JP4066905B2 - Manufacturing method of low yield ratio high strength high toughness steel sheet with excellent weld heat affected zone toughness - Google Patents

Manufacturing method of low yield ratio high strength high toughness steel sheet with excellent weld heat affected zone toughness Download PDF

Info

Publication number
JP4066905B2
JP4066905B2 JP2003204990A JP2003204990A JP4066905B2 JP 4066905 B2 JP4066905 B2 JP 4066905B2 JP 2003204990 A JP2003204990 A JP 2003204990A JP 2003204990 A JP2003204990 A JP 2003204990A JP 4066905 B2 JP4066905 B2 JP 4066905B2
Authority
JP
Japan
Prior art keywords
less
toughness
steel sheet
affected zone
weld heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003204990A
Other languages
Japanese (ja)
Other versions
JP2005048224A (en
Inventor
光浩 岡津
茂 遠藤
信行 石川
豊久 新宮
隆二 村岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003204990A priority Critical patent/JP4066905B2/en
Publication of JP2005048224A publication Critical patent/JP2005048224A/en
Application granted granted Critical
Publication of JP4066905B2 publication Critical patent/JP4066905B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、建築、海洋構造物、ラインパイプ、造船、土木、建設機械等の分野での使用に好適な、溶接部も含めて高靱性を要求される、溶接熱影響部靱性に優れた低降伏比高強度鋼板の製造方法に関するものである。
【0002】
【従来の技術】
近年、溶接構造用鋼材においては、耐震性の観点から低降伏比化も要求されている。一般に、鋼材の金属組織を、フェライトの様な軟質相の中に、ベイナイトやマルテンサイトなどの硬質相が適度に分散した組織にすることで、鋼材の低降伏比化が可能であることが知られている。
【0003】
上記のような軟質相の中に硬質相が適度に分散した組織を得る製造方法として、焼入れ(Q)と焼戻し(T)の中間に、フェライトとオーステナイトの2相域からの焼き入れ(Q’)を施す熱処理方法が知られている(例えば、特許文献1参照。)。この熱処理方法では、Q’温度を適当に選択することにより、低降伏比化が達成可能であるが、熱処理工程数が増加するため、生産性の低下、製造コストの増加を招く。
【0004】
製造工程が増加することがない方法として、Ar3温度以上で圧延終了後、鋼材の温度をフェライトが生成するAr3変態点以下になるまで加速冷却の開始を遅らせる方法が開示されている(例えば、特許文献2参照。)。しかし、圧延終了から加速冷却開始までの温度域を放冷程度の冷却速度で冷却する必要があるため、生産性が極端に低下する。
【0005】
また、上記のような硬質相を利用するような成分設計を行うことにより、溶接施工した際に母材の溶接熱影響部の硬化を促進するため、溶接熱影響部靱性を劣化させるという問題も生じている。
【0006】
【特許文献1】
特開昭55−97425号公報
【0007】
【特許文献2】
特開昭55−41927号公報
【0008】
【発明が解決しようとする課題】
このように従来の技術では、生産性の低下、製造コストの増加、溶接熱影響部の靱性低下を招くことなく、低降伏比高強度高靱性鋼板を製造することは困難である。
【0009】
したがって本発明の目的は、このような従来技術の課題を解決し、高製造効率、低コストで製造でき、溶接熱影響部も含めて高靱性を有する、溶接熱影響部靱性に優れた低降伏比高強度高靱性鋼板の製造方法を提供することにある。
【0010】
【課題を解決するための手段】
このような課題を解決するための本発明の特徴は以下の通りである。
(1)質量%で、C:0.03〜0.1%、Si:0.01〜0.5%、Mn:1.2〜2.5%、Al:0.08%以下、Ti:0.008〜0.025%、N:0.004〜0.007%を含有し、かつTi量とN量との比であるTi/Nが2〜4であり、残部Feおよび不可避的不純物からなる鋼を、Ar3温度以上の圧延終了温度で熱間圧延して鋼板とした後、5℃/s以上の冷却速度で450〜650℃まで加速冷却を行い、その後直ちに0.5℃/s以上の昇温速度で550〜750℃まで再加熱を行うことで鋼板の金属組織を、フェライトとベイナイトと島状マルテンサイトとの3相組織として、島状マルテンサイトの面積分率を3〜20%とすることを特徴とする溶接熱影響部靱性に優れた低降伏比高強度鋼板の製造方法。
(2)さらに、質量%で、Ca:0.001〜0.003%を含有し、不純物として含有されるO、SがO:0.003%以下、S:0.005%以下であり、かつCa、O、Sの含有量が下記(a)式を満たすことを特徴とする(1)に記載の溶接熱影響部靱性に優れた低降伏比高強度鋼板の製造方法。
0.4≦(1−130×[O])×[Ca]/(1.25×[S])≦0.8 …(a)
但し、(a)式の元素記号は各含有元素の質量%を示す。
(3)さらに、質量%で、Mo:0.4%以下、Nb:0.07%以下、V:0.1%以下、Cu:0.5%以下、Ni:0.5%以下、Cr:0.5%以下、B:0.005%以下の中から選ばれる1種又は2種以上を添加することを特徴とする(1)または(2)に記載の溶接熱影響部靱性に優れた低降伏比高強度鋼板の製造方法。
【0011】
【発明の実施の形態】
本発明者らは前記課題を解決するために、鋼の化学組成、鋼板の製造方法、特に制御圧延後の加速冷却とその後の再加熱という製造プロセスについて鋭意検討した結果、Mn、Mo等の焼入性向上元素を添加した鋼を用い、加速冷却過程でベイナイト変態途中すなわち未変態オーステナイトが存在する温度領域で冷却を停止し、その後直ちに再加熱を行うことにより、鋼板の金属組織を、フェライト、ベイナイトの混合相中に、フェライト、ベイナイトより硬質相である島状マルテンサイト(以下MAと記載する。)が均一に生成した3相組織となり、低降伏比化が可能であること、さらにこのような焼入性元素添加による溶接熱影響部靱性低下を抑制するために、高温で安定なTiの窒化物の分散によるピンニング効果の利用と、さらにこれらのTi窒化物を核に溶接熱サイクル中に生成するCa-Mn複合酸硫化物がγ粒界からのフェライト変態を促進することで溶接熱影響部靱性改善に非常に有効であるという知見を得た。
