JP2007260716A - Method for producing ultrahigh strength welded steel pipe having excellent deformability - Google Patents

Method for producing ultrahigh strength welded steel pipe having excellent deformability Download PDF

Info

Publication number
JP2007260716A
JP2007260716A JP2006087972A JP2006087972A JP2007260716A JP 2007260716 A JP2007260716 A JP 2007260716A JP 2006087972 A JP2006087972 A JP 2006087972A JP 2006087972 A JP2006087972 A JP 2006087972A JP 2007260716 A JP2007260716 A JP 2007260716A
Authority
JP
Japan
Prior art keywords
welding
welded
steel pipe
strength
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006087972A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Okatsu
光浩 岡津
Nobuyuki Ishikawa
信行 石川
Junji Shimamura
純二 嶋村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006087972A priority Critical patent/JP2007260716A/en
Publication of JP2007260716A publication Critical patent/JP2007260716A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/346Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding
    • B23K26/348Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding in combination with arc heating, e.g. TIG [tungsten inert gas], MIG [metal inert gas] or plasma welding

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Laser Beam Processing (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an ultrahigh strength welded steel pipe having excellent deformability which has a tensile strength of >800 MPa and is suitable as the one for transporting natural gas and crude oil. <P>SOLUTION: A steel sheet having a composition comprising, by mass, 0.03 to 0.12% C, ≤0.5% Si, 1.8 to 3.0% Mn, ≤0.010% P, ≤0.002% S, 0.01 to 0.08% Al, ≤0.7% Cu, 0.01 to 3.0% Ni, ≤1.0% Cr, ≤1.0% Mo, 0.01 to 0.08% Nb, ≤0.10% V, 0.005 to 0.025% Ti, ≤0.005% B, ≤0.01% Ca, ≤0.02% REM, ≤0.03% Zr, ≤0.01% Mg, 0.001 to 0.006% N and ≤0.22 PcmB, and the balance Fe with inevitable impurities, and having a yield ratio of ≤80% and a tensile strength of ≥800 MPa is subjected to cold working, so as to be formed into a pipe shape. Thereafter, the butted parts are welded by a hybrid welding process in which laser welding using CO<SB>2</SB>gas shield and gas shielded arc welding using Ar-CO<SB>2</SB>gas shield are combined. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は,引張強度800MPaを超える超高強度溶接鋼管の製造方法に関し、特に母材の降伏比(降伏強度と引張強度の比)が80%以下と低く,圧縮や曲げといった変形を受けた際に高い耐座屈性能を有し,かつ縦シーム溶接部の溶接金属および溶接熱影響部(HAZ)において十分な靱性を有し,さらに継手引張強度が母材強度を上回る引張強度を満足し,天然ガスや原油の輸送用として好滴なものに関する。     The present invention relates to a method for producing an ultra-high strength welded steel pipe having a tensile strength of more than 800 MPa, particularly when the yield ratio of the base metal (ratio of yield strength to tensile strength) is as low as 80% or less and undergoes deformation such as compression and bending. And has sufficient toughness in the weld metal and weld heat-affected zone (HAZ) of the longitudinal seam weld, and the joint tensile strength exceeds the base metal strength. It relates to a good drop for transportation of natural gas and crude oil.

近年,天然ガスや原油の輸送用として使用されるラインパイプは,高圧化による輸送効率の向上、薄肉化による現地溶接施工能率の向上、および地球環境保全など種々の課題を解決しなければならない。   In recent years, line pipes used for transportation of natural gas and crude oil have to solve various problems such as improvement of transportation efficiency by increasing pressure, improvement of on-site welding efficiency by thinning, and preservation of the global environment.

高圧化による輸送効率の向上には、鋼板の高強度化が有効で、薄肉化による現地溶接施工能率の向上のため、低温割れ感受性に優れたAPI規格でX100グレードのラインパイプが既に実用化し,引張強度900MPaを超えるX120グレードも試作されている。   In order to improve transport efficiency by increasing the pressure, it is effective to increase the strength of the steel sheet. To improve the efficiency of on-site welding by reducing the wall thickness, X100 grade line pipes have already been put into practical use under the API standard with excellent cold cracking susceptibility. An X120 grade with a tensile strength exceeding 900 MPa has also been prototyped.

高強度ラインパイプ用溶接鋼管およびその素材となる高強度厚鋼板の製造方法に関しては,例えば特許文献1に,熱間圧延後2段冷却を行い,2段目の冷却停止温度を300℃以下とすることで,高強度化を達成する技術が開示されている。   Regarding the method for producing a welded steel pipe for high-strength line pipes and a high-strength thick steel plate as the material, for example, in Patent Document 1, two-stage cooling is performed after hot rolling, and the second stage cooling stop temperature is set to 300 ° C. or less. Thus, a technique for achieving high strength is disclosed.

特許文献2に,高価な合金元素添加量を削減しつつ,高強度・高靱性を得るための加速冷却および焼戻し条件に関する技術が開示されている。特許文献3に,母材については特許文献2と同様に合金元素添加量を削減し,さらに縦シーム溶接部の溶接金属において高強度・高靱性を得るための成分設計に関する技術が開示されている。   Patent Document 2 discloses a technique relating to accelerated cooling and tempering conditions for obtaining high strength and high toughness while reducing the amount of expensive alloy element addition. Patent Document 3 discloses a technology related to the component design for reducing the amount of alloying elements added to the base metal as in Patent Document 2 and obtaining high strength and high toughness in the weld metal of the longitudinal seam weld. .

また、特許文献4には、低C−高Cu系鋼を熱間圧延、冷却後、時効処理した超高強度鋼管用鋼板が記載されている。   Patent Document 4 describes a steel sheet for ultra-high-strength steel pipe obtained by aging treatment after hot rolling, cooling a low C-high Cu steel.

地球環境保全のためには、大地震や凍土地帯における地盤変動で,ラインパイプに大変形が生じても,亀裂発生にいたらないための高変形能が必要とされる。高変形能の指標として,降伏比が使われ,低降伏比であるほど亀裂発生の限界歪が向上する。   In order to preserve the global environment, even if a large deformation occurs in a line pipe due to a large earthquake or ground deformation in a frozen land zone, a high deformability is required to prevent cracking. The yield ratio is used as an index of high deformability, and the lower the yield ratio, the higher the critical strain for crack initiation.

鋼材のミクロ組織を軟質なフェライト相と,硬質なベイナイトやマルテンサイトなどが適度に分散した硬質相の2相組織とすることで,低降伏比となることが知られ,例えば特許文献5には,上記のような軟質相の中に硬質相が適度に分散した組織を得る製造方法として、焼入れ(Q)と焼戻し(T)の中間に、フェライトとオーステナイトの2相域からの焼入れ(Q’)を施す熱処理方法が開示されている。   It is known that a low yield ratio is obtained by making the microstructure of a steel material a two-phase structure of a soft ferrite phase and a hard phase in which hard bainite and martensite are appropriately dispersed. As a production method for obtaining a structure in which the hard phase is appropriately dispersed in the soft phase as described above, quenching from a two-phase region of ferrite and austenite (Q ′) between quenching (Q) and tempering (T). ) Is disclosed.

また,特許文献6には,軟質相を加工フェライトとしたフェライト+ベイナイト+マルテンサイト組織により低降伏比化が達成されることが開示されている。
特開2003−293089号公報 特開2002―173710号公報 特開2000―355729号公報 特開平8−311548号公報 特開昭55−97425号公報 特開平08―209291号公報
Patent Document 6 discloses that a low yield ratio can be achieved by a ferrite + bainite + martensite structure in which a soft phase is processed ferrite.
JP 2003-293089 A JP 2002-173710 A JP 2000-355729 A JP-A-8-311548 JP-A-55-97425 Japanese Patent Laid-Open No. 08-209291

しかしながら、上述した特許文献1〜4に記載されたラインパイプやラインパイプ用鋼は、縦シーム溶接を大入熱サブマージアーク溶接で行うと、板厚によっては縦シーム溶接部でHAZ部が大きく軟化し、実管を用いた水圧試験で強度の低いHAZ部で破壊することが懸念されるため、溶接入熱を低下させることが必要で生産性が低下する。   However, the line pipes and line pipe steels described in Patent Documents 1 to 4 described above have a large softening of the HAZ part at the longitudinal seam welded part depending on the plate thickness when longitudinal seam welding is performed by high heat input submerged arc welding. However, since there is a concern that the HAZ part having a low strength is broken in a water pressure test using an actual pipe, it is necessary to reduce the welding heat input, resulting in a reduction in productivity.

HAZ軟化による継手強度不足を補うため、縦シーム溶接部の溶接金属を高強度化することが有効であるが、溶接金属中の合金元素量を増加させ、低温割れ等の溶接金属欠陥が発生しやすくなり,手直し等溶接作業性を著しく悪化させるようになる。   In order to compensate for the lack of joint strength due to HAZ softening, it is effective to increase the strength of the weld metal in the longitudinal seam weld. However, the amount of alloy elements in the weld metal is increased, and weld metal defects such as cold cracking occur. It becomes easier and the welding workability such as reworking is remarkably deteriorated.

また、母材中の合金元素量を増やすと,パイプ同士を接合する、入熱の小さい多層溶接による円周溶接部においてHAZ硬さが増大し,特に初層溶接部で低温割れ感受性が増大するため、開先の予熱管理などが必要となり、現地施工性が低下する。   In addition, increasing the amount of alloying elements in the base metal increases the HAZ hardness at the circumferential welded part by multi-layer welding with low heat input that joins the pipes, and particularly increases the sensitivity to cold cracking at the first layer welded part. For this reason, it is necessary to manage the preheating of the groove and the workability at the site is reduced.

そして、母材の高強度を損なわずに低降伏比を達成する特許文献5報記載の技術では多数回の熱処理を行う必要があり,生産性が低下し、製造コストが上昇する。   In the technique described in Patent Document 5 that achieves a low yield ratio without impairing the high strength of the base material, it is necessary to perform heat treatment many times, resulting in a decrease in productivity and an increase in manufacturing cost.

