JP5141073B2 - X70 grade or less low yield ratio high strength high toughness steel pipe and method for producing the same - Google Patents

X70 grade or less low yield ratio high strength high toughness steel pipe and method for producing the same Download PDF

Info

Publication number
JP5141073B2
JP5141073B2 JP2007091865A JP2007091865A JP5141073B2 JP 5141073 B2 JP5141073 B2 JP 5141073B2 JP 2007091865 A JP2007091865 A JP 2007091865A JP 2007091865 A JP2007091865 A JP 2007091865A JP 5141073 B2 JP5141073 B2 JP 5141073B2
Authority
JP
Japan
Prior art keywords
temperature
less
yield ratio
steel pipe
low yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007091865A
Other languages
Japanese (ja)
Other versions
JP2008248330A (en
Inventor
豊久 新宮
信行 石川
光浩 岡津
伸夫 鹿内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007091865A priority Critical patent/JP5141073B2/en
Publication of JP2008248330A publication Critical patent/JP2008248330A/en
Application granted granted Critical
Publication of JP5141073B2 publication Critical patent/JP5141073B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、主に原油や天然ガスを輸送するラインパイプに好適な、コーティング処理後の材質劣化の小さな大径溶接鋼管(UOE鋼管)およびその製造方法に関するものである。   The present invention relates to a large-diameter welded steel pipe (UOE steel pipe) with small material deterioration after coating treatment, which is suitable mainly for line pipes for transporting crude oil and natural gas, and a method for producing the same.

近年、溶接構造用鋼材においては、高強度、高靱性に加え、耐震性の観点から低降伏比化、高一様伸びが要求されている。一般に、鋼材の金属組織を、フェライトの様な軟質相の中に、ベイナイトやマルテンサイトなどの硬質相が適度に分散した組織にすることで、鋼材の低降伏比化、高一様伸び化が可能であることが知られている。   In recent years, steel materials for welded structures are required to have a low yield ratio and high uniform elongation from the viewpoint of earthquake resistance in addition to high strength and high toughness. In general, by making the metal structure of steel a structure in which hard phases such as bainite and martensite are moderately dispersed in a soft phase like ferrite, low yield ratio and high uniform elongation of steel are achieved. It is known to be possible.

上記のような軟質相の中に硬質相が適度に分散した組織を得る製造方法として、焼入れ(Q)と焼戻し(T)の中間に、フェライトとオーステナイトの2相域からの焼入れ(Q’)を施す熱処理方法が知られている(例えば、特許文献1参照。)。   As a production method for obtaining a structure in which a hard phase is appropriately dispersed in the soft phase as described above, quenching from a two-phase region of ferrite and austenite (Q ′) between quenching (Q) and tempering (T). There is known a heat treatment method for applying (see, for example, Patent Document 1).

この熱処理方法では、Q’温度を適当に選択することにより、低降伏比化が達成可能であるが、熱処理工程数が増加するため、生産性の低下、製造コストの増加を招く。   In this heat treatment method, a low yield ratio can be achieved by appropriately selecting the Q 'temperature, but the number of heat treatment steps increases, resulting in a decrease in productivity and an increase in manufacturing cost.

製造工程が増加することがない方法として、Ar温度以上で圧延終了後、鋼材の温度がフェライトが生成するAr変態点以下になるまで加速冷却の開始を遅らせる方法が開示されている(例えば、特許文献2参照。)。 As a method that does not increase the number of manufacturing steps, a method is disclosed in which after the end of rolling at an Ar 3 temperature or higher, the start of accelerated cooling is delayed until the temperature of the steel material becomes equal to or lower than the Ar 3 transformation point at which ferrite forms (for example, , See Patent Document 2).

しかし、圧延終了から加速冷却開始までの温度域を放冷程度の冷却速度で冷却する必要があるため、生産性が極端に低下する。   However, since it is necessary to cool the temperature range from the end of rolling to the start of accelerated cooling at a cooling rate that is about the ability to cool, productivity is extremely reduced.

特許文献1、特許文献2に開示されている様な複雑な熱処理を行わずに低降伏比化を達成する技術として、Ar変態点以上で鋼材の圧延を終了し、その後の加速冷却速度と冷却停止温度を制御することで、針状フェライトとマルテンサイトの2相組織とし、低降伏比化を達成する方法が知られている(例えば特許文献3参照。)。 As a technique for achieving a low yield ratio without performing a complex heat treatment as disclosed in Patent Document 1 and Patent Document 2, the rolling of the steel material is completed at the Ar 3 transformation point or higher, and the subsequent accelerated cooling rate and A method is known in which a two-phase structure of acicular ferrite and martensite is achieved by controlling the cooling stop temperature to achieve a low yield ratio (see, for example, Patent Document 3).

しかし、特許文献3に記載の技術では、その実施例が示すように、熱間圧延仕上り温度が低いため、極端に生産性が低下し製造コストの上昇を招く。
特開昭55−97425号公報 特開昭55−41927号公報 特開平1−176027号公報
However, in the technique described in Patent Document 3, as shown in the examples, since the hot rolling finish temperature is low, the productivity is extremely lowered and the manufacturing cost is increased.
JP-A-55-97425 JP 55-41927 A Japanese Patent Laid-Open No. 1-176027

ところで、ラインパイプに用いられるUOE鋼管では、鋼板を冷間で管状へ成形、突き合わせ部を溶接後、通常防食等の観点から鋼管外面にコーティング処理が施されるため、製管時の加工歪みとコーティング処理時の加熱により歪み時効が生じ、降伏応力が上昇する。   By the way, in the UOE steel pipe used for the line pipe, the steel sheet is formed into a cold tube, the butt portion is welded, and then the coating treatment is usually applied to the outer surface of the steel pipe from the viewpoint of corrosion prevention. Strain aging occurs due to heating during the coating process, and the yield stress increases.

耐歪み時効特性に優れた鋼材およびその製造方法としては、例えば、特開2002-220634号公報に記載されているように歪み時効の原因であるC、N含有量を制限し、且つNb、Tiを添加しC、Nと結合させることで、歪み時効を抑制する方法が開示されているが、特開2002-220634号公報記載の発明に係る鋼板は実施例によれば降伏比は80%以上である。   As a steel material excellent in strain aging resistance and a manufacturing method thereof, for example, as described in JP-A-2002-220634, the content of C and N that cause strain aging is limited, and Nb, Ti Is added, and a method for suppressing strain aging is disclosed by combining with C and N. However, according to the embodiment, the yield ratio of the steel sheet according to the invention described in JP-A-2002-220634 is 80% or more. It is.

上述したように、素材の鋼板の低降伏比を達成しても、鋼管における低降伏比化を達成することは困難である。   As described above, even if a low yield ratio of the steel plate is achieved, it is difficult to achieve a low yield ratio in the steel pipe.

そこで、本発明は、コーティング処理後であっても降伏比が低いAPI 5L X70グレード以下の高一様伸び低降伏比高強度高靱性鋼管を、高製造効率、低コストで製造する方法を提供することを目的とする。   Therefore, the present invention provides a method for producing a high uniform elongation, low yield ratio, high strength, high toughness steel pipe of API 5L X70 grade or lower having a low yield ratio even after coating treatment, with high production efficiency and low cost. For the purpose.

本発明者らは前記課題を解決するために、制御圧延後の加速冷却とその後の再加熱を行う製造プロセスについて鋭意検討し、以下の(a)〜(c)の知見を得た。   In order to solve the above-mentioned problems, the present inventors diligently studied a manufacturing process for performing accelerated cooling after controlled rolling and subsequent reheating, and obtained the following findings (a) to (c).