【0012】
本発明は上記の知見により得られたもので、母材においては圧延後の加速冷却、再加熱によって生成したベイナイト、フェライト相と、再加熱後の空冷中に生じる硬質相であるMAが均一に生成した3相組織を有し、溶接熱影響部においては粒界から変態した細粒フェライトによって硬さの上昇を防ぎ、靱性劣化を抑制する、低降伏比高強度高靱性鋼板に関するものである。
【0013】
以下、本発明の高強度鋼板について詳しく説明する。まず、本発明の低降伏比かつ高強度化を達成する母材組織について説明する。
【0014】
本発明では、フェライト相、ベイナイト相に硬質相であるMAが均一に生成した組織とすることで、低降伏比化を達成している。本発明における、MA生成のメカニズムは以下の通りである。まず、加速冷却をベイナイト変態途中すなわち未変態オーステナイトが存在する温度域で終了し、その後に再加熱を行うことで未変態オーステナイトからのフェライト変態を生じるが、その際にCが未変態オーステナイトに排出されるため、フェライト変態が進行するに従ってオーステナイト中のC量が増加する。このとき、焼入性を高め、オーステナイト安定化元素である、Mn、Mo等が一定以上含有されていると、再加熱終了時でもCが濃縮した未変態オーステナイトが残存し、その後の冷却でMAへと変態するものである。本発明では、ベイナイト変態途中で加速冷却を停止し、その後連続的に再加熱を行うことで、製造効率を低下させることなく硬質相であるMAを生成させることができ、硬質相を含んだ複合組織である3相組織とすることで低降伏比が達成できる。3相組織中のMAの割合は、MAの面積分率(鋼板の任意の断面におけるMAの面積の割合)で、3〜20%とする。MAの面積分率が3%未満では低降伏比化を達成するには不十分であり、また20%を越えると母材靱性を劣化させる場合がある。また、低降伏比化および母材靭性の観点から、MAの面積分率は5〜15%が望ましい。
【0015】
フェライトとベイナイトとMAとの3相組織に、パーライトなどの異なる金属組織が1種または2種以上混在する場合は、強度が低下するため、フェライト相、ベイナイト相およびMA以外の組織分率は少ない程良い。しかし、フェライト相、ベイナイト相およびMA以外の組織の体積分率が低い場合は影響が無視できるため、トータルの体積分率で3%未満の他の金属組織を、すなわちパーライトやセメンタイト等を1種または2種以上含有してもよい。また、強度確保の観点からベイナイトの体積分率を10%以上にする事が望ましい。
【0016】
本発明の鋼板は以上のように、フェライトと、ベイナイトと、MAとの3相からなる複合組織を有するが、このような組織は以下のような組成の鋼を用いて、以下のような方法で製造することにより得ることができる。
【0017】
まず、本発明の母材低降伏比かつ高強度化のための化学成分設計について説明する。以下の説明において%で示す単位は全て質量%である。
【0018】
C:0.03〜0.1%とする。CはMA生成に重要な元素であるが、0.03%未満ではMAの生成に不十分であり、また十分な強度が確保できない。0.1%を越える添加ではHAZ靭性を劣化させるため、C含有量を0.03〜0.1%に規定する。
【0019】
Si:0.01〜0.5%とする。Siは脱酸のため添加するが、0.01%未満では脱酸効果が十分でなく、0.5%を超えると靭性や溶接性を劣化させるため、Si含有量を0.01〜0.5%に規定する。
【0020】
Mn:1.2〜2.5%とする。Mnは強度、靭性向上、更に焼き入れ性を向上しMA生成を促すために添加するが、1.2%未満ではその効果が十分でなく、2.5%を超えると靱性ならびに溶接性が劣化するため、Mn含有量を1.2〜2.5%に規定する。なお、Mo、Ni等の他のオーステナイト安定化元素を含有しない場合は、Mn含有量を1.5%以上とすることが望ましい。
【0021】
Al:0.08%以下とする。Alは脱酸剤として添加されるが、0.08%を超えると鋼の清浄度が低下し、靱性が劣化するため、Al含有量は0.08%以下に規定する。望ましくは0.01〜0.08%とする。
【0022】
Ti窒化物分散による溶接熱影響部の粗大化抑制を行うために、TiおよびNを含有する。
【0023】
Ti:0.008〜0.025%とする。Tiは0.008%以上、Nと同時に添加することで鋼中でのTi窒化物の平衡固溶温度が1300℃を超える。しかし、0.0025%を超えて添加しても効果が飽和するため、Ti含有量を0.008〜0.025%に規定する。
【0024】
N:0.004〜0.007%とする。Nは0.004%以上、Tiと同時に添加することで鋼中でのTi窒化物の平衡固溶温度が1300℃を超える。しかし、0.007%を超えて添加すると、Ti窒化物にならない固溶したNが靱性に悪影響を及ぼすため、N含有量を0.004〜0.007%に規定する。
【0025】
Ti/N:2〜4とする。Ti量とN量との比であるTi/Nを4以下とすることで、Ti窒化物が鋳造時に微細分散析出するため、溶接熱影響部においてオーステナイトの粒成長を全面的に抑制することが可能である。一方で、Ti/Nが2未満の場合は、相対的にTiが不足することから固溶したNが靱性に悪影響を及ぼすため、Ti/Nを2〜4とすることが望ましい。
【0026】
本発明ではTiとNとの含有量を上記の範囲とすることで、窒化物を析出させて、Mn等の焼入性の高い元素を添加しても接熱影響部の靱性を良好とすることができる。
【0027】
本発明では、さらに、Caを含有し、不純物として含有されるO、Sの含有量を所定の範囲とすることが望ましい。
【0028】
Ca:0.001〜0.003%とする。製鋼プロセスにおいて、Ca添加量が0.001%未満の場合、脱酸反応支配でCaSの確保が難しく靱性改善効果が得られないので、Caの下限を0.001%とした。一方、Ca添加量が0.003%を超えた場合、粗大CaOが生成しやすくなり、母材を含めて靱性が低下するうえに、取鍋のノズル閉塞の原因となり、生産性を阻害するため、上限は0.003%とする。
【0029】
O:0.003%以下とする。粗大で靱性に悪影響を及ぼす介在物生成抑制の観点からO含有量を0.003%以下とする。
【0030】
S:0.005%以下とする。粗大で靱性に悪影響を及ぼす介在物生成抑制の観点からS含有量を0.005%以下とする。
【0031】
Ca、O、Sの含有量が下記(1)式を満足することが望ましい。但し、(1)式および以下の(2)〜(5)式の元素記号は各含有元素の質量%を示す。
0.4≦(1−130×[O])×[Ca]/(1.25×[S])≦0.8・・・(1)
通常、CaはHICやラミネーションの原因となるMnS生成を抑制し、無害なCaS化するために鋼中のS量に対し化学量論的に余るように添加されている。しかし、本発明者らは一部のSがMnと結合してMnSが生成する組成比を選ぶことで、溶接熱履歴中にCaとMnの複合析出が起こり、さらに得られた酸硫化物がフェライト変態の核生成能を持つことを見いだした。すなわち、粗大で靱性に悪影響を及ぼす介在物生成抑制の観点から、O≦0.003%、S≦0.005%とした上で、CaO生成分を除いた有効Ca量(Ca*)を実験結果の回帰による下記(2)式を用いて計算し、
Ca*=(1−130×[O])×[Ca]・・・(2)
さらにCaとSの化学量論比1.25で有効Ca量(Ca*)を割った値が下記(3)式を満たすようにCaを添加した場合は、鋼中SがすべてCaSを形成し、
