上、より更に好ましくは0.0015%以上である。一方、Zrを過剰に添加すると粗大な介在物を形成して耐水素誘起割れ性および母材靭性を劣化させる。よってZr量は0.010%以下とすることが好ましい。Zr量は、より好ましくは0.0070%以下、更に好ましくは0.0050%以下、より更に好ましくは0.0030%以下である。
[Zr: 0.010% or less (excluding 0%)]
Zr is an element that contributes to the improvement of HAZ toughness by improving HIC resistance by desulfurization and forming oxides and finely dispersing them. In order to exert these effects, the Zr content is preferably 0.0003% or more. The amount of Zr is more preferably 0.0005% or more, still more preferably 0.0010% or more, and still more preferably 0.0015% or more. On the other hand, when Zr is added excessively, coarse inclusions are formed and the hydrogen-induced crack resistance and the base metal toughness are deteriorated. Therefore, the Zr content is preferably 0.010% or less. The amount of Zr is more preferably 0.0070% or less, still more preferably 0.0050% or less, and still more preferably 0.0030% or less.

以上、本発明で規定する鋼板について説明した。本発明の鋼板を製造する方法は鋼材中のArガス含有量が上記規定を満たす鋼板が得られる方法であれば特に限定されない。上記規定の鋼板を容易に得る方法として、下記の方法が推奨される。   In the above, the steel plate prescribed | regulated by this invention was demonstrated. The method for producing the steel plate of the present invention is not particularly limited as long as the Ar gas content in the steel material is a method for obtaining a steel plate satisfying the above-mentioned rules. The following method is recommended as a method for easily obtaining the steel sheet specified above.

〔製造方法〕
上記Arガス含有量を達成するには、連続鋳造工程において、鋳型内に、融点が1550℃以上である長径が3μm以上の介在物の個数密度を、好ましくは3個/cm2以上存在させることが推奨される。
〔Production method〕
In order to achieve the Ar gas content, in the continuous casting process, the number density of inclusions having a major axis of 3 μm or more with a melting point of 1550 ° C. or more is preferably 3 pieces / cm 2 or more in the mold. Is recommended.

上記融点が1550℃以上の介在物は、鋳型内で固体として存在するため溶鋼との濡れ性が悪く、介在物同士が凝集するとともに、介在物中にArガスを巻き込むことで体積膨張するため浮上が容易となる。また長径が3μm以上の比較的粗大な介在物は、鋳型内で相互に接触してより粗大化するとともにAr気泡を巻き込むため、鋳型内でのAr気泡の浮上分離を促進させることができる。その結果、鋼材中のArガス含有量を低減できる。特に、鋳型内に溶鋼を注入する以前の工程でArガスを使用した場合、鋼材中にArガスが残存しやすいため、上記介在物による浮上分離が有効である。   Inclusions with a melting point of 1550 ° C. or higher are present as solids in the mold, so that the wettability with molten steel is poor, the inclusions aggregate together, and float due to volume expansion by involving Ar gas in the inclusions. Becomes easy. In addition, relatively coarse inclusions having a major axis of 3 μm or more come into contact with each other in the mold and become coarser, and involve Ar bubbles, thereby promoting the floating separation of Ar bubbles in the mold. As a result, the Ar gas content in the steel material can be reduced. In particular, when Ar gas is used in the process before pouring molten steel into the mold, Ar gas tends to remain in the steel material, so that the floating separation by the inclusions is effective.

上記融点が1550℃以上の介在物として、例えばAl23やCaOおよびこれらの複合介在物が挙げられる。複合介在物等で融点が不明な場合は、エネルギー分散型X線分光法(EDX)等により介在物の定量分析を実施し、その組成を模擬した人工介在物を作成し、レーザー顕微鏡等により該人工介在物の溶解が開始する温度を測定することで融点を把握することができる。また、より簡易的には、鋳型内での液体介在物は凝固後に球形で観察されることを利用して、アスペクト比が1.3以上の介在物を1550℃以上の介在物として取り扱ってもよい。 Examples of inclusions having a melting point of 1550 ° C. or higher include Al 2 O 3 and CaO, and composite inclusions thereof. If the melting point is unknown for composite inclusions, etc., quantitative analysis of the inclusions is performed by energy dispersive X-ray spectroscopy (EDX), etc., artificial inclusions simulating the composition are created, The melting point can be determined by measuring the temperature at which the dissolution of the artificial inclusion starts. More simply, by utilizing the fact that liquid inclusions in a mold are observed in a spherical shape after solidification, inclusions having an aspect ratio of 1.3 or more can be handled as inclusions having a temperature of 1550 ° C. or more. Good.