(a)加速冷却過程でベイナイト変態途中、すなわち未変態オーステナイトが存在する温度領域で冷却を停止し、その後ベイナイト変態終了温度(以下Bf点と記載する。)以上から再加熱を行うと、金属組織として、フェライト、ベイナイトの混合相中に硬質相である島状マルテンサイト(以下MAと記載する。)が均一に生成した3相組織が得られる。   (A) In the accelerated cooling process, during the bainite transformation, that is, in the temperature region where untransformed austenite is present, cooling is stopped, and then reheating is performed from the bainite transformation finish temperature (hereinafter referred to as Bf point) or higher. As a result, a three-phase structure in which island-like martensite (hereinafter referred to as MA), which is a hard phase, is uniformly generated in the mixed phase of ferrite and bainite is obtained.

生成したMAはコーティング時の加熱温度(最高300℃)においても安定なため、コーティング後においても低降伏比化が可能である。   Since the produced MA is stable even at the heating temperature (up to 300 ° C.) during coating, the yield ratio can be lowered even after coating.

MAは、たとえば3%ナイタール溶液(nital:硝酸アルコール溶液)でエッチング後、電解エッチングして観察すると、容易に識別可能である。   MA can be easily identified by, for example, etching with a 3% nital solution (nital: nitrate alcohol solution), followed by electrolytic etching and observing.

(b)Cu、Ni等のオーステナイト安定化元素を適量添加することにより、上記未変態オーステナイトが安定化するため、C、Mn等の焼き入れ性向上元素を多量添加しなくても硬質相であるMAの生成が可能である。   (B) Since an untransformed austenite is stabilized by adding an appropriate amount of an austenite stabilizing element such as Cu or Ni, it is a hard phase without adding a large amount of a hardenability improving element such as C or Mn. MA can be generated.

(c)加速冷却を高温で停止することにより、ベイナイト中の転位密度を低くし、さらにTiとNの添加量を制御することにより、コーティング後の歪み時効による降伏比上昇が抑制可能である。   (C) By stopping accelerated cooling at a high temperature, the dislocation density in bainite is lowered, and the addition amount of Ti and N is controlled, so that an increase in yield ratio due to strain aging after coating can be suppressed.

本発明は上記の知見に更に検討を加えてなされたもので、すなわち、本発明は、
1.質量%で、C:0.03〜0.1%、Si:0.01〜0.5%、Mn:1.2〜2.0%、Mo:0.05〜0.4%、Cu+Ni:0.1%以上、Ti:0.005〜0.04%、Nb:0.005〜0.07%、Al:0.08%以下、N:0.005%以下を含有し、Ti/Nが3以上であり、(1)式を満足し、残部がFeおよび不可避的不純物からなる鋼を、1000〜1300℃の温度に加熱し、Ar温度以上の圧延終了温度で熱間圧延した後、5℃/s以上の冷却速度で500〜650℃まで加速冷却を行い、その後直ちに0.5℃/s以上の昇温速度で550〜750℃まで再加熱を行い、金属組織がフェライトとベイナイトと島状マルテンサイトとの3相組織であり、島状マルテンサイトの体積分率が3〜15%であり、残留オーステナイトの体積分率が2%以上であり、長手方向の一様伸びが12%以上である鋼板を、冷間にて管状に成形し、突き合わせ部を溶接して鋼管とし、加熱温度が300℃以下のコーティング処理をすることを特徴とする、
X70グレード以下の低降伏比高強度高靭性鋼管の製造方法。
Ceq1≦0.40・・・(1)
但し、Ceq1=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5
2.成分組成に更に、質量%で、V:0.005〜0.1%、Cr:0.5%以下、Ca:0.0005〜0.003%、B:0.005%以下の1種又は2種以上を含有することを特徴とする、1に記載のX70グレード以下の低降伏比高強度高靭性鋼管の製造方法。
3.1または2記載の成分組成とフェライトとベイナイトと島状マルテンサイトとの3相組織であり、島状マルテンサイトの体積分率が3〜15%であり、残留オーステナイトの体積分率が2%以上である金属組織を有する鋼板を母材とし、加熱温度が300℃以下のコーティング処理が施されたことを特徴とする、X70グレード以下の低降伏比高強度高靭性鋼管。
The present invention has been made by further studying the above findings, that is, the present invention
1. In mass%, C: 0.03-0.1%, Si: 0.01-0.5%, Mn: 1.2-2.0%, Mo: 0.05-0.4%, Cu + Ni: 0.1% or more, Ti: 0.005 to 0.04%, Nb: 0.005 to 0.07%, Al: 0.08% or less, N: 0.005% or less, Ti / N Is 3 or more, satisfies the formula (1), and the remainder is made of Fe and inevitable impurities, heated to a temperature of 1000 to 1300 ° C., and hot-rolled at a rolling end temperature of Ar 3 or higher Accelerated cooling to 500 to 650 ° C. at a cooling rate of 5 ° C./s or more, and then immediately reheating to 550 to 750 ° C. at a heating rate of 0.5 ° C./s or more. Is a three-phase structure of island martensite, and the volume fraction of island martensite is 3-15% A steel sheet having a volume fraction of retained austenite of 2% or more and a uniform elongation in the longitudinal direction of 12% or more is formed into a tubular shape in the cold, the butt portion is welded to form a steel pipe, and the heating temperature is The coating process is performed at 300 ° C. or lower,
A method for producing a low yield ratio high strength high toughness steel pipe of X70 grade or less .
Ceq1 ≦ 0.40 (1)
However, Ceq1 = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5
2. In addition to the component composition, by mass%, V: 0.005 to 0.1%, Cr: 0.5% or less, Ca: 0.0005 to 0.003%, B: 0.005% or less 2. A method for producing a low yield ratio, high strength, high toughness steel pipe of X70 grade or less according to 1, characterized by containing two or more.
3. The component composition described in 3.1 or 2, and a three-phase structure of ferrite, bainite, and island martensite, the volume fraction of island martensite is 3 to 15%, and the volume fraction of retained austenite is 2 % X70 grade or lower low yield ratio high strength high toughness steel pipe, characterized in that a steel sheet having a metal structure of at least% is used as a base material and a coating treatment is performed at a heating temperature of 300 ° C. or lower.

本発明によれば、圧延後の加速冷却によって生成したベイナイト相と、その後の再加熱によって生じるフェライト相と、硬質相であるMAが均一に生成した3相組織を有する高一様伸び低降伏比高強度高靱性鋼管が、溶接熱影響部靭性を劣化させることなく、多量の合金元素を用いずに、低コストで製造可能である。   According to the present invention, a bainite phase generated by accelerated cooling after rolling, a ferrite phase generated by subsequent reheating, and a high uniform elongation and low yield ratio having a three-phase structure in which MA, which is a hard phase, is uniformly generated. A high-strength, high-toughness steel pipe can be manufactured at a low cost without deteriorating the weld heat-affected zone toughness and without using a large amount of alloying elements.

主にラインパイプに使用するUOE鋼管を、安価で大量に安定して製造することができ、パイプライン敷設における生産性および経済性を著しく高めることが可能で産業上極めて有用である。   UOE steel pipes mainly used for line pipes can be manufactured stably in a large amount at a low cost, and the productivity and economic efficiency in laying pipelines can be remarkably improved, which is extremely useful in industry.

本発明に係る低降伏比高強度高靱性鋼管は、特定の金属組織を有する鋼板(母材)を冷間にて管状に成形し、突き合わせ部を溶接して鋼管とし、加熱温度が300℃以下のコーティング処理を施して製造する。とし、さらに歪み時効の原因となるベイナイト中の転位密度、固溶Nを低減することで、コーティング処理後の鋼管において低降伏比化、高一様伸び化を達成している。
[金属組織]
本発明では、母材をフェライト、ベイナイトに硬質相であるMAが均一に生成した3相組織とする。
The low yield ratio, high strength, high toughness steel pipe according to the present invention is a steel pipe (base material) having a specific metal structure that is cold-formed into a tubular shape, welded to a butt portion to form a steel pipe, and a heating temperature of 300 ° C. or less. It is manufactured by applying the coating process. Furthermore, by reducing the dislocation density and solute N in bainite, which cause strain aging, a low yield ratio and a high uniform elongation are achieved in the steel pipe after the coating treatment.
[Metal structure]
In the present invention, the base material has a three-phase structure in which MA, which is a hard phase, is uniformly formed on ferrite and bainite.

