JP2013119657A - HIGH STRENGTH WELDED STEEL PIPE EXCELLENT IN SULFIDE STRESS CORROSION CRACKING RESISTANCE AND HAVING TENSILE STRENGTH OF 600 MPa OR MORE - Google Patents

HIGH STRENGTH WELDED STEEL PIPE EXCELLENT IN SULFIDE STRESS CORROSION CRACKING RESISTANCE AND HAVING TENSILE STRENGTH OF 600 MPa OR MORE Download PDF

Info

Publication number
JP2013119657A
JP2013119657A JP2011268638A JP2011268638A JP2013119657A JP 2013119657 A JP2013119657 A JP 2013119657A JP 2011268638 A JP2011268638 A JP 2011268638A JP 2011268638 A JP2011268638 A JP 2011268638A JP 2013119657 A JP2013119657 A JP 2013119657A
Authority
JP
Japan
Prior art keywords
less
steel pipe
weld metal
strength
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011268638A
Other languages
Japanese (ja)
Other versions
JP5870664B2 (en
Inventor
Mitsuhiro Okatsu
光浩 岡津
Kimihiro Nishimura
公宏 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011268638A priority Critical patent/JP5870664B2/en
Publication of JP2013119657A publication Critical patent/JP2013119657A/en
Application granted granted Critical
Publication of JP5870664B2 publication Critical patent/JP5870664B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high strength welded steel pipe excellent in SSC (Sulfide Stress corrosion Cracking) resistance and having a tensile strength of 600 MPa or more.SOLUTION: The high strength welded steel pipe excellent in sulfide stress corrosion cracking resistance and having a tensile strength of 600 MPa or more is a welded steel pipe, in which a chemical component of a mother material satisfies a CP value of ≤0.95 calculated by formula (1), a Py value of ≤0.160 calculated by formula (2), and a chemical composition of a welded metal satisfies a Py value of 0.140 to 0.160 calculated by formula (2), wherein formula (1): CP=4.46C(%)+2.37 Mn(%)/6+{1.18Cr(%)+1.95Mo(%)+1.74V(%)}/5+{1.74Cu(%)+1.7Ni(%)}/15+22.36P(%), and formula (2): Py=C(%)+Si(%)/30+Mn(%)/20+{Cu(%)+Cr(%)}/20+Ni(%)/60+Mo(%)/7+V(%)/10+5×B(%).

Description

本発明は、分圧0.1MPa以下の硫化水素ガスを含む、pH4以下の厳しい腐食環境下となる天然ガスまたは原油輸送パイプラインにおいて、鋼管そのもののみならず、鋼管同士の円周溶接部においても耐硫化物応力腐食割れ性に優れた引張強度600MPa以上の高強度溶接鋼管に関する。   The present invention includes a hydrogen gas containing a hydrogen sulfide gas having a partial pressure of 0.1 MPa or less, and a natural gas or crude oil transportation pipeline having a severe corrosion environment of pH 4 or less, not only in the steel pipe itself, but also in a circumferential weld between steel pipes. The present invention relates to a high-strength welded steel pipe excellent in sulfide stress corrosion cracking resistance and having a tensile strength of 600 MPa or more.

硫化水素を含む原油や天然ガスの輸送に用いられる溶接鋼管は、強度、靭性、溶接性の他に、耐水素誘起割れ性(水素誘起割れ:ydrogen nduced racking;以下、HICと略す)や、耐硫化物応力腐食割れ性(硫化物応力腐食割れ:ulfide tress Corrosion racking;以下、SSCと略す)などのいわゆる耐サワー性が必要とされる。 Welded pipes used for transportation of crude oil and natural gas containing hydrogen sulfide, strength, toughness, in addition to weldability, resistance to hydrogen-induced cracking resistance (hydrogen induced cracking: H ydrogen I nduced C racking; hereinafter, abbreviated as HIC) and, resistance to sulfide stress corrosion cracking (sulfide stress corrosion cracking: S ulfide S tress corrosion C racking ; hereinafter, abbreviated as SSC) so-called sour resistance is required, such as.

HICは、腐食反応による水素イオンが鋼材表面に吸着し、原子状の水素として鋼内部に侵入し、鋼中のMnSなどの非金属介在物のまわりに拡散・集積し、その内圧により割れを生じるものとされている。HICを防止する技術としては、CaやCeをS量に対して適量添加することにより、応力集中の大きい形態(例えば針状、板状)のMnSの生成を抑制し、応力集中の小さい微細分散した球状介在物に形態を変えて割れの発生を抑制する方法(例えば特許文献1)や、偏析傾向の高い元素(C、Mn、P等)の低減、さらに偏析部の硬さ上限を規定する方法(例えば特許文献2、特許文献3)が知られている。   In HIC, hydrogen ions from the corrosion reaction are adsorbed on the steel surface, penetrate into the steel as atomic hydrogen, diffuse and accumulate around non-metallic inclusions such as MnS in the steel, and cracks are generated by the internal pressure. It is supposed to be. As a technique for preventing HIC, by adding an appropriate amount of Ca or Ce to the amount of S, generation of MnS in a form with a large stress concentration (for example, needle-like or plate-like) is suppressed, and fine dispersion with a small stress concentration is achieved. A method of suppressing the occurrence of cracks by changing the shape to the spherical inclusions (for example, Patent Document 1), reduction of elements with high tendency to segregation (C, Mn, P, etc.), and further specifying the upper limit of hardness of the segregation part Methods (for example, Patent Document 2 and Patent Document 3) are known.

一方、SSCは鋼管に内圧がかかっている状態で、腐食環境に面する側の鋼管表面でHICと同じく腐食反応による水素イオンが鋼管表面に吸着し、原子状の水素として鋼内部に侵入し水素脆化を起こしたものと考えられている。SSC感受性は、鋼の硬さと強い相関があり、ISO 15156には硫化水素腐食環境下ごとにSSCを防止するための硬さの上限が規定されている。このことから、少なくとも鋼管表面部の硬さを低減することが必要で、鋼管の要求強度レベルが上がるほど、その両立が難しい。この問題を解決するため、鋼管母材の製造工程において、高強度化のために加速冷却を行った後、直ちに誘導加熱により鋼板表層部のみを加熱・焼戻をする方法(例えば特許文献4)が知られている。   On the other hand, in the SSC, when the internal pressure is applied to the steel pipe, hydrogen ions from the corrosion reaction are adsorbed on the surface of the steel pipe facing the corrosive environment, like the HIC, and enter the steel as atomic hydrogen. It is thought that embrittlement occurred. SSC sensitivity has a strong correlation with the hardness of steel, and ISO 15156 defines an upper limit of hardness for preventing SSC in each hydrogen sulfide corrosive environment. For this reason, it is necessary to reduce at least the hardness of the surface portion of the steel pipe, and the higher the required strength level of the steel pipe, the more difficult it is to achieve both. In order to solve this problem, a method of heating and tempering only the steel sheet surface layer portion by induction heating immediately after performing accelerated cooling to increase the strength in the manufacturing process of the steel pipe base material (for example, Patent Document 4) It has been known.

しかしながら、天然ガスまたは原油輸送パイプラインは厚肉・大径のため、厚鋼板を管状に成形後、溶接して製造する溶接鋼管が一般的であり、その溶接部についてもSSCを防止するため、高強度化と硬さの低減を両立させる必要があるが、上述のいずれの技術にも溶接鋼管の溶接部の耐SSC性の改善については開示されていない。加えて、図1に示す溶接鋼管同士をつなぐ円周溶接部においては、鋼管母材の円周溶接によるHAZ、鋼管溶接金属部の円周溶接によるHAZが形成され、特に鋼管溶接金属部に形成されるHAZの硬化が著しいことが知られており、鋼管本体のみならず、円周溶接部でのSSC防止は極めて難しい。なお、HAZとは、溶接による熱影響部(eat ffected one)の略である。 However, because natural gas or crude oil transportation pipelines are thick and large in diameter, welded steel pipes that are manufactured by welding thick steel plates into tubes and then welded are common, and in order to prevent SSC also at the welds, Although it is necessary to achieve both high strength and low hardness, none of the above-described techniques disclose an improvement in the SSC resistance of the welded portion of the welded steel pipe. In addition, in the circumferential welded portion that connects the welded steel pipes shown in FIG. 1, HAZ is formed by circumferential welding of the steel pipe base material, and HAZ is produced by circumferential welding of the steel pipe welded metal part, particularly formed in the steel pipe welded metal part. It is known that the hardening of the HAZ is remarkable, and it is extremely difficult to prevent SSC not only in the steel pipe body but also in the circumferential welded portion. Note that the HAZ, is substantially of the heat-affected zone by welding (H eat A ffected Z one) .

特開昭54−110119号公報Japanese Patent Laid-Open No. 54-110119 特開昭52−111815号公報JP-A-52-111815 特開2009−133005号公報JP 2009-133005 A 特開2002−327212号公報JP 2002-327212 A

本発明は、上記事情に鑑みなされたもので、特に溶接鋼管のみならず、鋼管同士の円周溶接部においても耐SSC性に優れた引張強度600MPa以上の高強度鋼管を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a high-strength steel pipe having a tensile strength of 600 MPa or more excellent in SSC resistance not only in a welded steel pipe but also in a circumferential welded portion between steel pipes. To do.

本発明者らは、まず円周溶接部の耐SSC性に影響すると考えられる、鋼管母材(以下、単に「母材」または「母材部」と称することもある。)および鋼管溶接金属(以下、単に「溶接金属」または「溶接金属部」と称することもある。)それぞれのHAZ硬さの挙動を既存の溶接鋼管(以下、単に「鋼管」と称することもある。)を用い調査した。種々の鋼管母材の化学成分、鋼管溶接金属の化学成分の異なる溶接鋼管から母材部、溶接部の試料を採取し、図2(a)、(b)に示す要領で、母材部および内面溶接金属部に対して、円周溶接を模擬した炭酸ガスアーク溶接ビードを試料表面に溶接(ead late;以下、「BOP」と略す。)し、ビード長手中央部でビードに直角に試料を切断し、切断面を鏡面研磨後、溶接部マクロ組織が見えるように腐食してから、JIS Z3101に準拠して、溶接熱影響部(HAZ)の最高硬さをビッカース硬さ試験方法(JIS Z2244)で測定した。 First, the present inventors consider a steel pipe base material (hereinafter sometimes simply referred to as “base material” or “base material part”) and a steel pipe weld metal (which may be considered to affect the SSC resistance of the circumferential welded part). Hereinafter, it may be simply referred to as “welded metal” or “welded metal part.”) The behavior of each HAZ hardness was investigated using an existing welded steel pipe (hereinafter sometimes simply referred to as “steel pipe”). . Samples of the base metal part and the welded part are taken from welded steel pipes with different chemical constituents of the steel pipe base metal and the chemical constituents of the steel pipe weld metal. the inner surface weld metal, weld carbonate gas arc weld bead simulating the circumferential welding on the surface of the sample (B ead O n P late; . hereinafter, abbreviated as "BOP"), and perpendicular to the bead in the bead longitudinal central portion After the sample is cut, the cut surface is mirror-polished and then corroded so that the welded portion macrostructure can be seen, and the maximum hardness of the weld heat affected zone (HAZ) is determined according to JIS Z3101 by the Vickers hardness test method. It measured by (JIS Z2244).