上記介在物の個数密度は、より好ましくは5個/cm2以上、更に好ましくは10個/cm2以上であるが、上記介在物の個数密度が過剰となっても母材とHAZ部の靭性が劣化するため、上記介在物の個数密度の上限は、おおよそ100個/cm2である。 The number density of the inclusions is more preferably 5 pieces / cm 2 or more, and even more preferably 10 pieces / cm 2 or more. However, the toughness of the base material and the HAZ part even if the number density of the inclusions is excessive. Therefore, the upper limit of the number density of the inclusions is approximately 100 / cm 2 .

上記介在物の個数密度を達成する具体的な手段としては、例えば、精錬工程におけるRHでの環流時間を45分以下とし、上記RHでCaを添加してから15分以上経過した後に、
(a)熱間再使用タンディッシュを用いた連続鋳造機において、前チャージ鋳造終了後30分以上経過したタンディッシュを用いて鋳造する;さらに/または、
(b)熱間再使用タンディッシュ内の溶鋼に金属Alを、例えば0.04kg/ton以上(例えば0.2kg/ton程度とすることができる。上限はおおよそ0.50kg/ton以下、好ましくは0.40kg/ton以下)添加した後に鋳造する;等の方法が挙げられる。
As a specific means for achieving the number density of inclusions, for example, the recirculation time in RH in the refining process is 45 minutes or less, and after 15 minutes or more have elapsed from the addition of Ca in the RH,
(A) In a continuous casting machine using a hot reuse tundish, casting is performed using a tundish that has passed 30 minutes or more after the completion of the pre-charge casting; and / or
(B) Metal Al can be added to the molten steel in the hot reuse tundish, for example, 0.04 kg / ton or more (for example, about 0.2 kg / ton. The upper limit is about 0.50 kg / ton or less, preferably 0.40 kg / ton or less) and then casting.

鋼材中のArガス含有量を減らす別の手段として、注入ノズル、RH、タンディッシュでのArの使用を抑制・停止することも挙げられる。しかし上記注入ノズルの閉塞を抑制して歩留まりの低下を防ぐには、注入ノズルの吐出孔上部から50mm以上の位置からArを吹き込むことが有効であるため、注入ノズルでのArの使用の停止は推奨されない。尚、規定のArガス含有量を達成するには、上記注入ノズルにおけるAr吹込み量(流量)を、好ましくは9.0L(リットル)/t(トン)以下(より好ましくは6.0L/t以下)とすることが推奨される。尚、上記注入ノズルでの吹き込みに用いるガスをArガスから窒素ガスに変えることも考えられるが、窒素ガスの場合、鋼板のN量の制御ができず靭性が劣化しやすくなるため、好ましくない。   Another means for reducing the Ar gas content in the steel material is to suppress and stop the use of Ar in the injection nozzle, RH, and tundish. However, in order to suppress the blockage of the injection nozzle and prevent a decrease in yield, it is effective to blow Ar from a position of 50 mm or more from the upper part of the discharge hole of the injection nozzle. Not recommended. In order to achieve the prescribed Ar gas content, the Ar blowing amount (flow rate) in the injection nozzle is preferably 9.0 L (liter) / t (tons) or less (more preferably 6.0 L / t). The following is recommended: Although it is conceivable to change the gas used for blowing in the injection nozzle from Ar gas to nitrogen gas, the nitrogen gas is not preferable because the N amount of the steel sheet cannot be controlled and the toughness tends to deteriorate.