3相組織中のMAの割合は、MAの体積分率(管長方向や管周方向等の鋼管の任意の断面におけるMAの体積の割合)で、3〜15%とする。   The proportion of MA in the three-phase structure is 3 to 15% in terms of the volume fraction of MA (ratio of the volume of MA in an arbitrary cross section of the steel pipe in the pipe length direction and the pipe circumferential direction, etc.).

MAの体積分率が3%未満では低降伏比化を達成するには不十分な場合があり、また15%を超えると母材靱性を劣化させる場合がある。低降伏比化、高一様伸び化および母材靭性の観点から、MAの体積分率は5〜15%とすることが特に望ましい。   If the volume fraction of MA is less than 3%, it may be insufficient to achieve a low yield ratio, and if it exceeds 15%, the base material toughness may be deteriorated. From the viewpoint of low yield ratio, high uniform elongation, and base metal toughness, the volume fraction of MA is particularly preferably 5 to 15%.

MA中にはCu、Niよって安定化したオーステナイトが残存しており、残留オーステナイト体積分率として2%以上必要である。   Austenite stabilized by Cu and Ni remains in MA, and a residual austenite volume fraction of 2% or more is necessary.

上記のMAはコーティング処理時の加熱においても分解することなく安定なため、コーティング処理後も低降伏比を達成することが可能である。   Since the above-mentioned MA is stable without being decomposed even when heated during the coating process, it is possible to achieve a low yield ratio even after the coating process.

MAの体積分率は、例えばSEM観察により得られた少なくとも4視野以上のミクロ組織写真を画像処理することによってMAの占める面積率から算出して求めることで得ることができる。   The volume fraction of MA can be obtained, for example, by calculating from the area ratio occupied by MA by performing image processing on a microstructure photograph of at least four fields of view obtained by SEM observation.

また、MAの平均粒径は、10μm以下であることが望ましい。なお、MAの平均粒径は、SEM観察により得られたミクロ組織を画像処理し、個々のMAと同じ面積の円の直径を個々のMAについて求め、それらの直径の平均値として求めることができる。   The average particle size of MA is desirably 10 μm or less. The average particle diameter of MA can be obtained as an average value of the diameters obtained by subjecting the microstructure obtained by SEM observation to image processing, obtaining the diameter of a circle having the same area as each MA, and obtaining the diameter of each MA. .

3相組織中のフェライトは、APIX70規格を満足する強度確保のため、分率を5%以上とする。また、3相組織中のベイナイトは、APIX70規格を満足する靭性確保のため分率を10%以上にする事が望ましい。   The ferrite in the three-phase structure has a fraction of 5% or more in order to ensure strength that satisfies the APIX70 standard. In addition, it is desirable that the bainite in the three-phase structure has a fraction of 10% or more in order to ensure toughness that satisfies the APIX70 standard.

なお、金属組織が、フェライトとベイナイトとMAとの3相組織からなるとは、本発明の作用効果を無くさない限り、フェライト、ベイナイトおよびMA以外の組織を含有するものが、本発明の範囲に含まれることを意味する。   In addition, as long as the metal structure is composed of a three-phase structure of ferrite, bainite, and MA, the one containing a structure other than ferrite, bainite, and MA is included in the scope of the present invention unless the effects of the present invention are lost. Means that

フェライトとベイナイトとMAとの3相組織に、パーライトなどの異なる金属組織が1種または2種以上混在する場合は、強度が低下するため、フェライト、ベイナイトおよびMA以外の組織の分率は少ない程良い。   When one or two or more different metal structures such as pearlite are mixed in the three-phase structure of ferrite, bainite, and MA, the strength decreases, so that the fraction of the structure other than ferrite, bainite, and MA is smaller. good.

しかし、フェライト、ベイナイトおよびMA以外の組織の分率が低い場合は影響が無視できるため、トータルの分率で3%以下の他の金属組織を、すなわちパーライトやセメンタイト等を1種または2種以上含有してもよい。   However, when the fraction of the structure other than ferrite, bainite and MA is low, the influence is negligible. Therefore, other metal structures of 3% or less in total fraction, that is, one or more kinds of pearlite, cementite, etc. You may contain.

上記した、フェライト、ベイナイトと硬質のMAとの3相組織では、軟質相であるフェライトが変形を担うため、10%以上の高一様伸び化が達成可能で、大変形を受ける地震地帯等へ適用される際に要求される、低降伏比化に加え高一様伸び性能を満足する。   In the above-described three-phase structure of ferrite, bainite and hard MA, ferrite, which is a soft phase, is responsible for deformation, so that it is possible to achieve high uniform elongation of 10% or more, and to earthquake zones that undergo large deformation. In addition to the low yield ratio required when applied, it satisfies high uniform elongation performance.

[化学成分]以下の説明において%で示す単位は全て質量%である。
C:0.03〜0.1%
CはMA生成に重要な元素であるが、0.03%未満ではMAの生成に不十分であり、また十分な強度が確保できない。0.1%を超える添加はHAZ靭性の劣化、歪み時効による降伏比の上昇を招くため、C含有量を0.03〜0.1%に規定する。さらに好適には、0.03〜0.08%である。
[Chemical component] In the following description, all units shown in% are% by mass.
C: 0.03 to 0.1%
C is an important element for MA generation, but if it is less than 0.03%, it is insufficient for generation of MA, and sufficient strength cannot be secured. Addition over 0.1% leads to deterioration of HAZ toughness and an increase in yield ratio due to strain aging, so the C content is specified to be 0.03 to 0.1%. More preferably, it is 0.03 to 0.08%.

Si:0.01〜0.5%
Siは脱酸のため添加するが、0.01%未満では脱酸効果が十分でなく、0.5%を超えると靭性や溶接性を劣化させるため、Si含有量を0.01〜0.5%に規定する。さらに好適には、0.01〜0.3%である。
Si: 0.01-0.5%
Si is added for deoxidation, but if it is less than 0.01%, the deoxidation effect is not sufficient, and if it exceeds 0.5%, the toughness and weldability are deteriorated, so the Si content is 0.01 to 0.00. Specify 5%. More preferably, it is 0.01 to 0.3%.

Mn:1.2〜2.0%
Mnは強度、靭性向上、更に焼き入れ性を向上しMA生成を促すために添加するが、1.2%未満ではその効果が十分でなく、2.5%を超えると靱性ならびに溶接性が劣化するため、Mn含有量を1.2〜2.0%に規定する。成分や製造条件の変動によらず、安定してMAを生成するためには、1.5%以上の添加が望ましい。
Mn: 1.2 to 2.0%
Mn is added to improve strength and toughness, further improve hardenability and promote MA formation. However, if it is less than 1.2%, its effect is not sufficient, and if it exceeds 2.5%, toughness and weldability deteriorate. Therefore, the Mn content is specified to be 1.2 to 2.0%. Addition of 1.5% or more is desirable in order to stably produce MA regardless of changes in components and production conditions.

Mo:0.05〜0.4%
Moは焼き入れ性を向上させる元素であり、MA生成やベイナイト相を強化することで強度上昇に寄与する元素である。しかし、0.4%を超えると溶接熱影響部靭性の劣化を招くことから、Mo含有量を0.05〜0.4%に規定する。さらに、溶接熱影響部靭性の観点からMo含有量を0.1〜0.3%とすることが好ましい。
Mo: 0.05-0.4%
Mo is an element that improves the hardenability, and is an element that contributes to an increase in strength by strengthening the MA formation and the bainite phase. However, if it exceeds 0.4%, the weld heat-affected zone toughness is deteriorated, so the Mo content is specified to be 0.05 to 0.4%. Furthermore, it is preferable to make Mo content into 0.1 to 0.3% from a viewpoint of weld heat affected zone toughness.