このようにして得られた円周溶接を模擬したBOPのHAZの硬さについて、鋼の化学成分で重回帰整理を行ったところ、式(2): Py=C+Si/30+Mn/20+(Cu+Cr)/20+Ni/60+Mo/7+V/10+5×Bで計算されるPy値で、円周溶接による母材部のHAZ硬さ、内面溶接金属部のHAZ硬さが共に精度よく整理されることを見出した。ここで、各元素記号は質量%で、含有していない場合には0とする。   The hardness of the BOP HAZ simulating the circumferential welding thus obtained was subjected to multiple regression arrangement with the chemical components of the steel. The formula (2): Py = C + Si / 30 + Mn / 20 + (Cu + Cr) / The Py value calculated by 20 + Ni / 60 + Mo / 7 + V / 10 + 5 × B was found to accurately arrange the HAZ hardness of the base metal part and the HAZ hardness of the inner surface weld metal part by circumferential welding. Here, each element symbol is mass%, and is 0 when not contained.

図2(c)にPyと円周溶接模擬BOP部硬さHvの関係図を示す。ここで、母材部のHAZ(図中「母材HAZ」)とは、図2(b)の炭酸ガスアーク溶接ビード(BOP)によって再熱された、BOP下に位置する母材の熱影響部をいい、溶接金属部のHAZ(図中「溶接金属部HAZ」)とは、図2(a)の炭酸ガスアーク溶接ビード(BOP)によって再熱された、BOP下に位置する鋼管内面溶接金属の熱影響部をいう。   FIG. 2 (c) shows a relationship diagram between Py and circumferential welding simulated BOP part hardness Hv. Here, the HAZ of the base metal part (“base metal HAZ” in the figure) is the heat-affected part of the base material located under the BOP reheated by the carbon dioxide arc welding bead (BOP) of FIG. The weld metal part HAZ ("weld metal part HAZ" in the figure) is a steel pipe inner surface weld metal located under the BOP reheated by the carbon dioxide arc weld bead (BOP) in FIG. 2 (a). Refers to the heat affected zone.

次に、発明者らは、引張強度610MPaを有する、主な化学成分が質量%で0.05%C-0.30%Si-1.30%Mn-0.045%Nb-0.01%Ti−0.002%Ca−0.19%Moの板厚20mmの厚鋼板を母材として、溶接鋼管の内外面1層サブマージアーク溶接を模擬した溶接継手を作製し、継手引張試験を行って鋼管継手部強度に及ぼす溶接金属化学成分の影響を調査した。なお、サブマージアーク溶接は、内外面とも管厚1mm当りの溶接入熱量を0.21kJ/mmとし、溶着量が同一となるよう調整した。   Next, the inventors have a tensile strength of 610 MPa, the main chemical component is 0.05% C-0.30% Si-1.30% Mn-0.045% Nb-0.01% by mass%. Using a steel plate with a thickness of 20 mm of Ti-0.002% Ca-0.19% Mo as a base material, a welded joint simulating inner and outer surface single-layer submerged arc welding of a welded steel pipe was prepared, and a joint tensile test was performed. The effect of weld metal chemical composition on steel pipe joint strength was investigated. In addition, the submerged arc welding was adjusted so that the welding heat input per 1 mm of the tube thickness was 0.21 kJ / mm on both the inner and outer surfaces and the welding amount was the same.

ここで、管厚1mm当りの溶接入熱量は、下記式(3)により定義される。
管厚1mm当りの溶接入熱量(kJ/mm)=60×溶接電流(A)×溶接電圧(V)÷溶接速度(mm/分)÷管厚(mm)・・・式(3)
本発明では、特に言及しない場合は、溶接入熱または溶接入熱量の用語は管厚または板厚1mm当りの溶接入熱量を意味するものとする。管厚1mm当りの溶接入熱量としたのは、溶接鋼管で一般的に用いられている内外面1層サブマージアーク溶接の場合、管厚の増加に応じて溶接入熱が増大することから、溶接鋼管のサイズが種々変化する際の溶接条件の目安として、単位管厚(板厚)当りの溶接入熱量を指標とすべき、との理由からである。
Here, the welding heat input per 1 mm of tube thickness is defined by the following formula (3).
Weld heat input per 1 mm of pipe thickness (kJ / mm) = 60 × welding current (A) × welding voltage (V) ÷ welding speed (mm / min) ÷ tube thickness (mm) Equation (3)
In the present invention, unless otherwise specified, the term welding heat input or welding heat input means the welding heat input per 1 mm of pipe thickness or plate thickness. The amount of welding heat input per 1 mm of pipe thickness is determined because welding heat input increases with increasing pipe thickness in the case of inner / outer surface single layer submerged arc welding generally used for welded steel pipes. This is because the amount of welding heat input per unit pipe thickness (sheet thickness) should be used as an index as a guide for welding conditions when the size of the steel pipe varies.

その結果、内外面とも同一の溶接材料を用いて同じ溶接金属化学成分とした場合には、継手強度を600MPa以上とするためには溶接金属の化学組成で計算される式(2)のPy値を0.19以上とする必要があり、そのようなPy値で溶接鋼管の溶接部を設計した場合には、円周溶接部でHAZ硬さがビッカース硬さで248Hvを超え、ISO 15156の分類における、pH4.0以下で硫化水素分圧が0.1MPaとなる厳しいサワー環境下での耐SSC性を満足できないことが予測される。   As a result, when the same weld material is used for the inner and outer surfaces and the same weld metal chemical composition is used, the Py value of the formula (2) calculated by the chemical composition of the weld metal in order to make the joint strength 600 MPa or more. When the welded portion of the welded steel pipe is designed with such a Py value, the HAZ hardness exceeds 248 Hv in the Vickers hardness at the circumferential welded portion, and the classification of ISO 15156 It is predicted that the SSC resistance cannot be satisfied in a severe sour environment where the hydrogen sulfide partial pressure is 0.1 MPa at pH 4.0 or lower.

ここで発明者らは発想を変え、同じ溶接金属組成でも溶接後の冷却速度が早くなれば焼入性が向上し、継手強度を向上し得るのではないかと考え、サブマージアーク溶接の管厚1mm当りの溶接入熱量を0.19、0.17、0.15、0.13kJ/mmと低減させ、継手強度の評価を行った。その結果、図3に示すように、同じ溶接金属のPy値でも、管厚1mm当りの溶接入熱量を低減させるに従い溶接継手の強度が増大することが確認された。この結果、ISO15156の分類における、Reasion 3環境(分圧0.1MPa以下の硫化水素ガスを含む、pH4以下の厳しい腐食環境)におけるSSC防止のための溶接金属上限Py値0.160未満であっても、板厚1mm当りの溶接入熱を0.15kJ/mm以下まで低減されたものであれば、継手強度600MPa以上とできることがわかった。   Here, the inventors changed the way of thinking and thought that if the cooling rate after welding was increased even with the same weld metal composition, the hardenability could be improved and the joint strength could be improved, and the tube thickness of submerged arc welding was 1 mm. The welding heat input per contact was reduced to 0.19, 0.17, 0.15, and 0.13 kJ / mm, and the joint strength was evaluated. As a result, as shown in FIG. 3, it was confirmed that the strength of the welded joint increased as the welding heat input per 1 mm of pipe thickness was reduced even with the Py value of the same weld metal. As a result, the weld metal upper limit Py value for preventing SSC in the Reason 3 environment (a severe corrosion environment including a hydrogen sulfide gas having a partial pressure of 0.1 MPa or less and a pH of 4 or less) in the ISO 15156 classification is less than 0.160. However, it was found that if the welding heat input per 1 mm of plate thickness is reduced to 0.15 kJ / mm or less, the joint strength can be 600 MPa or more.