本発明では、上記の様にして鋳造した後の工程については特に問わず、常法に従って熱間圧延を行い、鋼板を製造することができる。また、該鋼板を用い、一般的に行われている方法でラインパイプ用鋼管を製造することができる。本発明の鋼板を用いて得られるラインパイプ用鋼管もまた耐HIC性および靭性に優れている。   In this invention, it does not ask | require in particular about the process after casting as mentioned above, According to a conventional method, it can hot-roll and can manufacture a steel plate. Moreover, the steel pipe for line pipes can be manufactured by the method generally performed using this steel plate. The steel pipe for line pipes obtained using the steel sheet of the present invention is also excellent in HIC resistance and toughness.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

表1に示す成分組成の鋼を溶製し、連続鋳造により、厚みが280mmである鋼片(スラブ)を得た。尚、鋳型内において長径3μm以上の介在物個数が3個/cm2以上になるよう鋳造した。具体的には、該介在物の個数制御は、本実施例では、RHでの環流時間を5分以上45分以下とし、RH環流後Caを添加し、その後15分以上45分以下経過させた。その後、熱間再使用タンディッシュを用いた連続鋳造機において、前チャージの鋳造終了後30分以上60分以下を経過したタンディッシュに溶鋼を満たし、その後にタンディッシュ内の溶鋼に0.04kg/ton以上(上限は0.50kg/ton程度)の金属Alを添加して鋳造を行った。尚、介在物個数密度の測定は、鋳造後10分後における鋳型内から採取したサンプルを用いた。 Steel having the component composition shown in Table 1 was melted and a steel piece (slab) having a thickness of 280 mm was obtained by continuous casting. The casting was performed so that the number of inclusions having a major axis of 3 μm or more in the mold was 3 / cm 2 or more. Specifically, in the present example, the number of inclusions was controlled such that the reflux time in RH was 5 minutes to 45 minutes, Ca was added after RH reflux, and then 15 minutes to 45 minutes were passed. . Thereafter, in a continuous casting machine using a hot reuse tundish, the molten steel is filled with the tundish that has passed 30 minutes or more and 60 minutes or less after the completion of the casting of the precharge, and then 0.04 kg / Casting was performed by adding metallic Al of ton or more (upper limit is about 0.50 kg / ton). The inclusion number density was measured using a sample taken from the mold 10 minutes after casting.

上記鋳型内での介在物個数は、鋳型内より溶鋼サンプルを採取し、SEM(視野サイズ:400倍、視野数:30視野)により観察し、長径が3μm以上であって、アスペクト比が1.3以上の介在物を融点が1550℃以上の介在物とみなして、その個数密度を求めた。表2には、上記方法により鋳型内に上記介在物の個数密度を3個/cm2以上存在させた場合を「○」、そうでない場合を「×」と示している。 The number of inclusions in the mold was determined by taking a molten steel sample from the mold and observing with a SEM (field size: 400 times, number of fields: 30 fields of view), the major axis was 3 μm or more, and the aspect ratio was 1. The number density was determined by regarding three or more inclusions as inclusions having a melting point of 1550 ° C. or more. Table 2 shows “◯” when the number density of the inclusions is 3 or more / cm 2 or more in the mold by the above method, and “x” otherwise.

その後、連続鋳造により製造した鋼片を、1050〜1250℃となるよう上記スラブを再加熱した後、鋼板の表面温度で900℃以上、計算により求められる鋼板平均温度(1000℃以上)の累積圧下率が40%以上でかつ1パス当りの圧下率が10%以上であるパスが2パス以上になるよう熱間圧延し、その後さらに、700℃以上900℃未満の累積圧下率が20%以上となるよう熱間圧延を行い、圧延終了温度が700℃以上900℃未満となるようにし、その後、650℃以上の温度から水冷を開始し、350〜600℃の温度で停止し、更にその後、室温まで空冷して、種々の成分組成の鋼板(9〜50mm板厚×2000〜3500mm幅×12000〜35000mm長さ)を得た。   Then, after reheating the slab so that the steel slab produced by continuous casting has a temperature of 1050 to 1250 ° C., the steel sheet surface temperature is 900 ° C. or higher, and the cumulative reduction of the steel plate average temperature (1000 ° C. or higher) obtained by calculation. The hot rolling is performed so that the pass having a reduction rate of 40% or more and the reduction rate per pass of 10% or more becomes 2 passes or more, and then the cumulative reduction rate of 700 ° C. or more and less than 900 ° C. is 20% or more. Hot rolling is performed so that the rolling end temperature is 700 ° C. or higher and lower than 900 ° C., then water cooling is started from a temperature of 650 ° C. or higher, and stopped at a temperature of 350 to 600 ° C. To obtain steel plates (9 to 50 mm plate thickness x 2000 to 3500 mm width x 12000 to 35000 mm length) having various component compositions.