Cu+Ni:0.1%以上
Cu、Niは本発明に重要な元素である。C、Mn等の焼き入れ性向上元素を多量に添加せずにMAを生成させるためには、未変態オーステナイトを安定化させる元素であるCu+Niを0.1%以上添加する必要である。更に、より安定的にMAを生成させるために、0.3%以上の添加が好ましい。
Cu + Ni: 0.1% or more Cu and Ni are important elements in the present invention. In order to produce MA without adding a large amount of a hardenability improving element such as C and Mn, it is necessary to add 0.1% or more of Cu + Ni which is an element that stabilizes untransformed austenite. Furthermore, in order to produce MA more stably, addition of 0.3% or more is preferable.

Cu、Niを一定量添加した鋼を用い、ベイナイト変態途中で加速冷却を停止し、その後連続的に再加熱を行うことで、製造効率を低下させることなく硬質相であるMAを生成させることが可能である。   By using steel with a certain amount of Cu and Ni added, accelerating cooling is stopped during the bainite transformation, and then reheating is performed continuously, so that MA which is a hard phase can be generated without lowering the production efficiency. Is possible.

また、未変態オーステナイトが安定化するため、再加熱、その後の空冷中のパーライト変態やセメンタイト生成を抑制する。   Moreover, since untransformed austenite is stabilized, pearlite transformation and cementite formation during reheating and subsequent air cooling are suppressed.

Ti:0.005〜0.04%
TiはTiNをピニング効果により、スラブ加熱時のオーステナイト粗大化を抑制し、母材靭性を向上させ、さらに固溶Nを低減し歪み時効による降伏比上昇を抑制する重要な元素である。
Ti: 0.005-0.04%
Ti is an important element that suppresses austenite coarsening during slab heating, improves base metal toughness, reduces solid solution N, and suppresses the yield ratio increase due to strain aging due to the pinning effect of TiN.

その効果は、0.005%以上添加で発現する。しかし、0.04%を超える添加は溶接熱影響部靭性の劣化を招くため、Ti含有量は0.005〜0.04%に規定する。溶接熱影響部靭性の観点から、Ti含有量を0.005%以上、0.02%未満とすることが好ましい。   The effect is manifested by adding 0.005% or more. However, since addition exceeding 0.04% causes deterioration of the weld heat affected zone toughness, the Ti content is specified to be 0.005 to 0.04%. From the viewpoint of weld heat affected zone toughness, the Ti content is preferably 0.005% or more and less than 0.02%.

Nb:0.005〜0.07%
Nbは組織の微細粒化により靭性を向上させ、さらに固溶Nbの焼き入れ性向上により強度上昇に寄与する元素である。しかし、0.005%未満では効果がなく、0.07%を超えると溶接熱影響部の靭性が劣化するため、Nb含有量は0.005〜0.07%に規定する。
Nb: 0.005 to 0.07%
Nb is an element that improves toughness by refining the structure and contributes to an increase in strength by improving the hardenability of solid solution Nb. However, if it is less than 0.005%, there is no effect, and if it exceeds 0.07%, the toughness of the weld heat-affected zone deteriorates, so the Nb content is specified to be 0.005 to 0.07%.

Al:0.08%以下
Alは脱酸剤として添加されるが、0.08%を超えると鋼の清浄度が低下し、靱性が劣化するため、Al含有量は0.08%以下に規定する。好ましくは、0.01〜0.08%とする。
Al: 0.08% or less Al is added as a deoxidizing agent, but if it exceeds 0.08%, the cleanliness of the steel decreases and the toughness deteriorates, so the Al content is specified to be 0.08% or less. To do. Preferably, the content is 0.01 to 0.08%.

N:0.005%以下
Nは0.005%を越えると、溶接熱影響部靭性が劣化し、さらに歪み時効による降伏比上昇が懸念されるため、0.005%以下とする。
N: 0.005% or less If N exceeds 0.005%, the weld heat-affected zone toughness deteriorates and there is a concern that the yield ratio will increase due to strain aging.

Ti/N:3以上
歪み時効の原因である固溶NをTiNとして固定することにより、コーティング処理後の降伏比上昇を抑制することが可能である。さらに、Ti量とN量の比であるTi/Nを最適化することで、TiN粒子により溶接熱影響部のオーステナイト粗大化を抑制することでき、良好な溶接熱影響部靭性を得ることが出来る。好ましくはTi/Nを3〜8、さらに好ましくは3〜5とする。
Ti / N: 3 or more By fixing solid solution N, which is the cause of strain aging, as TiN, it is possible to suppress an increase in the yield ratio after the coating treatment. Furthermore, by optimizing Ti / N, which is the ratio of Ti amount to N amount, the austenite coarsening of the weld heat affected zone can be suppressed by TiN particles, and good weld heat affected zone toughness can be obtained. . Preferably, Ti / N is 3 to 8, more preferably 3 to 5.

Ceq1≦0.40
但し、Ceq1=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5
本発明はX70グレード以下のUOE鋼管を対象としており、上式で示されるCeq1が0.40を越えるとX70グレードの強度上限を満足することが困難となる。よって、Ceq1≦0.40とする。
Ceq1 ≦ 0.40
However, Ceq1 = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5
The present invention is intended for UOE steel pipes of X70 grade or less. When Ceq1 represented by the above formula exceeds 0.40, it becomes difficult to satisfy the upper limit of strength of X70 grade. Therefore, Ceq1 ≦ 0.40.

本発明では、鋼板の強度・靱性をさらに改善し、且つ焼き入れ性を向上させMAの生成を促す目的で、以下に示すV、Cr、B、Caの1種又は2種以上を含有してもよい。   In the present invention, for the purpose of further improving the strength and toughness of the steel sheet and improving the hardenability and promoting the production of MA, it contains one or more of V, Cr, B, and Ca shown below. Also good.

V:0.005〜0.1%
焼き入れ性を高め、強度上昇に寄与する元素である。しかし、0.005%未満では効果がなく、0.1%を超えると溶接熱影響部の靭性が劣化するため、V含有量は添加する場合は、0.005〜0.1%に規定する。
V: 0.005-0.1%
It is an element that enhances hardenability and contributes to an increase in strength. However, if it is less than 0.005%, there is no effect, and if it exceeds 0.1%, the toughness of the weld heat-affected zone deteriorates. Therefore, when V is added, it is specified as 0.005 to 0.1%. .

Cr:0.5%以下
CrはMnと同様に低Cでも十分な強度を得るために有効な元素である。その効果を得るためには、0.1%以上添加することが好ましいが、多く添加すると溶接性が劣化するため、添加する場合は0.5%を上限とする。
Cr: 0.5% or less Cr is an effective element for obtaining sufficient strength even at low C as in Mn. In order to acquire the effect, it is preferable to add 0.1% or more. However, if it is added in a large amount, weldability deteriorates.

B:0.005%以下
Bは強度上昇、HAZ靭性改善に寄与する元素である。その効果を得るためには、0.0005%以上添加することが好ましいが、0.005%を超えて添加すると溶接性を劣化させるため、添加する場合は0.005%以下とする。
B: 0.005% or less B is an element contributing to strength increase and HAZ toughness improvement. In order to obtain the effect, it is preferable to add 0.0005% or more, but if added over 0.005%, the weldability is deteriorated, so when added, the content is made 0.005% or less.

