JPH07216500A - High strength steel material excellent in corrosion resistance and its production - Google Patents

High strength steel material excellent in corrosion resistance and its production

Info

Publication number
JPH07216500A
JPH07216500A JP2628594A JP2628594A JPH07216500A JP H07216500 A JPH07216500 A JP H07216500A JP 2628594 A JP2628594 A JP 2628594A JP 2628594 A JP2628594 A JP 2628594A JP H07216500 A JPH07216500 A JP H07216500A
Authority
JP
Japan
Prior art keywords
resistance
steel
steel material
less
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2628594A
Other languages
Japanese (ja)
Inventor
Takahiro Kushida
隆弘 櫛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2628594A priority Critical patent/JPH07216500A/en
Publication of JPH07216500A publication Critical patent/JPH07216500A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce a steel material combining superior HIC resistance, SSC resistance, and carbon dioxide corrosion resistance and having high strength satisfying the strength level of API specification X80 class. CONSTITUTION:This steel material has a composition, containing 0.03-0.07% C, 0.01-0.5% Si, 0.7-1.1% Mn, <=0.015% P, <=0.002% S, 0.3-0.7% Cr, 0.005-0.030% Ti, 0.005-0.05% Al, 0.0005-0.0050% Ca, and 0.005-0.010% N or further containing one or more kinds among 0.05-0.5% Cu, 0.05-0.5% Ni, 0.03-0.3% Mo, 0.01-0.1% Nb, and 0.01-0.1% V, and also has a dual phase structure of ferrite and bainite. Moreover, at the time of manufacture, a steel of this composition is heated to 1050-1250 deg.C, subjected to rolling where cumulative draft at <=950 deg.C is regulated to >=50%, finished at a temp. not lower than the Ar3 point, water-cooled from >=[Ar, point -30 deg.C] down to 400-550 deg.C at (10 to 25) deg.C/s cooling rate, and air-cooled or coiled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、耐水素誘起割れ性
(以降 "耐HIC性" と称する),耐硫化物応力腐食割
れ性(以降 "耐SSC性" と称する)及び耐炭酸ガス腐
食性に優れると共に、API(米国石油協会)規格のX
80級(降伏応力 80ksi以上のレベル)の高強度を有
し、例えば原油,天然ガス等の輸送に使用されるライン
パイプやタンカ−のカ−ゴタンク用あるいは石油精製の
圧力容器用等として好適な鋼材及びその製造方法に関す
るものである。
This invention relates to hydrogen induced cracking resistance (hereinafter referred to as "HIC resistance"), sulfide stress corrosion cracking resistance (hereinafter referred to as "SSC resistance") and carbon dioxide corrosion resistance. Excellent in performance and API (American Petroleum Institute) standard X
It has high strength of 80 class (yield stress of 80 ksi or more) and is suitable for line pipes used for transportation of crude oil, natural gas, etc., tank tanks for tankers or pressure vessels for oil refining. The present invention relates to a steel material and a manufacturing method thereof.

【0002】[0002]

【従来技術とその課題】従来から、硫化水素を含む原油
又は天然ガスを輸送するラインパイプやタンカ−のカ−
ゴタンク用の鋼材、更には硫化水素を含む原油又は天然
ガスの精製塔や取扱い槽類に用いられる鋼材では、水素
誘起割れ(以降 "HIC" と称する)あるいは硫化物応
力腐食割れ(以降 "SSC" と称する)が問題となって
おり、このHICやSSCに関してはこれまで数多くの
研究がなされてきた。
2. Description of the Related Art Conventionally, a line pipe or a tanker for transporting crude oil or natural gas containing hydrogen sulfide.
Steels used for steel tanks, and for steels used for refining towers and handling tanks for crude oil or natural gas containing hydrogen sulfide include hydrogen-induced cracking (hereinafter referred to as "HIC") or sulfide stress corrosion cracking (hereinafter "SSC"). Is called as a problem), and many studies have been made on the HIC and SSC.

【0003】なお、HICとは外部応力の無い状態で鋼
材に生じる割れであり、SSCは静的な応力下で発生す
る割れであるが、これまでの研究により、HIC及びS
SCの何れもが“湿潤硫化水素環境で鋼が腐食した時に
発生する水素が鋼中に侵入して引き起こされる水素脆
化”の結果として現れる現象であることが明らかとなっ
ている。
Incidentally, HIC is a crack that occurs in a steel material in the absence of external stress, and SSC is a crack that occurs under static stress.
It has been clarified that each of SCs is a phenomenon appearing as a result of "hydrogen embrittlement caused by hydrogen invading into steel when hydrogen is corroded in a wet hydrogen sulfide environment".

【0004】そして、上述のようなHICやSSCの防
止法として、例えば次のような対策が提案された。 a) 鋼の成分としてCuを添加することにより湿潤硫化水
素環境で鋼中へ水素が侵入するのを抑制して耐HIC
性,耐SSC性を向上させると共に、HICの起点を無
くしようとの観点からCa添加による硫化物(A系介在
物)の形態制御、更には非金属介在物の低減(鋼の清浄
度アップ)を図る方法〔特公昭60-35982号公報参照〕。 b) Mn及びP濃度の高くなる鋼材の中心偏析部では硬化
組織が形成されてHIC,SSC感受性が高くなること
から、均熱拡散により偏析を軽減したり、圧延後の制御
冷却により硬化組織の生成を防止する方法(特公昭63−
1369号公報等参照〕。
Then, as a method of preventing the above-mentioned HIC and SSC, for example, the following measures have been proposed. a) By adding Cu as a steel component, it is possible to suppress the entry of hydrogen into the steel in a wet hydrogen sulfide environment and to withstand HIC.
Morphology control of sulfides (A type inclusions) by addition of Ca from the viewpoint of improving the heat resistance and SSC resistance and eliminating the starting point of HIC, and further reducing nonmetallic inclusions (improving the cleanliness of steel) Method (see Japanese Patent Publication No. 60-35982). b) Since a hardened structure is formed in the central segregated portion of the steel material where the Mn and P concentrations are high and the HIC and SSC sensitivities are increased, segregation is reduced by soaking diffusion or the hardened structure of the hardened structure is controlled by controlled cooling after rolling. Method to prevent generation (Japanese Patent Publication Sho 63-
1369, etc.].

【0005】ところが、良質な石油資源の枯渇に伴って
硫化水素濃度の高い過酷な環境にある油井,ガス井にま
で開発の手が伸び、ラインパイプ等の鋼材に対して従来
の使用環境よりも更にpHが低くかつ硫化水素圧力の高
い環境が課せられるようになると共に、地球環境問題の
観点からも事故防止策が強化されたため、これらの仕様
規格が一段と厳化される傾向が強まっている。その結
果、「NACE浴」と称される「1気圧の硫化水素を飽
和させた25℃の "0.5%酢酸+5%食塩水" 溶液」が耐H
IC性,耐SSC性の評価に用いられるようになった。
However, with the depletion of high-quality petroleum resources, the development of oil wells and gas wells in a harsh environment where the concentration of hydrogen sulfide is high has increased, and steel materials such as line pipes have a higher than conventional usage environment. Further, since the environment where the pH is low and the hydrogen sulfide pressure is high is imposed, and the accident prevention measures are strengthened from the viewpoint of global environmental problems, these specifications and standards are becoming more and more severe. As a result, the "NACE bath" called "0.5% acetic acid + 5% saline solution at 25 ° C saturated with hydrogen sulfide at 1 atm" is resistant to H
It has come to be used for evaluation of IC property and SSC resistance.

【0006】なお、現在の一般的な仕様規格は、HIC
に関しては「NACE浴中に96hr浸漬した時の幅方向
の割れ長さ(CLR) が5〜15%以下{割れ面積率(CAR)
でほぼ2%以下に相当する}」というものであり、SS
Cに関しては「NACE浴中で規格最小降伏応力(SMYS)
の80%以上の割れ発生限界応力 (σth) を有する」と
いうものである。
The current general specification standard is HIC.
Regarding "the crack length in the width direction (CLR) when immersed in a NACE bath for 96 hours is 5 to 15% or less. {Crack area ratio (CAR)
Is equivalent to less than 2%} ”,
Regarding C, "Specified minimum yield stress (SMYS) in NACE bath
Has a crack generation limit stress (σth) of 80% or more.

【0007】しかるに、近年、経済性の観点から鋼の高
強度化と操業圧のアップが図られつつあり、従来から使
用されてきたX65級(降伏応力:65ksi以上のレベル)
の鋼材に代わってX70(降伏応力:70ksi以上のレベ
ル)あるいはX80級といった鋼材に対する要求が増大
しつつあった。しかし、先に示したような従来技術のみ
では上述した仕様規格を満足する高強度ラインパイプ用
鋼板を低コストで製造することは極めて困難であった。
なぜなら、高強度化のためにMn量をアップすれば中心偏
析部に生じがちな硬化組織のHIC感受性が増大し、制
御冷却を利用するだけではHICの発生を防止すること
が困難だったからであり、また高強度になれば溶接部の
硬度が必然的に上昇してSSC感受性も高くなるからで
ある。
However, in recent years, from the viewpoint of economic efficiency, the strength of steel has been increased and the operating pressure has been increased, and the X65 class (yield stress: 65 ksi or higher level) that has been conventionally used has been used.
Demand for steel materials such as X70 (yield stress: 70 ksi or higher level) or X80 grade instead of the above steel materials has been increasing. However, it has been extremely difficult to manufacture a high-strength steel sheet for line pipes satisfying the above-mentioned specifications at a low cost only with the conventional technique as described above.
This is because if the amount of Mn is increased to increase the strength, the HIC sensitivity of the hardened structure that tends to occur in the central segregation portion increases, and it was difficult to prevent the occurrence of HIC only by using controlled cooling. Further, if the strength becomes high, the hardness of the welded part inevitably increases and the SSC sensitivity also increases.