そして各鋼板を用いて、下記に示す通り、鋼材中のArガス含有量の測定を行った。また、HIC試験を行って耐HIC性を評価し、シャルピー衝撃試験を行って靭性を評価した。   And using each steel plate, as shown below, the Ar gas content in the steel was measured. Moreover, the HIC test was conducted to evaluate the HIC resistance, and the Charpy impact test was conducted to evaluate the toughness.

[鋼材中のArガス含有量の測定]
鋼材表面より切り出した製品板厚×15mm×15mmの試験片を真空チャンバー中に装入し、真空度を2×10-5[Torr]以下とした後、三菱マテリアル社製 G−ストレートドリル(品番GSDD3000、直径D1:3.0mm、溝長L3:32mm、全長:71mm、刃径:3.0mm)を用いて鋼板表面より表面下5mmまで穴あけ加工することにより鋼中のガス成分を抽出し、その後、アネルバ社製 四重極質量分析計(M−101QA−TDM型)(質量数測定範囲:1〜100amu)を用いてガス成分を定量分析した。そして、前記ドリル加工により穴あけされた鋼材の体積に対するAr量の比(μL/cm3)を求めた。この測定を、鋼板の任意の位置の10箇所で行い、10箇所のうちの最大値を「鋼材中のArガス含有量」とした。
[Measurement of Ar gas content in steel]
A test piece of product plate thickness × 15 mm × 15 mm cut out from the steel surface was placed in a vacuum chamber and the degree of vacuum was set to 2 × 10 −5 [Torr] or less. GSDD3000, diameter D1: 3.0 mm, groove length L3: 32 mm, full length: 71 mm, blade diameter: 3.0 mm) to extract the gas component in the steel by drilling from the steel sheet surface to 5 mm below the surface, Then, the gas component was quantitatively analyzed using the quadrupole mass spectrometer (M-101QA-TDM type) (mass number measurement range: 1 to 100 amu) manufactured by Anerva. And ratio (microliter / cm < 3 >) of Ar amount with respect to the volume of the steel materials drilled by the said drill process was calculated | required. This measurement was performed at 10 positions at arbitrary positions on the steel sheet, and the maximum value among the 10 positions was defined as “Ar gas content in steel”.

[HIC試験(NACE試験)]
HIC試験は、NACE standard TM0284−2003に従って実施・評価した。詳細には、各鋼板の幅方向における1/4W位置と1/2W位置から、それぞれ各20本の試験片(サイズ:板厚×(幅)100mm×(圧延方向)20mm)を採取した。そして該試験片を、1atmの硫化水素を飽和させた25℃(0.5%NaCl+0.5%酢酸)水溶液中に96時間浸漬し、断面評価(NACE standard TM0284−2003 FIGURE3に従った)によりCLR(試験片幅に対する割れ長さ合計の割合(%)、割れ長さ率)を測定した。そして、CLRが3%以下の場合を耐HIC性に優れる(○)と評価し、CLRが3%超の場合を耐HIC性に劣る(×)と評価した。
[HIC test (NACE test)]
The HIC test was performed and evaluated according to NACE standard TM0284-2003. Specifically, 20 test pieces (size: plate thickness × (width) 100 mm × (rolling direction) 20 mm) were sampled from 1/4 W position and 1/2 W position in the width direction of each steel plate. Then, the test piece was immersed in an aqueous solution of 25 ° C. (0.5% NaCl + 0.5% acetic acid) saturated with 1 atm of hydrogen sulfide for 96 hours and subjected to cross-sectional evaluation (according to NACE standard TM0284-2003 FIGURE 3). (The ratio (%) of the total crack length to the specimen width, the crack length ratio) was measured. And when CLR was 3% or less, it evaluated that it was excellent in HIC resistance ((circle)), and the case where CLR exceeded 3% was evaluated as inferior to HIC resistance (x).