Ca:0.0005〜0.003%
Caは硫化物系介在物の形態を制御して靭性を改善する。0.0005%以上でその効果が現れ、0.003%を超えると効果が飽和し、逆に清浄度を低下させて靭性を劣化させるため、添加する場合には0.0005〜0.003%とする。
Ca: 0.0005 to 0.003%
Ca improves the toughness by controlling the form of sulfide inclusions. The effect appears at 0.0005% or more, and when it exceeds 0.003%, the effect is saturated, and conversely, the cleanliness is lowered and the toughness is deteriorated. And

次に、本発明に係る高強度鋼管原板の製造方法について説明する。
[製造条件]
説明において、加熱温度、圧延終了温度、冷却終了温度および、再加熱温度等の温度は鋼板の平均温度とする。平均温度は、スラブもしくは鋼板の表面温度より、板厚、熱伝導率等のパラメータを考慮して、計算により求めたものである。また、冷却速度は、熱間圧延終了後、冷却終了温度(500〜650℃)まで冷却に必要な温度差をその冷却を行うのに要した時間で割った平均冷却速度である。また、昇温速度は、冷却後、再加熱温度(550〜750℃)の温度までの再加熱に必要な温度差を再加熱するのに要した時間で割った平均昇温速度である。
Next, the manufacturing method of the high strength steel pipe original plate which concerns on this invention is demonstrated.
[Production conditions]
In the description, temperatures such as heating temperature, rolling end temperature, cooling end temperature, and reheating temperature are the average temperatures of the steel plates. The average temperature is obtained by calculation based on the surface temperature of the slab or steel plate, taking into account parameters such as plate thickness and thermal conductivity. The cooling rate is an average cooling rate obtained by dividing the temperature difference required for cooling to the cooling end temperature (500 to 650 ° C.) by the time required for the cooling after the hot rolling is completed. The temperature increase rate is an average temperature increase rate obtained by dividing the temperature difference required for reheating up to the reheating temperature (550 to 750 ° C.) by the time required for reheating after cooling.

加熱温度:1000〜1300℃
加熱温度が1000℃未満では炭化物の固溶が不十分で必要な強度が得られず、1300℃を超えると母材靭性が劣化するため、1000〜1300℃とする。
Heating temperature: 1000-1300 ° C
If the heating temperature is less than 1000 ° C., the solid solution of the carbide is insufficient and the required strength cannot be obtained, and if it exceeds 1300 ° C., the base material toughness deteriorates, so the temperature is set to 1000 to 1300 ° C.

圧延終了温度:Ar3温度以上
圧延終了温度がAr3温度以下であると、その後のフェライト変態速度が低下するため、再加熱時の未変態オーステナイトへのCの濃縮が不十分となりMAが生成しない。そのため圧延終了温度をAr3温度以上とする。
Rolling end temperature: Ar3 temperature or higher If the rolling end temperature is lower than Ar3 temperature, the subsequent ferrite transformation rate decreases, so that the concentration of C into untransformed austenite at the time of reheating becomes insufficient and MA is not generated. Therefore, the rolling end temperature is set to Ar3 temperature or higher.

熱間圧延後の冷却条件
圧延終了後、直ちに5℃/s以上の冷却速度で、冷却停止温度:500〜650℃の加速冷却を行う。冷却速度が5℃/s未満では冷却時にパーライトを生成するため、ベイナイトによる強化が得られないため、十分な強度が得られない。よって、圧延終了後の冷却速度を5℃/s以上に規定する。
Cooling conditions after hot rolling Immediately after the rolling, accelerated cooling at a cooling stop temperature of 500 to 650 ° C. is performed at a cooling rate of 5 ° C./s or more. When the cooling rate is less than 5 ° C./s, pearlite is generated at the time of cooling, so that strengthening by bainite cannot be obtained, so that sufficient strength cannot be obtained. Therefore, the cooling rate after the end of rolling is specified to be 5 ° C./s or more.

また、冷却開始温度がAr3温度以下となりフェライトが生成すると、強度低下が起こり、且つMAの生成も起こらないため、冷却開始温度をAr3温度以上とする。   Further, when the cooling start temperature is lower than the Ar3 temperature and ferrite is generated, the strength is lowered and MA is not generated. Therefore, the cooling start temperature is set to the Ar3 temperature or higher.

本発明では、加速冷却によりベイナイト変態領域まで過冷することにより、その後の再加熱時に温度保持することなくフェライト変態を完了させることが可能である。   In the present invention, the ferrite transformation can be completed without maintaining the temperature during the subsequent reheating by supercooling to the bainite transformation region by accelerated cooling.

冷却停止温度は本発明において、重要な製造条件である。本発明では再加熱後に存在するCの濃縮した未変態オーステナイトがその後の空冷時にMAへと変態する。   The cooling stop temperature is an important production condition in the present invention. In the present invention, C-concentrated untransformed austenite present after reheating is transformed into MA upon subsequent air cooling.

すなわち、ベイナイト変態途中の未変態オーステナイトが存在する温度域で冷却を停止する必要がある。冷却停止温度が500℃未満では、ベイナイト変態が完了するため空冷時にMAが生成せず低降伏比化が達成できない。   That is, it is necessary to stop the cooling in a temperature range where untransformed austenite during the bainite transformation exists. If the cooling stop temperature is less than 500 ° C., the bainite transformation is completed, so MA is not generated during air cooling, and a low yield ratio cannot be achieved.

650℃を超えると冷却中に析出するパーライトにCが消費されMAが生成しないため、加速冷却停止温度を500〜650℃に規定する。MA生成の観点からは、好ましくは530〜650℃である。   If it exceeds 650 ° C., C is consumed in the pearlite that precipitates during cooling and MA is not generated, so the accelerated cooling stop temperature is specified to be 500 to 650 ° C. From a viewpoint of MA production | generation, Preferably it is 530-650 degreeC.

加速冷却停止後の再加熱
加速冷却停止後直ちに0.5℃/s以上の昇温速度で550〜750℃の温度まで再加熱を行う。本プロセスは本発明において重要な製造条件で、再加熱時の未変態オーステナイトからフェライト変態と、それに伴う未変態オーステナイトへのCの排出により、再加熱後の空冷時にCが濃化した未変態オーステナイトがMAへと変態する。
Reheating after stopping accelerated cooling Immediately after stopping accelerated cooling, reheating is performed to a temperature of 550 to 750 ° C. at a temperature rising rate of 0.5 ° C./s or more. This process is an important production condition in the present invention. Untransformed austenite in which C is concentrated during air cooling after reheating due to ferrite transformation from untransformed austenite at the time of reheating and the accompanying discharge of C to untransformed austenite. Transforms into MA.

そのため、加速冷却後Bf点以上の温度から550〜750℃の温度域まで再加熱する。昇温速度が0.5℃/s未満では、目的の再加熱温度に達するまでに長時間を要するため製造効率が悪化し、またパーライト変態が生じるためMAが得られず、十分な低降伏比を得ることができない。   Therefore, it reheats from the temperature more than Bf point to the temperature range of 550-750 degreeC after accelerated cooling. If the rate of temperature rise is less than 0.5 ° C./s, it takes a long time to reach the target reheating temperature, so that the production efficiency deteriorates, and pearlite transformation occurs, so MA cannot be obtained, and a sufficiently low yield ratio. Can't get.

再加熱温度が550℃未満ではフェライト変態が十分起こらずCの未変態オーステナイトへの排出が不十分となり、MAが生成せず低降伏比化が達成できない。750℃を超えるとベイナイトの軟化により十分な強度が得られないため、再加熱の温度域を550〜750℃に規定する。   If the reheating temperature is less than 550 ° C., ferrite transformation does not occur sufficiently and C is not sufficiently discharged into untransformed austenite, MA is not generated, and a low yield ratio cannot be achieved. If the temperature exceeds 750 ° C., sufficient strength cannot be obtained due to softening of bainite, so the temperature range of reheating is specified to be 550 to 750 ° C.

本発明では、加速冷却後、未変態オーステナイトが存在する温度域から再加熱を行うことが重要であり、再加熱開始温度がBf点未満となるとベイナイト変態が完了し未変態オーステナイトが存在しなくなるため、再加熱開始はBf点以上とする必要がある。   In the present invention, after accelerated cooling, it is important to perform reheating from a temperature range where untransformed austenite exists, and when the reheating start temperature becomes less than the Bf point, bainite transformation is completed and untransformed austenite does not exist. The reheating start needs to be higher than the Bf point.

確実にフェライト変態させるCを未変態オーステナイトへ濃化させるためには、再加熱開始温度より50℃以上昇温することが望ましい。再加熱温度において、特に温度保持時間を設定する必要はない。   In order to reliably concentrate C that undergoes ferrite transformation into untransformed austenite, it is desirable to raise the temperature by 50 ° C. or more from the reheating start temperature. There is no need to set the temperature holding time at the reheating temperature.