本発明は、以上の知見をもとに、さらに検討を加えたもので、
[1]厚鋼板の母材と、
突合せ部を内外面1層ずつによりサブマージアーク溶接により形成された溶接金属と
を有する溶接鋼管であって、
前記母材が、質量%で、
C:0.02〜0.06%、
Si:0.05〜0.5%、
Mn:0.75〜1.75%、
Al:0.01〜0.08%、
Nb:0.005〜0.06%、
Ti:0.005〜0.025%、
Ca:0.0010〜0.0035%を含有し、
P:0.01%以下、
S:0.001%以下、
B:0.004%以下、
N:0.008%以下で
さらに、
Cu:0.30%以下、
Ni:0.50%以下、
Cr:0.50%以下、
Mo:0.20%以下、
V:0.05%以下
の中から選ばれる1種以上を含有し、
下式(1)で表されるCP値が0.95以下であり、
下式(2)で表されるPy値が0.160以下であり、
残部がFe及び不可避的不純物からなり、
かつ、前記溶接金属が、質量%で、
C:0.04〜0.08%
Si:0.05〜0.5%
Mn:1.0〜1.6%
Nb:0.01〜0.05%
Ti:0.01〜0.04%
B:0.001〜0.003%
O:0.020〜0.035%
Al:0.02%以下
を含有し、
さらに
Cu:0.20%以下
Ni:0.30%以下
Cr:0.30%以下
Mo:0.20%以下
V:0.05%以下
の中から選ばれる1種以上を含有し、
残部Feおよび不可避的不純物からなり、かつ
溶接金属の化学組成で計算される式(2)のPy値が0.140〜0.160を満足することを特徴とする耐硫化物応力腐食割れ性に優れた引張強度600MPa以上の高強度溶接鋼管。
CP=4.46C(%)+2.37Mn(%)/6+{1.18Cr(%)+1.95Mo(%)+1.74V(%)}/5+{1.74Cu(%)+1.7Ni(%)}/15+22.36P(%)・・・式(1)
Py=C(%)+Si(%)/30+Mn(%)/20+{Cu(%)+Cr(%)}/20+Ni(%)/60+Mo(%)/7+V(%)/10+5×B(%)・・・式(2)
ここで、各式の右辺の元素記号は含有量(質量%)を表わし、含有しない場合は0とする。
[2] 前記母材の表層部の金属組織は、島状マルテンサイトの体積分率が2%以下であり、残部がベイナイトまたはベイナイトとフェライトの混合組織であることを特徴とする前記[1]に記載の耐硫化物応力腐食割れ性に優れた引張強度600MPa以上の高強度溶接鋼管。
[3] 前記サブマージアーク溶接は、管厚1mm当りの溶接入熱量が0.15kJ/mm以下とすることを特徴とする前記[1]または[2]に記載の耐硫化物応力腐食割れ性に優れた引張強度600MPa以上の高強度溶接鋼管。
The present invention is a further study based on the above knowledge,
[1] A base material of a thick steel plate;
A welded steel pipe having a weld metal formed by submerged arc welding with a butt portion on each inner and outer surface layer,
The base material is mass%,
C: 0.02 to 0.06%,
Si: 0.05 to 0.5%,
Mn: 0.75 to 1.75%,
Al: 0.01 to 0.08%,
Nb: 0.005 to 0.06%,
Ti: 0.005 to 0.025%,
Ca: 0.0010 to 0.0035% is contained,
P: 0.01% or less,
S: 0.001% or less,
B: 0.004% or less,
N: 0.008% or less
Cu: 0.30% or less,
Ni: 0.50% or less,
Cr: 0.50% or less,
Mo: 0.20% or less,
V: contains one or more selected from 0.05% or less,
The CP value represented by the following formula (1) is 0.95 or less,
The Py value represented by the following formula (2) is 0.160 or less,
The balance consists of Fe and inevitable impurities,
And the said weld metal is the mass%,
C: 0.04 to 0.08%
Si: 0.05-0.5%
Mn: 1.0 to 1.6%
Nb: 0.01 to 0.05%
Ti: 0.01-0.04%
B: 0.001 to 0.003%
O: 0.020 to 0.035%
Al: containing 0.02% or less,
Further, Cu: 0.20% or less Ni: 0.30% or less Cr: 0.30% or less Mo: 0.20% or less V: 0.05% or less
It is composed of the remaining Fe and inevitable impurities, and the Py value of the formula (2) calculated by the chemical composition of the weld metal satisfies 0.140 to 0.160. High strength welded steel pipe with excellent tensile strength of 600 MPa or more.
CP = 4.46C (%) + 2.37Mn (%) / 6+ {1.18Cr (%) + 1.95Mo (%) + 1.74V (%)} / 5+ {1.74Cu (%) + 1.7Ni (% )} / 15 + 22.36P (%) (1)
Py = C (%) + Si (%) / 30 + Mn (%) / 20+ {Cu (%) + Cr (%)} / 20 + Ni (%) / 60 + Mo (%) / 7 + V (%) / 10 + 5 × B (%) · ..Formula (2)
Here, the element symbol on the right side of each formula represents the content (% by mass), and is 0 when not contained.
[2] The metal structure of the surface layer portion of the base material has a volume fraction of island martensite of 2% or less, and the balance is bainite or a mixed structure of bainite and ferrite, [1] A high-strength welded steel pipe having a tensile strength of 600 MPa or more and excellent in sulfide stress corrosion cracking resistance described in 1.
[3] The submerged arc welding has a resistance to sulfide stress corrosion cracking as described in [1] or [2] above, wherein a welding heat input per 1 mm of tube thickness is 0.15 kJ / mm or less. High strength welded steel pipe with excellent tensile strength of 600 MPa or more.

本発明によれば、pH4以下となる厳しい硫化水素腐食環境が想定される天然ガスや原油輸送パイプラインにおいて鋼管母材の耐HIC性、耐SSC性のみならず、鋼管同士をつなぐ円周溶接部においても優れた耐SSC性を有する高強度鋼管の提供が可能となり、高圧操業による天然ガスまたは原油輸送の効率化を図ることができる。   According to the present invention, not only the HIC resistance and SSC resistance of a steel pipe base material in a natural gas or crude oil transportation pipeline where a severe hydrogen sulfide corrosion environment with a pH of 4 or less is assumed, but also a circumferential weld that connects steel pipes together It is possible to provide a high-strength steel pipe having excellent SSC resistance, and to improve the efficiency of transportation of natural gas or crude oil by high-pressure operation.

溶接鋼管同士の円周溶接部を説明する図である。It is a figure explaining the circumferential weld part of welded steel pipes. 円周溶接を模擬した溶接試験による母材・溶接金属のHAZ硬さを説明する図である。It is a figure explaining the HAZ hardness of the base material and a weld metal by the welding test which simulated circumferential welding. 溶接鋼管の溶接継手強度に及ぼす溶接金属のPy値および板厚1mm当りの溶接入熱の影響を説明する図である。It is a figure explaining the influence of the welding heat input per 1 mm of plate thickness and Py value of a weld metal which gives to the welded joint strength of a welded steel pipe. 溶接鋼管母材、溶接部、円周溶接部の硬さ測定位置を説明する図である。It is a figure explaining the hardness measurement position of a welded steel pipe base material, a welded part, and a circumferential welded part. 4点曲げSSC試験における試験片への応力付与方法を説明する図である。It is a figure explaining the stress provision method to the test piece in a 4-point bending SSC test.

以下に本発明の各構成要件の限定理由について項目を分けて説明する。   Hereinafter, the reasons for limitation of each component of the present invention will be described separately.

1.鋼管母材の化学成分
はじめに鋼管母材の化学成分の限定理由を説明する。なお、化学成分の単位は全て質量%とする。
1. The chemical component of the steel pipe base material First, the reasons for limiting the chemical composition of the steel pipe base material will be described. In addition, the unit of chemical components is all mass%.

C:0.02〜0.06%
Cは、鋼の強度を高めるために最も有効な元素である。しかし、0.02%未満では十分な強度を確保できず、0.06%を超えると焼入性が上昇し、偏析部や鋼表面部の硬さ上昇により耐サワー性を劣化させる。従って、C含有量は0.02〜0.06%の範囲とする。より好ましくは、0.03〜0.05%である。
C: 0.02 to 0.06%
C is the most effective element for increasing the strength of steel. However, if it is less than 0.02%, sufficient strength cannot be ensured, and if it exceeds 0.06%, the hardenability is increased, and the sour resistance is deteriorated due to the increased hardness of the segregated portion and the steel surface portion. Therefore, the C content is in the range of 0.02 to 0.06%. More preferably, it is 0.03 to 0.05%.

Si:0.05〜0.5%
Siは、鋼を固溶強化する効果を発揮するため、0.05%以上含有することで高強度化に有効である。しかし、0.5%を超えて含有すると靭性が著しく低下するため、Si含有量は0.05〜0.5%の範囲とする。
Si: 0.05-0.5%
Since Si exhibits the effect of solid solution strengthening of steel, it is effective for increasing the strength by containing 0.05% or more. However, if the content exceeds 0.5%, the toughness is remarkably lowered, so the Si content is in the range of 0.05 to 0.5%.

Mn:0.75〜1.75%
Mnは鋼の高強度化のため添加するが、0.75%未満ではその効果が十分ではなく、1.75%を越えると特に偏析部の硬さ上昇が著しくなり、耐HIC性が劣化する。従って、Mn量は0.75〜1.75%の範囲とする。好ましくは、1.2〜1.4%である。
Mn: 0.75 to 1.75%
Mn is added to increase the strength of the steel. However, if it is less than 0.75%, the effect is not sufficient, and if it exceeds 1.75%, the hardness of the segregated part is particularly increased and the HIC resistance is deteriorated. . Therefore, the Mn content is in the range of 0.75 to 1.75%. Preferably, it is 1.2 to 1.4%.

Al:0.01〜0.08%
Alは脱酸元素として作用する。0.01%以上の添加で十分な脱酸効果が得られるが、0.08%を超えて添加すると鋼中の清浄度が低下し、HICの起点として母材部の耐HIC性を低下させるため、Al含有量は0.01〜0.08%の範囲とする。より好ましくは、0.02〜0.05%の範囲である。
Al: 0.01 to 0.08%
Al acts as a deoxidizing element. Sufficient deoxidation effect can be obtained with addition of 0.01% or more, but addition over 0.08% lowers the cleanliness in the steel and lowers the HIC resistance of the base metal part as the starting point of HIC. Therefore, the Al content is in the range of 0.01 to 0.08%. More preferably, it is 0.02 to 0.05% of range.

Nb:0.005〜0.06%
Nbは、鋼の焼入性向上元素であり、高強度化のために添加するが、0.005%未満ではその効果がなく、0.06%を超えると偏析部に粗大なNb炭窒化物が残存し、HICの起点として母材部の耐HIC性を低下させるため、Nb含有量は0.005〜0.06%の範囲とする。より好ましくは、0.02〜0.05%の範囲である。
Nb: 0.005 to 0.06%
Nb is an element for improving the hardenability of steel and is added to increase the strength. However, if it is less than 0.005%, there is no effect, and if it exceeds 0.06%, coarse Nb carbonitride in the segregation part. Therefore, the Nb content is in the range of 0.005 to 0.06% in order to reduce the HIC resistance of the base metal part as a starting point of HIC. More preferably, it is 0.02 to 0.05% of range.

Ti:0.005〜0.025%
Tiは、鋼中で微細な炭窒化物をNbにさきがけて形成し、偏析部にHICの起点となるような粗大Nb炭窒化物の残存を抑制する目的で添加する。しかし、0.005%未満では効果がなく、0.025%を超えると逆にTi炭窒化物そのものが粗大化しHICの起点となって母材部の耐HIC性を低下させるため、Ti含有量は0.005〜0.025%の範囲とする。より好ましくは、0.007〜0.020%の範囲である。
Ti: 0.005-0.025%
Ti is added for the purpose of suppressing formation of coarse Nb carbonitride that forms a fine carbonitride in steel in advance of Nb and serves as a starting point of HIC in the segregation part. However, if it is less than 0.005%, there is no effect, and if it exceeds 0.025%, Ti carbonitride itself is coarsened and becomes the starting point of HIC, which decreases the HIC resistance of the base metal part. Is in the range of 0.005 to 0.025%. More preferably, it is 0.007 to 0.020% of range.

Ca:0.0010〜0.0035%
CaはHICの起点となる硫化物系介在物の形態を制御し、特にMnSによるHICの発生を防止するために必要な元素であるが、0.0010%未満ではその効果がなく、0.0035%を超えて添加しても効果が飽和し、むしろ粗大なCaO・CaS介在物が生成し、これがHICの起点となり、かえって耐HIC性を劣化させる。従って、Ca含有量は0.0010〜0.0035%とする。より好ましくは、0.0015〜0.0030%の範囲である。
Ca: 0.0010 to 0.0035%
Ca is an element necessary for controlling the form of sulfide inclusions that are the starting point of HIC, and particularly for preventing the generation of HIC by MnS. However, if it is less than 0.0010%, there is no effect, and 0.0035 Even if added in excess of%, the effect is saturated, and rather coarse CaO · CaS inclusions are formed, which becomes the starting point of HIC, and rather deteriorates the HIC resistance. Therefore, the Ca content is 0.0010 to 0.0035%. More preferably, it is 0.0015 to 0.0030% of range.