[S]<Ca*/1.25・・・(3)
下記(4)式を満たすようにCaを添加した場合は、鋼中Sの一部がCaSとなり、残りはMnSとなる。
0<Ca*/1.25<[S]・・・(4)
(4)式を満たす範囲でCaの含有量を種々変化させた鋼を用いて入熱40kJ/cmに相当する熱履歴を加える再現熱サイクル試験を行い、その結果、Ca*/1.25の範囲を下記(5)式とすることで、溶接熱影響部の粒界フェライト生成促進と、それに伴う靱性の著しい向上が得られることを見出し、
0.4[S]≦Ca*/1.25≦0.8[S]・・・(5)
これにより上記(1)式が導出された。
【0032】
本発明では、鋼板の強度靱性をさらに改善し、且つ焼き入れ性を向上させMAの生成を促す目的で、以下に示すMo、Nb、V、Cu、Ni、Cr、B、の1種又は2種以上を含有してもよい。
【0033】
Mo:0.4%以下とする。Moは焼入性向上元素の1種であり、強度上昇に有効であり、またMA生成を促す。しかし、0.4%を越える添加はHAZ靭性の劣化を招くことから、Mo含有量を0.4%以下に規定する。
【0034】
Nb:0.07%以下とする。Nbは圧延時や焼き入れ時の粒成長を抑制する事によりミクロ組織を微細化し、靭性を向上させる効果がある。しかし、0.07%を超えると溶接熱影響部の靭性が劣化するため、Nb含有量は0.07%以下に規定する。
【0035】
V:0.1%以下とする。Vは焼入性向上元素の1種であり、強度上昇に有効であり、またMA生成を促す。しかし、0.1%を超えると溶接熱影響部の靭性が劣化するため、V含有量は0.1%以下に規定する。
【0036】
Cu:0.5%以下とする。Cuは靭性の改善と強度の上昇に有効な元素であるが、多く添加すると溶接性が劣化するため、添加する場合は0.5%を上限とする。
【0037】
Ni:0.5%以下とする。Niは靭性の改善と強度の上昇に有効な元素であるが、多く添加するとコスト的に不利になり、また、溶接熱影響部靱性が劣化するため、添加する場合は0.5%を上限とする。
【0038】
Cr:0.5%以下とする。CrはMnと同様に低Cでも十分な強度を得るために有効な元素であるが、多く添加すると溶接性を劣化するため、添加する場合は0.5%を上限とする。
【0039】
B:0.005%以下とする。Bは強度上昇に寄与する元素であるが、0.005%を越えて添加すると溶接熱影響部を著しく硬化させ、低温割れの原因となるため、添加する場合は0.005%以下とする。
【0040】
上記の成分の鋼を用いることで、以下に示すような溶接熱影響部の組織制御を行うことができる。従来のMn、Moを添加した鋼の場合は、焼入性の増大により溶接熱影響部のミクロ組織が粗大な上部ベイナイト組織になり靱性が劣化することが知られている。図3は従来の高Mn−Mo添加鋼板(0.06C―1.8Mn―0.003S−0.25Mo―0.013Ti―0.002O−0.003N)に再現熱サイクル装置によって溶接熱影響部を模擬した入熱40kJ/cmに相当する熱履歴を加えた後のミクロ組織を示す光学顕微鏡写真であり、ベイナイト単相で、粗大な上部ベイナイト組織が形成されている様子を示している。一方、本発明では、Ti窒化物の均一分散による粗大化抑制や、フェライト変態の核生成を促進するCa−Mn複合酸硫化物によって得られる粒界フェライトにより、細粒フェライト−ベイナイト組織を形成することで、大幅に靱性を向上させることができる。図4は本発明鋼板(0.06C−1.8Mn―0.0015S−0.26Mo―0.014Ti―0.0017Ca−0.002O−0.0057N)に溶接熱影響部を模擬した熱サイクルを与えた後の光学顕微鏡写真であり、ミクロ組織は細粒フェライト−ベイナイト組織である。図4中の矢印は粒界フェライトを示している。
【0041】
次に、本発明の母材低降伏比かつ高強度を達成する3相組織を得るための製造方法について説明する。
【0042】
本発明の高強度鋼板は上記の成分組成を有する鋼を用い、圧延終了温度:Ar3温度以上で熱間圧延を行い、その後5℃/s以上の冷却速度で450〜600℃まで加速冷却を行い、その後直ちに0.5℃/s以上の昇温速度で550〜750℃の温度まで再加熱を行うことで、金属組織をフェライトとベイナイトの混合相中に硬質相であるMAが均一に生成した3相組織とすることができる。ここで、温度は鋼板の平均温度とする。以下、各製造条件について詳しく説明する。
【0043】
スラブ加熱温度は特に規定しないが、加熱温度が1000℃未満では炭化物の固溶が不十分で必要な強度が得られず、1300℃を超えると結晶粒が粗大化し母材靭性が劣化するため、加熱温度は1000〜1300℃とする事が好ましい。
【0044】
圧延終了温度:Ar3温度以上とする。圧延終了温度がAr3温度以下であると、その後のフェライト変態速度が低下するため、再加熱時の未変態オーステナイトへのCの濃縮が不十分となりMAが生成しない。そのため圧延終了温度をAr3温度以上とする。
【0045】
圧延終了後、直ちに5℃/s以上の冷却速度で冷却する。冷却速度が5℃/s未満では冷却時にパーライトを生成するため、ベイナイトによる強化が得られないため、十分な強度が得られない。よって、圧延終了後の冷却速度を5℃/s以上に規定する。このときの冷却方法については製造プロセスによって任意の冷却設備を用いることが可能である。本発明では、加速冷却によりベイナイト変態領域まで過冷することにより、その後の再加熱時に温度保持することなくフェライト変態を完了させることが可能である。
【0046】
冷却停止温度:450〜650℃とする。このプロセスは本発明において、重要な製造条件である。本発明では再加熱後に存在するCの濃縮した未変態オーステナイトがその後の空冷時にMAへと変態する。すなわち、ベイナイト変態途中の未変態オーステナイトが存在する温度域で冷却を停止する必要がある。冷却停止温度が450℃未満では、ベイナイト変態が完了するため空冷時にMAが生成せず低降伏比化が達成できない。650℃を超えると冷却中に析出するパーライトにCが消費されMAが生成しないため、加速冷却停止温度を450〜650℃に規定する。MA生成の観点からは、好ましくは500〜650℃であり、より好ましくは530〜650℃である。
【0047】
加速冷却停止後直ちに0.5℃/s以上の昇温速度で550℃以上、750℃以下の温度まで再加熱を行う。再加熱時のフェライト変態時にCが未変態オーステナイトへ濃縮し、それが空冷時にMAへと変態する。すなわちMAを生成させるためには、加速冷却後直ちに750℃以下の温度域まで再加熱する必要がある。また再加熱の際には、冷却後の温度より少なくとも50℃以上昇温することが望ましい。昇温速度が0.5℃/s未満では、目的の再加熱温度に達するまでに長時間を要するため製造効率が悪化し、またパーライト変態が生じるためMAが生成せず、低降伏比化を達成する事ができない。再加熱温度が550℃未満の場合、再加熱時にフェライト変態が十分進行せず、必要とするMA量が得られない。一方、再加熱温度が750℃を超えるとベイナイトの軟化により十分な強度が得られないため、再加熱温度を750℃以下に規定する。再加熱温度において、特に温度保持時間を設定する必要はない。また、再加熱後の冷却過程において冷却速度によらずMAは生成するため、再加熱後の冷却は基本的には空冷とすることが好ましい。
【0048】