特許文献6記載の技術による高靱性化は延性−脆性破面率の改善のために,フェライトの集合組織を積極的に発達させることによって得られるもので,シャルピー衝撃試験片の破面にはセパレーションが発生し,シャルピー衝撃試験での吸収エネルギー(シャルピー衝撃値)はむしろ低下する。   The toughening by the technique described in Patent Document 6 is obtained by actively developing a ferrite texture to improve the ductility-brittle fracture surface ratio. Occurs and the absorbed energy (Charpy impact value) in the Charpy impact test is rather lowered.

そこで、本発明は,縦シーム溶接部のHAZ軟化を防止し、変形能に優れる超高強度溶接鋼管の製造方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a method for manufacturing an ultra-high strength welded steel pipe that prevents HAZ softening of a longitudinal seam weld and has excellent deformability.

本発明者等は上記課題を解決するため、母材と縦シーム溶接法について、下記の項目について鋭意検討を行った。
1)レーザー・アークハイブリッド溶接法の縦シーム溶接への適用:従来の大入熱サブマージアーク溶接による溶接効率を維持しつつ,溶接部の冷却速度を向上させて、HAZおよび溶接金属の強度を上昇させる溶接条件。
In order to solve the above-mentioned problems, the present inventors have conducted intensive studies on the following items regarding the base material and the longitudinal seam welding method.
1) Application of laser-arc hybrid welding to longitudinal seam welding: Maintaining the welding efficiency of conventional high heat input submerged arc welding while improving the cooling rate of the weld zone and increasing the strength of HAZ and weld metal Let welding conditions.

2)引張り強さ800MPa以上で優れた靭性を有し、降伏比80%以下の低降伏比を満足するミクロ組織を備えた、低温割れ感受性に優れた鋼板の製造プロセス。
3)縦シーム溶接時の溶接割れを抑制し,かつ高冷却速度において溶接金属強度・靱性を達成する溶接金属成分。
2) A process for producing a steel sheet having a tensile strength of 800 MPa or more and excellent toughness and having a microstructure satisfying a low yield ratio of 80% or less and excellent in low-temperature cracking sensitivity.
3) A weld metal component that suppresses weld cracking during longitudinal seam welding and achieves weld metal strength and toughness at a high cooling rate.

本発明は上記検討の結果得られた知見を基になされたもので、すなわち、本発明は、
1.降伏比80%以下かつ引張強度800MPa以上の鋼板を冷間加工で管状に成形した後,突合せ部を、COガスシールドを用いたレーザーとAr−COガスシールドを用いたガスシールドアーク溶接を組合わせたハイブリッド溶接法によって溶接することを特徴とする超高強度溶接鋼管の製造方法。
2.前記突合せ部の内外面を前記ハイブリッド溶接で溶接することを特徴とする1記載の超高強度溶接鋼管の製造方法。
3.前記突合せ部の内面を前記ハイブリッド溶接で溶接し、外面をサブマージアーク溶接で溶接することを特徴とする1記載の超高強度溶接鋼管の製造方法。
4.前記降伏比80%以下かつ引張強度800MPa以上の鋼板が、
質量%で、
C:0.03〜0.12%
Si:≦0.5%
Mn:1.8〜3.0%
P≦0.010%,S≦0.002%
Al:0.01〜0.08%
Cu:≦0.7%
Ni:0.01〜3.0%
Cr:≦1.0%
Mo:≦1.0%
Nb:0.01〜0.08%
V:≦0.10%
Ti:0.005〜0.025%
B:≦0.005%
Ca:≦0.01%
REM:≦0.02%
Zr:≦0.03%
Mg:≦0.01%
N:0.001〜0.006%
PcmB≦0.22
残部Feおよび不可避的不純物からなる鋼を,
1000〜1200℃に再加熱後,950℃以下の温度域での累積圧下量≧70%となる熱間圧延を行い,圧延終了後700℃以上の温度域から冷却速度20〜80℃/sで冷却を開始し,400〜650℃の温度域で冷却停止後、ただちに600〜700℃に再加熱し,以後室温まで空冷して得られる鋼板で、
前記突合せ部の溶着金属の化学成分が
質量%で,
C:0.05〜0.09%
Si:0.1〜0.4%
Mn:1.0〜2.0%
Al:≦0.015%
Cu:≦0.5%
Ni:≦3.0%
Cr:≦1.0%
Mo:≦1.0%
V:≦0.1%
Ti:0.003〜0.10%
B:≦0.0030%
O:≦0.03%
N:≦0.008%
PcmW≦0.2
残部Feおよび不可避的不純物
であることを特徴とするであることを特徴とする請求項1乃至3の何れか一つに記載の超高強度溶接鋼管の製造方法。
The present invention has been made on the basis of the knowledge obtained as a result of the above studies, that is, the present invention
1. After 80% yield ratio less and a tensile strength 800MPa or more steel sheets were molded into a tubular by cold working, the butted portion, the gas-shielded arc welding using a laser and Ar-CO 2 gas shielded with CO 2 gas shielded A method for producing an ultra-high strength welded steel pipe characterized by welding by a combined hybrid welding method.
2. 2. The method for producing an ultra-high strength welded steel pipe according to 1, wherein inner and outer surfaces of the butt portion are welded by the hybrid welding.
3. 2. The method of manufacturing an ultra high strength welded steel pipe according to 1, wherein an inner surface of the butt portion is welded by the hybrid welding and an outer surface is welded by submerged arc welding.
4). A steel plate having a yield ratio of 80% or less and a tensile strength of 800 MPa or more,
% By mass
C: 0.03-0.12%
Si: ≦ 0.5%
Mn: 1.8-3.0%
P ≦ 0.010%, S ≦ 0.002%
Al: 0.01 to 0.08%
Cu: ≦ 0.7%
Ni: 0.01-3.0%
Cr: ≦ 1.0%
Mo: ≦ 1.0%
Nb: 0.01 to 0.08%
V: ≦ 0.10%
Ti: 0.005-0.025%
B: ≦ 0.005%
Ca: ≦ 0.01%
REM: ≦ 0.02%
Zr: ≦ 0.03%
Mg: ≦ 0.01%
N: 0.001 to 0.006%
PcmB ≦ 0.22
Steel consisting of the balance Fe and inevitable impurities,
After reheating to 1000 to 1200 ° C, hot rolling is performed so that the cumulative reduction amount ≧ 70% in the temperature range of 950 ° C or lower, and at a cooling rate of 20 to 80 ° C / s from the temperature range of 700 ° C or higher after the end of rolling. A steel plate obtained by starting cooling, stopping cooling in a temperature range of 400 to 650 ° C., immediately reheating to 600 to 700 ° C., and then air cooling to room temperature,
The chemical composition of the weld metal at the butt is mass%,
C: 0.05-0.09%
Si: 0.1 to 0.4%
Mn: 1.0-2.0%
Al: ≦ 0.015%
Cu: ≦ 0.5%
Ni: ≦ 3.0%
Cr: ≦ 1.0%
Mo: ≦ 1.0%
V: ≦ 0.1%
Ti: 0.003-0.10%
B: ≦ 0.0030%
O: ≦ 0.03%
N: ≦ 0.008%
PcmW ≦ 0.2
The method for producing an ultra-high strength welded steel pipe according to any one of claims 1 to 3, wherein the remaining Fe and unavoidable impurities.

但し、PcmB=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5×B
PcmW=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+60×B−12×N−4×O
で、各元素は含有量(質量%)を示す。
5.前記鋼板のベイナイト中のMAは、面積率で5〜20%であることを特徴とする4に記載の超高強度溶接鋼管の製造方法。
However, PcmB = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5 × B
PcmW = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 60 × B-12 × N-4 × O
And each element shows content (mass%).
5). MA in the bainite of the said steel plate is 5 to 20% by an area rate, The manufacturing method of the ultra high strength welded steel pipe of 4 characterized by the above-mentioned.

本発明によれば、縦シーム部の継手強度が母材の引張強度以上で,変形性能に優れた引張強度800MPa以上の超高強度溶接鋼管の製造が可能で産業上極めて有用である。   INDUSTRIAL APPLICABILITY According to the present invention, it is possible to produce an ultra-high strength welded steel pipe having a joint strength at a longitudinal seam portion that is equal to or higher than the tensile strength of the base material and excellent in deformability, and is extremely useful industrially.

本発明は、脆性亀裂伝播停止特性に優れかつ降伏比が80%以下の引張強度800MPa以上の鋼板を冷間加工で管状に成形した後,COガスシールドを用いたレーザーとAr−COガスシールドを用いたガスシールドアーク溶接を組合わせたハイブリッド溶接法によって突合わせ部の溶接を行い溶接鋼管とすることを特徴とする。 The present invention provides a laser using a CO 2 gas shield and an Ar—CO 2 gas after forming a steel plate with a tensile strength of 800 MPa or more having excellent brittle crack propagation stopping characteristics and a yield ratio of 80% or less into a tubular shape by cold working. A welded steel pipe is formed by welding the butt portion by a hybrid welding method combined with gas shielded arc welding using a shield.

図4は、COガスシールドを用いたレーザー溶接とAr−COガスシールドを用いたガスシールドアーク溶接を組合わせたハイブリッド溶接法を説明する模式図で、ハイブリッド溶接5は、溶接方向に、レーザトーチ6がガスアーク溶接トーチ7に先行して配置される。 Figure 4 is a schematic view illustrating a hybrid welding method in combination with gas shielded arc welding using laser welding and Ar-CO 2 gas shielded with CO 2 gas shielded, hybrid welding 5, the welding direction, A laser torch 6 is arranged ahead of the gas arc welding torch 7.