[シャルピー衝撃試験]
NACE試験後、鋼板表面下6mmを中心にASTM A370に従い、板厚方向10mm×圧延方向10mmのシャルピー試験片を圧延方向に垂直な方向で10本採取し、鋼板の板厚方向にノッチを施した。シャルピー衝撃試験はASTM A370に従い実施し、試験温度20℃とし、シャルピー吸収エネルギーおよび脆性破面率を評価した。採取した計10本のシャルピー試験片について、脆性破面率が5%以下のものを抽出した上で、シャルピー吸収エネルギーの値の標準偏差σを求め、この標準偏差σが20J以下のものを靭性に優れる(特には靭性のばらつきが小さく、高靭性を確実に達成できる)と評価した。
[Charpy impact test]
After the NACE test, 10 Charpy specimens with a thickness of 10 mm and a rolling direction of 10 mm were sampled in a direction perpendicular to the rolling direction in accordance with ASTM A370 centering on 6 mm below the steel sheet surface, and notched in the thickness direction of the steel sheet. . The Charpy impact test was performed according to ASTM A370, the test temperature was 20 ° C., and Charpy absorbed energy and brittle fracture surface ratio were evaluated. For a total of 10 Charpy specimens collected, samples with a brittle fracture surface ratio of 5% or less were extracted, the standard deviation σ of the Charpy absorbed energy value was determined, and those with a standard deviation σ of 20 J or less were tough. (In particular, the variation in toughness is small and high toughness can be reliably achieved).

これらの結果を表2に示す。   These results are shown in Table 2.

Figure 0006316548
Figure 0006316548

Figure 0006316548
Figure 0006316548

表1および表2より次のことがわかる。No.1〜13は、規定の成分組成を満たし、かつ鋼材中のArガス含有量が規定範囲内に抑えられているため、耐HIC性に優れ、かつ優れた靭性が安定して得られている。   Table 1 and Table 2 show the following. No. Nos. 1 to 13 satisfy the specified component composition, and the Ar gas content in the steel material is suppressed within the specified range, so that the HIC resistance is excellent and the excellent toughness is stably obtained.

これに対し、No.14および15は鋼材中のArガス含有量が過剰であるため、靭性のばらつきが大きくなった。No.16は、鋼板の化学成分組成(Ca/S)が本発明の規定を外れているため、耐HIC性に劣る結果となった。またNo.17は、(Ca−1.25S)/Oの値が大きく、Ca系介在物(特にCaO)が多く形成されたため、耐HIC性に劣ると共に、靭性のばらつきも大きくなった。   In contrast, no. In Nos. 14 and 15, since the Ar gas content in the steel material is excessive, the variation in toughness became large. No. No. 16 resulted in inferior HIC resistance because the chemical composition (Ca / S) of the steel sheet was not within the scope of the present invention. No. No. 17 had a large value of (Ca-1.25S) / O and a large amount of Ca-based inclusions (particularly CaO), which resulted in inferior HIC resistance and increased toughness variation.

Claims (5)