図1に上記の製造方法を用いて製造した本発明鋼板(0.05C−0.2Si−1.8Mn―0.003S―0.01Ti―0.025Nb―0.0022Ca―0.002O―0.005N)を走査型電子顕微鏡(SEM)で観察した写真を示す。図1によれば、フェライト(F)、ベイナイト(B)の混合組織に島状マルテンサイト(MA)が均一に生成している様子が確認できる。
【0049】
加速冷却後の再加熱を行うための設備として、加速冷却を行うための冷却設備の下流側に加熱装置を設置することができる。加熱装置としては、鋼板の急速加熱が可能であるガス燃焼炉や誘導加熱装置を用いる事が好ましい。誘導加熱装置は均熱炉等に比べて温度制御が容易でありコストも比較的低く、冷却後の鋼板を迅速に加熱できるので特に好ましい。また複数の誘導加熱装置を直列に連続して配置することにより、ライン速度や鋼板の種類・寸法が異なる場合にも、通電する誘導加熱装置の数や供給電力を任意に設定するだけで、昇温速度、再加熱温度を自在に操作することが可能である。
【0050】
本発明の製造方法を実施するための設備の一例を図2に示す。図2に示すように、圧延ライン1には上流から下流側に向かって熱間圧延機3、加速冷却装置4、インライン型誘導加熱装置5、ホットレベラー6が配置されている。インライン型誘導加熱装置5あるいは他の熱処理装置を、圧延設備である熱間圧延機3およびそれに引き続く冷却設備である加速冷却装置4と同一ライン上に設置する事によって、圧延、冷却終了後迅速に再加熱処理が行えるので、圧延冷却後の鋼板温度を過度に低下させることなく加熱することができる。
【0051】
【実施例】
表1に示す化学成分の鋼(鋼種A〜H)を連続鋳造法によりスラブとし、これを用いて板厚15、18mmの厚鋼板(No.1〜11)を製造した。
【0052】
【表1】

Figure 0004066905
【0053】
加熱したスラブを熱間圧延により圧延した後、直ちに水冷型の加速冷却設備を用いて冷却を行い、誘導加熱炉またはガス燃焼炉を用いて再加熱を行った。誘導加熱炉は加速冷却設備と同一ライン上に設置した。各鋼板(No.1〜11)の製造条件を表2に示す。
【0054】
以上のようにして製造した鋼板の引張特性を測定した。測定結果を表2に併せて示す。引張特性は、圧延垂直方向の全厚試験片を引張試験片として引張試験を行い、引張強度を測定した。引張強度580MPa以上を本発明に必要な強度とし、降伏比80%以下を本発明に必要な降伏比とした。母材靭性については、圧延垂直方向のフルサイズシャルピーVノッチ試験片を用いシャルピー試験を行い、−10℃での吸収エネルギーが200J以上のものを良好とした。
【0055】
溶接熱影響部靭性については、再現熱サイクル装置によって入熱40kJ/cmに相当する熱履歴を加えた試験片を用いてシャルピー試験を行った。そして、−30度でのVノッチシャルピー吸収エネルギー(vE)が100J以上かつ延性破面率(SA)が50%以上のものを良好とした。
【0056】
【表2】
Figure 0004066905
【0057】
表2において、本発明例であるNo.1〜5はいずれも、化学成分および製造方法が本発明の範囲内であり、鋼板の組織はフェライト、ベイナイト、島状マルテンサイトの3相組織であり、島状マルテンサイトの面積分率は3〜20%の範囲内であった。そして、いずれも引張強度580MPa以上の高強度で降伏比80%以下の低降伏比であり、母材ならびに溶接熱影響部の靭性は良好であった。特に、Ca、O、Sを制御した鋼種C、D、Eを用いたNo.3、4、5の溶接熱影響部靱性は、シャルピー吸収エネルギー、延性破面率とも非常に高い値を示した。
【0058】
一方、No.6〜8は、化学成分は本発明の範囲内であるが、製造方法が本発明の範囲外であるため、組織がフェライト、ベイナイトの2相組織であり、降伏比が80%以上と不十分であった。また、No.9〜11は化学成分が本発明の範囲外であるため、特に−30℃での溶接熱影響部靭性が劣っていた。
【0059】
【発明の効果】
以上述べたように、本発明によれば、溶接熱影響部靱性に優れた低降伏比高強度鋼板を、高能率、低コストで製造することができる。このため建築、海洋構造物、ラインパイプ、造船、土木、建設機械等の溶接構造物に使用する鋼板を、安価で大量に安定して製造することができ、生産性および経済性を著しく高めることができる。
【図面の簡単な説明】
【図1】本発明の鋼板を走査型電子顕微鏡(SEM)で観察した写真。
【図2】本発明の製造方法を実施するための製造ラインの一例を示す概略図。
【図3】従来の高Mn−Mo添加鋼板の光学顕微鏡写真。
【図4】本発明鋼板の光学顕微鏡写真。
【符号の説明】
1:圧延ライン、
2:鋼板、
3:熱間圧延機、
4:加速冷却装置、
5:インライン型誘導加熱装置、
6:ホットレベラー、
F:フェライト、
B:ベイナイト、
MA:島状マルテンサイト[0001]
BACKGROUND OF THE INVENTION
The present invention is suitable for use in the fields of architecture, offshore structures, line pipes, shipbuilding, civil engineering, construction machinery, etc., and is required to have high toughness including welded parts, and has excellent low heat-affected zone toughness. The present invention relates to a method for producing a high yield strength steel sheet.
[0002]
[Prior art]
In recent years, steel materials for welded structures are also required to have a low yield ratio from the viewpoint of earthquake resistance. In general, it is known that the yield ratio of steel can be reduced by making the microstructure of steel a structure in which a hard phase such as bainite or martensite is appropriately dispersed in a soft phase such as ferrite. It has been.
[0003]
As a production method for obtaining a structure in which a hard phase is appropriately dispersed in the soft phase as described above, quenching from a two-phase region of ferrite and austenite (Q ′) between quenching (Q) and tempering (T). ) Is known (see, for example, Patent Document 1). In this heat treatment method, a low yield ratio can be achieved by appropriately selecting the Q ′ temperature, but the number of heat treatment steps increases, resulting in a decrease in productivity and an increase in manufacturing cost.