レーザトーチ6とガスアーク溶接トーチ7は、それぞれの溶接による溶融池8が一つに合体される1プール溶接としてビード9を形成するように配置する。その結果、従来のサブマージアーク溶接並の溶接速度で鋼板突き合わせ部の溶接を行うことが可能であり,さらに溶接部の冷却速度が著しく向上する。   The laser torch 6 and the gas arc welding torch 7 are arranged so as to form a bead 9 as one pool welding in which the weld pools 8 formed by the respective weldings are combined into one. As a result, it is possible to weld the steel plate butt portion at a welding speed comparable to that of conventional submerged arc welding, and the cooling rate of the welded portion is significantly improved.

先行するレーザートーチ6により狭い領域に高密度の入熱を与えることで鋼板を容易に溶解させ,その後のガスアーク溶接の入熱レベルでも十分に溶接金属を溶着させられるからであると考えられる。   This is probably because the steel plate can be easily melted by applying high-density heat input to a narrow region by the preceding laser torch 6, and the weld metal can be sufficiently deposited even at the heat input level of the subsequent gas arc welding.

同一の板厚の母材を当該ハイブリッド溶接とサブマージアーク溶接で溶接する際の溶接入熱は、当該ハイブリッド溶接によるものは、サブマージアーク溶接の約1/2となる。   The welding heat input when welding the base metal of the same thickness by the hybrid welding and the submerged arc welding is about ½ of the submerged arc welding by the hybrid welding.

従って、管厚が厚く,レーザー・アークハイブリッド溶接1層では貫通溶接できない場合,パイプの内外面それぞれ1層ずつレーザー・アークハイブリッド溶接を行っても継手強度の低下は小さい。また,外面側を従来のSAW溶接による1層溶接を行っても同様に内面側のHAZ部で十分な強度が確保され,母材と同等以上の継手強度を満足することができる。   Therefore, when the pipe thickness is thick and penetration welding is not possible with one layer of laser / arc hybrid welding, even if laser / arc hybrid welding is performed on each of the inner and outer surfaces of the pipe, the decrease in joint strength is small. Moreover, even if one-layer welding is performed on the outer surface side by conventional SAW welding, a sufficient strength is ensured in the HAZ portion on the inner surface side, and a joint strength equal to or higher than that of the base material can be satisfied.

図5に本発明に係る超高強度溶接鋼管の製造方法での縦シーム溶接方法を模式的に示す。板厚が薄い場合はレーザー・アークハイブリッド溶接の外面側一層溶接(a)、より厚い場合はレーザー・アークハイブリッド溶接の内外面側一層溶接(b)、更に厚い場合は、内面側をレーザー・アークハイブリッド溶接、外面側をサブマージアーク溶接(c)とする。   FIG. 5 schematically shows a longitudinal seam welding method in the method for producing an ultra high strength welded steel pipe according to the present invention. When the plate thickness is thin, laser-arc hybrid welding outer surface side single layer welding (a), when it is thicker, laser-arc hybrid welding inner surface outer layer single layer welding (b), and when thicker, the inner surface side is laser-arced. Hybrid welding, the outer surface side is submerged arc welding (c).

尚、レーザ溶接のシールドガスとしてCOガスを用いることでブローホールの発生を著しく抑制し,ガスアーク溶接のシールドガスをArとCOの混合ガスとすることで溶接金属中の酸素量を低く抑えることができる。 Note that the use of CO 2 gas as the laser welding shield gas significantly suppresses the generation of blowholes, and the gas arc welding shield gas is a mixed gas of Ar and CO 2 to keep the amount of oxygen in the weld metal low. be able to.

次に,本発明における,変形性能に優れた降伏比80%以下、引張強度800MPa以上の鋼板として好適な成分限定理由を説明する。%は質量%とする。   Next, the reasons for limiting the components suitable for a steel sheet having a yield ratio of 80% or less and a tensile strength of 800 MPa or more excellent in deformation performance in the present invention will be described. % Means mass%.

C:0.03〜0.12%
Cは低温変態組織においては過飽和固溶することで強度上昇に寄与する。これらの効果をえるためには0.03%以上の添加が必要であるが,0.12%を超えて添加すると,パイプの円周溶接部の硬度上昇が著しくなり,低温割れが発生しやすくなるため,上限を0.12%とした。
C: 0.03-0.12%
C contributes to an increase in strength by being supersaturated in a low temperature transformation structure. In order to obtain these effects, 0.03% or more of addition is necessary. However, if added over 0.12%, the hardness of the circumferential welded part of the pipe is remarkably increased and cold cracking is likely to occur. Therefore, the upper limit was made 0.12%.

Si:≦0.5%
Siは変態組織によらず固溶強化するため,母材,HAZの強度上昇に有効である。しかし,0.5%を超えて添加すると靱性が著しく低下するため上限を0.5%とした。
Si: ≦ 0.5%
Since Si strengthens the solid solution regardless of the transformation structure, it is effective in increasing the strength of the base material and HAZ. However, if added over 0.5%, the toughness is significantly reduced, so the upper limit was made 0.5%.

Mn:1.8〜3.0%
Mnは焼入性向上元素として作用する.さらに,多量に添加することで,フェライト相に固溶できるC量を低減する効果があり,鋼のオーステナイト域から加速冷却でベイナイト変態させる際,未変態オーステナイト領域へのC濃化を大きくするので,MAの生成量を増加させることができる。
Mn: 1.8-3.0%
Mn acts as a hardenability improving element. Furthermore, adding a large amount has the effect of reducing the amount of C that can be dissolved in the ferrite phase, and when the bainite transformation is performed from the austenite region of steel by accelerated cooling, the C concentration in the untransformed austenite region is increased. , MA production can be increased.

後述のように,MAの面積率を5%以上とするためには,少なくとも1.8%以上の添加が必要である。一方,連続鋳造プロセスでは中心偏析部の濃度上昇が著しく,3.0%を超える添加を行うと,偏析部での遅れ破壊の原因となるため,上限を3.0%とする。   As will be described later, in order to make the area ratio of MA 5% or more, it is necessary to add at least 1.8% or more. On the other hand, in the continuous casting process, the concentration in the center segregation part is remarkably increased, and if it exceeds 3.0%, it causes delayed fracture in the segregation part, so the upper limit is made 3.0%.

Al:0.01〜0.08%
Alは脱酸元素として作用する。0.01%以上の添加で十分な脱酸効果が得られるが,0.08%を超えて添加すると鋼中の清浄度が低下し,靱性劣化の原因となるため,上限を0.08%とした。
Al: 0.01 to 0.08%
Al acts as a deoxidizing element. Sufficient deoxidation effect can be obtained with addition of 0.01% or more, but if added over 0.08%, the cleanliness in the steel is lowered and the toughness is deteriorated, so the upper limit is 0.08%. It was.

P:≦0.010%、S:≦0.002%
P,Sはいずれも鋼中に不可避不純物として存在する。特に中心偏析部での偏析が著しい元素であり,母材の偏析部起因の靱性低下を抑制するために,それぞれ上限を0.010%,0.002%とした。
P: ≦ 0.010%, S: ≦ 0.002%
Both P and S are present as inevitable impurities in the steel. In particular, the segregation at the center segregation portion is an element, and the upper limit is set to 0.010% and 0.002%, respectively, in order to suppress the decrease in toughness due to the segregation portion of the base material.

Cu:≦0.7%
Cuは焼入性向上元素として作用し,多量のMn添加の代替とすることができる。しかし,0.7%を超えて添加すると,過飽和に固溶したCuが加速冷却後の再加熱時に析出し,特に鋼の降伏強度が析出硬化によって上昇する結果,低降伏比とすることが困難となるため,上限を0.7%とする。
Cu: ≦ 0.7%
Cu acts as a hardenability-enhancing element and can replace a large amount of Mn addition. However, when added over 0.7%, Cu dissolved in supersaturation precipitates during reheating after accelerated cooling, and the yield strength of steel increases due to precipitation hardening, making it difficult to achieve a low yield ratio. Therefore, the upper limit is set to 0.7%.

Ni:0.1〜3.0%
Niもまた,焼入性向上元素として作用するほか,添加しても靱性劣化を起こさないため,有用な元素である。この効果を得るために,0.1%以上の添加が必要であるが,多量に添加した場合,熱間圧延のスラブ加熱時にスラブ表面に生成するスケールにNiが濃化しスケール性状が変化する結果,圧延時にこのスケール噛み込みを起こしやすくなり,表面キズの原因となるため上限を3.0%とした。
Ni: 0.1 to 3.0%
Ni is also a useful element because it acts as a hardenability improving element and does not cause toughness deterioration when added. In order to obtain this effect, addition of 0.1% or more is necessary. However, when a large amount is added, Ni is concentrated on the scale generated on the surface of the slab during hot rolling slab heating, resulting in a change in scale properties. The upper limit is set to 3.0% because the scale bites easily during rolling and causes surface scratches.

Cr:≦1.0%
Crもまた焼入性向上元素として作用し,多量のMn添加の代替とすることができる。しかし,1%を超えて添加するとHAZ靱性が著しく劣化するため,添加する場合は、上限を1%とする。
Cr: ≦ 1.0%
Cr also acts as a hardenability-enhancing element and can be used as a substitute for adding a large amount of Mn. However, if added over 1%, the HAZ toughness deteriorates significantly, so when added, the upper limit is made 1%.

Mo:≦1.0%
Moもまた焼入性向上元素として作用し,多量のMn添加の代替とすることができる。しかし,高価な元素であり,かつ1%を超えて添加しても強度上昇は飽和するため,添加する場合は、上限を1%とする。
Mo: ≦ 1.0%
Mo also acts as a hardenability improving element, and can be used as a substitute for adding a large amount of Mn. However, since it is an expensive element and the increase in strength is saturated even if it is added in excess of 1%, when it is added, the upper limit is made 1%.