C:0.02〜0.15%(%は質量%の意味。以下同じ)、
Si:0.02〜0.50%、
Mn:0.6〜2.0%、
P:0.030%以下(0%を含まない)、
S:0.003%以下(0%を含まない)、
Al:0.010〜0.08%、
Ca:0.0003〜0.0060%、
N:0.001〜0.01%、および
O(酸素):0.0045%以下(0%を含まない)を満たし、残部が鉄および不可避不純物からなり、
前記Caと前記Sの比(Ca/S)が2.0以上であり、かつ
前記Ca、前記Sおよび前記Oが(Ca−1.25S)/O ≦ 1.80を満たし、
更に、鋼材中のArガス含有量が0.50μL(マイクロリットル)/cm3以下であることを特徴とする耐水素誘起割れ性と靭性に優れた鋼板。
C: 0.02 to 0.15% (% means mass%, the same shall apply hereinafter)
Si: 0.02 to 0.50%,
Mn: 0.6 to 2.0%,
P: 0.030% or less (excluding 0%),
S: 0.003% or less (excluding 0%),
Al: 0.010 to 0.08%,
Ca: 0.0003 to 0.0060%,
N: 0.001 to 0.01%, and O (oxygen): 0.0045% or less (excluding 0%) is satisfied, and the balance consists of iron and inevitable impurities,
The ratio of Ca to S (Ca / S) is 2.0 or more, and the Ca, S and O satisfy (Ca−1.25S) /O≦1.80,
Furthermore, a steel sheet excellent in hydrogen-induced crack resistance and toughness, characterized in that the Ar gas content in the steel material is 0.50 μL (microliter) / cm 3 or less.
更に他の元素として、
B:0.005%以下(0%を含まない)、
V:0.1%以下(0%を含まない)、
Cu:1.5%以下(0%を含まない)、
Ni:1.5%以下(0%を含まない)、
Cr:1.5%以下(0%を含まない)、
Mo:1.5%以下(0%を含まない)、および
Nb:0.06%以下(0%を含まない)
よりなる群から選択される1種以上の元素を含む請求項1に記載の鋼板。
As other elements,
B: 0.005% or less (excluding 0%),
V: 0.1% or less (excluding 0%),
Cu: 1.5% or less (excluding 0%),
Ni: 1.5% or less (excluding 0%),
Cr: 1.5% or less (excluding 0%),
Mo: 1.5% or less (not including 0%), and Nb: 0.06% or less (not including 0%)
The steel plate according to claim 1, comprising at least one element selected from the group consisting of:
更に他の元素として、
Ti:0.03%以下(0%を含まない)、
Mg:0.01%以下(0%を含まない)、
REM:0.02%以下(0%を含まない)、および
Zr:0.010%以下(0%を含まない)
よりなる群から選択される1種以上の元素を含む請求項1または2に記載の鋼板。
As other elements,
Ti: 0.03% or less (excluding 0%),
Mg: 0.01% or less (excluding 0%),
REM: 0.02% or less (not including 0%), and Zr: 0.010% or less (not including 0%)
The steel plate according to claim 1 or 2, comprising one or more elements selected from the group consisting of:
ラインパイプ用である請求項1〜3のいずれかに記載の鋼板。   It is an object for line pipes, The steel plate in any one of Claims 1-3. 請求項1〜4のいずれかに記載の鋼板を用いて製造されるラインパイプ用鋼管。   The steel pipe for line pipes manufactured using the steel plate in any one of Claims 1-4.
JP2013138178A 2013-07-01 2013-07-01 Steel plates and line pipe steel pipes with excellent hydrogen-induced crack resistance and toughness Active JP6316548B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2013138178A JP6316548B2 (en) 2013-07-01 2013-07-01 Steel plates and line pipe steel pipes with excellent hydrogen-induced crack resistance and toughness
PCT/JP2014/066852 WO2015002046A1 (en) 2013-07-01 2014-06-25 Steel plate having excellent hydrogen-induced-cracking resistance and toughness, and steel tube for line pipe
EP18189539.2A EP3428301A1 (en) 2013-07-01 2014-06-25 Steel plate with excellent hydrogen-induced cracking resistance and toughness, and steel pipe for line pipe
CN201480037371.5A CN105358724B (en) 2013-07-01 2014-06-25 The steel plate and line-pipes steel pipe of hydrogen induced cracking resistance and tenacity excellent
KR1020157036038A KR20160013103A (en) 2013-07-01 2014-06-25 Steel plate with excellent hydrogen-induced cracking resistance and toughness, and steel pipe for line pipe
EP14819986.2A EP3018231A4 (en) 2013-07-01 2014-06-25 Steel plate having excellent hydrogen-induced-cracking resistance and toughness, and steel tube for line pipe
KR1020177015001A KR20170065677A (en) 2013-07-01 2014-06-25 Steel plate with excellent hydrogen-induced cracking resistance and toughness, and steel pipe for line pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013138178A JP6316548B2 (en) 2013-07-01 2013-07-01 Steel plates and line pipe steel pipes with excellent hydrogen-induced crack resistance and toughness