【0008】一方、最近になって、ラインパイプ用等の
鋼材に対しては、HICやSSCといったような割れの
問題解消に加え、従来鋼と比べて炭酸ガス腐食に対する
抵抗性が高い特性が望まれるようになってもいる。
On the other hand, recently, for steel materials for line pipes, in addition to solving the problem of cracking such as HIC and SSC, it is desired that the steel material has a higher resistance to carbon dioxide corrosion than conventional steels. I'm getting started.

【0009】そこで、ラインパイプ材の高強度化や耐H
IC性,耐SSC性の確保に有効な元素として知られて
いたCr(例えばX70級の耐サワ−環境ラインパイプを
開示する特公平2-50967号公報,特公平3-68101号公報
を参照)に関し「その含有量が高くなるほど鋼材の耐炭
酸ガス腐食性が向上する」との知見が得られたことを基
に、特定量のCrを添加して耐炭酸ガス腐食性の改善を図
ったラインパイプ用鋼材に係る提案もなされた(特開平
4−341540号公報参照)。しかしながら、X80級とい
う高強度のラインパイプ用鋼材に対して十分に満足でき
る耐HIC性,耐SSC性及び耐炭酸ガス腐食性を同時
に兼備させる技術は未だ見出されていないのが現状であ
った。
Therefore, the strength of line pipe materials and the resistance to H
Cr known as an element effective in ensuring IC property and SSC resistance (see, for example, Japanese Patent Publication No. 2-50967 and Japanese Patent Publication No. 3-68101, which disclose X70-class sour-resistant environmental line pipes) Based on the knowledge that "the higher the content, the more the carbon dioxide corrosion resistance of steel improves," a line was designed to improve the carbon dioxide corrosion resistance by adding a specific amount of Cr. A proposal for a steel material for pipes has also been made (see JP-A-4-341540). However, the present situation is that no technology has yet been found for simultaneously satisfying HIC resistance, SSC resistance, and carbon dioxide corrosion resistance, which are sufficiently satisfactory for high-strength X80 grade steel for line pipes. .

【0010】このようなことから、本発明が目的とした
のは、優れた耐HIC性,耐SSC性並びに耐炭酸ガス
腐食性を兼ね備えると共に、API規格でいうX80級
{降伏強度80ksi(1ksi=6.89MPa)以上}の強度レベル
を十分に満足する高耐食性高強度鋼材を提供することで
ある。
Therefore, the object of the present invention is to provide excellent HIC resistance, SSC resistance, and carbon dioxide gas corrosion resistance as well as X80 grade (yield strength 80 ksi (1 ksi = It is to provide a high-corrosion-resistant high-strength steel material that sufficiently satisfies the strength level of 6.89 MPa) or more}.

【0011】[0011]

【課題を解決するための手段】そこで、本発明者は上記
目的を達成すべく鋭意研究を重ねた結果、以下に示すよ
うな知見を得ることができた。 a) まず、既に知られているようにHICは鋼材中の介
在物および中心偏析部の硬化組織を起点に発生するた
め、耐HIC性を向上させるにはCa処理によって介在物
の形態制御と低減を図ることが欠かせない技術となる。
Therefore, as a result of intensive studies to achieve the above object, the present inventor was able to obtain the following findings. a) First, as already known, HIC occurs from the inclusions in the steel material and the hardening structure of the central segregation part. Therefore, to improve the HIC resistance, morphology control and reduction of inclusions by Ca treatment are required. It is an indispensable technology.

【0012】b) ここで、硬化組織生成の原因となる鋼
材の中心偏析はC,Mn及びPによって助長されるので、
この観点からすれば前記何れの元素も低含有量に抑える
ほど望ましいと言えるが、強度確保の観点からすると
C,Mnを極端に低減することは控えねばならない。即
ち、鋼材にX80級の強度を確保するためにはある程度
のC及びMn添加は是非とも必要である。しかるに、C含
有量が0.07%(以降、 成分割合を表す%は重量%とす
る)まで、またMn含有量が 1.3%までであれば格別に鋼
材の耐HIC性が損なわれないばかりか、この程度のレ
ベルであれC,Mnの添加がなされれば別手立てとの併用
によってX80級の強度を確保することが十分可能とな
る。
B) Here, since the center segregation of the steel material which causes the formation of the hardened structure is promoted by C, Mn and P,
From this point of view, it can be said that it is desirable to suppress the content of any of the above elements to a low content, but from the viewpoint of securing strength, it is necessary to refrain from extremely reducing C and Mn. That is, it is absolutely necessary to add a certain amount of C and Mn in order to secure X80 grade strength in the steel material. However, if the C content is up to 0.07% (hereinafter,% representing the component ratio is weight%) and the Mn content is up to 1.3%, the HIC resistance of the steel material is not particularly impaired, and If C and Mn are added even at a moderate level, it is possible to sufficiently secure the strength of X80 class by using it together with other means.

【0013】c) つまり、幸いなことに、その含有量に
応じた耐炭酸ガス腐食性の改善効果を発揮するCrには、
一方で焼入れ性の向上とクロム炭化物の析出によって鋼
材を高強度化する働きもある。そのため、強化元素とし
てのMnの代替に耐炭酸ガス腐食性の改善作用を持つCrを
利用することができ、鋼材の基本成分系を低C−低Mn−
Cr鋼とすることで高強度と優れた耐HIC性,耐炭酸ガ
ス腐食性の確保が可能となる。
C) In other words, fortunately, Cr that exerts the effect of improving the carbon dioxide corrosion resistance according to its content is
On the other hand, it also has the function of improving the hardenability and increasing the strength of the steel material by the precipitation of chromium carbide. Therefore, Cr, which has the effect of improving carbon dioxide corrosion resistance, can be used in place of Mn as a strengthening element, and the basic component system of the steel material can be a low C-low Mn-
By using Cr steel, it becomes possible to secure high strength, excellent HIC resistance, and carbon dioxide corrosion resistance.

【0014】d) 一方、母材部の耐SSC性に及ぼすCr
とMn含有量の影響を調査したところ、「X80級の強
度」と「現在の一般的な耐SSC性に関する仕様規格と
なっている“NACE浴中での割れ発生限界応力 (σt
h) が規格最小降伏応力の80%以上(即ちσth≧80
%)」の両者を満足させるためにはCr及びMnの添加範囲
をより狭い範囲に制限せざるを得ず、また大径ラインパ
イプの溶接としては一般的なサブマ−ジア−ク溶接(S
AW)を施した部位では更に“σth≧80%”の安定確
保が困難となり、低C−低Mn−Cr鋼ではX80級の高強
度と所望の耐SSC性を安定確保するのが難しいのでは
ないかとの懸念が生じた。
D) On the other hand, Cr which affects the SSC resistance of the base metal part
As a result of investigating the effects of the Mn content and the Mn content, “the strength of X80 grade” and “the current standard specifications for general SSC resistance”, “the critical crack initiation stress in NACE bath (σt
h) is 80% or more of the specified minimum yield stress (ie σth ≥ 80
%) ”, The addition range of Cr and Mn must be limited to a narrower range, and it is a general sub-marque welding (S
It is more difficult to secure stable "σth ≥ 80%" in the parts subjected to (AW), and it is difficult to secure stable high X80 grade strength and desired SSC resistance for low C-low Mn-Cr steel. There was a concern that it might not exist.

【0015】e) ところが、上記鋼材の成分として 0.00
5%以上のNをTiと共に含有させるとその耐SSC性が
改善され、Cr添加によって十分な強度と耐HIC性が付
与された鋼材及びその溶接部に安定して“σth≧80
%”を確保することが可能になることが判明した。これ
は、添加したNがTiとTiNを形成してオ−ステナイト粒
の粗大化を防止し、これによる水素のトラップ効果を通
じて耐SSC性を向上させるためと考えられる。特に溶
接時における溶接熱影響部のオ−ステナイト粒の粗大化
防止に伴う耐SSC性向上効果は顕著で、サブマ−ジア
−ク溶接を施した部位でも安定して“σth≧80%”を
満足するようになる。
E) However, as a component of the above steel material, 0.00
When 5% or more of N is added together with Ti, its SSC resistance is improved, and stable addition of Cr to the steel material and its welded portion with sufficient strength and HIC resistance gives “σth ≧ 80.
It was found that the added N forms Ti and TiN to prevent coarsening of the austenite grains, and the SSC resistance through the hydrogen trapping effect. In particular, the effect of improving the SSC resistance due to the prevention of coarsening of the austenite grains in the heat-affected zone of the welding during welding is remarkable, and it is stable even in the portion subjected to sub-marque welding. It comes to satisfy “σth ≧ 80%”.

【0016】f) また、上記組成の強度,耐HIC性,
耐SSC性,耐炭酸ガス腐食性に優れた鋼材を安定して
製造するには、素材鋼を特定の条件で加熱,圧延し、続
いてこれを制御された特定条件で冷却する必要のあるこ
とも明らかとなった。
F) Further, the strength of the above composition, the HIC resistance,
In order to stably produce a steel material having excellent SSC resistance and carbon dioxide corrosion resistance, it is necessary to heat and roll the material steel under specific conditions, and then cool it under controlled specific conditions. Became clear.