Nb:0.01〜0.08%
Nbは熱間圧延時のオーステナイト未再結晶領域を拡大する効果があり,特に950℃まで未再結晶領域とするためには0.01%以上の添加が必要である。一方,0.08%を超えて添加すると,HAZの靱性を著しく損ねることから上限を0.08%とする。
Nb: 0.01 to 0.08%
Nb has the effect of expanding the austenite non-recrystallized region at the time of hot rolling, and in order to make the non-recrystallized region up to 950 ° C., addition of 0.01% or more is necessary. On the other hand, if added over 0.08%, the toughness of the HAZ is remarkably impaired, so the upper limit is made 0.08%.

V:≦0.1%
VはNbとの複合添加により,多重溶接熱サイクル時に析出硬化し,HAZ軟化防止に寄与するが,0.1%を超えて添加すると析出硬化が著しくHAZ靱性の劣化につながるため,添加する場合は、上限を0.1%とする。
V: ≦ 0.1%
When V is added in combination with Nb, it precipitates and hardens during multiple welding heat cycles and contributes to the prevention of HAZ softening. However, if added over 0.1%, precipitation hardening significantly reduces the HAZ toughness. Has an upper limit of 0.1%.

Ti:0.005〜0.025%
Tiは窒化物を形成し,鋼中の固溶N量低減に有効であるほか,析出したTiNがピンニング効果でオーステナイト粒の粗大化抑制防止をすることで,母材,HAZの靱性向上に寄与する。必要なピンニング効果を得るためには0.005%以上の添加が必要であるが,0.025%を超えて添加すると炭化物を形成するようになり,その析出硬化で靱性が著しく劣化するため,上限を0.025%とした。
Ti: 0.005-0.025%
Ti forms nitrides and is effective in reducing the amount of solute N in the steel. Precipitated TiN prevents the austenite grains from becoming coarse by the pinning effect, contributing to improved toughness of the base metal and HAZ. To do. Addition of 0.005% or more is necessary to obtain the required pinning effect, but if added over 0.025%, carbides are formed, and the toughness deteriorates significantly due to precipitation hardening. The upper limit was 0.025%.

B:≦0.005%
Bはオーステナイト粒界に偏析し,フェライト変態を抑制することで,特にHAZの強度低下防止に寄与する。しかし,0.005%を超えて添加してもその効果は飽和するため,上限を0.005%とした。
B: ≦ 0.005%
B segregates at the austenite grain boundaries and suppresses ferrite transformation, thereby contributing particularly to the prevention of HAZ strength reduction. However, even if added over 0.005%, the effect is saturated, so the upper limit was made 0.005%.

Ca:≦0.01%
Caは鋼中の硫化物の形態制御に有効な元素であり,添加することで靱性に有害なMnSの生成を抑制する。しかし,0.01%を超えて添加すると,CaO−CaSのクラスターを形成し,かえって靱性を劣化させるので,上限を0.01%とした。
Ca: ≦ 0.01%
Ca is an element effective in controlling the form of sulfide in steel, and when added, suppresses the generation of MnS harmful to toughness. However, if added over 0.01%, a CaO-CaS cluster is formed and the toughness is deteriorated, so the upper limit was made 0.01%.

REM:≦0.02%
REMもまた鋼中の硫化物の形態制御に有効な元素であり,添加することで靱性に有害なMnSの生成を抑制する。しかし,高価な元素であり,かつ0.02%を超えて添加しても効果が飽和するため,上限を0.02%とした。
REM: ≦ 0.02%
REM is also an effective element for controlling the form of sulfide in steel, and when added, it suppresses the generation of MnS harmful to toughness. However, since it is an expensive element and the effect is saturated even if added over 0.02%, the upper limit was made 0.02%.

Zr:0.0005〜0.03%
Zrは鋼中で炭窒化物を形成し,とくに溶接熱影響部においてオーステナイト粒の粗大化を抑制するピンニング効果をもたらす。十分なピンニング効果をえるためには,0.0005%以上の添加が必要であるが,0.03%を超えて添加すると,鋼中の清浄度が著しく低下し,かえって靱性の低下につながるため,添加する場合は、上限を0.03%とする。
Zr: 0.0005 to 0.03%
Zr forms carbonitrides in steel and brings about a pinning effect that suppresses the coarsening of austenite grains, particularly in the weld heat affected zone. In order to obtain a sufficient pinning effect, addition of 0.0005% or more is necessary. However, if over 0.03% is added, the cleanliness in the steel is remarkably lowered, leading to a reduction in toughness. , When added, the upper limit is made 0.03%.

Mg:0.0005〜0.01%
Mgは製鋼過程で鋼中に微細な酸化物として生成し,特に,溶接熱影響部においてオーステナイト粒の粗大化を抑制するピンニング効果をもたらす。十分なピンニング効果を得るためには,0.0005%以上の添加が必要であるが,0.01%を超えて添加すると,鋼中の清浄度が低下し,かえって靱性を低下させるので,添加する場合は、上限を0.01%とする。
Mg: 0.0005 to 0.01%
Mg is produced as fine oxides in the steel during the steel making process, and has a pinning effect that suppresses austenite grain coarsening, particularly in the weld heat affected zone. In order to obtain a sufficient pinning effect, addition of 0.0005% or more is necessary. However, if added over 0.01%, the cleanliness in the steel is lowered and the toughness is lowered. When doing so, the upper limit is made 0.01%.

N:0.001〜0.006%
Nは通常鋼中の不可避不純物として存在するが,前述の通りTi添加を行うことで,オーステナイト粗大化を抑制するTiNを形成する。必要とするピンニング効果をえるためには0.001%以上鋼中に存在することが必要であるが,0.006%を超える場合,溶接部,特に溶融線近傍で1450℃以上に加熱されたHAZでTiNが分解した場合,固溶Nの悪影響が著しいため,上限を0.006%とした。
N: 0.001 to 0.006%
N is usually present as an inevitable impurity in steel, but TiN that suppresses austenite coarsening is formed by adding Ti as described above. In order to obtain the required pinning effect, 0.001% or more must be present in the steel. However, if it exceeds 0.006%, it was heated to 1450 ° C or more in the weld zone, particularly in the vicinity of the melting line. When TiN decomposes in HAZ, the upper limit was made 0.006% because the adverse effect of solute N was significant.

PcmB≦0.22
PcmB(=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5×B)は溶接割れ感受性組成として,HAZ部の低温割れ防止のための予熱温度と相関する。
PcmB ≦ 0.22
PcmB (= C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5 × B) correlates with a preheating temperature for preventing cold cracking in the HAZ part as a weld cracking susceptibility composition.

図1は,種々の化学組成を有する鋼を,種々の予熱温度を与えた後行った低温割れ試験によって得られたHAZ部の低温割れ阻止予熱条件をPcmB値で整理したものである。パイプ同士の円周溶接時の初層溶接において,パイプ予熱温度を75℃まで許容する場合のHAZ割れを防止するためにはPcmB値を0.22以下とする必要があるため,上限を0.22とした。   FIG. 1 is a summary of PCMB values of cold cracking prevention preheating conditions of the HAZ part obtained by cold cracking tests conducted after giving various preheating temperatures to steels having various chemical compositions. In the first layer welding at the time of circumferential welding between pipes, in order to prevent HAZ cracking when the pipe preheating temperature is allowed to 75 ° C., the PcmB value needs to be 0.22 or less. It was set to 22.

なお,パイプライン敷設現場での作業性を考えると,パイプ予熱温度が低い方が望ましく,この観点からPcmBの好適範囲は0.20以下となる。   In consideration of workability at the pipeline laying site, it is desirable that the pipe preheating temperature is low. From this viewpoint, the preferable range of PcmB is 0.20 or less.

P:≦0.010%、S:≦0.002%
P,Sはいずれも鋼中に不可避不純物として存在する。特に中心偏析部での偏析が著しい元素であり,母材の偏析部起因の靱性低下を抑制するために,それぞれ上限を0.010%,0.002%とした。
P: ≦ 0.010%, S: ≦ 0.002%
Both P and S are present as inevitable impurities in the steel. In particular, the segregation at the center segregation portion is an element, and the upper limit is set to 0.010% and 0.002%, respectively, in order to suppress the decrease in toughness due to the segregation portion of the base material.

次に,素材鋼板の製造方法の限定理由について説明する。
加熱温度:1000〜1200℃
熱間圧延を行う際,鋼片をオーステナイト化するため1000℃以上に加熱する。一方,1200℃を超える温度まで鋼片を加熱すると,TiNでピンニングを行っていても,オーステナイト粒成長が著しく,母材靱性が劣化するため,上限を1200℃とする。
Next, the reason for limiting the manufacturing method of the raw steel plate will be described.
Heating temperature: 1000-1200 ° C
When hot rolling is performed, the steel slab is heated to 1000 ° C. or more in order to austenite. On the other hand, if the steel slab is heated to a temperature exceeding 1200 ° C., even if pinning is performed with TiN, the austenite grain growth is remarkable and the base material toughness deteriorates, so the upper limit is set to 1200 ° C.

950℃以下での累積圧下量≧70%
本発明では,Nb添加によって950℃以下はオーステナイト未再結晶域であるので、該温度域にて累積で大圧下を行うことにより,オーステナイト粒が伸展しその後の加速冷却で変態生成するベイナイトが微細化し靱性が向上する。
Cumulative reduction at 950 ° C or lower ≥ 70%
In the present invention, since Nb addition is 950 ° C. or less in the austenite non-recrystallized region, the austenite grains are stretched in the temperature region and the austenite grains are stretched, and the bainite that is transformed by the subsequent accelerated cooling is fine. And toughness is improved.

本発明では,低降伏比を達成するために,硬質なMAを分散させているので,母相ベイナイト部分の靱性を十分高くしておく必要がある。累積圧下量70%未満では,細粒化が不十分で島状マルテンサイト(Martensite−Austenite constituentsともいう,以降MAと略す)の影響をうけて靱性が低下するため,累積圧下量を70%以上とする.好適には75%以上の累積圧下量が必要である。   In the present invention, since hard MA is dispersed in order to achieve a low yield ratio, the toughness of the parent phase bainite portion needs to be sufficiently high. If the cumulative reduction amount is less than 70%, the fine reduction is insufficient and the toughness is reduced due to the influence of island martensite (also referred to as “MA”), so the cumulative reduction amount is 70% or more. Let's say. Preferably, a cumulative reduction amount of 75% or more is required.