本発明の製造方法を用いれば再加熱後直ちに冷却しても、十分なMAが得られるため低降伏比化、高一様伸び化が達成できるが、よりCの拡散を促進させMA体積分率を確保するために、30分以内の温度保持を行うことができる。   If the production method of the present invention is used, even if it is cooled immediately after reheating, sufficient MA can be obtained, so a low yield ratio and a high uniform elongation can be achieved. However, the diffusion of C is further promoted and the MA volume fraction is increased. In order to secure the temperature, the temperature can be kept within 30 minutes.

保持時間が30分を超えると、ベイナイト相の転位の回復が起こり強度が低下する場合がある。また、再加熱後の冷却速度は基本的には空冷とすることが好ましい。   When the holding time exceeds 30 minutes, the bainite phase dislocation may be recovered and the strength may be lowered. The cooling rate after reheating is preferably basically air cooling.

上述した製造条件において、MA生成のメカニズムは以下の通りである。加速冷却終了時のミクロ組織はベイナイトと未変態オーステナイトで、Bf点以上で再加熱を行うことで未変態オーステナイトからのフェライト変態が生じるが、フェライトはC固溶量が少ないためCが未変態オーステナイトへ排出される。   Under the manufacturing conditions described above, the mechanism of MA generation is as follows. At the end of accelerated cooling, the microstructure is bainite and untransformed austenite. Reheating above the Bf point causes ferrite transformation from untransformed austenite, but since ferrite has a small amount of C solid solution, C is untransformed austenite. Is discharged.

そのため、再加熱時のフェライト変態の進行に伴い、未変態オーステナイト中のC量が増加する。このとき、オーステナイト安定化元素である、Cu、Ni等が一定以上含有されていると、再加熱終了時でもCが濃縮した未変態オーステナイトが残存し、再加熱後の冷却でMAへと変態し、最終的にベイナイト、フェライト、MAの3相組織となる。   Therefore, the amount of C in untransformed austenite increases with the progress of ferrite transformation during reheating. At this time, if Cu, Ni or the like, which is an austenite stabilizing element, is contained in a certain amount or more, untransformed austenite in which C is concentrated remains even at the end of reheating, and is transformed into MA by cooling after reheating. Finally, a three-phase structure of bainite, ferrite, and MA is obtained.

図1に上記の製造方法を用いて製造した本発明鋼板(0.05mass%C−1.5mass%Mn−0.1mass%Ni−0.1mass%Mo−0.01mass%Ti)を走査型電子顕微鏡(SEM)で観察した写真を示す。フェライト(F)、ベイナイト(B)の混合組織に、島状マルテンサイト(MA)が均一に生成している。   FIG. 1 shows a scanning electron of a steel sheet of the present invention (0.05 mass% C-1.5 mass% Mn-0.1 mass% Ni-0.1 mass% Mo-0.01 mass% Ti) manufactured using the above manufacturing method. The photograph observed with the microscope (SEM) is shown. Insular martensite (MA) is uniformly formed in the mixed structure of ferrite (F) and bainite (B).

尚、本発明では、鋼板の製造装置として任意のものを用いることが可能であるが、好ましい設備の一例は圧延ラインには上流から下流側に向かって熱間圧延機、加速冷却装置、誘導加熱装置、ホットレベラーが順に配置されているものである。   In the present invention, any apparatus can be used as a steel sheet manufacturing apparatus. However, an example of a preferable facility is a hot rolling mill, an accelerated cooling apparatus, induction heating in the rolling line from upstream to downstream. A device and a hot leveler are sequentially arranged.

誘導加熱装置あるいは他の熱処理装置を、圧延設備である熱間圧延機およびそれに引き続く冷却設備である加速冷却装置と同一ライン上に設置する事によって、圧延、冷却終了後迅速に再加熱処理が行えるので、圧延冷却後の鋼板温度を過度に低下させることなく加熱することができる。   By installing an induction heating device or other heat treatment device on the same line as a hot rolling mill that is a rolling facility and an accelerated cooling device that is a subsequent cooling facility, reheating treatment can be performed quickly after completion of rolling and cooling. Therefore, it can heat, without reducing the steel plate temperature after rolling cooling too much.

[溶接鋼管の製造方法]
本発明に係る溶接鋼管は、上述の製造条件で製造された鋼板を冷間にて管状に成形し、突き合わせ部を溶接し鋼管とした後、300℃以下の温度範囲でコーティング処理を施される。管状への成形方法については特に規定しない。
[Method of manufacturing welded steel pipe]
The welded steel pipe according to the present invention is formed by cold forming a steel plate manufactured under the above-described manufacturing conditions into a tubular shape, welding the butt portion to form a steel pipe, and then performing a coating process in a temperature range of 300 ° C. or lower. . The method for forming into a tubular shape is not particularly specified.

コーティング時の鋼管の加熱温度は、300℃を超えると、歪み時効によりコーティング後の管長方向の降伏応力が上昇し、降伏比の上昇を招く。さらにMAがセメンタイトとフェライトに分解し第2相の硬度が低下するため、降伏比の上昇を招くため、300℃以下と規定する。   When the heating temperature of the steel pipe during coating exceeds 300 ° C., the yield stress in the pipe length direction after coating increases due to strain aging, leading to an increase in yield ratio. Furthermore, since MA decomposes into cementite and ferrite and the hardness of the second phase is lowered, the yield ratio is increased, so that it is defined as 300 ° C. or lower.

表1に示す化学成分の鋼(鋼種A〜J)を連続鋳造法によりスラブとし、これを用いて管厚18、26mm、外径36インチのUOE鋼管(No.1〜18)を製造した。   Steels (steel types A to J) having chemical components shown in Table 1 were made into slabs by a continuous casting method, and UOE steel pipes (No. 1 to 18) having a pipe thickness of 18, 26 mm and an outer diameter of 36 inches were produced.

加熱したスラブを熱間圧延により圧延した後、直ちに水冷型の加速冷却設備を用いて冷却を行い、誘導加熱炉またはガス燃焼炉を用いて再加熱を行い、鋼板を作製し、該鋼板を用いUOEプロセスにて溶接鋼管を製造し、その後鋼管外面にコーティング処理を施した。
外面コーティングは外面の腐食防止を目的にエポキシ樹脂等を用いて行う。
After rolling the heated slab by hot rolling, immediately cool it using a water-cooled accelerated cooling facility, reheat it using an induction heating furnace or gas combustion furnace, produce a steel plate, and use the steel plate. A welded steel pipe was manufactured by the UOE process, and then the outer surface of the steel pipe was coated.
The outer surface coating is performed using an epoxy resin or the like for the purpose of preventing corrosion of the outer surface.

コーティングの手順は次の通りである。まず、外表面の粗さをショットブラスト等で一定にした後、パイプを所定の温度まで加熱し、プライマーを塗布し樹脂でコーティングを行う。プライマーとはコーティング剤とパイプとの接着性を高めるために使用し、パイプに均一に塗布し、且つ接着能力を高めるためにパイプを加熱する必要がある。誘導加熱炉は加速冷却設備と同一ライン上に設置した。   The coating procedure is as follows. First, after the roughness of the outer surface is made constant by shot blasting or the like, the pipe is heated to a predetermined temperature, a primer is applied, and coating is performed with a resin. The primer is used to increase the adhesion between the coating agent and the pipe, and it is necessary to apply the primer uniformly to the pipe and to heat the pipe in order to increase the bonding ability. The induction furnace was installed on the same line as the accelerated cooling equipment.

各鋼板(No.1〜18)の製造条件を表2に示す。なお、加熱温度、圧延終了温度、冷却停止(終了)温度および、再加熱温度等の温度は鋼板の平均温度とした。平均温度は、スラブもしくは鋼板の表面温度より、板厚、熱伝導率等のパラメータ、計算により求めた。   Table 2 shows the production conditions of each steel plate (No. 1 to 18). The heating temperature, rolling end temperature, cooling stop (end) temperature, reheating temperature, and other temperatures were the average temperature of the steel sheet. The average temperature was determined from the surface temperature of the slab or steel plate by parameters and calculations such as plate thickness and thermal conductivity.