【0017】本発明は、上記知見事項等を総合して検討
の末に完成されたものであり、「鋼材を、C:0.03〜0.0
7%, Si:0.01〜 0.5%, Mn: 0.7〜 1.1%,
P: 0.015%以下, S: 0.002%以下, Cr:
0.3〜 0.7%,Ti: 0.005〜 0.030%, Al(=sol.A
l): 0.005〜0.05%,Ca:0.0005〜0.0050%, N:
0.005〜 0.010%を含むか、 或いは更にCu:0.05〜 0.5
%, Ni:0.05〜 0.5%, Mo:0.03〜 0.3%,N
b:0.01〜 0.1%, V:0.01〜 0.1%のうちの1種
以上をも含有すると共に残部がFe及び不可避不純物であ
る成分組成で、 かつフェライトとベイナイトとの2相組
織を有して成る構成とすることによって、 優れた耐食性
(耐HIC性,耐SSC性,耐炭酸ガス腐食性)とAP
I規格のX80級を満足する高強度を兼備した鋼材を実
現できるようにした点」に大きな特徴を有し、更には
「C:0.03〜0.07%, Si:0.01〜 0.5%, Mn:
0.7〜 1.1%,P: 0.015%以下, S: 0.002%以
下, Cr: 0.3〜 0.7%,Ti: 0.005〜 0.030%,
Al(=sol.Al): 0.005〜0.05%,Ca:0.0005〜0.0050
%, N: 0.005〜 0.010%を含むか、 或いは更にCu:
0.05〜 0.5%, Ni:0.05〜 0.5%, Mo:0.03〜
0.3%,Nb:0.01〜 0.1%, V:0.01〜 0.1%のう
ちの1種以上をも含有すると共に残部がFe及び不可避不
純物より成る鋼を、1050〜1250℃に加熱してか
ら950℃以下での累積圧下率が50%以上となる圧延
を施し、 この圧延をAr3点の温度以上で終了した後、
〔Ar3点−30℃〕の温度以上の温度域から400〜5
50℃の温度域まで10〜25℃/sの冷却速度で水冷
し、 その後は放冷又は巻取を行うことによって、 優れた
耐食性(耐HIC性,耐SSC性,耐炭酸ガス腐食性)
とAPI規格のX80級を満足する高い強度を兼備した
鋼材を安定して製造できるようにした点」をも特徴とし
ている。
The present invention has been completed after a comprehensive study of the above findings and the like. "The steel material is C: 0.03 to 0.0
7%, Si: 0.01 to 0.5%, Mn: 0.7 to 1.1%,
P: 0.015% or less, S: 0.002% or less, Cr:
0.3 to 0.7%, Ti: 0.005 to 0.030%, Al (= sol.A
l): 0.005 to 0.05%, Ca: 0.0005 to 0.0050%, N:
Contains 0.005 to 0.010%, or Cu: 0.05 to 0.5
%, Ni: 0.05 to 0.5%, Mo: 0.03 to 0.3%, N
b: 0.01 to 0.1%, V: 0.01 to 0.1% and at least one of Fe and unavoidable impurities in the balance, and a two-phase structure of ferrite and bainite. Excellent corrosion resistance (HIC resistance, SSC resistance, carbon dioxide corrosion resistance) and AP
It has a major feature in that "a steel material that has high strength and satisfies the I standard X80 class can be realized." Furthermore, "C: 0.03 to 0.07%, Si: 0.01 to 0.5%, Mn:
0.7 to 1.1%, P: 0.015% or less, S: 0.002% or less, Cr: 0.3 to 0.7%, Ti: 0.005 to 0.030%,
Al (= sol.Al): 0.005 to 0.05%, Ca: 0.0005 to 0.0050
%, N: 0.005 to 0.010% or Cu:
0.05 to 0.5%, Ni: 0.05 to 0.5%, Mo: 0.03 to
Steel containing at least one of 0.3%, Nb: 0.01 to 0.1%, V: 0.01 to 0.1% and the balance being Fe and inevitable impurities is heated to 1050 to 1250 ° C and then 950 ° C or less. Rolling with a cumulative rolling reduction of 50% or more was completed, and after this rolling was completed at a temperature of Ar 3 or higher,
400 to 5 from the temperature range above the temperature of [Ar 3 points -30 ° C]
Excellent corrosion resistance (HIC resistance, SSC resistance, carbon dioxide corrosion resistance) by water cooling to a temperature range of 50 ° C at a cooling rate of 10 to 25 ° C / s, and then cooling or winding.
And that it enables stable manufacturing of steel materials with high strength that satisfies the API standard X80 class. "

【0018】次に、本発明において鋼材の成分組成及び
製造条件を前記の如くに限定した理由を、それらの作用
と共に詳述する。
Next, the reasons why the composition of the steel material and the manufacturing conditions are limited as described above in the present invention will be described in detail together with their actions.

【作用】[Action]

A) 鋼材の構成成分 〔C〕Cには鋼材の強度を安定して確保する作用がある
が、その含有量が0.03%を下回ると所望の強度(API
規格のX80級)を確保するのが困難となり、一方、0.
07%を超えてCを含有させると耐HIC性が劣化する
上、溶接熱影響部(HAZ)の硬度が上昇し、またHA
Z最外線近傍においてパ−ライトバンドが生成して耐S
SC性も低下する。従って、C含有量は0.03〜0.07%と
定めたが、望ましくは0.04〜0.06%に調整するのが良
い。
A) Constituent component of steel [C] C has a function of stably securing the strength of steel, but if its content is less than 0.03%, the desired strength (API
It becomes difficult to secure the standard X80 class), while 0.
If C is added in an amount of more than 07%, the HIC resistance deteriorates, the hardness of the weld heat affected zone (HAZ) increases, and the HA
A pearlite band is generated in the vicinity of the Z outermost line and S resistance is increased.
The SC property also decreases. Therefore, although the C content is set to 0.03 to 0.07%, it is desirable to adjust it to 0.04 to 0.06%.

【0019】〔Si〕Siは製鋼時の脱酸剤として必要であ
るが、その含有量が0.01%を下回った場合には十分な脱
酸効果を確保できない。一方、 0.5%を超えてSiを含有
させると鋼材の靱性低下が著しくなる。従って、Si含有
量は0.01〜 0.5%と定めたが、望ましくは 0.1〜 0.3%
に調整するのが良い。
[Si] Si is necessary as a deoxidizing agent during steel making, but if its content is less than 0.01%, a sufficient deoxidizing effect cannot be secured. On the other hand, when Si is contained in excess of 0.5%, the toughness of the steel material is significantly reduced. Therefore, the Si content was set to 0.01 to 0.5%, but 0.1 to 0.3% is desirable.
It is good to adjust to.

【0020】〔Mn〕Mnにも鋼材の強度を安定して確保す
る作用があるが、その含有量が 0.7%を下回ると所望の
強度(API規格のX80級)を確保するのが困難とな
り、一方、1.1 %を超えてMnを含有させると母材部の耐
SSC性が低下する上、中心偏析部でMnとPの濃度偏析
による異常組織(硬化組織)を生じるようになり耐HI
C性も損なわれる。従って、Mn含有量は 0.7〜 1.1%と
定めたが、望ましくは 0.8〜1.0 %に調整するのが良
い。
[Mn] Mn also has a function of stably securing the strength of the steel material, but if the content thereof is less than 0.7%, it becomes difficult to secure a desired strength (X80 class of API standard), On the other hand, when Mn is contained in excess of 1.1%, the SSC resistance of the base metal part deteriorates, and an abnormal structure (hardened structure) due to the concentration segregation of Mn and P occurs in the central segregation part.
C property is also impaired. Therefore, although the Mn content is set to 0.7 to 1.1%, it is desirable to adjust it to 0.8 to 1.0%.

【0021】〔P〕P含有量が 0.015%を上回ると鋼材
の中心偏析部にMnとPの濃度偏析による異常組織を生じ
耐HIC性が損なわれることから、その含有量を 0.015
%以下と定めたが、P含有量はできるだけ低い方が望ま
しい。
[P] If the P content exceeds 0.015%, an abnormal structure due to the concentration segregation of Mn and P is generated in the central segregation portion of the steel material, and the HIC resistance is impaired.
Although it has been determined that the P content is not more than%, it is desirable that the P content is as low as possible.

【0022】〔S〕S含有量が 0.002%を超えるとCaに
よる硫化物の形態制御を行っても中心偏析部でMnSが生
成して耐HIC性が損なわれることから、その含有量を
0.002%以下と定めたが、S含有量もできるだけ低い方
が望ましい。
When the [S] S content exceeds 0.002%, MnS is generated in the central segregation portion and HIC resistance is impaired even when the sulfide morphology is controlled by Ca.
Although it was set to 0.002% or less, it is desirable that the S content is as low as possible.

【0023】〔Cr〕Crには鋼材の強度と耐炭酸ガス腐食
性を改善する作用があるが、その含有量が0.3 %を下回
ると所望の強度(API規格のX80級)を確保するの
が困難となるほか、耐炭酸ガス腐食性の改善効果も殆ど
認められなくなる。一方、0.7 %を超えてCrを含有させ
ると母材部の耐SSC性の低下を招く。従って、Cr含有
量は0.3 〜0.7 %と定めたが、望ましくは 0.4〜 0.6%
に調整するのが良い。なお、試験法にも依存するが、0.
3 〜0.7 %のCrを含有させることにより、Crを含まない
従来鋼(ラインパイプ用鋼)に比較して炭酸ガス環境で
の腐食速度は約半分に低下する。
[Cr] Cr has an action of improving the strength and the carbon dioxide corrosion resistance of the steel material, but if the content thereof is less than 0.3%, the desired strength (X80 class of API standard) is secured. In addition to the difficulty, the effect of improving the carbon dioxide gas corrosion resistance is hardly recognized. On the other hand, if the content of Cr exceeds 0.7%, the SSC resistance of the base material part is deteriorated. Therefore, the Cr content was set to 0.3-0.7%, but 0.4-0.6% is desirable.
It is good to adjust to. Although it depends on the test method, 0.
By including 3 to 0.7% of Cr, the corrosion rate in the carbon dioxide environment is reduced to about half that of the conventional steel containing no Cr (line pipe steel).

【0024】〔Ti〕TiはNとTiNを生成してオ−ステナ
イト粒の粗大化を防止することで鋼材の耐SSC性を改
善する作用を発揮するが、その含有量が 0.005%未満で
あると母材部に十分な耐SSC性を確保することができ
なくなり、一方、0.030 %を超えてTiを含有させると母
材部及び溶接部の靱性が低下する。従って、Ti含有量に
ついては 0.005〜 0.030%と定めたが、望ましい含有量
は0.01〜0.02%である。
[Ti] Ti has the effect of improving the SSC resistance of the steel by forming N and TiN to prevent coarsening of austenite grains, but its content is less than 0.005%. Therefore, it becomes impossible to secure sufficient SSC resistance in the base metal part, while if Ti is contained in excess of 0.030%, the toughness of the base metal part and the welded part deteriorates. Therefore, although the Ti content is set to 0.005 to 0.030%, the desirable content is 0.01 to 0.02%.