加速冷却の冷却開始温度≧700℃
熱間圧延後,加速冷却を開始する温度が低いと,その空冷過程においてオーステナイト粒界から初析フェライトが生成し,母材強度低下の原因となるため、加速冷却を開始する温度の下限温度を700℃とする。
Cooling start temperature of accelerated cooling ≧ 700 ° C
After hot rolling, if the temperature at which accelerated cooling is started is low, proeutectoid ferrite is generated from the austenite grain boundaries during the air cooling process, which causes a reduction in the strength of the base metal. 700 ° C.

加速冷却の冷却速度:20〜80℃/s
引張強度800MPa以上の高強度を達成するため,ミクロ組織をベイナイト主体の組織にする必要がある。このため,熱間圧延後加速冷却を実施する。冷却速度が20℃/s未満の場合,比較的高温で変態するので,十分な強度を得ることができない。
Accelerated cooling rate: 20-80 ° C / s
In order to achieve a high strength of 800 MPa or more, the microstructure needs to be a bainite-based structure. For this reason, accelerated cooling is performed after hot rolling. When the cooling rate is less than 20 ° C./s, transformation is performed at a relatively high temperature, so that sufficient strength cannot be obtained.

一方,80℃/sを超えた冷却速度の場合,後述の冷却停止温度に制御することが難しく,特に表面近傍でマルテンサイト変態が生じ,母材靱性が著しく低下するため,上限を80℃/sとする。   On the other hand, when the cooling rate exceeds 80 ° C./s, it is difficult to control the cooling stop temperature described later, and martensite transformation occurs particularly near the surface, and the base material toughness is significantly reduced. Let s.

加速冷却の冷却停止温度:400〜650℃
本発明において,加速冷却の冷却停止温度管理は重要な製造条件である。本発明では再加熱後に存在する、Cの濃縮した未変態オーステナイトをその後の空冷時にMAへと変態させるため,ベイナイト変態途中で未変態オーステナイトが存在する温度域で冷却を停止する必要がある。
Cooling stop temperature for accelerated cooling: 400-650 ° C
In the present invention, the cooling stop temperature management of accelerated cooling is an important manufacturing condition. In the present invention, since the C-concentrated untransformed austenite existing after reheating is transformed into MA during the subsequent air cooling, it is necessary to stop the cooling in the temperature range where untransformed austenite exists during the bainite transformation.

冷却停止温度が400℃未満では、ベイナイト変態が完了するため空冷時にMAが生成せず低降伏比化が達成できない。一方,650℃を超えると冷却中に析出するパーライトにCが消費されMAが生成しないため,上限を650℃とする。   If the cooling stop temperature is less than 400 ° C., the bainite transformation is completed, so MA is not generated during air cooling, and a low yield ratio cannot be achieved. On the other hand, if it exceeds 650 ° C., C is consumed in the pearlite that precipitates during cooling and MA is not generated, so the upper limit is set to 650 ° C.

冷却停止後の再加熱温度:600〜700℃
加速冷却後ただちに再加熱することで,未変態オーステナイトにCを濃縮させその後の空冷過程でMAを生成させることができる。
Reheating temperature after stopping cooling: 600-700 ° C
By reheating immediately after accelerated cooling, C can be concentrated in untransformed austenite and MA can be generated in the subsequent air cooling process.

再加熱開始までの時間が長い場合,その間の温度低下によって未変態オーステナイトが少なくなり,加熱後の空冷過程で生成するMA量が少なくなるため,300秒以内で再加熱を行うことが望ましい。好ましくは100秒以内である。   When the time until the start of reheating is long, untransformed austenite decreases due to the temperature drop during that time, and the amount of MA generated in the air cooling process after heating decreases, so it is desirable to perform reheating within 300 seconds. Preferably, it is within 100 seconds.

さらに,再加熱温度が600℃未満では,十分にオーステナイトへのC濃化が起こらず,必要とするMA量を確保することができない。一方、再加熱温度が700℃を超えると,加速冷却で変態させたベイナイトが再びオーステナイト化してしまい十分な強度が得られないため、再加熱温度を600℃以上、700℃以下に規定する。   Furthermore, if the reheating temperature is less than 600 ° C., C concentration to austenite does not occur sufficiently, and the required MA amount cannot be ensured. On the other hand, if the reheating temperature exceeds 700 ° C., the bainite transformed by accelerated cooling becomes austenite again and sufficient strength cannot be obtained, so the reheating temperature is specified to be 600 ° C. or more and 700 ° C. or less.

再加熱温度において,特に温度保持時間を設定する必要はない。また、再加熱後の冷却過程においては、冷却速度によらずMAが生成するため,再加熱後の冷却は特に規定しないが、基本的には空冷とすることが好ましい。   There is no need to set the temperature holding time at the reheating temperature. Further, in the cooling process after reheating, MA is generated regardless of the cooling rate, so cooling after reheating is not particularly defined, but basically it is preferably air cooling.

以上の成分および鋼板製造条件の限定によって得られる母材のミクロ組織は,連続冷却で変態生成するベイナイト組織のベイナイトラス間に第2相として硬質なMAが形成された組織である。   The microstructure of the base material obtained by limiting the above components and the steel sheet production conditions is a structure in which hard MA is formed as the second phase between the bainite laths of the bainite structure that is transformed by continuous cooling.

変態途中で冷却を止めて,ただちに再加熱をすることで,ベイナイト相は焼戻し効果により適度に強度が低下する。   By stopping the cooling in the middle of transformation and immediately reheating it, the strength of the bainite phase is moderately reduced due to the tempering effect.

同時に,冷却を止めた時点で未変態のオーステナイトには鋼中のCが濃化してMAが多量に生成しやすくなり,その結果,軟質な焼戻しベイナイト相と硬質なMAが分散した組織となり降伏比が低下する。   At the same time, when the cooling is stopped, the untransformed austenite is enriched with C in the steel and a large amount of MA is likely to be formed. As a result, a soft tempered bainite phase and a hard MA are dispersed into a microstructure. Decreases.

MAが微細かつ均一に分散するため,靱性は低下せず,母相が焼き戻されているため、むしろ向上する。   Since MA is finely and uniformly dispersed, the toughness is not lowered, and the matrix is tempered, which is rather improved.

加速冷却の冷却速度不足等でフェライト主体の組織となった場合,800MPa以上の引張強度の達成が困難となる。一方,マルテンサイト組織化すると,強度は十分確保できるものの,靱性が低下する。   When the structure is mainly composed of ferrite due to insufficient cooling rate of accelerated cooling, it becomes difficult to achieve a tensile strength of 800 MPa or more. On the other hand, when martensite is organized, the toughness decreases although sufficient strength can be secured.

ベイナイト中のMAは、面積率で5〜20%分散させることが望ましい。面積率5%未満では,十分降伏比が低くならないため,少なくとも5%以上のMA面積率となっていることが望ましい。   It is desirable that MA in bainite is dispersed in an area ratio of 5 to 20%. If the area ratio is less than 5%, the yield ratio is not sufficiently lowered. Therefore, the MA area ratio is preferably at least 5% or more.

一方,面積率が20%を超えた場合,母材靱性が著しく劣化するため,上限が20%以下であることが望ましい。   On the other hand, when the area ratio exceeds 20%, the toughness of the base metal is remarkably deteriorated, so the upper limit is desirably 20% or less.

なお,鋼の製鋼方法については特に限定しないが,経済性の観点から,転炉法による製鋼プロセスと,連続鋳造プロセスによる鋼片の鋳造を行うことが望ましい。   The steel making method is not particularly limited, but from the economical viewpoint, it is desirable to carry out the steel making process by the converter method and the slab casting by the continuous casting process.

上記方法で製造された鋼板の鋼管への成形方法は特に限定はなく,従来から用いられているUOE成形,プレスベンド成形,ロール成形いずれも使用可能である。   There are no particular limitations on the method of forming the steel sheet produced by the above method into a steel pipe, and any of the conventionally used UOE forming, press bend forming, and roll forming can be used.

次に,溶接金属の添加元素の限定理由を説明する。
C:0.05〜0.09%
溶接金属においてもCは鋼の強化元素として重要な元素である。特に,継手部のオーバーマッチングを達成するため,溶接金属部においても引張強度≧800MPaとする必要があり,この強度を得るために0.05%以上含有している必要がある。一方,0.09%を超えていると,溶接金属の高温割れが発生しやすくなるため,上限を0.09%とした。
Next, the reasons for limiting the additive elements of the weld metal will be described.
C: 0.05-0.09%
Also in the weld metal, C is an important element as a steel strengthening element. In particular, in order to achieve overmatching of the joint part, the weld metal part also needs to have a tensile strength ≧ 800 MPa, and in order to obtain this strength, it is necessary to contain 0.05% or more. On the other hand, if it exceeds 0.09%, hot cracking of the weld metal tends to occur, so the upper limit was made 0.09%.

Si:0.1〜0.4%
Siは溶接金属の脱酸ならびに良好な作業性を確保するために必要で,0.1%未満では十分な脱酸効果が得られず,一方0.4%を超えると,溶接作業性の劣化を引き起こすため,上限を0.4%とした。
Si: 0.1 to 0.4%
Si is necessary for deoxidizing the weld metal and ensuring good workability. If it is less than 0.1%, a sufficient deoxidation effect cannot be obtained. On the other hand, if it exceeds 0.4%, welding workability deteriorates. Therefore, the upper limit was made 0.4%.