[0004]
As a method in which the manufacturing process does not increase, a method is disclosed in which the start of accelerated cooling is delayed until the temperature of the steel material is equal to or lower than the Ar3 transformation point where ferrite is generated after the rolling is finished at an Ar3 temperature or higher (for example, a patent). Reference 2). However, since it is necessary to cool the temperature range from the end of rolling to the start of accelerated cooling at a cooling rate that is about the ability to cool, productivity is extremely reduced.
[0005]
In addition, by performing the component design using the hard phase as described above, the welding heat-affected zone of the base metal is promoted to be hardened when welding is performed. Has occurred.
[0006]
[Patent Document 1]
JP-A-55-97425 gazette
[Patent Document 2]
Japanese Patent Laid-Open No. 55-41927
[Problems to be solved by the invention]
As described above, it is difficult to produce a low yield ratio, high strength, high toughness steel sheet without causing a decrease in productivity, an increase in manufacturing cost, and a decrease in toughness of the weld heat affected zone.
[0009]
Therefore, the object of the present invention is to solve such problems of the prior art, and can be manufactured at high production efficiency and low cost, and has high toughness including the weld heat affected zone, and has low yield with excellent weld heat affected zone toughness. It is providing the manufacturing method of a specific high intensity | strength high toughness steel plate.
[0010]
[Means for Solving the Problems]
The features of the present invention for solving such problems are as follows.
(1) By mass%, C: 0.03-0.1%, Si: 0.01-0.5%, Mn: 1.2-2.5%, Al: 0.08% or less, Ti: .008 to .025% N: containing from 0.004 to 0.007%, and Ri Ti / N is 2 to 4 der, which is the ratio of the Ti content and the N content and the balance Fe and unavoidable steel ing from impurities, after the hot rolled steel sheets at Ar3 temperature or more rolling end temperature, subjected to accelerated cooling to 450 to 650 ° C. at 5 ° C. / s or more cooling rate, then immediately 0.5 ℃ / s or more steel sheet metal structure by performing reheated to 550 to 750 ° C. at a heating rate, a 3-phase structure of the ferrites and the bainite and island martensite, the area fraction of the island martensite A method for producing a low-yield-ratio high-strength steel sheet excellent in weld heat-affected zone toughness, characterized by being 3 to 20%.
(2) Further, by mass%, Ca: 0.001 to 0.003% is contained, O and S contained as impurities are O: 0.003% or less, S: 0.005% or less, And content of Ca, O, and S satisfy | fills following (a) Formula, The manufacturing method of the low yield ratio high strength steel plate excellent in the weld heat affected zone toughness as described in (1) characterized by the above-mentioned.
0.4 ≦ (1-130 × [O]) × [Ca] / (1.25 × [S]) ≦ 0.8 (a)
However, the element symbol of the formula (a) indicates mass% of each contained element.