P:0.01%以下
Pは不可避不純物であり、中心偏析により著しく偏析部硬さを上昇させて耐HIC性を劣化させる。この傾向は0.01%を超えると顕著となる。従って、Pは極力低減することが望ましいが、0.01%までは許容することができる。より好ましくは、0.006%以下とする。
P: 0.01% or less P is an unavoidable impurity and significantly increases the hardness of the segregated portion due to center segregation, thereby degrading the HIC resistance. This tendency becomes remarkable when it exceeds 0.01%. Therefore, it is desirable to reduce P as much as possible, but it is acceptable up to 0.01%. More preferably, it is 0.006% or less.

S:0.001%以下
Sは、鋼中においては一般にMnS系の介在物となるが、Ca添加によりMnS系からCaS系介在物に形態制御される。しかし、Sの含有量が多いとCaS系介在物の量も多くなり、高強度鋼板では割れの起点となり得る。この傾向は、S量が0.001%を超えると顕著となる。従って、Sは極力低減することが望ましいが、0.001%までは許容することができる。より好ましくは、0.0006%以下とする。
S: 0.001% or less S is generally a MnS-based inclusion in steel, but the form is controlled from MnS-based to CaS-based inclusion by addition of Ca. However, when the content of S is large, the amount of CaS inclusions increases, and a high-strength steel sheet can be a starting point of cracking. This tendency becomes remarkable when the S amount exceeds 0.001%. Therefore, it is desirable to reduce S as much as possible, but it is acceptable up to 0.001%. More preferably, it is 0.0006% or less.

B:0.0004%以下
Bは、焼入性向上元素であり鋼の高強度化に効果があるが、同時にHAZの硬さ上昇効果が著しく、鋼管同士の円周溶接部における耐SSC性を劣化させるため、鋼管母材ではできる限り低減する必要があり、その上限を0.0004%とする。
B: 0.0004% or less B is an element for improving hardenability and is effective in increasing the strength of steel, but at the same time, the effect of increasing the hardness of HAZ is remarkable, and the SSC resistance at the circumferential welds between steel tubes is improved. In order to make it deteriorate, it is necessary to reduce as much as possible with a steel pipe preform, and the upper limit is made 0.0004%.

N:0.008%以下
Nは不可避不純物元素であるが、前述の通りNbやTiの粗大炭窒化物を形成し、HICの起点として母材部の耐HIC性を低下させることから、上限を0.008%とする。
N: 0.008% or less N is an unavoidable impurity element, but as described above, it forms coarse carbonitrides of Nb and Ti, and lowers the HIC resistance of the base metal part as the starting point of HIC. 0.008%.

本発明では、さらに、鋼管母材の強度を向上させるため、以下に示すCu、Ni、Cr、Mo、Vの中から選ばれた1種以上を添加する。   In this invention, in order to improve the intensity | strength of a steel pipe base material, 1 or more types chosen from Cu, Ni, Cr, Mo, and V shown below are added.

Cu:0.30%以下
Cuは、強度の上昇に有効な元素であるとともに、鋼管母材がpH4〜5程度の緩やかな硫化水素腐食環境下にさらされた場合、緻密な腐食生成物を形成しHICの起点への水素の侵入・集積を抑制するが、0.30%を超えて添加してもその効果は飽和し、かつ、後述の鋼管溶接金属部への希釈により、溶接金属部の高温割れの原因となる。従って、Cuを添加する場合には上限を0.30%とする。
Cu: 0.30% or less Cu is an element effective for increasing the strength, and forms a dense corrosion product when the steel pipe base material is exposed to a mild hydrogen sulfide corrosion environment of pH 4-5. However, even if added in excess of 0.30%, the effect is saturated, and due to dilution into the steel pipe weld metal part described later, the weld metal part Causes hot cracking. Therefore, when adding Cu, the upper limit is made 0.30%.

Ni:0.50%以下
Niは靭性の改善と強度の上昇に有効な元素である。しかしながら、0.50%を超えて添加した場合、硫化水素腐食環境下に曝された鋼管母材表面で毛割れが発生する。従って、Niを添加する場合には上限を0.50%とする。
Ni: 0.50% or less Ni is an element effective for improving toughness and increasing strength. However, when added over 0.50%, hair cracking occurs on the surface of the steel pipe base material exposed to the hydrogen sulfide corrosion environment. Therefore, when Ni is added, the upper limit is made 0.50%.

Cr:0.50%以下
Crは、焼入性を高めることで強度を得るために有効な元素である。しかしながら、0.50%を超えて添加すると溶接性を劣化させる。従って、Crを添加する場合は0.50%以下とする。
Cr: 0.50% or less Cr is an effective element for obtaining strength by improving hardenability. However, if added over 0.50%, the weldability deteriorates. Therefore, when adding Cr, it is 0.50% or less.

Mo:0.20%以下
Moは、焼入性を向上し、強度の上昇に大きく寄与する元素である。しかし、HAZの硬さ上昇効果が著しく、0.20%を超えて添加すると、鋼管同士の円周溶接部における耐SSC性を劣化させる。従って、Moを添加する場合は、0.20%以下とする。
Mo: 0.20% or less Mo is an element that improves hardenability and greatly contributes to an increase in strength. However, the effect of increasing the hardness of the HAZ is remarkable, and if it exceeds 0.20%, the SSC resistance at the circumferential welded portion between the steel pipes is deteriorated. Therefore, when adding Mo, it is made 0.20% or less.

V:0.05%以下
Vは、強度を上昇させる元素である。しかし、0.05%を超えて添加するとMoと同様HAZの硬さ上昇効果が著しく、鋼管同士の円周溶接部における耐SSC性を劣化させる。従って、Vを添加する場合は0.05%以下とする。
V: 0.05% or less V is an element that increases the strength. However, if added over 0.05%, the effect of increasing the hardness of HAZ is remarkably the same as that of Mo, and the SSC resistance at the circumferential welded portion between the steel pipes is degraded. Therefore, when V is added, the content is made 0.05% or less.

式(1)で計算されるCP値が0.95以下
式(1):CP=4.46C(%)+2.37Mn(%)/6+{1.18Cr(%)+1.95Mo(%)+1.74V(%)}/5+{1.74Cu(%)+1.7Ni(%)}/15+22.36P(%)ここで、各式の右辺の元素記号はそれぞれの含有量(質量%)を表わし、含有しない場合は0とする。
CP value calculated by Formula (1) is 0.95 or less Formula (1): CP = 4.46C (%) + 2.37Mn (%) / 6+ {1.18Cr (%) + 1.95Mo (%) + 1 .74 V (%)} / 5+ {1.74 Cu (%) + 1.7 Ni (%)} / 15 + 22.36 P (%) Here, the element symbol on the right side of each formula represents the content (mass%) of each. , 0 if not contained.

CP値は、各合金元素の含有量から中心偏析部の材質を推定するために考案された式であり、CP値が高いほど、中心偏析部の濃度が高くなり、中心偏析部の硬さが上昇する、という技術的意義がある。発明者らは、鋭意検討の結果、硫化水素環境ごとに中心偏析部でHICが発生する限界硬さを明確化し、その硬さを超えないための指標としてCP値での整理を試みた。その結果、本発明で解決しようとしているISO 15156の分類のRegion3環境においては、このCP値を0.95以下とすることで、HICを抑制することが可能となることがわかった。従って、CP値は0.95以下とする。   The CP value is an expression devised to estimate the material of the central segregation part from the content of each alloy element. The higher the CP value, the higher the concentration of the central segregation part, and the hardness of the central segregation part. There is a technical significance of rising. As a result of intensive studies, the inventors clarified the limit hardness at which HIC occurs in the central segregation part for each hydrogen sulfide environment, and attempted to arrange the CP value as an index for not exceeding the hardness. As a result, it was found that HIC can be suppressed by setting this CP value to 0.95 or less in the Region 3 environment of ISO 15156 classification to be solved by the present invention. Therefore, the CP value is set to 0.95 or less.

式(2)で計算されるPy値が0.160以下
Py=C(%)+Si(%)/30+Mn(%)/20+{Cu(%)+Cr(%)}/20+Ni(%)/60+Mo(%)/7+V(%)/10+5×B(%)・・・式(2)
ここで、各式の右辺の元素記号はそれぞれの含有量(質量%)を表わし、含有しない場合は0とする。
図2(c)に示すようにPy値は鋼管同士の円周溶接を行った場合の鋼管母材および溶接金属部のHAZ硬さ(図中それぞれ「母材HAZ」および「溶接金属HAZ」と記載)と良い相関がある。さらに、本発明で解決しようとしているISO 15156の分類のRegion3環境でのSSC発生防止のためには鋼のビッカース硬さを248以下とする必要があることから、円周溶接部におけるHAZ硬さを248以下にするためPy値は0.160以下とする。
Py value calculated by formula (2) is 0.160 or less Py = C (%) + Si (%) / 30 + Mn (%) / 20+ {Cu (%) + Cr (%)} / 20 + Ni (%) / 60 + Mo ( %) / 7 + V (%) / 10 + 5 × B (%) (2)
Here, the element symbol on the right side of each formula represents the content (% by mass), and is 0 when not contained.
As shown in FIG. 2 (c), the Py value indicates the HAZ hardness of the steel pipe base material and the weld metal part when the steel pipes are circumferentially welded ("base metal HAZ" and "welded metal HAZ" in the figure, respectively). There is a good correlation with the description. Furthermore, in order to prevent the occurrence of SSC in the Region 3 environment of the ISO 15156 classification to be solved by the present invention, it is necessary to make the Vickers hardness of the steel 248 or less, so the HAZ hardness in the circumferential weld is reduced. In order to make it 248 or less, the Py value is made 0.160 or less.

本発明では、上記の元素以外はFeおよび不可避不純物とする。意図的に添加しなくてもよいが、上記以外の元素及び不可避的不純物については、本発明の効果を損なわない限り含有することができる。   In the present invention, other than the above elements are Fe and inevitable impurities. Although it does not need to add intentionally, elements other than the above and unavoidable impurities can be contained as long as the effects of the present invention are not impaired.

なお、鋼管母材素材の製造方法については、材質と製造効率の点から転炉法によって溶製された鋼を連続鋳造法によりスラブとし、厚板圧延後、加速冷却を適用して600MPa以上の高強度化を得ることが望ましい。   In addition, about the manufacturing method of a steel pipe base material, the steel melted by the converter method was made into the slab by the continuous casting method from the point of a material and manufacturing efficiency, and after applying thick plate rolling, accelerated cooling is applied and 600 MPa or more It is desirable to obtain high strength.