Mn:1.0〜2.0%
Mnは溶接金属の高強度化に重要な元素である。特に,引張強度≧800MPaといった高強度は,従来のアシキュラフェライト組織化では達成不可能であり,多量のMnを含有させベイナイト組織とすることで可能となる。この効果を得るためには1.0%以上含有させる必要があるが,2.0%を超えると溶接性が劣化するため,上限を2.0%とした。
Mn: 1.0-2.0%
Mn is an important element for increasing the strength of the weld metal. In particular, high strength such as tensile strength ≧ 800 MPa cannot be achieved by the conventional acicular ferrite structure, and can be achieved by containing a large amount of Mn to form a bainite structure. In order to acquire this effect, it is necessary to make it contain 1.0% or more, but if it exceeds 2.0%, weldability deteriorates, so the upper limit was made 2.0%.

Al:≦0.015%
Alは脱酸元素として作用するが,溶接金属部においてはむしろTiによる脱酸による靱性改善効果が大きく,かつAl酸化物系の介在物が多くなると溶接金属シャルピーの吸収エネルギーの低下が起こるため,積極的には添加せず,その上限を0.015%とする。
Al: ≦ 0.015%
Al acts as a deoxidizing element, but in the weld metal part, the effect of improving toughness due to deoxidation by Ti is rather large, and when the inclusion of Al oxide system increases, the absorbed energy of weld metal Charpy decreases, Do not add aggressively, and set the upper limit to 0.015%.

Cu:≦0.5%、Ni:≦3.0%、Cr:≦1.0%、Mo:≦1.0%
母材と同じくCu,Ni,Cr,Moは溶接金属においても焼入性を向上させるので,ベイナイト組織化のために含有させる。ただし,その量が多くなると溶接ワイヤへの合金元素添加量が多大となり,ワイヤ強度が著しく上昇する結果,溶接時のワイヤ送給性に障害が生じるためそれぞれ上限を,0.5%,3.0%,1.0%,1.0%とした。
Cu: ≦ 0.5%, Ni: ≦ 3.0%, Cr: ≦ 1.0%, Mo: ≦ 1.0%
Like the base material, Cu, Ni, Cr, and Mo improve the hardenability even in the weld metal, so are included for bainite organization. However, as the amount increases, the amount of alloying elements added to the welding wire increases, resulting in a significant increase in wire strength. As a result, the wire feedability during welding is impaired. It was set to 0%, 1.0%, and 1.0%.

V:≦0.1%
適量のV添加は靱性・溶接性を劣化させずに強度を高めることから有効な元素であるが,0.10%を超えると溶接金属の再熱部の靱性が著しく劣化するため,上限を0.1%とした。
V: ≦ 0.1%
An appropriate amount of V is an effective element because it increases the strength without degrading toughness and weldability. However, if it exceeds 0.10%, the toughness of the reheated part of the weld metal is significantly degraded, so the upper limit is set to 0. 0.1%.

Ti:0.003〜0.10%
Tiは溶接金属中では脱酸元素として働き,溶接金属中の酸素の低減に有効である。この効果を得るためには0.003%以上の含有が必要であるが,0.10%を超えた場合,余剰となったTiが炭化物を形成し,溶接金属の靱性を劣化させるため,上限を0.03%とした。
Ti: 0.003-0.10%
Ti acts as a deoxidizing element in the weld metal and is effective in reducing oxygen in the weld metal. In order to obtain this effect, a content of 0.003% or more is necessary. However, if it exceeds 0.10%, the excess Ti forms carbides and degrades the toughness of the weld metal, so the upper limit. Was 0.03%.

B:≦0.0030%
強度グレードの低いラインパイプ用溶接管においては,ミクロ組織をアシキュラフェライト化するために,B添加が有効であるが,引張強度800MPa以上の高強度化のため,ベイナイト組織とする場合,溶接金属中のB量が0.0030%を超えると靱性の低いマルテンサイト組織が生成するため,上限を0.0030%とした。
B: ≦ 0.0030%
In welded pipes for line pipes with low strength grades, it is effective to add B in order to make the microstructures into acicular ferrite. However, in order to increase the tensile strength to 800 MPa or higher, when using a bainite structure, weld metal When the amount of B exceeds 0.0030%, a martensite structure with low toughness is generated, so the upper limit was made 0.0030%.

O:≦0.03%
溶接金属中の酸素量の低減は靱性改善効果があり,特に0.03%以下とすることで著しく改善されるため,上限を0.03%とした。
O: ≦ 0.03%
Reduction of the amount of oxygen in the weld metal has an effect of improving toughness. In particular, the upper limit is set to 0.03% because it is remarkably improved by setting it to 0.03% or less.

N:≦0.008%
溶接金属中の固溶Nの低減もまた靱性改善効果があり,特に0.008%以下とすることで著しく改善されるため,上限を0.008%とした。
N: ≦ 0.008%
Reduction of solute N in the weld metal also has an effect of improving toughness. In particular, the upper limit is set to 0.008% because it can be remarkably improved by setting it to 0.008% or less.

PcmW≦0.2
PcmW(=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+60×B−12×N−4×O)は溶接金属の溶接性の指標であり,パイプのシーム溶接部がパイプ同士の円周溶接を行ったときに受ける熱影響を受けた後の硬さ(以後、T−クロス硬さ)と良い相関を有する。
PcmW ≦ 0.2
PcmW (= C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 60 × B−12 × N−4 × O) is an indicator of weldability of the weld metal, and the seam weld of the pipe is a circle between the pipes. It has a good correlation with the hardness (hereinafter referred to as T-cross hardness) after being subjected to the thermal effect when circumferential welding is performed.

図3はT−クロス部1を示し、2は円周溶接、3は縦シーム溶接、31は縦シーム溶接3の外面側、32は縦シーム溶接3の内面側、4はT−クロス硬さを求める硬さ試験の測定位置で、T−クロス硬さは円周溶接2のボンド部よりHAZ側2mmの位置で管厚方向に硬さ試験を行い、得られた硬さ分布の最高硬さと定義する。   3 shows the T-cross part 1, 2 is circumferential welding, 3 is vertical seam welding, 31 is the outer surface side of the vertical seam welding 3, 32 is the inner surface side of the vertical seam welding 3, and 4 is T-cross hardness. The T-cross hardness is measured in the tube thickness direction at a position 2 mm on the HAZ side from the bond part of the circumferential weld 2 and the maximum hardness of the obtained hardness distribution is obtained. Define.

図2はT−クロス硬さとPcmWの関係を示し、PcmWが大きく,T−クロス硬さが高くなると,円周溶接時にパイプシーム溶接部で低温割れが発生しやすくなることから,割れ発生防止の目安であるビッカース硬さ300ポイント以下を満足させるため,溶接金属のPcmW値の上限を0.2とした。   Fig. 2 shows the relationship between T-cross hardness and PcmW. When PcmW is large and T-cross hardness is high, cracking is likely to occur at the pipe seam weld during circumferential welding. In order to satisfy the standard Vickers hardness of 300 points or less, the upper limit of the PcmW value of the weld metal was set to 0.2.

表1に示す化学組成の鋼を用い,表2に示す熱間圧延・加速冷却,再加熱条件で鋼板A〜Kを作製した。なお,再加熱には,加速冷却設備と同一ライン場に設置した誘導加熱型の加熱装置を用いて行った。   Steel plates AK were produced using the steel having the chemical composition shown in Table 1 under the hot rolling / accelerated cooling and reheating conditions shown in Table 2. The reheating was performed using an induction heating type heating device installed in the same line field as the accelerated cooling equipment.

Figure 2007260716
Figure 2007260716

Figure 2007260716
Figure 2007260716

得られた鋼板の板幅中央部よりミクロ組織観察用サンプルを採取し、圧延長手方向と平行な板厚断面を鏡面研磨したあと、2段エッチング法を用いてMAを現出させた。その後、面走査型顕微鏡(SEM)を用い2000倍の倍率で無作為に10視野ミクロ組織写真を撮影し,写真中のMAの面積率を画像解析装置にて測定した。   A sample for microstructural observation was taken from the central part of the plate width of the obtained steel plate, and a plate thickness section parallel to the rolling longitudinal direction was mirror-polished, and then MA was revealed using a two-step etching method. Thereafter, a 10-view microstructure photograph was taken at a magnification of 2000 using a surface scanning microscope (SEM), and the area ratio of MA in the photograph was measured with an image analyzer.

次に,サンプルを再研磨後,ナイタールエッチング法を用い,ミクロ組織を現出させ,MAと同様の方法でベイナイトの面積率の測定,およびその他の相の有無を確認した。   Next, after re-polishing the sample, the microstructure was revealed by using the nital etching method, and the area ratio of bainite and the presence of other phases were confirmed by the same method as MA.

それぞれの鋼板よりAPI−5Lに準拠した全厚引張試験片および板厚中央位置からJIS Z2202(1980改訂版)のVノッチシャルピー衝撃試験片を採取し,鋼板の引張試験およびシャルピー衝撃試験(試験温度-30℃)を実施して,強度と靱性を評価した。   From each steel plate, a full thickness tensile test piece conforming to API-5L and a V-notch Charpy impact test piece of JIS Z2202 (1980 revision) from the central position of the plate thickness are collected, and a steel plate tensile test and Charpy impact test (test temperature) -30 ℃) to evaluate strength and toughness.

また,表3に示す溶接方法で,主として溶接ワイヤおよび溶接方法を種々変更して鋼板の突合わせ溶接を行い,それぞれの継手の溶接金属部より,分析試料を採取し化学分析を行った。分析結果を併せて表3に示す。   In addition, the welding methods shown in Table 3 were mainly used for butt welding of steel sheets with various changes in welding wires and welding methods. Analytical samples were collected from the weld metal parts of each joint and subjected to chemical analysis. The analysis results are also shown in Table 3.

Figure 2007260716
Figure 2007260716

また,API−5Lに準拠した継手引張試験片(余盛付)と,溶接金属,およびHAZにノッチが当たる位置でJIS Z2202のVノッチシャルピー衝撃試験片を採取し,溶接継手の引張試験およびのシャルピー衝撃試験(試験温度-20℃)を実施して,溶接部の強度と靱性を評価した。   In addition, a joint tensile test piece (with surplus) conforming to API-5L, a V-notch Charpy impact test piece of JIS Z2202 at the position where the notch hits the weld metal and HAZ, and a weld joint tensile test and A Charpy impact test (test temperature -20 ° C) was conducted to evaluate the strength and toughness of the weld.