【0025】〔Al〕Alも製鋼時の脱酸剤として必要であ
るが、その含有量が 0.005%を下回った場合には十分な
脱酸効果を確保できない。一方、0.05%を超えてAlを含
有させると鋼材の清浄度並びに靱性が損なわれるように
なる。従って、Al含有量は 0.005〜0.05%と定めたが、
望ましくは、0.01〜0.03%に調整するのが良い。
[Al] Al is also necessary as a deoxidizing agent during steel making, but if its content is less than 0.005%, a sufficient deoxidizing effect cannot be secured. On the other hand, if Al is contained in excess of 0.05%, the cleanliness and toughness of the steel will be impaired. Therefore, although the Al content was set to 0.005 to 0.05%,
Desirably, the content is adjusted to 0.01 to 0.03%.

【0026】〔Ca〕Caは硫化物系介在物の形態を制御し
て耐HIC性を改善する作用を有しているが、その含有
量が0.0005%を下回るとMnSが生成して所望の耐HIC
性改善効果を確保することができない。一方、0.0050%
を超えてCaを含有させると過剰のCaが酸化物の群落を形
成して逆に耐HIC性が損なわれるようになる。従っ
て、Ca含有量は0.0005〜0.0050%と定めたが、望ましく
は 0.001〜 0.003%に調整するのが良い。
[Ca] Ca has the effect of controlling the morphology of sulfide-based inclusions to improve the HIC resistance, but if its content is less than 0.0005%, MnS is formed and the desired resistance is obtained. HIC
The effect of improving the sex cannot be secured. On the other hand, 0.0050%
If Ca is contained in an amount exceeding the above range, excess Ca forms a cluster of oxides, and conversely the HIC resistance is impaired. Therefore, the Ca content is set to 0.0005 to 0.0050%, but it is desirable to adjust it to 0.001 to 0.003%.

【0027】〔N〕Nは添加量が制限されるMnに代わっ
てCrに強度確保の役割をも担わせる本発明鋼材にとって
非常に重要な構成元素である。即ち、前述したようにCr
含有量が多くなると耐SSC性を劣化する傾向が出てく
るが、Tiと共にNを添加することで耐SSC性の改善効
果が現れ、強度並びに耐炭酸ガス腐食性の改善に寄与す
るCr含有量の添加範囲を拡大することが可能になるため
である。しかし、N含有量が0.005 %未満であると母材
部に所望の耐SSC性を確保することが困難となり、一
方、0.010 %を超えてNを含有させると母材部及び溶接
部の靱性低下を招くようになる。従って、N含有量は
0.005〜 0.010%と定めたが、望ましくは 0.005〜 0.00
8%に調整するのが良い。
[N] N is a very important constituent element for the steel material of the present invention in which Cr also plays a role of ensuring strength in place of Mn whose addition amount is limited. That is, as described above, Cr
When the content is large, the SSC resistance tends to deteriorate, but the addition of N together with Ti has the effect of improving the SSC resistance, and the Cr content that contributes to the improvement of strength and carbon dioxide corrosion resistance. This is because the addition range of can be expanded. However, if the N content is less than 0.005%, it becomes difficult to secure the desired SSC resistance in the base metal part, while if the N content exceeds 0.010%, the toughness of the base metal part and welded part deteriorates. Will be invited. Therefore, the N content is
Although it has been set as 0.005 to 0.010%, it is preferably 0.005 to 0.00
It is good to adjust to 8%.

【0028】〔Cu,Ni,Mo,Nb及びV〕これらの元素は
本発明鋼材の優れた特徴を損なわないばかりか、更にそ
れらを向上させて本発明鋼材の用途範囲を拡大する作用
を発揮するため、必要により1種又は1種以上の添加が
行われる。 Cu:Cuは耐食性を向上させ、またpHの高い環境では水
素侵入を抑制して耐HIC性を向上させる作用を有して
いる。しかし、その含有量が0.05%未満では前記作用に
よる所望の効果が得られず、一方、0.5 %を上回ると熱
間圧延時にCuチェッキングが生じて製造が困難となる。
従って、Cu含有量は0.05〜 0.5%と定めたが、望ましい
範囲は 0.2〜0.35%である。 Ni:Niには耐食性を向上させ、またNACE浴のように
pHの低い環境では水素侵入を多少抑制して耐HIC性
を向上させる効果がある。更に、強度,靱性を向上させ
る効果や、Cuチェッキングの防止効果も有している。し
かし、Ni含有量が0.05%未満では前記作用による所望の
効果が得られず、一方、 0.5%を超えて含有させてもそ
の効果が飽和するので経済性の点で望ましくない。従っ
て、Ni含有量は0.05〜 0.5%と定めたが、望ましい範囲
は 0.1〜 0.2%である。 Mo:Moは強度及び靱性を向上させるほか、NACE浴の
ようにpHの低い環境ではNiとの相乗作用で水素侵入を
多少抑制して耐HIC性を向上させる効果を有してい
る。しかし、Mo含有量が0.03%未満では前記作用による
所望の効果が得られず、一方、 0.3%を上回ると靱性の
低下と溶接部の硬度上昇に伴う耐SSC性の低下を招く
ようになる。従って、Mo含有量は0.03〜 0.3%と定めた
が、望ましい範囲は0.05〜0.15%である。 Nb:Nbには細粒化と炭化物析出により強度及び靱性を向
上させ、また細粒化によって耐SSC性を向上させる効
果がある。しかし、その含有量が0.01%未満では前記作
用による所望の効果が得られず、一方、 0.1%を上回る
と靱性の低下を招くようになる。従って、Nb含有量は0.
01〜 0.1%と定めたが、望ましくは0.02〜0.05%であ
る。 V:VにはNbと同様に細粒化と炭化物析出により強度及
び靱性を向上させ、また細粒化により耐SSC性を向上
させる効果がある。しかし、その含有量が0.01%未満で
は前記作用による所望の効果が得られず、一方、 0.1%
を上回ると靱性の低下を招くようになる。従って、V含
有量は0.01〜 0.1%と定めたが、望ましくは0.02〜0.07
%である。
[Cu, Ni, Mo, Nb and V] These elements not only do not impair the excellent characteristics of the steel material of the present invention, but further improve them to exert the action of expanding the range of applications of the steel material of the present invention. Therefore, if necessary, one kind or more than one kind of addition is performed. Cu: Cu has the effect of improving the corrosion resistance and, in an environment of high pH, suppressing hydrogen intrusion and improving the HIC resistance. However, if the content is less than 0.05%, the desired effect due to the above-mentioned action cannot be obtained, while if it exceeds 0.5%, Cu checking occurs during hot rolling, which makes manufacturing difficult.
Therefore, the Cu content is set to 0.05 to 0.5%, but the desirable range is 0.2 to 0.35%. Ni: Ni has the effect of improving the corrosion resistance and, in an environment having a low pH such as the NACE bath, suppressing hydrogen intrusion to some extent and improving the HIC resistance. Furthermore, it also has the effect of improving strength and toughness and the effect of preventing Cu checking. However, if the Ni content is less than 0.05%, the desired effect due to the above action cannot be obtained, while if it exceeds 0.5%, the effect is saturated, which is not desirable from the economical point of view. Therefore, the Ni content is set to 0.05 to 0.5%, but the desirable range is 0.1 to 0.2%. Mo: Mo not only improves strength and toughness, but also has the effect of suppressing hydrogen intrusion to some extent and improving HIC resistance by synergistic action with Ni in an environment of low pH such as NACE bath. However, if the Mo content is less than 0.03%, the desired effect due to the above-mentioned action cannot be obtained, while if it exceeds 0.3%, the toughness decreases and the SSC resistance decreases with the increase in hardness of the welded portion. Therefore, the Mo content is set to 0.03 to 0.3%, but the desirable range is 0.05 to 0.15%. Nb: Nb has the effect of improving strength and toughness by fine graining and precipitation of carbides, and improving SSC resistance by fine graining. However, if the content is less than 0.01%, the desired effect due to the above-mentioned action cannot be obtained, while if it exceeds 0.1%, the toughness is deteriorated. Therefore, the Nb content is 0.
Although it has been set as 01 to 0.1%, it is preferably 0.02 to 0.05%. V: V has the effect of improving the strength and toughness by grain refinement and carbide precipitation, as well as Nb, and improving the SSC resistance by grain refinement. However, if the content is less than 0.01%, the desired effect due to the above-mentioned action cannot be obtained.
If it exceeds, the toughness will be deteriorated. Therefore, the V content is set to 0.01 to 0.1%, preferably 0.02 to 0.07.
%.

【0029】B) 鋼材の組織 鋼材の組織を“フェライトとベイナイトの2相組織”と
定めたのは優れた耐HIC性及び耐SSC性を付与する
ためであり、その組織がややもすると生じがちな“Cが
濃縮した残留オ−ステナイトの混じった組織", "中心偏
析部の硬いマルテンサイト組織", "ブロック状ベイナイ
ト組織”あるいは“パ−ライトの混じった組織”である
と所望の優れた耐HIC性,耐SSC性が付与されな
い。なお、上記フェライトとベイナイトの2相組織は、
鋼材の成分組成や圧延終了後の冷却条件を適正に調整す
ることによって安定に実現することができる。
B) Structure of Steel Material The structure of the steel material is defined as "two-phase structure of ferrite and bainite" in order to impart excellent HIC resistance and SSC resistance. It is desirable to have a "structure in which C is enriched with retained austenite", "hard martensite structure in the central segregation part", "block bainite structure" or "structure containing pearlite". HIC resistance and SSC resistance are not provided. The two-phase structure of the ferrite and bainite is
It can be stably achieved by appropriately adjusting the composition of the steel material and the cooling conditions after the rolling is completed.