2.溶接金属
2.1溶接金属の化学成分
次に、鋼管の溶接金属部の化学成分の限定理由を説明する。なお、化学成分の単位は全て質量%とする。また、本発明の説明で、溶接金属とは、特に断らない限り、鋼管製造時の突合せ溶接による溶接金属を云い、円周溶接時の溶接金属を対象としない。
2. Weld metal 2.1 Chemical component of weld metal Next, the reason for limiting the chemical component of the weld metal part of the steel pipe will be described. In addition, the unit of chemical components is all mass%. In the description of the present invention, unless otherwise specified, the weld metal refers to a weld metal by butt welding at the time of manufacturing a steel pipe, and does not target a weld metal at the time of circumferential welding.

C:0.04〜0.08%
Cは、母材部と同様、溶接金属の強度を高めるために最も有効な元素である。特に凝固まま組織である溶接金属において高強度を得るために0.04%以上必要である。一方、0.08%を超えると、円周溶接時、溶接金属のHAZ硬さの上昇が著しく、円周溶接部の耐SSC性を劣化させるため、上限を0.08%とする。なお、より好ましくは、0.04〜0.06%である。
C: 0.04 to 0.08%
C, like the base material, is the most effective element for increasing the strength of the weld metal. In particular, 0.04% or more is necessary to obtain high strength in a weld metal that is a solidified structure. On the other hand, if it exceeds 0.08%, the HAZ hardness of the weld metal is remarkably increased during circumferential welding, and the SSC resistance of the circumferential weld is deteriorated, so the upper limit is made 0.08%. In addition, More preferably, it is 0.04 to 0.06%.

Si:0.05〜0.5%
Siは溶接金属中では脱酸元素として働き、溶接金属中の酸素量を制御するために必要な元素である。溶接金属中のSiが0.05%未満の場合、脱酸が不十分となり溶接金属中の酸素量が増加し強度の低下をもたらすため0.05%以上必要である。一方、0.5%を超える添加をしても効果が飽和する。従って、Si含有量は0.05〜0.5%の範囲とする。
Si: 0.05-0.5%
Si acts as a deoxidizing element in the weld metal and is an element necessary for controlling the amount of oxygen in the weld metal. If the Si content in the weld metal is less than 0.05%, deoxidation is insufficient and the amount of oxygen in the weld metal increases, resulting in a decrease in strength. On the other hand, the effect is saturated even if the addition exceeds 0.5%. Therefore, the Si content is in the range of 0.05 to 0.5%.

Mn:1.0〜1.6%
Mnは溶接金属においても焼入性向上元素として作用する。溶接金属の高強度化のためには、少なくとも1.0%以上のMnが必要であるが、1.6%を超えると円周溶接時に溶接金属のHAZ硬さの上昇が著しく、円周溶接部の耐SSC性を劣化させるため、上限を1.6%とする。従って、Mn含有量は、1.0〜1.6%の範囲とする。
Mn: 1.0 to 1.6%
Mn also acts as a hardenability improving element in the weld metal. In order to increase the strength of the weld metal, Mn of at least 1.0% is required. However, if it exceeds 1.6%, the HAZ hardness of the weld metal is significantly increased during circumferential welding, and circumferential welding is performed. In order to degrade the SSC resistance of the part, the upper limit is made 1.6%. Therefore, the Mn content is in the range of 1.0 to 1.6%.

Nb:0.01〜0.05%
Nbは溶接金属中の固溶NをBより先に窒化物形成することにより、オーステナイト粒界に固溶Bとして存在させるため、少なくとも0.01%以上必要である。一方、0.05%を超えると炭化物を形成し、溶接金属を析出硬化させ靭性の低下をもたらすため、上限を0.05%とする。より好ましくは、0.01〜0.03%の範囲である。
Nb: 0.01 to 0.05%
Nb is required to be at least 0.01% or more in order to cause solute N in the weld metal to form nitrides prior to B so as to exist as solute B at the austenite grain boundaries. On the other hand, if it exceeds 0.05%, carbides are formed, the weld metal is precipitated and hardened, and the toughness is reduced, so the upper limit is made 0.05%. More preferably, it is 0.01 to 0.03% of range.

Ti:0.01〜0.04%
Tiは溶接金属中の酸素と反応してTiOまたはTiOを形成し、溶接金属オーステナイト粒内からのアシキュラフェライト変態核として機能する。アシキュラフェライト組織の微細化による強度上昇効果を得るためには多数のTiOまたはTiOの生成が必要であり、Tiは少なくとも0.01%以上必要である。一方、0.04%を超えると溶接金属中のTiOまたはTiOが凝集・粗大化して靭性の低下をもたらすため、上限を0.04%とする。より好ましくは、0.02〜0.04%の範囲である。
Ti: 0.01-0.04%
Ti reacts with oxygen in the weld metal to form TiO or TiO 2 and functions as an acicular ferrite transformation nucleus from within the weld metal austenite grains. In order to obtain the effect of increasing the strength by refining the acicular ferrite structure, it is necessary to generate a large number of TiO or TiO 2 , and Ti must be at least 0.01% or more. On the other hand, if it exceeds 0.04%, TiO or TiO 2 in the weld metal is agglomerated and coarsened to cause a decrease in toughness, so the upper limit is made 0.04%. More preferably, it is 0.02 to 0.04% of range.

B:0.001〜0.003%
Bは溶接金属のオーステナイト粒界からのポリゴナルフェライト生成を抑制し、アシキュラフェライト主体の金属組織とする作用があり高強度化に寄与する。粒界からのポリゴナルフェライト生成を完全に抑制するためには少なくとも0.001%以上必要であるが、0.003%を超えても効果が飽和するため、上限を0.003%とする。より好ましくは、0.002〜0.003%の範囲である。
B: 0.001 to 0.003%
B suppresses the formation of polygonal ferrite from the austenite grain boundary of the weld metal, and has the effect of forming a metal structure mainly composed of acicular ferrite, contributing to high strength. In order to completely suppress the formation of polygonal ferrite from the grain boundary, at least 0.001% or more is necessary, but even if it exceeds 0.003%, the effect is saturated, so the upper limit is made 0.003%. More preferably, it is 0.002 to 0.003% of range.

O:0.020〜0.035%
Oは、上述のTiと反応してTiOまたはTiOを形成し、溶接金属オーステナイト粒内からのアシキュラフェライト変態核として機能する。微細な金属組織であるアシキュラフェライト組織とするためには多数のTiOまたはTiOの生成が必要であり、Oは少なくとも0.020%以上必要である。一方、0.035%を超えると粒界フェライトが一部生成し、溶接金属の強度低下の原因となるため、上限を0.035%とする。より好ましくは、0.025〜0.035%である。
O: 0.020 to 0.035%
O reacts with the above-mentioned Ti to form TiO or TiO 2 and functions as an acicular ferrite transformation nucleus from within the weld metal austenite grains. In order to obtain an acicular ferrite structure which is a fine metal structure, it is necessary to generate a large number of TiO or TiO 2 , and O is required to be at least 0.020% or more. On the other hand, if it exceeds 0.035%, a part of the grain boundary ferrite is generated and causes a decrease in the strength of the weld metal, so the upper limit is made 0.035%. More preferably, it is 0.025 to 0.035%.

Al: 0.02%以下
Alは母材部からの希釈で不可避不純物として溶接金属中に存在するが、0.02%を超えると上述したTiOの生成を阻害し、溶接金属のアシキュラフェライト組織の金属組織の微細化作用による強度上昇効果を得ることができないため、上限を0.02%とする。
Al: 0.02% or less Al is present in the weld metal as an unavoidable impurity due to dilution from the base metal part. However, if it exceeds 0.02%, the above-described formation of TiO is inhibited, and the acicular ferrite structure of the weld metal Since the effect of increasing the strength due to the refinement of the metal structure cannot be obtained, the upper limit is made 0.02%.

本発明では、さらに、溶接金属部の強度を向上させるため、以下に示すCu、Ni、Mo、Cr、Vの中から選ばれた1種以上を添加する。なお、添加する場合は、母材に添加している元素と同じものを添加することが好ましい。   In the present invention, in order to further improve the strength of the weld metal part, at least one selected from the following Cu, Ni, Mo, Cr, and V is added. In addition, when adding, it is preferable to add the same element as the element added to the base material.

Cu:0.20%以下
Cuは、焼入性向上元素として作用し、Mnの代替とすることができる。しかし、0.20%を超えるとCu液化割れが著しく溶接欠陥の原因となる場合がある。従って、Cuを添加する場合には上限を0.20%とする。
Cu: 0.20% or less Cu acts as a hardenability improving element and can be used as a substitute for Mn. However, if it exceeds 0.20%, Cu liquefaction cracks may cause welding defects significantly. Therefore, when adding Cu, the upper limit is made 0.20%.

Ni:0.30%以下
Niは、焼入性向上元素として作用し、Mnの代替とすることができる。しかし、高価な元素であり、かつ0.30%を超えると強度上昇の効果が飽和する。従って、Niを添加する場合には上限を0.30%とする。
Ni: 0.30% or less Ni acts as a hardenability improving element and can be substituted for Mn. However, it is an expensive element and if it exceeds 0.30%, the effect of increasing the strength is saturated. Therefore, when Ni is added, the upper limit is made 0.30%.

Cr:0.30%以下
Crもまた、焼入性向上元素として作用し、Mnの代替とすることができる。しかし、0.30%を超えて添加しても強度上昇の効果が飽和する。従って、Crを添加する場合には上限を0.30%とする。
Cr: 0.30% or less Cr also acts as a hardenability improving element and can substitute for Mn. However, even if added over 0.30%, the effect of increasing the strength is saturated. Therefore, when adding Cr, the upper limit is made 0.30%.

Mo:0.20%以下
Moもまた、焼入性向上元素として作用し、Mn添加の代替とすることができる。しかし、鋼管母材と同様、鋼管同士の円周溶接時において溶接金属が溶接熱影響を受ける際、HAZの硬さ上昇効果が著しく、0.20%を超えて添加すると円周溶接部における耐SSC性を劣化させる場合がある。従って、Moを添加する場合には、上限を0.20%とする。
Mo: 0.20% or less Mo also acts as a hardenability improving element and can be used as an alternative to Mn addition. However, as with the steel pipe base material, when the weld metal is affected by the welding heat during the circumferential welding of the steel pipes, the effect of increasing the hardness of the HAZ is remarkable. SSC property may be deteriorated. Therefore, when adding Mo, the upper limit is made 0.20%.

V:0.05%以下
VもMoと同様、焼入性向上元素として作用し、Mnの代替とすることができる。しかし、鋼管母材と同様、鋼管同士の円周溶接時において溶接金属が溶接熱影響を受ける際、HAZの硬さ上昇効果が著しく、0.05%を超えて添加すると円周溶接部における耐SSC性を劣化させる場合がある。従って、Vを添加する場合には、上限を0.05%とする。
V: 0.05% or less V, like Mo, acts as a hardenability improving element and can be substituted for Mn. However, as with the steel pipe base material, when the weld metal is affected by welding heat during the circumferential welding of steel pipes, the HAZ hardness increase effect is significant. SSC property may be deteriorated. Therefore, when V is added, the upper limit is made 0.05%.