さらに,JIS Z 3158に従い,y形溶接割れ試験を実施した。試験環境は,気温30℃で湿度80%で、当該環境下に1時間放置した100kgf級高張力鋼用の手溶接棒を用い、予熱温度75℃とした試験体に試験ビードを溶接した。溶接割れ感受性は,試験ビードと直交する断面の観察結果で得られた断面割れ率で評価した。   Furthermore, a y-type weld cracking test was performed in accordance with JIS Z 3158. The test environment was a temperature of 30 ° C. and a humidity of 80%, and a test bead was welded to a test body with a preheating temperature of 75 ° C. using a hand-welded rod for 100 kgf class high-strength steel left in the environment for 1 hour. Weld crack susceptibility was evaluated by the cross-sectional crack rate obtained from the observation results of the cross-section orthogonal to the test bead.

また,溶接継手と直交するように円周溶接を模した、ガスアーク溶接を実施し,作製した試験体でT−クロス硬さ試験を行った。円周溶接2のボンド部よりHAZ側2mmの位置で板厚方向に硬さ試験(Hv5kg)を行い、得られた硬さ分布の最高硬さを求めた。   Moreover, the gas arc welding which simulated the circumference welding so that it was orthogonal to a welded joint was implemented, and the T-cross hardness test was done with the produced test body. A hardness test (Hv 5 kg) was performed in the plate thickness direction at a position 2 mm on the HAZ side from the bond portion of the circumferential weld 2, and the maximum hardness of the obtained hardness distribution was obtained.

母材のミクロ組織,強度・靱性調査結果,溶接継手部の強度・靱性調査結果,および溶接割れ感受性の評価,T−クロス硬さ結果をまとめて表4に示す。   Table 4 summarizes the microstructure, strength and toughness investigation results of the base metal, the strength and toughness investigation results of welded joints, the evaluation of weld crack sensitivity, and the T-cross hardness results.

尚、本発明例は、母材の引張り強度800MPa以上、降伏比80%以下、シャルピー吸収エネルギー250J以上、継手引張り強度800MPa以上、溶接金属およびHAZのシャルピー吸収エネルギー100J以上、斜めy割れ試験(予熱温度75℃)で割れ無し、T−クロス硬さ(Hv5)300以下を目標値とした。   The examples of the present invention include a base metal tensile strength of 800 MPa or more, a yield ratio of 80% or less, a Charpy absorbed energy of 250 J or more, a joint tensile strength of 800 MPa or more, a weld metal and HAZ Charpy absorbed energy of 100 J or more, and an oblique y crack test (preheating). The target value was no cracking at a temperature of 75 ° C. and T-cross hardness (Hv5) of 300 or less.

Figure 2007260716
Figure 2007260716

本発明に適合する鋼はいずれも板切断実験で割れ発生せず,800MPaを超える母材引張強度を有し,かつ250Jを超える高いシャルピー吸収エネルギーを満足した。   None of the steels suitable for the present invention cracked in the plate cutting experiment, had a base metal tensile strength exceeding 800 MPa, and satisfied a high Charpy absorbed energy exceeding 250 J.

さらに,継手強度も母材と同等以上の値を示し,溶接金属およびHAZシャルピー吸収エネルギーも100Jを超える高い値となった。また,y形溶接割れ試験では割れは観察されず、T−クロス試験の硬さも300以下で、優れた低温割れ感受性を示した。   Furthermore, the joint strength was also equal to or greater than that of the base metal, and the weld metal and HAZ Charpy absorbed energy were also high values exceeding 100J. Further, no cracks were observed in the y-type weld cracking test, and the hardness of the T-cross test was 300 or less, indicating excellent low temperature cracking sensitivity.

一方、鋼板の成分組成、製造条件または溶着金属の化学成分の何れかが本発明範囲外の比較例では、母材の強度・靱性調査結果,溶接継手部の強度・靱性調査結果,および斜めy割れ試験結果,T−クロス硬さ試験結果のいずれかが本発明の目標値を満足しなかった。   On the other hand, in the comparative example in which any of the component composition of the steel sheet, the manufacturing conditions, or the chemical component of the weld metal is outside the scope of the present invention, the strength / toughness investigation result of the base metal, the strength / toughness investigation result of the welded joint, and the diagonal y Either the crack test result or the T-cross hardness test result did not satisfy the target value of the present invention.

鋼の低温割れ阻止予熱温度とPcm値の相関図。The correlation diagram of the cold crack prevention preheating temperature and Pcm value of steel. Tクロス試験でえられた溶接金属HAZ硬さとPcmW値の相関図。The correlation diagram of the weld metal HAZ hardness and PcmW value which were obtained by the T cross test. Tークロス硬さ試験を説明する図。The figure explaining a T-cross hardness test. レーザー・アークハイブリッド溶接を説明する模式図。The schematic diagram explaining laser arc hybrid welding. 本発明に係る縦シーム溶接部を説明する図で(a)はレーザー・アークハイブリッド溶接の外面側一層溶接、(b)はレーザー・アークハイブリッド溶接の内外面側一層溶接、(c)は内面側をレーザー・アークハイブリッド溶接、外面側をサブマージアーク溶接の場合を示す。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram for explaining a longitudinal seam weld according to the present invention, wherein (a) is a single layer welding on the outer surface side of laser / arc hybrid welding, (b) is a single layer welding on the inner / outer surface side of laser / arc hybrid welding, and (c) is an inner surface side. Shows the case of laser-arc hybrid welding and the outer surface side of submerged arc welding.

符号の説明Explanation of symbols

1 T−クロス部
2 円周溶接
3 縦シーム溶接
31 縦シーム溶接の外面側
32 縦シーム溶接の内面側
4 T−クロス硬さを求める硬さ試験の測定位置
5 ハイブリッド溶接
6 レーザトーチ
7 ガスアーク溶接トーチ
8 溶融池
9 ビード
DESCRIPTION OF SYMBOLS 1 T-cross part 2 Circumferential welding 3 Longitudinal seam welding 31 Outer surface side of vertical seam welding 32 Inner surface side of vertical seam welding 4 Measurement position of hardness test for obtaining T-cross hardness 5 Hybrid welding 6 Laser torch 7 Gas arc welding torch 8 Weld pool 9 Bead

Claims (5)

降伏比80%以下かつ引張強度800MPa以上の鋼板を冷間加工で管状に成形した後,突合せ部を、COガスシールドを用いたレーザーとAr−COガスシールドを用いたガスシールドアーク溶接を組合わせたハイブリッド溶接法によって溶接することを特徴とする超高強度溶接鋼管の製造方法。 After 80% yield ratio less and a tensile strength 800MPa or more steel sheets were molded into a tubular by cold working, the butted portion, the gas-shielded arc welding using a laser and Ar-CO 2 gas shielded with CO 2 gas shielded A method for producing an ultra-high strength welded steel pipe, characterized by welding by a combined hybrid welding method. 前記突合せ部の内外面を前記ハイブリッド溶接で溶接することを特徴とする請求項1記載の超高強度溶接鋼管の製造方法。   The method for manufacturing an ultra high strength welded steel pipe according to claim 1, wherein the inner and outer surfaces of the butt portion are welded by the hybrid welding. 前記突合せ部の内面を前記ハイブリッド溶接で溶接し、外面をサブマージアーク溶接で溶接することを特徴とする請求項1記載の超高強度溶接鋼管の製造方法。   The method for producing an ultra-high strength welded steel pipe according to claim 1, wherein an inner surface of the butt portion is welded by the hybrid welding and an outer surface is welded by submerged arc welding. 前記降伏比80%以下かつ引張強度800MPa以上の鋼板が、
質量%で、
C:0.03〜0.12%
Si:≦0.5%
Mn:1.8〜3.0%
P≦0.010%,S≦0.002%
Al:0.01〜0.08%
Cu:≦0.7%
Ni:0.01〜3.0%
Cr:≦1.0%
Mo:≦1.0%
Nb:0.01〜0.08%
V:≦0.10%
Ti:0.005〜0.025%
B:≦0.005%
Ca:≦0.01%
REM:≦0.02%
Zr:≦0.03%
Mg:≦0.01%
N:0.001〜0.006%
PcmB≦0.22
残部Feおよび不可避的不純物からなる鋼を,
1000〜1200℃に再加熱後,950℃以下の温度域での累積圧下量≧70%となる熱間圧延を行い,圧延終了後700℃以上の温度域から冷却速度20〜80℃/sで冷却を開始し,400〜650℃の温度域で冷却停止後、ただちに600〜700℃に再加熱し,以後室温まで空冷して得られる鋼板で、
前記突合せ部の溶着金属の化学成分が
質量%で,
C:0.05〜0.09%
Si:0.1〜0.4%
Mn:1.0〜2.0%
Al:≦0.015%
Cu:≦0.5%
Ni:≦3.0%
Cr:≦1.0%
Mo:≦1.0%
V:≦0.1%
Ti:0.003〜0.10%
B:≦0.0030%
O:≦0.03%
N:≦0.008%
PcmW≦0.2
残部Feおよび不可避的不純物
であることを特徴とするであることを特徴とする請求項1乃至3の何れか一つに記載の超高強度溶接鋼管の製造方法。
但し、PcmB=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5×B
PcmW=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+60×B−12×N−4×O
で、各元素は含有量(質量%)を示す。
A steel plate having a yield ratio of 80% or less and a tensile strength of 800 MPa or more,
% By mass
C: 0.03-0.12%
Si: ≦ 0.5%
Mn: 1.8-3.0%
P ≦ 0.010%, S ≦ 0.002%
Al: 0.01 to 0.08%
Cu: ≦ 0.7%
Ni: 0.01-3.0%
Cr: ≦ 1.0%
Mo: ≦ 1.0%
Nb: 0.01 to 0.08%
V: ≦ 0.10%
Ti: 0.005-0.025%
B: ≦ 0.005%
Ca: ≦ 0.01%
REM: ≦ 0.02%
Zr: ≦ 0.03%
Mg: ≦ 0.01%
N: 0.001 to 0.006%
PcmB ≦ 0.22
Steel consisting of the balance Fe and inevitable impurities,
After reheating to 1000 to 1200 ° C, hot rolling is performed so that the cumulative reduction amount ≧ 70% in the temperature range of 950 ° C or lower, and at a cooling rate of 20 to 80 ° C / s from the temperature range of 700 ° C or higher after the end of rolling. A steel plate obtained by starting cooling, stopping cooling in a temperature range of 400 to 650 ° C., immediately reheating to 600 to 700 ° C., and then air cooling to room temperature,
The chemical composition of the weld metal at the butt is mass%,
C: 0.05-0.09%
Si: 0.1 to 0.4%
Mn: 1.0-2.0%
Al: ≦ 0.015%
Cu: ≦ 0.5%
Ni: ≦ 3.0%
Cr: ≦ 1.0%
Mo: ≦ 1.0%
V: ≦ 0.1%
Ti: 0.003-0.10%
B: ≦ 0.0030%
O: ≦ 0.03%
N: ≦ 0.008%
PcmW ≦ 0.2
The method for producing an ultra-high strength welded steel pipe according to any one of claims 1 to 3, wherein the remaining Fe and unavoidable impurities.
However, PcmB = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5 × B
PcmW = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 60 × B-12 × N-4 × O
And each element shows content (mass%).
前記鋼板のベイナイト中のMAは、面積率で5〜20%であることを特徴とする請求項4に記載の超高強度溶接鋼管の製造方法。
MA in the bainite of the said steel plate is 5 to 20% by an area rate, The manufacturing method of the ultra high strength welded steel pipe of Claim 4 characterized by the above-mentioned.
JP2006087972A 2006-03-28 2006-03-28 Method for producing ultrahigh strength welded steel pipe having excellent deformability Pending JP2007260716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006087972A JP2007260716A (en) 2006-03-28 2006-03-28 Method for producing ultrahigh strength welded steel pipe having excellent deformability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006087972A JP2007260716A (en) 2006-03-28 2006-03-28 Method for producing ultrahigh strength welded steel pipe having excellent deformability