(3) Further, in mass%, Mo: 0.4% or less, Nb: 0.07% or less, V: 0.1% or less, Cu: 0.5% or less, Ni: 0.5% or less, Cr One or more selected from: 0.5% or less and B: 0.005% or less are added. Excellent in weld heat affected zone toughness according to (1) or (2) A low yield ratio high strength steel sheet manufacturing method.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In order to solve the above-mentioned problems, the present inventors have intensively studied the manufacturing process of chemical composition of steel, steel plate manufacturing method, particularly accelerated cooling after controlled rolling and subsequent reheating. By using a steel added with an iron improving element, the cooling is stopped in the temperature range where bainite transformation is in progress, that is, untransformed austenite exists in the accelerated cooling process, and then immediately after reheating, the metal structure of the steel sheet is changed to ferrite, In the mixed phase of bainite, island-like martensite (hereinafter referred to as MA), which is a harder phase than ferrite and bainite, has a three-phase structure that is uniformly formed, and a low yield ratio is possible. In order to suppress the deterioration of the toughness of the weld heat affected zone due to the addition of a hardenable element, the use of the pinning effect due to the dispersion of Ti nitride that is stable at high temperatures, That the Ca-Mn complex oxysulfide produced during the welding heat cycle with Ti nitride as the core is very effective in improving the toughness of the weld heat affected zone by promoting ferrite transformation from the γ grain boundary. Obtained.
[0012]
The present invention has been obtained from the above findings. In the base material, bainite, ferrite phase generated by accelerated cooling after rolling and reheating, and MA, which is a hard phase generated during air cooling after reheating, are uniformly formed. The present invention relates to a low yield ratio, high strength, high toughness steel sheet that has a generated three-phase structure and prevents increase in hardness and suppresses toughness deterioration by fine-grained ferrite transformed from the grain boundary in the weld heat affected zone.
[0013]
Hereinafter, the high-strength steel sheet of the present invention will be described in detail. First, the base material structure that achieves the low yield ratio and high strength of the present invention will be described.
[0014]
In the present invention, a low yield ratio is achieved by forming a structure in which MA, which is a hard phase, is uniformly formed in the ferrite phase and the bainite phase. The mechanism of MA generation in the present invention is as follows. First, accelerated cooling is terminated in the middle of bainite transformation, that is, in the temperature range where untransformed austenite is present, and then reheating is performed to cause ferrite transformation from untransformed austenite. At this time, C is discharged into untransformed austenite. Therefore, the amount of C in the austenite increases as the ferrite transformation proceeds. At this time, if the hardenability is increased and austenite stabilizing elements such as Mn and Mo are contained in a certain amount or more, untransformed austenite in which C is concentrated remains even at the end of reheating, and MA is then cooled by cooling. It transforms into In the present invention, accelerated cooling is stopped in the middle of bainite transformation, and then reheating is performed continuously, so that MA that is a hard phase can be generated without lowering the production efficiency, and a composite containing a hard phase. A low yield ratio can be achieved by using a three-phase structure. The proportion of MA in the three-phase structure is 3-20% in terms of the area fraction of MA (ratio of the area of MA in any cross section of the steel sheet). If the area fraction of MA is less than 3%, it is insufficient to achieve a low yield ratio, and if it exceeds 20%, the base material toughness may be deteriorated. Further, from the viewpoint of lowering the yield ratio and base material toughness, the MA area fraction is desirably 5 to 15%.
[0015]
When one or two or more different metal structures such as pearlite are mixed in the three-phase structure of ferrite, bainite, and MA, the strength decreases, so the structure fraction other than the ferrite phase, bainite phase, and MA is small. Moderately good. However, if the volume fraction of the structure other than the ferrite phase, bainite phase and MA is low, the influence can be ignored, so other metal structures of less than 3% in total volume fraction, that is, one kind of pearlite, cementite, etc. Or you may contain 2 or more types. Moreover, it is desirable to make the volume fraction of bainite 10% or more from a viewpoint of ensuring strength.
[0016]
As described above, the steel sheet of the present invention has a composite structure composed of three phases of ferrite, bainite, and MA. Such a structure uses a steel having the following composition, and the following method. Can be obtained.
[0017]
First, the chemical component design for increasing the strength and strength of the base material according to the present invention will be described. In the following description, all units represented by% are mass%.
[0018]
C: Set to 0.03 to 0.1%. C is an important element for MA generation, but if it is less than 0.03%, it is insufficient for generation of MA, and sufficient strength cannot be secured. If the addition exceeds 0.1%, the HAZ toughness is deteriorated, so the C content is specified to be 0.03 to 0.1%.
[0019]
Si: 0.01 to 0.5%. Si is added for deoxidation, but if it is less than 0.01%, the deoxidation effect is not sufficient, and if it exceeds 0.5%, the toughness and weldability are deteriorated, so the Si content is 0.01 to 0.00. Specify 5%.
[0020]
Mn: 1.2 to 2.5%. Mn is added to improve strength and toughness, further improve hardenability and promote MA formation. However, if it is less than 1.2%, its effect is not sufficient, and if it exceeds 2.5%, toughness and weldability deteriorate. Therefore, the Mn content is specified to be 1.2 to 2.5%. In addition, when not containing other austenite stabilizing elements, such as Mo and Ni, it is desirable to make Mn content into 1.5% or more.
[0021]
Al: 0.08% or less. Al is added as a deoxidizer, but if it exceeds 0.08%, the cleanliness of the steel decreases and the toughness deteriorates, so the Al content is specified to be 0.08% or less. Desirably, the content is 0.01 to 0.08%.
[0022]
In order to suppress the coarsening of the weld heat-affected zone due to Ti nitride dispersion, Ti and N are contained.
[0023]
Ti: 0.008 to 0.025%. When Ti is added in an amount of 0.008% or more at the same time as N, the equilibrium solution temperature of Ti nitride in steel exceeds 1300 ° C. However, even if added over 0.0025%, the effect is saturated, so the Ti content is specified to be 0.008 to 0.025%.
[0024]
N: Set to 0.004 to 0.007%. When N is added to 0.004% or more simultaneously with Ti, the equilibrium solution temperature of Ti nitride in steel exceeds 1300 ° C. However, if added over 0.007%, solid solution N that does not become Ti nitride adversely affects toughness, so the N content is specified to be 0.004 to 0.007%.