溶接金属のPy値(Py):0.140〜0.160
さらに、本発明において、鋼管溶接部の継手強度の高強度化と、鋼管円周溶接時に溶接金属に形成されるHAZの硬さ低減を両立させるため、鋼管の内面溶接金属と外面溶接金属それぞれに、式(2)で計算されるPy値が0.140〜0.160範囲とする。
Py=C(%)+Si(%)/30+Mn(%)/20+{Cu(%)+Cr(%)}/20+Ni(%)/60+Mo(%)/7+V(%)/10+5×B(%)・・・式(2)
ここで、各式の右辺の元素記号は含有量(質量%)を表わし、含有しない場合は0とする。
Py value (Py) of weld metal: 0.140 to 0.160
Furthermore, in the present invention, in order to achieve both high joint strength of the steel pipe welded portion and reduced hardness of the HAZ formed in the weld metal during steel pipe circumferential welding, both the inner and outer weld metals of the steel pipe The Py value calculated by equation (2) is in the range of 0.140 to 0.160.
Py = C (%) + Si (%) / 30 + Mn (%) / 20+ {Cu (%) + Cr (%)} / 20 + Ni (%) / 60 + Mo (%) / 7 + V (%) / 10 + 5 × B (%) · ..Formula (2)
Here, the element symbol on the right side of each formula represents the content (% by mass), and is 0 when not contained.

本発明者らが種々検討した結果、内面溶接金属を円周溶接した際に形成されるHAZの硬度もまたPy値と相関し、ISO15156に規定されるRegion3環境でのSSC発生防止の観点から、硬さの上限をビッカース硬度Hv248以下とするため、上限を0.160とする。一方、低Py溶接金属組成で母材と同様に600MPa以上の継手強度を満足させるためには、後述する管厚1mm当りの溶接入熱を低減することで溶接後の冷却速度を上げる必要があるが、必要以上に溶接入熱が低いと、溶接部のアンダーカット等の溶接欠陥の原因となるため、可能な最低溶接入熱量において継手強度を達成しうるPy値の下限を求めたところ0.140であったため、下限を0.140とする。   As a result of various studies by the present inventors, the hardness of the HAZ formed when the inner surface weld metal is circumferentially welded also correlates with the Py value, and from the viewpoint of preventing the occurrence of SSC in the Region 3 environment defined in ISO 15156, In order to set the upper limit of hardness to Vickers hardness Hv248 or less, the upper limit is set to 0.160. On the other hand, in order to satisfy the joint strength of 600 MPa or more like the base metal with the low Py weld metal composition, it is necessary to increase the cooling rate after welding by reducing the welding heat input per 1 mm of pipe thickness described later. However, if the welding heat input is lower than necessary, it causes welding defects such as undercuts in the welded part. Therefore, when the lower limit of the Py value at which the joint strength can be achieved at the lowest possible welding heat input is obtained, 0. Since it was 140, the lower limit is set to 0.140.

上記の元素以外はFeおよび不避的不純物とし、意図的に添加しない。ただし、本発明の効果を損なわない範囲内であれば、上記以外の成分を含有することができる。   Other than the above elements, Fe and unavoidable impurities are not added intentionally. However, components other than those described above can be contained as long as the effects of the present invention are not impaired.

また、鋼管溶接部は通常内面溶接金属と外面溶接金属に分かれているが、必ずしも両溶接金属が全く同じ組成となる必要はなく、継手強度を増加させる観点から、外面溶接金属組成を少し高いPy値とすることが好ましい。   In addition, the steel pipe weld is usually divided into an inner surface weld metal and an outer surface weld metal, but both weld metals do not necessarily have the same composition. From the viewpoint of increasing joint strength, the outer surface weld metal composition is slightly higher Py. It is preferable to use a value.

上記溶接金属中の化学成分を上記範囲内に制御するには、母材の化学成分および溶接条件に応じて、溶接に用いる溶接材料(溶接ワイヤおよびフラックス)を適宜選択することが好ましい。例えば、各元素について、溶接金属中の成分元素の目標成分を母材希釈率で割り戻して求めた成分を有する溶接ワイヤを作製し、これを用いて溶接する方法である。   In order to control the chemical component in the weld metal within the above range, it is preferable to appropriately select a welding material (welding wire and flux) used for welding according to the chemical component of the base metal and the welding conditions. For example, for each element, a welding wire having a component obtained by dividing the target component of the component element in the weld metal by the base material dilution rate is produced and welded using this.

2.2溶接方法
なお、鋼管製造時の突合せ溶接の溶接方法は、優れた溶接品質と製造能率の点からサブマージアーク溶接を用いる。この場合、サブマージアーク溶接の管厚1mm当りの溶接入熱量は0.15kJ/mm以下とすることが好ましい。
2.2 Welding method As a welding method for butt welding at the time of manufacturing a steel pipe, submerged arc welding is used from the viewpoint of excellent welding quality and manufacturing efficiency. In this case, it is preferable that the welding heat input per 1 mm of pipe thickness of submerged arc welding is 0.15 kJ / mm or less.

図3に示すように、鋼管の溶接時の溶接入熱量を低減することにより同一Py値であっても溶接継手の強度が増加する。管厚に応じてその溶接入熱量は変化し、管厚1mm当たりの溶接入熱量として整理すると良い相関が得られたことから、図3よりPy値0.160以下で継手強度600MPa以上を満足するためには管厚1mm当りの溶接入熱量を0.15kJ/mm以下であればよいことがわかる。   As shown in FIG. 3, the strength of the welded joint is increased even if the Py value is the same by reducing the amount of heat input during welding of the steel pipe. The welding heat input changes depending on the pipe thickness, and a good correlation was obtained by arranging the welding heat input per 1 mm of the pipe thickness. From FIG. 3, a joint strength of 600 MPa or more is satisfied with a Py value of 0.160 or less. Therefore, it can be seen that the welding heat input per 1 mm of the tube thickness should be 0.15 kJ / mm or less.

なお、溶接入熱量を下げることで、溶接金属の溶着量が下がるため、より溶接材料の溶融効率が高い、径が細い溶接ワイヤ等の使用が好ましい。また、溶接部のアンダーカット等の欠陥を抑制するためには、管厚1mm当りの溶接入熱量は0.12kJ/mm以上とすることがさらに好ましい。   In addition, since the welding amount of a weld metal falls by lowering the welding heat input, it is preferable to use a welding wire having a higher melting efficiency and a smaller diameter. Further, in order to suppress defects such as undercuts in the welded portion, it is more preferable that the amount of welding heat input per 1 mm of the tube thickness is 0.12 kJ / mm or more.

3.母材部金属組織
本発明では、鋼管母材におけるSSC発生防止の観点から、特に鋼管表層部の金属組織を以下のように規定する。ここで、金属組織の体積分率(%)の表記は各金属組織の面積率(%)を画像解析により測定し、体積分率(%)とみなして適用している。
3. In the present invention, from the viewpoint of preventing the occurrence of SSC in the steel pipe base material, the metal structure of the steel pipe surface layer part is specified as follows. Here, the notation of the volume fraction (%) of the metal structure is applied by measuring the area ratio (%) of each metal structure by image analysis and regarding the volume fraction (%).

鋼管表層部の島状マルテンサイトの体積分率:2%以下
島状マルテンサイト(以下、単に「MA」と略すこともある。)は、加速冷却によって生成する組織であり、MAが生成することで硬さが大きく上昇する。上述の通りISO 15156の分類のRegion3環境でのSSC発生防止のためには、母材部である鋼管表層部のビッカース硬さを248以下とする必要があり、少なくとも硫化水素腐食環境下に直接さらされる鋼管表層部の硬度低減が重要である。本発明者らは鋭意検討の末、鋼管母材金属組織中のMAに着目し、MAの体積分率の増大に伴い鋼管表層部硬さが上昇し、少なくとも2%を超えるMA体積分率では、ビッカース硬さが248Hvを超え、しかも耐SSC性が劣化する場合があることを見出した。従って、鋼管表層部の島状マルテンサイトの体積分率を2%以下とすることが好ましい。
The volume fraction of island martensite in the steel pipe surface layer: 2% or less Island martensite (hereinafter sometimes simply referred to as “MA”) is a structure generated by accelerated cooling, and is generated by MA. The hardness increases greatly. As described above, in order to prevent the occurrence of SSC in the Region 3 environment of ISO 15156 classification, it is necessary to make the Vickers hardness of the steel pipe surface layer part, which is the base material part, 248 or less, and at least directly exposed to a hydrogen sulfide corrosive environment. It is important to reduce the hardness of the steel pipe surface layer. As a result of intensive studies, the inventors focused on MA in the metal structure of the steel pipe base metal. As the volume fraction of MA increased, the hardness of the steel pipe surface layer increased, and at an MA volume fraction of at least 2%. It has been found that the Vickers hardness exceeds 248 Hv and the SSC resistance may deteriorate. Therefore, the volume fraction of island martensite in the steel pipe surface layer is preferably 2% or less.

なお、母材部引張強度600MPa以上を得るためには少なくとも母材部の金属組織はベイナイト主体である必要があり、体積分率でベイナイト組織が70%以上であることが好ましい。ただし、表層部に限っては軟質なフェライトを生成させることで硬さ低減を図っても、母材部引張強度への影響が小さいため、体積分率で20%以下のフェライト組織を含むフェライトとベイナイトの混合組織とすることができる。   In order to obtain a base material portion tensile strength of 600 MPa or more, at least the metal structure of the base material portion needs to be mainly bainite, and the bainite structure is preferably 70% or more in terms of volume fraction. However, even if the hardness is reduced by generating soft ferrite only in the surface layer portion, since the influence on the tensile strength of the base material portion is small, the ferrite containing a ferrite structure having a volume fraction of 20% or less and It can be a mixed structure of bainite.

表1に示す化学成分の鋼(鋼種A〜H)を連続鋳造法によりスラブとし、これを用いて板厚19〜25mmの鋼管素材を厚板圧延・加速冷却プロセスで製造した。   Steel of the chemical composition shown in Table 1 (steel types A to H) was made into a slab by a continuous casting method, and a steel pipe material having a plate thickness of 19 to 25 mm was manufactured by a thick plate rolling / accelerated cooling process.