【0030】C) 鋼材の製造条件 〔加熱温度〕圧延に際しての素材鋼の加熱温度が105
0℃を下回ると炭化物が十分に固溶せず、圧延後に所望
の高強度が得られないばかりか、所定の圧延仕上げ温度
を確保することが困難となる。一方、該加熱温度が12
50℃を上回ると粗粒化して製品靱性の低下を招き、ま
た耐SSC性も低下する。従って、上記加熱温度につい
ては1050〜1250℃と定めたが、望ましい範囲は
1100〜1200℃である。
C) Steel Manufacturing Conditions [Heating Temperature] The heating temperature of the material steel during rolling is 105
If the temperature is lower than 0 ° C., the carbides are not sufficiently solid-dissolved, the desired high strength cannot be obtained after rolling, and it becomes difficult to secure a predetermined rolling finishing temperature. On the other hand, the heating temperature is 12
If the temperature exceeds 50 ° C., the particles are coarsened and the product toughness is lowered, and the SSC resistance is also lowered. Therefore, although the heating temperature is set to 1050 to 1250 ° C, the desirable range is 1100 to 1200 ° C.

【0031】〔950℃以下での圧下量〕圧延の際、9
50℃以下での圧下量が累積で50%を下回るとオ−ス
テナイト粒の再結晶による細粒化と圧延による延伸化が
不充分であり、微細なフェライト粒が得られずに製品の
靱性と耐SSC性が不十分なものとなる。従って、95
0℃以下での累積圧下率が50%以上となる圧延を施す
ことと定めたが、該累積圧下率についてはできれば60
%以上を確保するのが望ましい。
[Amount of reduction at 950 ° C. or lower] 9 during rolling
If the cumulative amount of reduction at 50 ° C. or lower is less than 50%, fine graining by recrystallization of austenite grains and stretching by rolling are insufficient, and fine ferrite grains cannot be obtained, resulting in toughness of the product and The SSC resistance becomes insufficient. Therefore, 95
It was decided to perform rolling so that the cumulative reduction rate at 0 ° C or lower was 50% or higher. However, the cumulative reduction rate should be 60 if possible.
It is desirable to secure at least%.

【0032】〔圧延仕上げ温度〕圧延仕上げ温度がAr3
点の温度を下回ると、加速冷却の開始が多量に初析フェ
ライトの析出した2相域からとなり、得られる製品の組
織がCの濃縮した残留オ−ステナイトや中心偏析部の硬
い“マルテンサイト組織”あるいは“ブロック状ベイナ
イト組織”となって耐HIC性,耐SSC性が低下す
る。従って、圧延はAr3点の温度以上で終了することと
定めたが、望ましくは〔Ar3点+30℃〕の温度以上で
仕上げるのが良い。
[Rolling finishing temperature] The rolling finishing temperature is Ar 3
When the temperature falls below the point, accelerated cooling starts from the two-phase region where a large amount of pro-eutectoid ferrite is precipitated, and the resulting product has a structure in which residual austenite enriched with C and a hard "martensite structure" in the central segregation part are formed. "Or a" blocky bainite structure "is formed, and HIC resistance and SSC resistance are lowered. Therefore, the rolling is determined to be completed at a temperature of Ar 3 points or higher, but it is desirable to finish the rolling at a temperature of [Ar 3 points + 30 ° C.] or higher.

【0033】〔加速冷却開始温度〕圧延終了後の加速冷
却はAPI規格X80級の高強度を得るためにも必要な
処理であるが、加速冷却の開始温度が〔Ar3点−30
℃〕の温度を下回ると加速冷却が“初析フェライトが多
量に析出した2相域”から開始されることとなり、得ら
れる製品の組織が“Cが濃縮した残留オ−ステナイトの
混じった組織”や“中心偏析部の硬いマルテンサイト組
織”又は“ブロック状ベイナイト組織”となって耐HI
C性,耐SSC性が低下する。従って、圧延終了後の加
速冷却開始温度は〔Ar3点−30℃〕の温度以上と定め
たが、望ましくは初析フェライトが未だ存在しないAr3
点以上の温度からとするのが良い。
[Accelerated Cooling Start Temperature] Accelerated cooling after the completion of rolling is a process necessary for obtaining a high strength of API standard X80 class, but the accelerated cooling start temperature is [Ar 3 points -30
[° C], accelerated cooling will start from "a two-phase region in which a large amount of pro-eutectoid ferrite is precipitated", and the resulting product has a structure "a structure in which residual austenite enriched with C is mixed". Or "hard martensite structure in the center segregation part" or "block-shaped bainite structure" and becomes HI resistant
C property and SSC resistance decrease. Therefore, the accelerated cooling start temperature after the completion of rolling is determined to be the temperature of [Ar 3 point −30 ° C.] or higher, but it is desirable that Ar 3 in which proeutectoid ferrite is not yet present.
It is better to start from a temperature above the point.

【0034】〔加速冷却時の冷却速度〕加速冷却時にお
ける冷却速度(平均冷却速度)が10℃/sを下回るとフ
ェライト/パ−ライトの2相分離が進み、中心偏析部で
耐HIC性に劣る硬化組織が形成される。そして、この
パ−ライトは母材の耐SSC性を損なう。一方、前記冷
却速度が25℃/sを上回ると硬化したブロック状ベイナ
イトが生成しやすくなって耐HIC性,耐SSC性が低
下する上、所定の加速冷却停止温度にコントロ−ルする
のが工業的に困難となる。従って、加速冷却時における
冷却速度を10〜25℃/sと定めたが、望ましい範囲は
15〜20℃/sである。
[Cooling rate during accelerated cooling] When the cooling rate (average cooling rate) during accelerated cooling is less than 10 ° C / s, two-phase separation of ferrite / pearlite proceeds and HIC resistance is improved at the center segregation portion. A poorly hardened structure is formed. This pearlite impairs the SSC resistance of the base material. On the other hand, if the cooling rate exceeds 25 ° C./s, hardened block bainite is likely to be formed, the HIC resistance and the SSC resistance are lowered, and it is industrially controlled to a predetermined accelerated cooling stop temperature. Becomes difficult. Therefore, the cooling rate at the time of accelerated cooling is set to 10 to 25 ° C / s, but the desirable range is 15 to 20 ° C / s.

【0035】〔加速冷却停止温度〕圧延終了後に実施す
る前記加速冷却は、400〜550℃の温度域で停止す
る必要がある。なぜなら、加速冷却停止温度が400℃
を下回ると硬化したブロック状ベイナイトが生成しやす
く、母材の耐HIC性,耐SSC性が低下するからであ
る。なお、550℃を上回る温度域で加速冷却を停止す
ると、加速冷却停止時に未変態のオ−ステナイトが残る
のでその後にパ−ライトが生成して偏析部にCの濃縮が
起こり、耐HIC性が低下する。しかも、生成したパ−
ライトは母材の耐SSC性を損なう。従って、上述のよ
うに加速冷却は400〜550℃の温度域で停止するこ
とと定めたが、望ましい加速冷却停止温度は450〜5
00℃であると言える。加速冷却の停止後は、例えば厚
板ミルで圧延された大径ラインパイプ用鋼板に供するも
の等ではそのまま放冷し、熱延ミルで圧延された電縫鋼
管用ホットコイル等では巻取を行えば良い。
[Accelerated Cooling Stop Temperature] The accelerated cooling performed after rolling is required to be stopped in the temperature range of 400 to 550 ° C. Because the accelerated cooling stop temperature is 400 ℃
If it is below the range, hardened block bainite is likely to be formed, and the HIC resistance and SSC resistance of the base material are deteriorated. When accelerated cooling is stopped in a temperature range higher than 550 ° C., untransformed austenite remains when the accelerated cooling is stopped, so that pearlite is generated after that, C is concentrated in the segregated portion, and HIC resistance is high. descend. Moreover, the generated part
Light impairs the SSC resistance of the base material. Therefore, although it has been determined that the accelerated cooling is stopped in the temperature range of 400 to 550 ° C as described above, the desired accelerated cooling stop temperature is 450 to 5
It can be said that the temperature is 00 ° C. After the accelerated cooling is stopped, for example, it is allowed to cool as it is for steel plates for large-diameter line pipes rolled in a thick plate mill, and it is wound in hot coils for ERW steel pipes rolled in a hot rolling mill. I'm fine.

【0036】続いて、本発明を実施例によって説明す
る。
Next, the present invention will be described with reference to examples.

【実施例】まず、連続鋳造装置及び真空溶解鋳造装置に
よって表1及び表2に示す成分組成の鋼片を得た。
EXAMPLE First, a steel piece having the composition shown in Tables 1 and 2 was obtained by a continuous casting apparatus and a vacuum melting casting apparatus.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】次に、これらの鋼片に対して表3ないし表
5に示す条件の加熱,圧延及び加速冷却を施し、何れも
25.4mm厚の鋼板を製造した。なお、何れも加速冷却後は
放冷を行った。
Next, heating, rolling and accelerated cooling under the conditions shown in Tables 3 to 5 were applied to these steel slabs.
A 25.4 mm thick steel plate was produced. In each case, cooling was performed after accelerated cooling.

【0040】[0040]

【表3】 [Table 3]

【0041】[0041]

【表4】 [Table 4]

【0042】[0042]

【表5】 [Table 5]

【0043】そして、このようにして得られた各鋼板か
らそれぞれ試験片を採取し、母材部の強度,耐HIC
性,耐SSC性及び耐炭酸ガス腐食性、並びに溶接部の
耐SSC性及びの調査を実施した。これらの調査結果を
表3ないし表5に併せて示す。
Then, test pieces were sampled from each of the steel plates thus obtained, and the strength and HIC resistance of the base material were measured.
, SSC resistance and carbon dioxide corrosion resistance, and SSC resistance of welds were investigated. The results of these investigations are also shown in Tables 3 to 5.