[0025]
Ti / N: 2-4. By setting Ti / N, which is the ratio of Ti amount and N amount, to 4 or less, Ti nitride is finely dispersed and precipitated during casting, so that the austenite grain growth can be completely suppressed in the weld heat affected zone. Is possible. On the other hand, when Ti / N is less than 2, since Ti is relatively insufficient, solid solution N adversely affects toughness, so Ti / N is preferably set to 2 to 4.
[0026]
In the present invention, by setting the content of Ti and N within the above range, nitrides are precipitated and the toughness of the heat-affected zone is improved even if elements with high hardenability such as Mn are added. be able to.
[0027]
In the present invention, it is further preferable that the contents of O and S containing Ca and contained as impurities are within a predetermined range.
[0028]
Ca: 0.001 to 0.003%. In the steelmaking process, when the Ca addition amount is less than 0.001%, it is difficult to secure CaS due to the control of the deoxidation reaction, and a toughness improving effect cannot be obtained, so the lower limit of Ca was set to 0.001%. On the other hand, when the amount of Ca added exceeds 0.003%, coarse CaO is likely to be generated, and the toughness including the base material is lowered, which causes the nozzle clogging of the ladle and inhibits productivity. The upper limit is made 0.003%.
[0029]
O: Set to 0.003% or less. From the viewpoint of suppressing inclusion formation that is coarse and adversely affects toughness, the O content is set to 0.003% or less.
[0030]
S: 0.005% or less. From the viewpoint of suppressing inclusion formation that is coarse and adversely affects toughness, the S content is made 0.005% or less.
[0031]
It is desirable that the contents of Ca, O, and S satisfy the following formula (1). However, the element symbols in the formula (1) and the following formulas (2) to (5) indicate mass% of each contained element.
0.4 ≦ (1-130 × [O]) × [Ca] / (1.25 × [S]) ≦ 0.8 (1)
Usually, Ca is added in a stoichiometric excess with respect to the amount of S in the steel in order to suppress MnS generation that causes HIC and lamination, and to form harmless CaS. However, the present inventors have selected a composition ratio in which a part of S is bonded to Mn and MnS is generated, whereby composite precipitation of Ca and Mn occurs in the welding heat history, and the obtained oxysulfide is further obtained. It was found to have nucleation ability of ferrite transformation. That is, from the viewpoint of suppressing the formation of inclusions that are coarse and adversely affect toughness, the effective Ca amount (Ca *) excluding CaO generation was tested after setting O ≦ 0.003% and S ≦ 0.005%. Calculate using the following formula (2) by regression of the results,
Ca * = (1-130 × [O]) × [Ca] (2)
Furthermore, when Ca is added so that the value obtained by dividing the effective Ca amount (Ca *) by the stoichiometric ratio of Ca and S satisfies the following formula (3), all S in the steel forms CaS. ,
[S] <Ca * / 1.25 (3)
When Ca is added so as to satisfy the following formula (4), a part of S in the steel becomes CaS and the rest becomes MnS.
0 <Ca * / 1.25 <[S] (4)
(4) A reproducible thermal cycle test was performed in which a heat history corresponding to a heat input of 40 kJ / cm was applied using steel having various Ca contents within a range satisfying the formula. As a result, Ca * / 1.25 By setting the range to the following formula (5), it was found that the grain boundary ferrite formation promotion in the weld heat affected zone and the toughness accompanying it can be significantly improved,
0.4 [S] ≦ Ca * / 1.25 ≦ 0.8 [S] (5)
Thus, the above equation (1) was derived.
[0032]
In the present invention, one or two of Mo, Nb, V, Cu, Ni, Cr, and B shown below are used for the purpose of further improving the strength toughness of the steel sheet and improving the hardenability and promoting the production of MA. It may contain seeds or more.
[0033]
Mo: Set to 0.4% or less. Mo is one of the hardenability improving elements, is effective for increasing the strength, and promotes the formation of MA. However, addition exceeding 0.4% leads to deterioration of HAZ toughness, so the Mo content is specified to be 0.4% or less.
[0034]
Nb: Not more than 0.07%. Nb has the effect of reducing the grain growth during rolling and quenching to refine the microstructure and improve toughness. However, if it exceeds 0.07%, the toughness of the weld heat affected zone deteriorates, so the Nb content is specified to be 0.07% or less.
[0035]
V: 0.1% or less. V is one of the hardenability improving elements, is effective for increasing the strength, and promotes the formation of MA. However, if it exceeds 0.1%, the toughness of the weld heat affected zone deteriorates, so the V content is specified to be 0.1% or less.
[0036]
Cu: 0.5% or less. Cu is an element effective for improving toughness and increasing strength, but if added in a large amount, weldability deteriorates, so when added, the upper limit is 0.5%.
[0037]
Ni: 0.5% or less. Ni is an element effective for improving toughness and increasing strength, but if added in a large amount, it is disadvantageous in terms of cost, and the weld heat affected zone toughness deteriorates, so when added, the upper limit is 0.5%. To do.
[0038]
Cr: 0.5% or less. Cr, like Mn, is an element effective for obtaining sufficient strength even at low C. However, if a large amount is added, weldability deteriorates, so when added, the upper limit is 0.5%.
[0039]
B: Set to 0.005% or less. B is an element that contributes to an increase in strength. However, if added over 0.005%, the weld heat-affected zone is markedly hardened and causes low-temperature cracking, so when added, the content is made 0.005% or less.
[0040]
By using steel of the above components, the structure control of the weld heat affected zone as shown below can be performed. In the case of conventional steel added with Mn and Mo, it is known that the microstructure of the weld heat-affected zone becomes a coarse upper bainite structure due to an increase in hardenability and the toughness deteriorates. FIG. 3 shows the heat affected zone of a conventional high Mn-Mo-added steel plate (0.06C-1.8Mn-0.003S-0.25Mo-0.013Ti-0.002O-0.003N) by a reproducible thermal cycle device. 2 is an optical micrograph showing a microstructure after applying a thermal history corresponding to a heat input of 40 kJ / cm simulating the above, and shows a state in which a coarse upper bainite structure is formed in a bainite single phase. On the other hand, in the present invention, a fine-grained ferrite-bainite structure is formed by grain boundary ferrite obtained by Ca-Mn composite oxysulfide that promotes coarsening suppression by uniform dispersion of Ti nitride and nucleation of ferrite transformation. Thus, toughness can be significantly improved. FIG. 4 shows a thermal cycle simulating the heat affected zone of a steel plate of the present invention (0.06C-1.8Mn-0.0015S-0.26Mo-0.014Ti-0.0017Ca-0.002O-0.0057N). It is the optical microscope photograph after giving, and a microstructure is a fine grain ferrite-bainite structure. The arrows in FIG. 4 indicate the grain boundary ferrite.