Publications (2)

Publication Number Publication Date
JP2015010266A JP2015010266A (en) 2015-01-19
JP6316548B2 true JP6316548B2 (en) 2018-04-25

Family

ID=52143624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013138178A Active JP6316548B2 (en) 2013-07-01 2013-07-01 Steel plates and line pipe steel pipes with excellent hydrogen-induced crack resistance and toughness

Country Status (5)

Country Link
EP (2) EP3428301A1 (en)
JP (1) JP6316548B2 (en)
KR (2) KR20160013103A (en)
CN (1) CN105358724B (en)
WO (1) WO2015002046A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6343472B2 (en) * 2014-03-28 2018-06-13 株式会社神戸製鋼所 Steel sheets for high-strength line pipes and steel pipes for high-strength line pipes with excellent low-temperature toughness
JP2016125140A (en) * 2014-12-26 2016-07-11 株式会社神戸製鋼所 Steel sheet and steel pipe for line pipe excellent in hydrogen-induced crack resistance and toughness
WO2016104528A1 (en) * 2014-12-26 2016-06-30 株式会社神戸製鋼所 Steel plate having excellent toughness and resistance to hydrogen-induced cracking, and steel pipe for line pipe
JP6584912B2 (en) * 2014-12-26 2019-10-02 株式会社神戸製鋼所 Steel plate and line pipe steel pipe with excellent hydrogen-induced crack resistance
JP2016125137A (en) * 2014-12-26 2016-07-11 株式会社神戸製鋼所 Steel sheet and steel pipe for line pipe excellent in hydrogen-induced crack resistance
JP2016125139A (en) * 2014-12-26 2016-07-11 株式会社神戸製鋼所 Steel sheet and steel pipe for line pipe excellent in hydrogen-induced crack resistance
JP6869151B2 (en) * 2016-11-16 2021-05-12 株式会社神戸製鋼所 Steel pipes for steel plates and line pipes and their manufacturing methods
CN106756538A (en) * 2016-11-30 2017-05-31 武汉钢铁股份有限公司 The high intensity moving pressure container steel and its manufacture method of anticorrosive and cracking
CN109694991A (en) * 2017-10-20 2019-04-30 鞍钢股份有限公司 A kind of tank plate that hydrogen induced cracking resistance can be excellent
CN108893683A (en) * 2018-08-01 2018-11-27 石钢京诚装备技术有限公司 A kind of sulfur resistive pipe line steel and its production method
CN110396647B (en) * 2019-08-22 2020-09-08 中天钢铁集团有限公司 Low-alloy steel with high electromagnetic performance and high strength, production process and application thereof
CN115652183A (en) * 2022-11-08 2023-01-31 湖南华菱涟源钢铁有限公司 Preparation method of alloy structural steel and alloy structural steel