鋼管素材に、それぞれ表2に示す管厚1mm当りの溶接入熱条件で、種々の溶接ワイヤを用いて内面1層、外面1層のサブマージアーク溶接を実施し鋼管溶接部とした。溶接部の内面溶接金属より化学成分分析試料を採取し、それぞれの化学成分を分析した。化学成分の分析結果を表2に示す。   The steel pipe material was subjected to submerged arc welding of one inner surface and one outer surface using various welding wires under the welding heat input conditions shown in Table 2 for each pipe thickness of 1 mm to obtain steel pipe welds. A chemical component analysis sample was taken from the inner surface weld metal of the weld and analyzed for each chemical component. Table 2 shows the chemical component analysis results.

母材部および鋼管溶接部それぞれからAPI規格に従い全厚引張試験片を採取し、引張強度を測定した。なお、引張強度600MPa以上を本発明に必要な強度とした。また、母材部および鋼管溶接部のHIC性能を評価するため、NACE TM0284に従い、母材部および溶接部からHIC試験片を採取し、酢酸水溶液と塩化ナトリウム水溶液を混合してpHを3.0に調整した浸漬液に100%硫化水素ガスを飽和させ、96hr浸漬した。浸漬が終了したHIC試験片は等間隔に3断面切断し、それぞれ鏡面研磨した後、光学顕微鏡にて倍率100倍で各断面の観察を行い、NACE TM0284-2003のSection7に記載される要領で見つかった割れの試料幅方向長さをそれぞれ記録し、割れ長さ率CLR(%)を算出した。なお、CLRが15%以下を本発明においては、耐HIC性能を満足するものとした。   Full thickness tensile test pieces were sampled from the base metal part and the steel pipe welded part according to the API standard, and the tensile strength was measured. The tensile strength of 600 MPa or more was determined as the strength required for the present invention. Further, in order to evaluate the HIC performance of the base metal part and the steel pipe welded part, in accordance with NACE TM0284, HIC test specimens were collected from the base metal part and the welded part, and mixed with an acetic acid aqueous solution and a sodium chloride aqueous solution to adjust the pH to 3.0. The immersion liquid adjusted to 100% was saturated with 100% hydrogen sulfide gas and immersed for 96 hours. After the immersion, the HIC test piece was cut into three sections at equal intervals, each mirror-polished, and then each section was observed with an optical microscope at a magnification of 100 times, and found in the manner described in Section 7 of NACE TM0284-2003 The length of the crack in the sample width direction was recorded, and the crack length ratio CLR (%) was calculated. In the present invention, the CLR of 15% or less is assumed to satisfy the HIC resistance performance.

次に、図4に示すように、鋼管母材と鋼管溶接部がつき合わせとなるような円周溶接模擬多層溶接を、炭酸ガスアーク溶接法で実施した。溶接入熱の平均値は約1.0kJ/mmであった。そして、作製した円周溶接継手の1断面を切断後鏡面研磨し、図4に示すように、母材部表面、鋼管溶接部の内面溶接金属表面、円周溶接模擬部の母材側HAZ、円周溶接模擬部の内面溶接金属側HAZの4箇所についてそれぞれ5点ずつ、ビッカース硬度を測定し、その平均値を算出した。また、母材部表面のビッカース硬度測定箇所の脇から金属組織観察用試験片を採取し、まずナイタールエッチングを施して、400倍の光学顕微鏡でミクロ組織の種類を調査した。次に同試験片に2段エッチングを施してMAを現出させてから、1500倍の走査型電子顕微鏡にて無作為5視野撮影し、写真中のMAの面積率を画像解析により計測・算出した。   Next, as shown in FIG. 4, circumferential welding simulated multi-layer welding in which the steel pipe base material and the steel pipe welded portion were brought together was performed by a carbon dioxide arc welding method. The average value of welding heat input was about 1.0 kJ / mm. Then, one section of the produced circumferential weld joint was cut and mirror-polished, and as shown in FIG. 4, the base metal part surface, the inner surface weld metal surface of the steel pipe welded part, the base metal side HAZ of the circumferential weld simulated part, Vickers hardness was measured at five points for each of four locations on the inner surface weld metal side HAZ of the circumferential weld simulation portion, and the average value was calculated. Further, a specimen for observing the metal structure was taken from the side of the Vickers hardness measurement location on the surface of the base material part, first subjected to nital etching, and the type of microstructure was examined with a 400 × optical microscope. Next, two-stage etching was performed on the test piece to reveal MA, and then five random fields of view were taken with a 1500x scanning electron microscope, and the area ratio of MA in the photograph was measured and calculated by image analysis. did.

次に母材部表面、鋼管溶接部内面側表面、および円周溶接模擬部内面側表面の3箇所より、厚さ5mm、幅15mm、長さ115mmの矩形試験片を採取し、図5に示す治具を用いて4点曲げにより試験片中央に降伏強度の90%に相当する応力を付与した後、HIC試験と同様、酢酸水溶液と塩化ナトリウム水溶液を混合してpHを3.0に調整した浸漬液に100%硫化水素ガスを飽和させ、720hr浸漬した。浸漬が終了した試験片を治具から外し、水洗後、100倍の倍率で試験片表面でのSSC発生有無を確認した。   Next, rectangular test pieces having a thickness of 5 mm, a width of 15 mm, and a length of 115 mm were sampled from three locations of the base metal part surface, the steel pipe welded part inner surface, and the circumferential weld simulation part inner surface, and are shown in FIG. After applying a stress corresponding to 90% of the yield strength to the center of the specimen by four-point bending using a jig, the pH was adjusted to 3.0 by mixing an acetic acid aqueous solution and a sodium chloride aqueous solution as in the HIC test. The immersion liquid was saturated with 100% hydrogen sulfide gas and immersed for 720 hours. After the immersion, the test piece was removed from the jig, washed with water, and the presence or absence of SSC generation on the surface of the test piece was confirmed at a magnification of 100 times.

母材部表面のミクロ組織調査結果、母材部および溶接部の引張試験結果、硬度測定結果、HIC試験結果、およびSSC試験結果をまとめて表3に示す。   Table 3 summarizes the results of microstructural investigation on the surface of the base metal part, tensile test results of the base metal part and the welded part, hardness measurement results, HIC test results, and SSC test results.

表3において、本発明例であるNo.1〜5はいずれも、母材・内面溶接金属・外面溶接金属の化学成分および母材表面部のミクロ組織が本発明の範囲内であり、母材・溶接部とも引張強度600MPa以上の高強度かつHICのCLRが0%であり、さらに母材部、溶接部、円周溶接模擬部全ての箇所の4点曲げSSC試験で割れが発生しなかった。   In Table 3, Nos. 1 to 5 as examples of the present invention all have the chemical composition of the base metal, the inner surface weld metal, and the outer surface weld metal and the microstructure of the surface of the base material within the scope of the present invention. -Both welds have high strength of tensile strength of 600 MPa and higher, and HIC CLR is 0%. Furthermore, no cracks occurred in the four-point bending SSC test of all the base metal parts, weld parts, and circumferential weld simulation parts. .

一方、母材のC量が本発明の上限を超えた比較例No.6は、母材表面部のミクロ組織監察においてMA分率が本発明の上限を超えており、近傍の硬度が271と非常に硬くなった結果、母材部の4点曲げSSC試験で割れが発生した。また、母材部のHIC試験においても表面側で多数の割れが発生しCLRが15%を超えていた。母材のCP値が本発明の上限を超えた比較例No.7は、母材部のHIC試験において中心偏析部で割れが多数発生し、CLRが15%を超えていた。母材のPy値が上限を超えた比較例No.8は、円周溶接模擬部の母材側HAZ硬さが非常に硬くなっており、円周溶接模擬部の4点曲げSSC試験で割れが発生した。   On the other hand, Comparative Example No. 6 in which the amount of C of the base material exceeded the upper limit of the present invention was such that the MA fraction exceeded the upper limit of the present invention in the microstructure inspection of the surface portion of the base material, and the nearby hardness was 271. As a result of being extremely hard, cracks occurred in the 4-point bending SSC test of the base material. Also, in the HIC test of the base material part, many cracks occurred on the surface side, and the CLR exceeded 15%. In Comparative Example No. 7 in which the CP value of the base material exceeded the upper limit of the present invention, many cracks occurred in the central segregation part in the HIC test of the base material part, and the CLR exceeded 15%. In Comparative Example No. 8 in which the Py value of the base material exceeded the upper limit, the base metal side HAZ hardness of the circumferential weld simulation part was very hard and cracked in the 4-point bending SSC test of the circumferential weld simulation part. There has occurred.

内面溶接金属のPyが本発明の下限を下回った、比較例No.9は、溶接部の引張強度が600MPaを下回った。一方、Pyが本発明の上限を上回った、比較例No.10は、円周溶接模擬部の内面溶接金属側HAZ硬さが非常に硬くなっており、円周溶接模擬部の4点曲げSSC試験で割れが発生した。管厚1mm当りの溶接入熱が本願範囲の0.15kJ/mmを上回った比較例No.10は、溶接部の引張強度が600MPaを下回った。   In Comparative Example No. 9, in which Py of the inner surface weld metal was less than the lower limit of the present invention, the tensile strength of the welded portion was less than 600 MPa. On the other hand, in Comparative Example No. 10, in which Py exceeded the upper limit of the present invention, the inner surface weld metal side HAZ hardness of the circumferential welding simulated portion was very hard, and the four-point bending SSC of the circumferential welding simulated portion. Cracks occurred in the test. In Comparative Example No. 10, in which the welding heat input per 1 mm of the pipe thickness exceeded the range of 0.15 kJ / mm in the present application range, the tensile strength of the welded portion was less than 600 MPa.

本発明によれば、pH4以下の厳しい硫化水素腐食環境が想定される天然ガスや原油輸送パイプラインにおいて鋼管母材の耐HIC性、耐SSC性のみならず、鋼管同士をつなぐ円周溶接部においても優れた耐SSC性を有する高強度鋼管の提供が可能となり、高圧操業による天然ガスまたは原油輸送の効率化を図ることができる。   According to the present invention, not only the HIC resistance and SSC resistance of the steel pipe base material in the natural gas and crude oil transportation pipeline assumed to be severe hydrogen sulfide corrosive environment of pH 4 or less, but also in the circumferential welded part connecting the steel pipes. In addition, it is possible to provide a high-strength steel pipe having excellent SSC resistance, and it is possible to improve the efficiency of transportation of natural gas or crude oil by high-pressure operation.