【0044】ここで、耐HIC性は「NACE TM-0
2-84」に記載されている方法で評価した。即ち、NAC
E浴 (0.5%酢酸+5%食塩水,25℃, 1気圧H2S飽和) に
96hr浸漬した時の割れ面積率(CAR)を測定し、
「CAR≦2%」のものが耐HIC性に優れるとした。
即ち、図1はHIC試験片(母材厚×20mm幅×100
mm長)の採取方法を示しているが、このようにして各条
件毎に3枚の試験片を採取し、これをNACE浴に96
hr浸漬してから超音波探傷法で図2で表される断面のH
IC面積を測定した後、 なる式を用いてHIC感受性をCARでもって評価し
た。
Here, the HIC resistance is "NACE TM-0.
It was evaluated by the method described in “2-84”. That is, NAC
The crack area ratio (CAR) when immersed in E bath (0.5% acetic acid + 5% saline solution, 25 ° C., 1 atm H 2 S saturated) for 96 hours was measured,
Those with “CAR ≦ 2%” were considered to have excellent HIC resistance.
That is, FIG. 1 shows a HIC test piece (base material thickness × 20 mm width × 100
mm length) is shown, but 3 test pieces are collected for each condition in this way, and these are put in a NACE bath for 96 times.
After immersion in hr, the H of the cross section shown in Fig. 2 by ultrasonic flaw detection
After measuring the IC area, HIC sensitivity was evaluated with CAR using the formula

【0045】なお、表3ないし表5に示す耐HIC性の
評価結果は3枚の試験片の平均であり、CLR(幅方向
の割れ長さ)がCARをほぼ3倍した値に対応している
ことが経験的に知られていて「CAR≦2%」が「CL
R≦5%」に相当し耐HIC性に優れることの指標とな
ることから、表3ないし表5には「CAR≦2%」のも
のを耐HIC性に優れるとして○印で、「CAR>2
%」のものについては耐HIC性に劣るとして×印でそ
れぞれ表示した。
The HIC resistance evaluation results shown in Tables 3 to 5 are averages of three test pieces, and CLR (crack length in the width direction) corresponds to a value obtained by multiplying CAR by about three times. It is empirically known that "CAR ≤ 2%" is "CL
"C≤2%" corresponds to "R≤5%" and is an index of excellent HIC resistance. Therefore, in Tables 3 to 5, "CAR≤2%" is marked as excellent in HIC resistance and marked with "CAR>". Two
% "Was marked as inferior to HIC resistance and indicated by x.

【0046】また、耐SSC性は「NACE TM-01-
77 METHOD A」に記載されている方法で評価した。即
ち、鋼板の板厚中心部から平行部が6.35mmφ×25.4mmの
丸棒試験片を採取した後、これにNACE浴中で80%
SMYS(ここではSMYSを80ksi とした)の引張応力を付与
して720hrが経過するまでの間に破断が生じるか否か
を調べ、破断しなかったものを耐SSC性に優れるとし
て○印で、破断が生じたものについては耐SSC性が劣
るとして×印でそれぞれ表3ないし表5中に表示した。
Further, the SSC resistance is "NACE TM-01-
77 METHOD A ”. That is, after collecting a round bar test piece having a parallel portion of 6.35 mmφ × 25.4 mm from the center of the plate thickness of the steel plate, 80% of it was placed in a NACE bath.
It is examined whether or not breakage occurs by applying tensile stress of SMYS (here, SMYS is set to 80 ksi), and whether or not breakage occurs until 720 hr has passed, and those that did not break are marked with excellent SSC resistance, marked with ○. Those having fractures were shown to have poor SSC resistance and marked with X in Tables 3 to 5, respectively.

【0047】更に、上記各鋼板の中から母材部の耐SS
C性の良好だったものを選び、その圧延方向と平行に入
熱量20kJ/cm で両面一層サブマ−ジア−ク溶接を施し
てから、図3に示す如く板厚中心部から溶接金属部が中
心に位置するようにSSC試験片を採取し、これらにつ
いて上記と同様の試験を行って溶接部の耐SSC性を評
価した。この場合の耐SSC性評価結果についても、表
3ないし表5中に母材部のそれと同様に表示した。
Further, among the above steel plates, the SS resistance of the base material is
Select the one with good C property, perform submarine welding on both sides in parallel with the rolling direction with a heat input of 20 kJ / cm, and then center the weld metal part from the plate thickness center as shown in Fig. 3. The SSC test pieces were sampled so as to be located at, and the same test as above was performed on these to evaluate the SSC resistance of the welded portion. The SSC resistance evaluation results in this case are also shown in Tables 3 to 5 in the same manner as that of the base metal portion.

【0048】一方、耐炭酸ガス腐食性については、各鋼
板から切り出した試験片を「1気圧の炭酸ガスを飽和さ
せた50℃の人工海水中」に96hr浸漬し、その際の腐
食減量から計算した腐食速度にて評価した。なお、表3
ないし表5の特性評価結果の欄で、「─」が付されたも
のは評価を行わなかったことを示している。
On the other hand, the carbon dioxide corrosion resistance was calculated from the corrosion weight loss when the test pieces cut out from each steel sheet were immersed in "50 ° C. artificial seawater saturated with carbon dioxide at 1 atm" for 96 hours. The corrosion rate was evaluated. Table 3
In addition, in the column of the characteristic evaluation result in Table 5, those marked with "-" indicate that the evaluation was not performed.

【0049】さて、前記表3ないし表5に示される結果
からは次のことが分かる。即ち、試験番号1,2,3及
び8の結果は、鋼板のMn含有量が本発明で規定する範囲
よりも高いと母材部の耐SSC性が劣化し、特にMn含有
量が 1.3超と高すぎる試験番号3にあっては母材部の耐
HIC性をも劣化することを示している。また、試験番
号4及び9の結果は、鋼板のMn並びにCrの含有量が本発
明で規定する範囲よりも低い場合にはAPI規格X80
の強度を満足できないことを示している。そして、試験
番号13,14及び15の結果から、母材部に十分な耐SSC
性を付与するためにはCr含有量を 0.7%以下に調整する
必要のあることが明らかである。
From the results shown in Tables 3 to 5, the following can be understood. That is, the results of Test Nos. 1, 2, 3 and 8 show that when the Mn content of the steel sheet is higher than the range specified in the present invention, the SSC resistance of the base material is deteriorated, and particularly the Mn content exceeds 1.3. Test number 3, which is too high, shows that the HIC resistance of the base material also deteriorates. The results of test numbers 4 and 9 show that when the Mn and Cr contents of the steel sheet are lower than the range specified in the present invention, the API standard X80 is used.
It means that the strength of is not satisfied. From the results of test numbers 13, 14 and 15, there is sufficient SSC resistance for the base metal part.
It is clear that it is necessary to adjust the Cr content to 0.7% or less in order to impart the properties.

【0050】試験番号16,17及び18の結果からは、溶接
部の耐SSC性を十分に向上させるためには 0.005%以
上のN含有量を確保する必要のあることが分かる。試験
番号19,20及び21の結果からは、溶接部の耐SSC性を
十分に向上させるためにはTi含有量を 0.005%以上にす
る必要のあることが分かる。更に、試験番号22,23及び
24の結果から、鋼板のC含有量が本発明で規定する範囲
よりも高いと溶接部の耐SSC性が劣化することが分か
る。
From the results of Test Nos. 16, 17 and 18, it is understood that it is necessary to secure the N content of 0.005% or more in order to sufficiently improve the SSC resistance of the welded portion. From the results of test numbers 19, 20 and 21, it is clear that the Ti content must be 0.005% or more in order to sufficiently improve the SSC resistance of the welded portion. In addition, test numbers 22, 23 and
From the results of No. 24, it can be seen that if the C content of the steel sheet is higher than the range specified in the present invention, the SSC resistance of the welded portion deteriorates.

【0051】一方、試験番号25,27,28,31,32,33,
36,37及び39は鋼板の製造条件が本発明で規定する条件
から外れている例であり、この場合には十分な強度ある
いは耐食性(耐HIC性,耐SSC性,耐炭酸ガス腐食
性)を安定して確保できないことが分かる。
On the other hand, test numbers 25, 27, 28, 31, 32, 33,
36, 37 and 39 are examples in which the steel plate manufacturing conditions deviate from the conditions specified in the present invention. In this case, sufficient strength or corrosion resistance (HIC resistance, SSC resistance, carbon dioxide corrosion resistance) is required. You can see that it cannot be secured in a stable manner.

【0052】これに対し、本発明の規定条件を満たして
いる場合には、得られる鋼板はAPI規格X80級の高
強度,NACE条件下CAR≦2%の優れた耐HIC
性,NACE条件下σth≧80%以上の優れた耐SSC
性,並びに従来鋼に比べて腐食速度が約半分という優れ
た耐炭酸ガス腐食性を兼備していることも、前記表3な
いし表5の結果から確認することができる。なお、本発
明の規定条件に従って得られた鋼板は、何れもフェライ
トとベイナイトの2相組織を有していることは確認済で
ある。
On the other hand, when the specified conditions of the present invention are satisfied, the resulting steel sheet has a high strength of API standard X80 grade and excellent HIC resistance of CAR ≦ 2% under NACE conditions.
And excellent SSC resistance of σth ≧ 80% or more under NACE conditions
It is also possible to confirm from the results of Tables 3 to 5 that it has both excellent corrosion resistance and excellent carbon dioxide corrosion resistance with a corrosion rate of about half that of conventional steel. It has been confirmed that the steel sheets obtained according to the specified conditions of the present invention each have a two-phase structure of ferrite and bainite.

【0053】[0053]

【効果の総括】以上に説明した如く、この発明によれ
ば、API規格X80級の高強度を備えると共に、非常
に優れた耐HIC性,耐SSC性及び耐炭酸ガス腐食性
を示す鋼材を提供することができ、例えば過酷な条件下
で使用するラインパイプ等の材料に供した場合でも高い
信頼性が得られるなど、産業上極めて有用な効果がもた
らされる。
[Summary of Effects] As described above, according to the present invention, a steel material having high strength of API standard X80 class and having excellent HIC resistance, SSC resistance, and carbon dioxide corrosion resistance is provided. Therefore, it is possible to obtain extremely useful effects in industry, such as high reliability even when used for materials such as line pipes used under severe conditions.