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06136440A (en) 1992-10-28 1994-05-17 Nippon Steel Corp Production of high strength steel sheet excellent in sour resistance
JP2914138B2 (en) * 1993-11-17 1999-06-28 住友金属工業株式会社 Manufacturing method of steel for high corrosion resistance ERW steel pipe
JPH07216500A (en) * 1994-01-28 1995-08-15 Sumitomo Metal Ind Ltd High strength steel material excellent in corrosion resistance and its production
JPH08283826A (en) * 1995-04-10 1996-10-29 Sumitomo Metal Ind Ltd Production of high purity ultralow sulfur hic resistant steel
JPH0941083A (en) * 1995-07-28 1997-02-10 Nkk Corp Resistance welded tube excellent in hic resistance and sscc resistance and its production
JP4905240B2 (en) * 2007-04-27 2012-03-28 Jfeスチール株式会社 Manufacturing method of hot-rolled steel sheet with excellent surface quality, fracture toughness and sour resistance
JP2010116611A (en) * 2008-11-13 2010-05-27 Kobe Steel Ltd Method for manufacturing low-sulfur thick steel plate excellent in haz toughness at the time of inputting large amount of heat
JP5423324B2 (en) 2009-02-12 2014-02-19 新日鐵住金株式会社 Steel plate for high-strength line pipe and steel pipe for high-strength line pipe with excellent resistance to hydrogen-induced cracking
CN102002630A (en) * 2010-11-29 2011-04-06 南阳汉冶特钢有限公司 Q345R-Z35 super-thick steel plate resisting HIC (hydrogen induced crack) pressure vessel and production method thereof
CN102719744B (en) * 2012-06-25 2014-03-19 宝山钢铁股份有限公司 Steel for low-temperature structures and manufacture method of steel
CN102732666A (en) * 2012-07-05 2012-10-17 首钢总公司 Method for controlling non-metallic slag inclusion in medium and heavy plate of hydrogen-induced cracking resistance pipe line steel
CN102839326B (en) * 2012-09-07 2014-10-29 首钢总公司 Hydrogen induced crack resistant BNS steel plate and manufacturing method thereof

Also Published As

Publication number Publication date
EP3428301A1 (en) 2019-01-16
EP3018231A1 (en) 2016-05-11
CN105358724A (en) 2016-02-24
JP2015010266A (en) 2015-01-19
EP3018231A4 (en) 2017-03-22
CN105358724B (en) 2017-11-24
KR20170065677A (en) 2017-06-13
WO2015002046A1 (en) 2015-01-08
KR20160013103A (en) 2016-02-03

Similar Documents

Publication Publication Date Title
JP6316548B2 (en) Steel plates and line pipe steel pipes with excellent hydrogen-induced crack resistance and toughness
JP6165088B2 (en) Steel sheets and line pipe steel pipes with excellent resistance to hydrogen-induced cracking and toughness of weld heat affected zone
KR101709034B1 (en) Steel plate with excellent hydrogen-induced cracking resistance and toughness, and steel pipe for line pipe
EP2975148B1 (en) Thick steel sheet having excellent ctod properties in multilayer welded joints, and manufacturing method for thick steel sheet
US20130260164A1 (en) Steel plate with excellent hydrogen induced cracking resistance, and manufacturing method of the same
JP2016125140A (en) Steel sheet and steel pipe for line pipe excellent in hydrogen-induced crack resistance and toughness
JP3960341B2 (en) Thermal processing control type 590 MPa class H-section steel and manufacturing method thereof
EP3447161B1 (en) High tensile steel and marine structure
JP4897126B2 (en) Thick steel plate manufacturing method
JP2006063351A (en) High strength steel plate with excellent hydrogen induced cracking resistance, its manufacturing method, and steel pipe for line pipe
KR20170093965A (en) Steel plate having excellent hydrogen-induced cracking resistance and steel pipe for line pipe
JP2016125137A (en) Steel sheet and steel pipe for line pipe excellent in hydrogen-induced crack resistance
JP2016125139A (en) Steel sheet and steel pipe for line pipe excellent in hydrogen-induced crack resistance
JP2018083981A (en) Steel plate and steel pipe for line pipe and manufacturing method thereof
JP7230454B2 (en) Steel materials for seamless steel pipes
JP2013217901A (en) Method for evaluating hic sensitivity of steel material and method for manufacturing thick steel plate excellent in hic resistance
WO2016104528A1 (en) Steel plate having excellent toughness and resistance to hydrogen-induced cracking, and steel pipe for line pipe
WO2018092605A1 (en) Steel sheet, steel pipe for line pipe, and production method therefor
JP6086036B2 (en) Steel plate with excellent weld heat-affected zone toughness and its melting method
WO2016104526A1 (en) Steel plate having excellent hydrogen-induced cracking resistance and steel pipe for line pipe
WO2016104529A1 (en) Steel plate having excellent resistance to hydrogen-induced cracking, and steel pipe for line pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170210

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170321

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180328

R151 Written notification of patent or utility model registration

Ref document number: 6316548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151