Publications (1)

Publication Number Publication Date
JP2007260716A true JP2007260716A (en) 2007-10-11

Family

ID=38634221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006087972A Pending JP2007260716A (en) 2006-03-28 2006-03-28 Method for producing ultrahigh strength welded steel pipe having excellent deformability

Country Status (1)

Country Link
JP (1) JP2007260716A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009161812A (en) * 2008-01-07 2009-07-23 Jfe Steel Corp Steel sheet for low yield ratio high strength steel pipe, method for producing the same, and low yield ratio high strength steel pipe
JP2012115839A (en) * 2010-11-29 2012-06-21 Jfe Steel Corp Laser beam-welded joint excellent in ductility of weld metal portion
CN102642071A (en) * 2011-02-22 2012-08-22 中国石油天然气集团公司 Preparation method of V140 steel-grade oil well pipe testing object
WO2013002418A1 (en) * 2011-06-30 2013-01-03 Jfeスチール株式会社 Thick-walled high-strength seamless steel pipe with excellent sour resistance for pipe for pipeline, and process for producing same
JP2013514181A (en) * 2009-12-16 2013-04-25 イーエスエービー・エービー Welding method and welding apparatus
CN103305767A (en) * 2013-05-15 2013-09-18 武汉钢铁(集团)公司 Steel for engineering machinery with yield strength more than or equal to 750MPa and production method of steel for engineering machinery
CN103464926A (en) * 2013-09-25 2013-12-25 张盘 High-performance submerged-arc welding wire, welding seam metal and application of high-performance submerged-arc welding wire and welding seam metal
WO2014109402A1 (en) 2013-01-11 2014-07-17 株式会社神戸製鋼所 Welded metal with excellent resistance to hydrogen embrittlement, and solid wire for submerged arc welding
CN105648337A (en) * 2016-01-15 2016-06-08 宝山钢铁股份有限公司 Low-carbon CO2-resistant normalized seamless line pipe and manufacturing method thereof
KR20160119243A (en) * 2014-03-31 2016-10-12 제이에프이 스틸 가부시키가이샤 Weld joint

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009161812A (en) * 2008-01-07 2009-07-23 Jfe Steel Corp Steel sheet for low yield ratio high strength steel pipe, method for producing the same, and low yield ratio high strength steel pipe
JP2013514181A (en) * 2009-12-16 2013-04-25 イーエスエービー・エービー Welding method and welding apparatus
JP2012115839A (en) * 2010-11-29 2012-06-21 Jfe Steel Corp Laser beam-welded joint excellent in ductility of weld metal portion
CN102642071A (en) * 2011-02-22 2012-08-22 中国石油天然气集团公司 Preparation method of V140 steel-grade oil well pipe testing object
CN102642071B (en) * 2011-02-22 2014-08-06 中国石油天然气集团公司 Preparation method of V140 steel-grade oil well pipe testing object
WO2013002418A1 (en) * 2011-06-30 2013-01-03 Jfeスチール株式会社 Thick-walled high-strength seamless steel pipe with excellent sour resistance for pipe for pipeline, and process for producing same
JP2013032584A (en) * 2011-06-30 2013-02-14 Jfe Steel Corp Thick-walled high-strength seamless steel pipe for linepipe having excellent sour resistance, and process for producing same
US9932651B2 (en) 2011-06-30 2018-04-03 Jfe Steel Corporation Thick-walled high-strength seamless steel pipe with excellent sour resistance for pipe for pipeline, and process for producing same
WO2014109402A1 (en) 2013-01-11 2014-07-17 株式会社神戸製鋼所 Welded metal with excellent resistance to hydrogen embrittlement, and solid wire for submerged arc welding
CN103305767A (en) * 2013-05-15 2013-09-18 武汉钢铁(集团)公司 Steel for engineering machinery with yield strength more than or equal to 750MPa and production method of steel for engineering machinery
CN103464926A (en) * 2013-09-25 2013-12-25 张盘 High-performance submerged-arc welding wire, welding seam metal and application of high-performance submerged-arc welding wire and welding seam metal
KR20160119243A (en) * 2014-03-31 2016-10-12 제이에프이 스틸 가부시키가이샤 Weld joint
CN106133165A (en) * 2014-03-31 2016-11-16 杰富意钢铁株式会社 Welding point
EP3128024A4 (en) * 2014-03-31 2017-05-31 JFE Steel Corporation Welded joint
KR101937005B1 (en) 2014-03-31 2019-01-09 제이에프이 스틸 가부시키가이샤 Weld joint
US10300564B2 (en) 2014-03-31 2019-05-28 Jfe Steel Corporation Weld joint
CN105648337A (en) * 2016-01-15 2016-06-08 宝山钢铁股份有限公司 Low-carbon CO2-resistant normalized seamless line pipe and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP4811166B2 (en) Manufacturing method of super high strength welded steel pipe exceeding tensile strength 800MPa
JP5061483B2 (en) Manufacturing method of ultra high strength welded steel pipe
JP4853575B2 (en) High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same
JP4969915B2 (en) Steel tube for high-strength line pipe excellent in strain aging resistance, steel plate for high-strength line pipe, and production method thereof
JP5217556B2 (en) High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same
JP4977876B2 (en) Method for producing ultra-high-strength, high-deformability welded steel pipe with excellent base metal and weld toughness
JP5392441B1 (en) Steel tube for high-strength line pipe excellent in resistance to hydrogen-induced cracking, steel plate for high-strength line pipe used therefor, and production method thereof
EP2036995B1 (en) High-strength steel pipe with excellent low-temperature toughness for line pipe, high-strength steel plate for line pipe, and processes for producing these
JP5353156B2 (en) Steel pipe for line pipe and manufacturing method thereof
JP4882251B2 (en) Manufacturing method of high strength and tough steel sheet
US20120285576A1 (en) Welded steel pipe for linepipe with high compressive strength and manufacturing method thereof
WO2012036148A1 (en) Thick welded steel pipe having excellent low-temperature toughness, method for producing thick welded steel pipe having excellent low-temperature toughness, and steel sheet for producing thick welded steel pipe
JP2007260716A (en) Method for producing ultrahigh strength welded steel pipe having excellent deformability
JP2004052104A (en) High-strength steel excellent in low temperature toughness and toughness at weld heat affected zone, method for producing the same and method for producing high-strength steel pipe
JP5141073B2 (en) X70 grade or less low yield ratio high strength high toughness steel pipe and method for producing the same
JP4655670B2 (en) Manufacturing method of high strength welded steel pipe with low yield ratio and excellent weld toughness
JP2013204103A (en) High strength welded steel pipe for low temperature use having superior buckling resistance, and method for producing the same, and method for producing steel sheet for high strength welded steel pipe for low temperature use having superior buckling resistance
JP2011132601A (en) Welded steel pipe for linepipe with superior compressive strength and superior toughness, and process for producing the same
JP2009091653A (en) High strength welded steel pipe for low temperature use having excellent weld heat affected zone toughness, and its production method
JP2009185368A (en) Base material for clad steel plate having high strength and weld heat affected zone toughness, and method for producing the same
JP2005232513A (en) High strength steel sheet and manufacturing method
JP3941211B2 (en) Manufacturing method of steel plate for high-strength line pipe with excellent HIC resistance
JP2004099930A (en) High-strength welded steel pipe having excellent toughness of weld zone, and method for manufacturing the same
JP5028761B2 (en) Manufacturing method of high strength welded steel pipe
JP2004068055A (en) High strength welded steel pipe having excellent weld zone toughness and method for producing the same