【図面の簡単な説明】[Brief description of drawings]

【図1】HIC試験片の採取方法を示した概要説明図で
ある。
FIG. 1 is a schematic explanatory view showing a method of collecting HIC test pieces.

【図2】耐HIC性の評価方法に関する説明図である。FIG. 2 is an explanatory diagram relating to a method for evaluating HIC resistance.

【図3】溶接部からのSSC試験片の採取方法を示した
概要説明図である。
FIG. 3 is a schematic explanatory view showing a method of collecting an SSC test piece from a welded portion.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量割合にてC:0.03〜0.07%, Si:
0.01〜 0.5%, Mn: 0.7〜 1.1%,P: 0.015%以
下, S: 0.002%以下, Cr: 0.3〜 0.7%,Ti:
0.005〜 0.030%, Al: 0.005〜0.05%,Ca:0.0005
〜0.0050%, N: 0.005〜 0.010%を含有すると共に
残部がFe及び不可避不純物である成分組成で、かつフェ
ライトとベイナイトとの2相組織を有して成ることを特
徴とする耐食性の優れた高強度鋼材。
1. A weight ratio of C: 0.03 to 0.07%, Si:
0.01 to 0.5%, Mn: 0.7 to 1.1%, P: 0.015% or less, S: 0.002% or less, Cr: 0.3 to 0.7%, Ti:
0.005 to 0.030%, Al: 0.005 to 0.05%, Ca: 0.0005
.About.0.0050%, N: 0.005 to 0.010%, and the balance is a component composition of Fe and unavoidable impurities, and has a two-phase structure of ferrite and bainite. Strength steel material.
【請求項2】 重量割合にてC:0.03〜0.07%, Si:
0.01〜 0.5%, Mn: 0.7〜 1.1%,P: 0.015%以
下, S: 0.002%以下, Cr: 0.3〜 0.7%,Ti:
0.005〜 0.030%, Al: 0.005〜0.05%,Ca:0.0005
〜0.0050%, N: 0.005〜 0.010%を含み、更にCu:
0.05〜 0.5%, Ni:0.05〜 0.5%, Mo:0.03〜 0.3
%,Nb:0.01〜 0.1%, V:0.01〜 0.1%のうちの1
種以上をも含有すると共に残部がFe及び不可避不純物で
ある成分組成で、かつフェライトとベイナイトとの2相
組織を有して成ることを特徴とする耐食性の優れた高強
度鋼材。
2. A weight ratio of C: 0.03 to 0.07%, Si:
0.01 to 0.5%, Mn: 0.7 to 1.1%, P: 0.015% or less, S: 0.002% or less, Cr: 0.3 to 0.7%, Ti:
0.005 to 0.030%, Al: 0.005 to 0.05%, Ca: 0.0005
~ 0.0050%, N: 0.005 to 0.010% inclusive, and Cu:
0.05 to 0.5%, Ni: 0.05 to 0.5%, Mo: 0.03 to 0.3
%, Nb: 0.01 to 0.1%, V: 0.01 to 0.1% of 1
A high-strength steel material excellent in corrosion resistance, characterized in that it also contains at least one kind and has a composition with the balance being Fe and unavoidable impurities and having a two-phase structure of ferrite and bainite.
【請求項3】 重量割合にてC:0.03〜0.07%, Si:
0.01〜 0.5%, Mn: 0.7〜 1.1%,P: 0.015%以
下, S: 0.002%以下, Cr: 0.3〜 0.7%,Ti:
0.005〜 0.030%, Al: 0.005〜0.05%,Ca:0.0005
〜0.0050%, N: 0.005〜 0.010%を含有すると共に
残部がFe及び不可避不純物より成る鋼を、1050〜1
250℃に加熱してから950℃以下での累積圧下率が
50%以上となる圧延を施し、この圧延をAr3点の温度
以上で終了した後、〔Ar3点−30℃〕の温度以上の温
度域から400〜550℃の温度域まで10〜25℃/s
の冷却速度で水冷し、その後は放冷又は巻取を行うこと
を特徴とする耐食性の優れた高強度鋼材の製造方法。
3. A weight ratio of C: 0.03 to 0.07%, Si:
0.01 to 0.5%, Mn: 0.7 to 1.1%, P: 0.015% or less, S: 0.002% or less, Cr: 0.3 to 0.7%, Ti:
0.005 to 0.030%, Al: 0.005 to 0.05%, Ca: 0.0005
To 0.0050%, N: 0.005 to 0.010% and the balance Fe and unavoidable impurities
After heating to 250 ° C., rolling at which the cumulative rolling reduction at 950 ° C. or less is 50% or more is performed, and after this rolling is finished at a temperature of Ar 3 points or more, a temperature of [Ar 3 points −30 ° C.] or more 10 to 25 ℃ / s from the temperature range of 400 to 550 ℃
A method for producing a high-strength steel material having excellent corrosion resistance, which comprises cooling with water at a cooling rate of 1, and then cooling or winding.
【請求項4】 重量割合にてC:0.03〜0.07%, Si:
0.01〜 0.5%, Mn: 0.7〜 1.1%,P: 0.015%以
下, S: 0.002%以下, Cr: 0.3〜 0.7%,Ti:
0.005〜 0.030%, Al: 0.005〜0.05%,Ca:0.0005
〜0.0050%, N: 0.005〜 0.010%を含み、更にCu:
0.05〜 0.5%, Ni:0.05〜 0.5%, Mo:0.03〜 0.3
%,Nb:0.01〜 0.1%, V:0.01〜 0.1%のうちの1
種以上をも含有すると共に残部がFe及び不可避不純物よ
り成る鋼を、1050〜1250℃に加熱してから95
0℃以下での累積圧下率が50%以上となる圧延を施
し、この圧延をAr3点の温度以上で終了した後、〔Ar3
点−30℃〕の温度以上の温度域から400〜550℃
の温度域まで10〜25℃/sの冷却速度で水冷し、その
後は放冷又は巻取を行うことを特徴とする耐食性の優れ
た高強度鋼材の製造方法。
4. A weight ratio of C: 0.03 to 0.07%, Si:
0.01 to 0.5%, Mn: 0.7 to 1.1%, P: 0.015% or less, S: 0.002% or less, Cr: 0.3 to 0.7%, Ti:
0.005 to 0.030%, Al: 0.005 to 0.05%, Ca: 0.0005
~ 0.0050%, N: 0.005 to 0.010% inclusive, and Cu:
0.05 to 0.5%, Ni: 0.05 to 0.5%, Mo: 0.03 to 0.3
%, Nb: 0.01 to 0.1%, V: 0.01 to 0.1% of 1
A steel containing not less than one kind and the balance consisting of Fe and unavoidable impurities is heated to 1050-1250 ° C., and then 95
After rolling at a cumulative rolling reduction of 50% or more at 0 ° C. or lower, and after finishing the rolling at a temperature of Ar 3 or higher, [Ar 3
400 to 550 ° C from the temperature range above the point -30 ° C]
The method for producing a high-strength steel material having excellent corrosion resistance, which comprises water-cooling to a temperature range of 10 to 25 ° C./s at a cooling rate of 10 to 25 ° C./s, and then cooling or winding.
JP2628594A 1994-01-28 1994-01-28 High strength steel material excellent in corrosion resistance and its production Pending JPH07216500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2628594A JPH07216500A (en) 1994-01-28 1994-01-28 High strength steel material excellent in corrosion resistance and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2628594A JPH07216500A (en) 1994-01-28 1994-01-28 High strength steel material excellent in corrosion resistance and its production

Publications (1)

Publication Number Publication Date
JPH07216500A true JPH07216500A (en) 1995-08-15

Family

ID=12189030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2628594A Pending JPH07216500A (en) 1994-01-28 1994-01-28 High strength steel material excellent in corrosion resistance and its production

Country Status (1)

Country Link
JP (1) JPH07216500A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100564324B1 (en) * 2001-12-21 2006-03-29 주식회사 포스코 Hot rolled low alloy steel with good carbon dioxide corrosion resistance
KR100564325B1 (en) * 2001-12-21 2006-03-29 주식회사 포스코 Hot rolled low alloy steel with good carbon dioxide corrosion resistance and hydrogen induced cracking resistance
JP2008101242A (en) * 2006-10-19 2008-05-01 Jfe Steel Kk High-strength steel plate with excellent hic resistance for line pipe, and its manufacturing method
JP2008133536A (en) * 2006-10-27 2008-06-12 Kobe Steel Ltd Steel having excellent corrosion resistance for ship use
US7416617B2 (en) * 2002-10-01 2008-08-26 Sumitomo Metal Industries, Ltd. High strength seamless steel pipe excellent in hydrogen-induced cracking resistance
JP2010077492A (en) * 2008-09-26 2010-04-08 Jfe Steel Corp Steel pipe for line pipe and method of producing the same
JP2010222701A (en) * 2009-02-26 2010-10-07 Jfe Steel Corp Steel for crude oil tanker
US7935197B2 (en) 2002-02-07 2011-05-03 Jfe Steel Corporation High strength steel plate
US7959745B2 (en) 2001-07-13 2011-06-14 Jfe Steel Corporation High-strength steel pipe of API X65 grade or higher
KR101105128B1 (en) * 2004-12-22 2012-01-16 주식회사 포스코 Manufacturing method of wide and thick plate having excellent strength and toughness for making linepipe
KR101105003B1 (en) * 2008-11-29 2012-01-16 주식회사 포스코 Manufacturing method for steel plate with excellent corrosion resistance at low ph chloride solution
WO2012029945A1 (en) * 2010-09-03 2012-03-08 住友金属工業株式会社 High-strength steel sheet having excellent fracture resistance performance and hic resistance performance
WO2013027779A1 (en) * 2011-08-23 2013-02-28 新日鐵住金株式会社 Thick-walled electric-resistance-welded steel pipe and process for producing same
JP2013119658A (en) * 2011-12-08 2013-06-17 Jfe Steel Corp HIGH STRENGTH WELDED STEEL PIPE EXCELLENT IN SULFIDE STRESS CORROSION CRACKING RESISTANCE AND HAVING TENSILE STRENGTH OF 600 MPa OR MORE
JP2013119657A (en) * 2011-12-08 2013-06-17 Jfe Steel Corp HIGH STRENGTH WELDED STEEL PIPE EXCELLENT IN SULFIDE STRESS CORROSION CRACKING RESISTANCE AND HAVING TENSILE STRENGTH OF 600 MPa OR MORE
WO2014115548A1 (en) * 2013-01-24 2014-07-31 Jfeスチール株式会社 HOT-ROLLED STEEL PLATE FOR HIGH-STRENGTH LINE PIPE AND HAVING TENSILE STRENGTH OF AT LEAST 540 MPa
WO2014115549A1 (en) * 2013-01-24 2014-07-31 Jfeスチール株式会社 Hot-rolled steel plate for high-strength line pipe
EP3018231A4 (en) * 2013-07-01 2017-03-22 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Steel plate having excellent hydrogen-induced-cracking resistance and toughness, and steel tube for line pipe
CN107151765A (en) * 2017-04-19 2017-09-12 南京钢铁股份有限公司 A kind of antiacid anti-corrosion pipe line steel and its production method
CN110699532A (en) * 2019-09-30 2020-01-17 唐山钢铁集团高强汽车板有限公司 Method for reducing cold-rolled double-phase steel base material strip-shaped structure and flat-winding defects
RU2720284C1 (en) * 2019-08-16 2020-04-28 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Hot-rolled strip of high corrosion resistance from low-alloy steel and method of its production
JP2022506661A (en) * 2018-11-08 2022-01-17 ポスコ High-strength structural steel and its manufacturing method