また、冷却速度は、熱間圧延終了後、冷却停止(終了)温度(200〜600℃)まで冷却に必要な温度差をその冷却を行うのに要した時間で割った平均冷却速度である。また、再加熱速度(昇温速度)は、冷却後、再加熱温度(540〜780℃)までの再加熱に必要な温度差を再加熱するのに要した時間で割った平均昇温速度である。   Moreover, a cooling rate is an average cooling rate which divided the temperature difference required for cooling to the cooling stop (end) temperature (200-600 degreeC) after completion | finish of hot rolling by the time required to perform the cooling. The reheating rate (temperature increase rate) is the average temperature increase rate divided by the time required to reheat the temperature difference required for reheating up to the reheating temperature (540 to 780 ° C.) after cooling. is there.

以上のようにして製造した鋼管の引張特性を測定した。測定結果を表2に併せて示す。引張強度は、圧延垂直方向の全厚引張試験片を2本採取し、引張試験を行い、その平均値で評価した。引張強度517MPa以上(API 5L X60以上)、680MPa以下を本発明に必要な強度とした。   The tensile properties of the steel pipe manufactured as described above were measured. The measurement results are also shown in Table 2. Tensile strength was evaluated by taking two full thickness tensile test pieces in the vertical direction of rolling, conducting a tensile test, and evaluating the average value. Tensile strength of 517 MPa or more (API 5L X60 or more) and 680 MPa or less were determined as strengths necessary for the present invention.

降伏比、一様伸びは、圧延方向の全厚引張試験片を2本採取し、引張試験を行い、その平均値で評価した。コーティング前の降伏比80%以下、コーティング後の降伏比85%以下、一様伸び12%以上を本発明に必要な降伏比とした。   Yield ratio and uniform elongation were evaluated by the average value of two tensile test specimens taken in the rolling direction. The yield ratio before coating was 80% or less, the yield ratio after coating was 85% or less, and the uniform elongation was 12% or more.

母材靭性については、管周方向のフルサイズシャルピーVノッチ試験片を3本採取し、シャルピー試験を行い、−10℃での吸収エネルギーを測定し、その平均値を求めた。−10℃での吸収エネルギーが200J以上のものを良好とした。残留オーステナイト量は、X線回折により定量化し、2%以上を良好とした。   For base metal toughness, three full-size Charpy V-notch specimens in the pipe circumferential direction were collected, Charpy test was performed, the absorbed energy at -10 ° C was measured, and the average value was obtained. The absorption energy at −10 ° C. was determined to be 200 J or more. The amount of retained austenite was quantified by X-ray diffraction, and 2% or more was considered good.

溶接熱影響部(HAZ)靭性は、シーム溶接部の板厚中央部よりノッチの長さの比が、溶接金属:HAZ=1:1になるように、フルサイズシャルピーVノッチ試験片を3本採取し試験を行い、−10℃でのシャルピー吸収エネルギーを測定し、その平均値を求めた。   The weld heat-affected zone (HAZ) toughness consists of three full-size Charpy V-notch specimens so that the ratio of the notch length from the center of the thickness of the seam weld zone to the weld metal: HAZ = 1: 1. The samples were collected and tested, the Charpy absorbed energy at −10 ° C. was measured, and the average value was obtained.

表2において、本発明例であるNo.1〜7はいずれも、化学成分および製造方法が本発明の範囲内であり、引張強度517MPa以上の高強度でコーティング前の降伏比80%以下、コーティング後の降伏比85%以下、一様伸び12%以上の高一様伸びであり、母材ならびに溶接熱影響部の靭性は良好であった。   In Table 2, all of No. 1 to 7 as examples of the present invention have chemical components and production methods within the scope of the present invention, high tensile strength of 517 MPa or more, yield ratio before coating of 80% or less, coating The yield ratio was 85% or less and the uniform elongation was 12% or more, and the toughness of the base metal and the weld heat affected zone was good.

また、鋼板の組織はフェライト、ベイナイト、島状マルテンサイトの3相組織であり、島状マルテンサイトの体積分率は3〜15%の範囲内、残留オーステナイトの体積分率は2%以上であった。なお、島状マルテンサイトの体積分率は、走査型電子顕微鏡(SEM)で観察したミクロ組織から画像処理により求めた。   The structure of the steel sheet is a three-phase structure of ferrite, bainite, and island martensite, the volume fraction of island martensite is in the range of 3 to 15%, and the volume fraction of retained austenite is 2% or more. It was. In addition, the volume fraction of island martensite was calculated | required by image processing from the microstructure observed with the scanning electron microscope (SEM).

No.8〜13は、化学成分は本発明の範囲内であるが、製造方法が本発明の範囲外であるため、組織、強度、降伏比、一様伸びのいずれかが不十分であった。No.14〜18は化学成分が本発明の範囲外であるので、十分な強度が得られないか、降伏比が高いか、一様伸びが低いか、靭性が劣っていた。   In Nos. 8 to 13, the chemical components are within the scope of the present invention, but the production method is outside the scope of the present invention, so any of the structure, strength, yield ratio, and uniform elongation was insufficient. . Nos. 14 to 18 had chemical components outside the scope of the present invention, so that sufficient strength could not be obtained, yield ratio was high, uniform elongation was low, or toughness was inferior.

本発明鋼管の母材の金属組織の一例を示すSEM写真。The SEM photograph which shows an example of the metal structure of the preform | base_material of this invention steel pipe.

Claims (3)

質量%で、C:0.03〜0.1%、Si:0.01〜0.5%、Mn:1.2〜2.0%、Mo:0.05〜0.4%、Cu+Ni:0.1%以上、Ti:0.005〜0.04%、Nb:0.005〜0.07%、Al:0.08%以下、N:0.005%以下を含有し、Ti/Nが3以上であり、(1)式を満足し、残部がFeおよび不可避的不純物からなる鋼を、1000〜1300℃の温度に加熱し、Ar温度以上の圧延終了温度で熱間圧延した後、5℃/s以上の冷却速度で500〜650℃まで加速冷却を行い、その後直ちに0.5℃/s以上の昇温速度で550〜750℃まで再加熱を行い、金属組織がフェライトとベイナイトと島状マルテンサイトとの3相組織であり、島状マルテンサイトの体積分率が3〜15%であり、残留オーステナイトの体積分率が2%以上であり、長手方向の一様伸びが12%以上である鋼板を、冷間にて管状に成形し、突き合わせ部を溶接して鋼管とし、加熱温度が300℃以下のコーティング処理をすることを特徴とする、
X70グレード以下の低降伏比高強度高靭性鋼管の製造方法。
Ceq1≦0.40・・・(1)
但し、Ceq1=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5
In mass%, C: 0.03-0.1%, Si: 0.01-0.5%, Mn: 1.2-2.0%, Mo: 0.05-0.4%, Cu + Ni: 0.1% or more, Ti: 0.005 to 0.04%, Nb: 0.005 to 0.07%, Al: 0.08% or less, N: 0.005% or less, Ti / N Is 3 or more, satisfies the formula (1), and the remainder is made of Fe and inevitable impurities, heated to a temperature of 1000 to 1300 ° C., and hot-rolled at a rolling end temperature of Ar 3 or higher Accelerated cooling to 500 to 650 ° C. at a cooling rate of 5 ° C./s or more, and then immediately reheating to 550 to 750 ° C. at a heating rate of 0.5 ° C./s or more. Is a three-phase structure of island martensite, and the volume fraction of island martensite is 3-15% A steel sheet having a volume fraction of retained austenite of 2% or more and a uniform elongation in the longitudinal direction of 12% or more is formed into a tubular shape in the cold, the butt portion is welded to form a steel pipe, and the heating temperature is The coating process is performed at 300 ° C. or lower,
A method for producing a low yield ratio high strength high toughness steel pipe of X70 grade or less .
Ceq1 ≦ 0.40 (1)
However, Ceq1 = C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5
成分組成に更に、質量%で、V:0.005〜0.1%、Cr:0.5%以下、Ca:0.0005〜0.003%、B:0.005%以下の1種又は2種以上を含有することを特徴とする、請求項1に記載のX70グレード以下の低降伏比高強度高靭性鋼管の製造方法。 In addition to the component composition, by mass%, V: 0.005 to 0.1%, Cr: 0.5% or less, Ca: 0.0005 to 0.003%, B: 0.005% or less The method for producing a low yield ratio, high strength, high toughness steel pipe of X70 grade or less according to claim 1, comprising two or more kinds. 請求項1または2記載の成分組成とフェライトとベイナイトと島状マルテンサイトとの3相組織であり、島状マルテンサイトの体積分率が3〜15%であり、残留オーステナイトの体積分率が2%以上である金属組織を有する鋼板を母材とし、加熱温度が300℃以下のコーティング処理が施されたことを特徴とする、X70グレード以下の低降伏比高強度高靭性鋼管。 The component composition according to claim 1, a three-phase structure of ferrite, bainite, and island martensite, the volume fraction of island martensite is 3 to 15%, and the volume fraction of retained austenite is 2 % X70 grade or lower low yield ratio high strength high toughness steel pipe, characterized in that a steel sheet having a metal structure of at least% is used as a base material and a coating treatment is performed at a heating temperature of 300 ° C. or lower.
JP2007091865A 2007-03-30 2007-03-30 X70 grade or less low yield ratio high strength high toughness steel pipe and method for producing the same Active JP5141073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007091865A JP5141073B2 (en) 2007-03-30 2007-03-30 X70 grade or less low yield ratio high strength high toughness steel pipe and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007091865A JP5141073B2 (en) 2007-03-30 2007-03-30 X70 grade or less low yield ratio high strength high toughness steel pipe and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008248330A JP2008248330A (en) 2008-10-16
JP5141073B2 true JP5141073B2 (en) 2013-02-13