Claims (3)

厚鋼板の母材と、
突合せ部を内外面1層ずつによりサブマージアーク溶接により形成された溶接金属と
を有する溶接鋼管であって、
前記母材が、質量%で、
C:0.02〜0.06%、
Si:0.05〜0.5%、
Mn:0.75〜1.75%、
Al:0.01〜0.08%、
Nb:0.005〜0.06%、
Ti:0.005〜0.025%、
Ca:0.0010〜0.0035%を含有し、
P:0.01%以下、
S:0.001%以下、
B:0.004%以下、
N:0.008%以下で
さらに、
Cu:0.30%以下、
Ni:0.50%以下、
Cr:0.50%以下、
Mo:0.20%以下、
V:0.05%以下
の中から選ばれる1種以上を含有し、
下式(1)で表されるCP値が0.95以下であり、
下式(2)で表されるPy値が0.160以下であり、
残部がFe及び不可避的不純物からなり、
かつ、前記溶接金属が、質量%で、
C:0.04〜0.08%
Si:0.05〜0.5%
Mn:1.0〜1.6%
Nb:0.01〜0.05%
Ti:0.01〜0.04%
B:0.001〜0.003%
O:0.020〜0.035%
Al:0.02%以下
を含有し、
さらに
Cu:0.20%以下
Ni:0.30%以下
Cr:0.30%以下
Mo:0.20%以下
V:0.05%以下
の中から選ばれる1種以上を含有し、
残部Feおよび不可避的不純物からなり、かつ
溶接金属の化学組成で計算される式(2)のPy値が0.140〜0.160を満足することを特徴とする耐硫化物応力腐食割れ性に優れた引張強度600MPa以上の高強度溶接鋼管。
CP=4.46C(%)+2.37Mn(%)/6+{1.18Cr(%)+1.95Mo(%)+1.74V(%)}/5+{1.74Cu(%)+1.7Ni(%)}/15+22.36P(%)・・・式(1)
Py=C(%)+Si(%)/30+Mn(%)/20+{Cu(%)+Cr(%)}/20+Ni(%)/60+Mo(%)/7+V(%)/10+5×B(%)・・・式(2)
ここで、各式の右辺の元素記号は含有量(質量%)を表わし、含有しない場合は0とする。
A thick steel base material,
A welded steel pipe having a weld metal formed by submerged arc welding with a butt portion on each inner and outer surface layer,
The base material is mass%,
C: 0.02 to 0.06%,
Si: 0.05 to 0.5%,
Mn: 0.75 to 1.75%,
Al: 0.01 to 0.08%,
Nb: 0.005 to 0.06%,
Ti: 0.005 to 0.025%,
Ca: 0.0010 to 0.0035% is contained,
P: 0.01% or less,
S: 0.001% or less,
B: 0.004% or less,
N: 0.008% or less
Cu: 0.30% or less,
Ni: 0.50% or less,
Cr: 0.50% or less,
Mo: 0.20% or less,
V: contains one or more selected from 0.05% or less,
The CP value represented by the following formula (1) is 0.95 or less,
The Py value represented by the following formula (2) is 0.160 or less,
The balance consists of Fe and inevitable impurities,
And the said weld metal is the mass%,
C: 0.04 to 0.08%
Si: 0.05-0.5%
Mn: 1.0 to 1.6%
Nb: 0.01 to 0.05%
Ti: 0.01-0.04%
B: 0.001 to 0.003%
O: 0.020 to 0.035%
Al: containing 0.02% or less,
Further, Cu: 0.20% or less Ni: 0.30% or less Cr: 0.30% or less Mo: 0.20% or less V: 0.05% or less
It is composed of the remaining Fe and inevitable impurities, and the Py value of the formula (2) calculated by the chemical composition of the weld metal satisfies 0.140 to 0.160. High strength welded steel pipe with excellent tensile strength of 600 MPa or more.
CP = 4.46C (%) + 2.37Mn (%) / 6+ {1.18Cr (%) + 1.95Mo (%) + 1.74V (%)} / 5+ {1.74Cu (%) + 1.7Ni (% )} / 15 + 22.36P (%) (1)
Py = C (%) + Si (%) / 30 + Mn (%) / 20+ {Cu (%) + Cr (%)} / 20 + Ni (%) / 60 + Mo (%) / 7 + V (%) / 10 + 5 × B (%) · ..Formula (2)
Here, the element symbol on the right side of each formula represents the content (% by mass), and is 0 when not contained.
前記母材の表層部の金属組織は、島状マルテンサイトの体積分率が2%以下であり、残部がベイナイトまたはベイナイトとフェライトの混合組織であることを特徴とする、請求項1記載の耐硫化物応力腐食割れ性に優れた引張強度600MPa以上の高強度溶接鋼管。   The metal structure of the surface layer portion of the base material has a volume fraction of island martensite of 2% or less, and the balance is bainite or a mixed structure of bainite and ferrite. A high-strength welded steel pipe with a tensile strength of 600 MPa or more with excellent sulfide stress corrosion cracking properties. 前記サブマージアーク溶接は、管厚1mm当りの溶接入熱量が0.15kJ/mm以下とすることを特徴とする請求項1または2記載の耐硫化物応力腐食割れ性に優れた引張強度600MPa以上の高強度溶接鋼管。   The submerged arc welding has a heat input per pipe thickness of 1 mm of 0.15 kJ / mm or less, and has a tensile strength of 600 MPa or more excellent in resistance to sulfide stress corrosion cracking according to claim 1 or 2. High strength welded steel pipe.
JP2011268638A 2011-12-08 2011-12-08 High strength welded steel pipe and manufacturing method thereof Active JP5870664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011268638A JP5870664B2 (en) 2011-12-08 2011-12-08 High strength welded steel pipe and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011268638A JP5870664B2 (en) 2011-12-08 2011-12-08 High strength welded steel pipe and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013119657A true JP2013119657A (en) 2013-06-17
JP5870664B2 JP5870664B2 (en) 2016-03-01

Family

ID=48772454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011268638A Active JP5870664B2 (en) 2011-12-08 2011-12-08 High strength welded steel pipe and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5870664B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115210397A (en) * 2020-01-29 2022-10-18 杰富意钢铁株式会社 Welded steel pipe and method for producing same
JP7485920B2 (en) 2020-04-14 2024-05-17 日本製鉄株式会社 Intermediate bending roll steel pipe

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216500A (en) * 1994-01-28 1995-08-15 Sumitomo Metal Ind Ltd High strength steel material excellent in corrosion resistance and its production
JPH091344A (en) * 1995-06-14 1997-01-07 Kawasaki Steel Corp Low temp. high toughness uoe steel tube
JP2004143556A (en) * 2002-10-25 2004-05-20 Jfe Steel Kk Thick, large-sized straight uoe steel pipe satisfying request for strict toughness, and production method therefor
JP2005023429A (en) * 2004-10-20 2005-01-27 Jfe Steel Kk High toughness uoe steel pipe for use at low temperature
JP2005186162A (en) * 2003-12-02 2005-07-14 Jfe Steel Kk High toughness thick welded steel tube excellent in sour-resistant characteristic
JP2010189722A (en) * 2009-02-18 2010-09-02 Nippon Steel Corp Method of manufacturing sheet steel for thick-walled sour-resistant line pipe of excellent toughness

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216500A (en) * 1994-01-28 1995-08-15 Sumitomo Metal Ind Ltd High strength steel material excellent in corrosion resistance and its production
JPH091344A (en) * 1995-06-14 1997-01-07 Kawasaki Steel Corp Low temp. high toughness uoe steel tube
JP2004143556A (en) * 2002-10-25 2004-05-20 Jfe Steel Kk Thick, large-sized straight uoe steel pipe satisfying request for strict toughness, and production method therefor
JP2005186162A (en) * 2003-12-02 2005-07-14 Jfe Steel Kk High toughness thick welded steel tube excellent in sour-resistant characteristic
JP2005023429A (en) * 2004-10-20 2005-01-27 Jfe Steel Kk High toughness uoe steel pipe for use at low temperature
JP2010189722A (en) * 2009-02-18 2010-09-02 Nippon Steel Corp Method of manufacturing sheet steel for thick-walled sour-resistant line pipe of excellent toughness

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115210397A (en) * 2020-01-29 2022-10-18 杰富意钢铁株式会社 Welded steel pipe and method for producing same
CN115210397B (en) * 2020-01-29 2024-01-05 杰富意钢铁株式会社 Welded steel pipe and method for manufacturing same
JP7485920B2 (en) 2020-04-14 2024-05-17 日本製鉄株式会社 Intermediate bending roll steel pipe

Also Published As

Publication number Publication date
JP5870664B2 (en) 2016-03-01

Similar Documents

Publication Publication Date Title
JP5870665B2 (en) High-strength welded steel pipe with excellent tensile stress strength of 600 MPa or more with excellent resistance to sulfide stress corrosion cracking
JP5353156B2 (en) Steel pipe for line pipe and manufacturing method thereof
JP5392441B1 (en) Steel tube for high-strength line pipe excellent in resistance to hydrogen-induced cracking, steel plate for high-strength line pipe used therefor, and production method thereof
JP5423323B2 (en) Steel plate for high-strength line pipe and steel pipe for high-strength line pipe with excellent resistance to hydrogen-induced cracking
JP5853456B2 (en) Low yield ratio resistant HIC welded steel pipe with excellent weld toughness after SR and method for producing the same
JP5857491B2 (en) Low yield ratio resistant HIC welded steel pipe with excellent weld toughness after SR and method for producing the same
JP5088323B2 (en) Martensitic stainless steel for welded structures
JP4484123B2 (en) High strength and excellent base material for clad steel plate with excellent weld heat affected zone toughness
JP2008240096A (en) High strength welded steel pipe having weld metal excellent in low temperature crack resistance, and its manufacturing method
JP2007260715A (en) Method for producing superhigh strength welded steel pipe
US20070289655A1 (en) High-strength welded steel pipe
JPWO2020203335A1 (en) Manufacturing method of high-strength welded joints for extremely low temperatures
JP5382266B1 (en) Welded joint manufacturing method and welded joint
JP2006063351A (en) High strength steel plate with excellent hydrogen induced cracking resistance, its manufacturing method, and steel pipe for line pipe
JP2007260716A (en) Method for producing ultrahigh strength welded steel pipe having excellent deformability
WO2016079920A1 (en) High-strength stainless steel seamless pipe for oil wells
JP2016216819A (en) Thick steel plate and welded joint
JP6241434B2 (en) Steel plate for line pipe, steel pipe for line pipe, and manufacturing method thereof
CN102057070B (en) Steel plate excellent in sour resistance and steel pipe for linepipes
JP5014831B2 (en) ERW steel pipe for expanded oil well with excellent pipe expansion performance and corrosion resistance and method for producing the same
JP5870664B2 (en) High strength welded steel pipe and manufacturing method thereof
JP4506933B2 (en) Steel material suitable for large heat input welding for steel frames
JP2002226947A (en) Martensitic stainless steel welded joint having excellent strain aging resistance
JP2004143593A (en) High strength seamless steel tube having excellent hydrogen induced cracking resistance, and production method therefor
JP5870561B2 (en) High-strength welded steel pipe with excellent tensile stress strength of 600 MPa or more with excellent resistance to sulfide stress corrosion cracking

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151228

R150 Certificate of patent or registration of utility model

Ref document number: 5870664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250