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7959745B2 (en) 2001-07-13 2011-06-14 Jfe Steel Corporation High-strength steel pipe of API X65 grade or higher
KR100564325B1 (en) * 2001-12-21 2006-03-29 주식회사 포스코 Hot rolled low alloy steel with good carbon dioxide corrosion resistance and hydrogen induced cracking resistance
KR100564324B1 (en) * 2001-12-21 2006-03-29 주식회사 포스코 Hot rolled low alloy steel with good carbon dioxide corrosion resistance
US7935197B2 (en) 2002-02-07 2011-05-03 Jfe Steel Corporation High strength steel plate
US8147626B2 (en) 2002-02-07 2012-04-03 Jfe Steel Corporation Method for manufacturing high strength steel plate
EP2420586A1 (en) 2002-02-07 2012-02-22 JFE Steel Corporation High strength steel plate and method for manufacturing the same
US7416617B2 (en) * 2002-10-01 2008-08-26 Sumitomo Metal Industries, Ltd. High strength seamless steel pipe excellent in hydrogen-induced cracking resistance
KR101105128B1 (en) * 2004-12-22 2012-01-16 주식회사 포스코 Manufacturing method of wide and thick plate having excellent strength and toughness for making linepipe
JP2008101242A (en) * 2006-10-19 2008-05-01 Jfe Steel Kk High-strength steel plate with excellent hic resistance for line pipe, and its manufacturing method
JP2008133536A (en) * 2006-10-27 2008-06-12 Kobe Steel Ltd Steel having excellent corrosion resistance for ship use
JP2010077492A (en) * 2008-09-26 2010-04-08 Jfe Steel Corp Steel pipe for line pipe and method of producing the same
KR101105003B1 (en) * 2008-11-29 2012-01-16 주식회사 포스코 Manufacturing method for steel plate with excellent corrosion resistance at low ph chloride solution
JP2010222701A (en) * 2009-02-26 2010-10-07 Jfe Steel Corp Steel for crude oil tanker
WO2012029945A1 (en) * 2010-09-03 2012-03-08 住友金属工業株式会社 High-strength steel sheet having excellent fracture resistance performance and hic resistance performance
US9528172B2 (en) 2010-09-03 2016-12-27 Nippon Steel & Sumitomo Metal Corporation High-strength steel sheet having improved resistance to fracture and to HIC
JP5299579B2 (en) * 2010-09-03 2013-09-25 新日鐵住金株式会社 High-strength steel sheet with excellent fracture and HIC resistance
KR101367352B1 (en) * 2011-08-23 2014-02-26 신닛테츠스미킨 카부시키카이샤 Thick-walled electric-resistance-welded steel pipe and process for producing same
WO2013027779A1 (en) * 2011-08-23 2013-02-28 新日鐵住金株式会社 Thick-walled electric-resistance-welded steel pipe and process for producing same
JP5293903B1 (en) * 2011-08-23 2013-09-18 新日鐵住金株式会社 Thick ERW Steel Pipe and Method for Manufacturing the Same
JP2013119657A (en) * 2011-12-08 2013-06-17 Jfe Steel Corp HIGH STRENGTH WELDED STEEL PIPE EXCELLENT IN SULFIDE STRESS CORROSION CRACKING RESISTANCE AND HAVING TENSILE STRENGTH OF 600 MPa OR MORE
JP2013119658A (en) * 2011-12-08 2013-06-17 Jfe Steel Corp HIGH STRENGTH WELDED STEEL PIPE EXCELLENT IN SULFIDE STRESS CORROSION CRACKING RESISTANCE AND HAVING TENSILE STRENGTH OF 600 MPa OR MORE
JPWO2014115548A1 (en) * 2013-01-24 2017-01-26 Jfeスチール株式会社 Hot-rolled steel sheet for high-strength line pipe with a tensile strength of 540 MPa or more
CN104937125A (en) * 2013-01-24 2015-09-23 杰富意钢铁株式会社 Hot-rolled steel plate for high-strength line pipe
JP5884202B2 (en) * 2013-01-24 2016-03-15 Jfeスチール株式会社 Hot-rolled steel sheet for high-strength line pipe
JP5884201B2 (en) * 2013-01-24 2016-03-15 Jfeスチール株式会社 Hot-rolled steel sheet for high-strength line pipe with a tensile strength of 540 MPa or more
WO2014115549A1 (en) * 2013-01-24 2014-07-31 Jfeスチール株式会社 Hot-rolled steel plate for high-strength line pipe
WO2014115548A1 (en) * 2013-01-24 2014-07-31 Jfeスチール株式会社 HOT-ROLLED STEEL PLATE FOR HIGH-STRENGTH LINE PIPE AND HAVING TENSILE STRENGTH OF AT LEAST 540 MPa
EP3018231A4 (en) * 2013-07-01 2017-03-22 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Steel plate having excellent hydrogen-induced-cracking resistance and toughness, and steel tube for line pipe
EP3428301A1 (en) * 2013-07-01 2019-01-16 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Steel plate with excellent hydrogen-induced cracking resistance and toughness, and steel pipe for line pipe
CN107151765A (en) * 2017-04-19 2017-09-12 南京钢铁股份有限公司 A kind of antiacid anti-corrosion pipe line steel and its production method
JP2022506661A (en) * 2018-11-08 2022-01-17 ポスコ High-strength structural steel and its manufacturing method
RU2720284C1 (en) * 2019-08-16 2020-04-28 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Hot-rolled strip of high corrosion resistance from low-alloy steel and method of its production
CN110699532A (en) * 2019-09-30 2020-01-17 唐山钢铁集团高强汽车板有限公司 Method for reducing cold-rolled double-phase steel base material strip-shaped structure and flat-winding defects

Similar Documents

Publication Publication Date Title
EP1354973B1 (en) High-strength steel sheet and high-strength pipe excellent in deformability and method for producing the same
EP1462535B1 (en) Manufacturing method of a hot-rolled steel strip for a high strength electric resistance welding pipe
JP4696615B2 (en) High-tensile steel plate, welded steel pipe and manufacturing method thereof
KR101247089B1 (en) Steel plate for line pipes and steel pipes
US7879287B2 (en) Hot-rolled steel sheet for high-strength electric-resistance welded pipe having sour-gas resistance and excellent weld toughness, and method for manufacturing the same
EP1473376B1 (en) High strength steel plate and method for production thereof
JPH07216500A (en) High strength steel material excellent in corrosion resistance and its production
JP6047947B2 (en) Thick high-strength seamless steel pipe for line pipes with excellent sour resistance and method for producing the same
KR101410588B1 (en) Thick welded steel pipe having excellent low-temperature toughness, method for producing thick welded steel pipe having excellent low-temperature toughness, and steel sheet for producing thick welded steel pipe
EP2692875B1 (en) Electroseamed steel pipe and process for producing same
EP1325967A1 (en) High strength steel pipe having strength higher than that of api x65 grade
WO2013011791A1 (en) Low-yield-ratio high-strength hot-rolled steel plate with excellent low-temperature toughness and process for producing same
JP5499731B2 (en) Thick high-tensile hot-rolled steel sheet with excellent HIC resistance and method for producing the same
JP5884201B2 (en) Hot-rolled steel sheet for high-strength line pipe with a tensile strength of 540 MPa or more
JP2010196165A (en) Thick high-tensile-strength hot-rolled steel sheet having excellent low-temperature toughness and process for producing the same
JP5401863B2 (en) Manufacturing method for thick-walled high-tensile hot-rolled steel sheet with excellent low-temperature toughness
JP5521482B2 (en) Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same
EP2093302B1 (en) Weld steel pipe with excellent low-temperature toughness for high-strength line pipe and process for producing the same
JP3941211B2 (en) Manufacturing method of steel plate for high-strength line pipe with excellent HIC resistance
JP3303647B2 (en) Welded steel pipe with excellent sour resistance and carbon dioxide gas corrosion resistance
JP6179604B2 (en) Steel strip for electric resistance welded steel pipe, electric resistance welded steel pipe, and method for producing steel strip for electric resistance welded steel pipe
JP6241434B2 (en) Steel plate for line pipe, steel pipe for line pipe, and manufacturing method thereof
JPH1180833A (en) Production of steel sheet for high strength line pipe excellent in hic resistance
JPH08104922A (en) Production of high strength steel pipe excellent in low temperature toughness
JPH1161328A (en) High manganese ingot, its continuous casting and manufacture of high tensile steel