Family

ID=39973621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007091865A Active JP5141073B2 (en) 2007-03-30 2007-03-30 X70 grade or less low yield ratio high strength high toughness steel pipe and method for producing the same

Country Status (1)

Country Link
JP (1) JP5141073B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021078255A1 (en) * 2019-10-24 2021-04-29 宝山钢铁股份有限公司 Anti-collapse petroleum casing pipe and manufacturing method therefor
JP7125165B2 (en) 2016-04-28 2022-08-24 日本ドライブイット株式会社 floor support

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4853575B2 (en) * 2009-02-06 2012-01-11 Jfeスチール株式会社 High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same
KR101122957B1 (en) * 2009-08-11 2012-03-15 (주) 디에이치홀딩스 Suspension torsion beam manufacturing process line apparatus and hybrid press forming torsion beam thereof
US9822422B2 (en) 2009-09-24 2017-11-21 Ati Properties Llc Processes for reducing flatness deviations in alloy articles
JP5532800B2 (en) * 2009-09-30 2014-06-25 Jfeスチール株式会社 Low yield ratio high strength high uniform stretch steel plate with excellent strain aging resistance and method for producing the same
WO2011043287A1 (en) * 2009-10-05 2011-04-14 新日本製鐵株式会社 Steel for linepipe having good strength and malleability, and method for producing the same
CN104264054B (en) 2014-09-19 2017-02-22 宝山钢铁股份有限公司 550MPa-level high-temperature resistant pipeline steel and preparation method thereof
KR101758483B1 (en) * 2015-12-15 2017-07-17 주식회사 포스코 High strength steel sheet having excellent strain aging impact property and method for manufacturing the same
MX2019008766A (en) * 2017-01-25 2019-09-18 Jfe Steel Corp Hot-rolled steel sheet for coiled tubing.
KR102209581B1 (en) * 2018-11-29 2021-01-28 주식회사 포스코 The steel plate having excellent heat affected zone toughness and method for manufacturing thereof
KR102443928B1 (en) * 2020-12-10 2022-09-19 주식회사 포스코 Steel sheet for seismic damper having superior toughness property and manufacturing method of the same
CN117925963A (en) * 2023-12-14 2024-04-26 华北理工大学 Ultra-high-strength plastic ultra-fine bainite finish rolling deformed steel bar and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4507746B2 (en) * 2003-07-31 2010-07-21 Jfeスチール株式会社 Low yield ratio high strength high toughness steel pipe excellent in strain aging resistance and method for producing the same
JP4066905B2 (en) * 2003-07-31 2008-03-26 Jfeスチール株式会社 Manufacturing method of low yield ratio high strength high toughness steel sheet with excellent weld heat affected zone toughness
JP5176271B2 (en) * 2005-03-22 2013-04-03 新日鐵住金株式会社 Method for producing high-strength steel sheet for line pipe with tensile strength of 760 MPa or higher with suppressed increase in yield strength after heating by coating treatment, and method for producing high-strength steel pipe for line pipe using the same
JP4720344B2 (en) * 2005-07-29 2011-07-13 Jfeスチール株式会社 Steel pipe, pipeline using the steel pipe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7125165B2 (en) 2016-04-28 2022-08-24 日本ドライブイット株式会社 floor support
WO2021078255A1 (en) * 2019-10-24 2021-04-29 宝山钢铁股份有限公司 Anti-collapse petroleum casing pipe and manufacturing method therefor

Also Published As

Publication number Publication date
JP2008248330A (en) 2008-10-16

Similar Documents

Publication Publication Date Title
JP5141073B2 (en) X70 grade or less low yield ratio high strength high toughness steel pipe and method for producing the same
JP5516784B2 (en) Low yield ratio high strength steel sheet, method for producing the same, and high strength welded steel pipe using the same
JP5516785B2 (en) Low yield ratio high strength steel sheet, method for producing the same, and high strength welded steel pipe using the same
JP4844687B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP4853575B2 (en) High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same
JP5223511B2 (en) Steel sheet for high strength sour line pipe, method for producing the same and steel pipe
JP5821173B2 (en) Low yield ratio high strength high uniform stretch steel sheet and method for producing the same
JP5353156B2 (en) Steel pipe for line pipe and manufacturing method thereof
JP5900303B2 (en) High-strength steel sheet for sour-resistant pipes with excellent material uniformity in the steel sheet and its manufacturing method
JP5092498B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP5532800B2 (en) Low yield ratio high strength high uniform stretch steel plate with excellent strain aging resistance and method for producing the same
WO2017130885A1 (en) Steel sheet for high-strength/high-toughness steel tubes, and method for producing same
JP5991175B2 (en) High-strength steel sheet for line pipes with excellent material uniformity in the steel sheet and its manufacturing method
WO2004111286A1 (en) Steel plate and welded steel tube exhibiting low yield ratio, high strength and high toughness and method for production thereof
EP3276025B1 (en) Steel plate for structural pipe, method for producing steel plate for structural pipe, and structural pipe
EP3276026A1 (en) Thick steel sheet for structural pipe, method for manufacturing thick steel sheet for structural pipe, and structural pipe
WO2016157863A1 (en) High strength/high toughness steel sheet and method for producing same
JP2015190026A (en) Thick high strength electroseamed steel pipe for linepipe and manufacturing method therefor
JP2015189984A (en) Low yield ratio high strength and high toughness steel plate, method for producing low yield ratio high strength and high toughness steel plate, and steel pipe
JP4507708B2 (en) Low yield ratio high strength high toughness steel sheet manufacturing method
JP5991174B2 (en) High-strength steel sheet for sour-resistant pipes with excellent material uniformity in the steel sheet and its manufacturing method
JP7115200B2 (en) Steel plate for line pipe
JP2012017522A (en) Steel material for line pipe
JP6521196B1 (en) High strength steel plate for sour line pipe, manufacturing method thereof and high strength steel pipe using high strength steel plate for sour line pipe
JP7163777B2 (en) Steel plate for line pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100222

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5141073

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250