[0041]
Next, a manufacturing method for obtaining a three-phase structure that achieves a low yield ratio and high strength of the base material of the present invention will be described.
[0042]
The high-strength steel sheet of the present invention uses steel having the above-described composition, is subjected to hot rolling at a rolling end temperature: Ar3 temperature or higher, and then accelerated to 450-600 ° C at a cooling rate of 5 ° C / s or higher. Then, immediately after reheating to a temperature of 550 to 750 ° C. at a temperature rising rate of 0.5 ° C./s or more, MA, which is a hard phase, was uniformly formed in the mixed phase of ferrite and bainite. It can be a three-phase structure. Here, the temperature is the average temperature of the steel sheet. Hereinafter, each manufacturing condition will be described in detail.
[0043]
The slab heating temperature is not particularly specified, but if the heating temperature is less than 1000 ° C, the required strength cannot be obtained because the solid solution of the carbide is insufficient, and if it exceeds 1300 ° C, the crystal grains become coarse and the base material toughness deteriorates. The heating temperature is preferably 1000 to 1300 ° C.
[0044]
Rolling end temperature: Ar3 temperature or higher. If the rolling end temperature is not higher than the Ar3 temperature, the subsequent ferrite transformation rate decreases, so that the concentration of C into untransformed austenite at the time of reheating becomes insufficient and MA is not generated. Therefore, the rolling end temperature is set to Ar3 temperature or higher.
[0045]
Immediately after the end of rolling, it is cooled at a cooling rate of 5 ° C./s or more. When the cooling rate is less than 5 ° C./s, pearlite is generated at the time of cooling, so that strengthening by bainite cannot be obtained, so that sufficient strength cannot be obtained. Therefore, the cooling rate after the end of rolling is specified to be 5 ° C./s or more. About the cooling method at this time, it is possible to use arbitrary cooling equipment by a manufacturing process. In the present invention, the ferrite transformation can be completed without maintaining the temperature during the subsequent reheating by supercooling to the bainite transformation region by accelerated cooling.
[0046]
Cooling stop temperature: 450 to 650 ° C. This process is an important manufacturing condition in the present invention. In the present invention, C-concentrated untransformed austenite present after reheating is transformed into MA upon subsequent air cooling. That is, it is necessary to stop the cooling in a temperature range where untransformed austenite during the bainite transformation exists. If the cooling stop temperature is less than 450 ° C., the bainite transformation is completed, so MA is not generated during air cooling, and a low yield ratio cannot be achieved. If it exceeds 650 ° C., C is consumed in the pearlite that precipitates during cooling, and MA is not generated, so the accelerated cooling stop temperature is defined as 450 to 650 ° C. From a viewpoint of MA production | generation, Preferably it is 500-650 degreeC, More preferably, it is 530-650 degreeC.
[0047]
Immediately after stopping the accelerated cooling, reheating is performed to a temperature of 550 ° C. or higher and 750 ° C. or lower at a temperature rising rate of 0.5 ° C./s or higher. C concentrates to untransformed austenite during ferrite transformation during reheating and transforms to MA during air cooling. That is, in order to generate MA, it is necessary to reheat to a temperature range of 750 ° C. or less immediately after accelerated cooling. In reheating, it is desirable to raise the temperature by at least 50 ° C. from the temperature after cooling. If the rate of temperature rise is less than 0.5 ° C./s, it takes a long time to reach the target reheating temperature, so that the production efficiency deteriorates, and since pearlite transformation occurs, MA is not generated, and the yield ratio is lowered. I can't achieve it. When the reheating temperature is less than 550 ° C., the ferrite transformation does not proceed sufficiently at the time of reheating, and the required MA amount cannot be obtained. On the other hand, if the reheating temperature exceeds 750 ° C., sufficient strength cannot be obtained due to softening of bainite, so the reheating temperature is specified to be 750 ° C. or lower. There is no need to set the temperature holding time at the reheating temperature. Further, since MA is generated in the cooling process after reheating regardless of the cooling rate, it is preferable that the cooling after reheating is basically air cooling.
[0048]
FIG. 1 shows a steel sheet of the present invention (0.05C-0.2Si-1.8Mn-0.003S-0.01Ti-0.025Nb-0.0022Ca-0.002O-0. 005N) is observed with a scanning electron microscope (SEM). According to FIG. 1, it can be confirmed that island martensite (MA) is uniformly formed in the mixed structure of ferrite (F) and bainite (B).
[0049]
As equipment for performing reheating after accelerated cooling, a heating device can be installed downstream of the cooling equipment for performing accelerated cooling. As the heating device, it is preferable to use a gas combustion furnace or induction heating device capable of rapid heating of the steel sheet. The induction heating device is particularly preferable because temperature control is easier than in a soaking furnace, the cost is relatively low, and the cooled steel sheet can be heated quickly. In addition, by arranging a plurality of induction heating devices in series, even if the line speed and the type and size of the steel sheet are different, the number of induction heating devices to be energized and the supply power can be set by arbitrarily setting them. It is possible to freely control the temperature rate and the reheating temperature.
[0050]
An example of equipment for carrying out the production method of the present invention is shown in FIG. As shown in FIG. 2, a hot rolling mill 3, an acceleration cooling device 4, an in-line induction heating device 5, and a hot leveler 6 are arranged in the rolling line 1 from the upstream side toward the downstream side. By installing the in-line type induction heating device 5 or other heat treatment device on the same line as the hot rolling mill 3 as a rolling facility and the accelerated cooling device 4 as a subsequent cooling facility, the rolling and cooling can be quickly performed. Since a reheating process can be performed, it can heat without reducing the steel plate temperature after rolling cooling too much.
[0051]
【Example】
Steel of chemical composition (steel types A to H) shown in Table 1 was made into a slab by a continuous casting method, and thick steel plates (No. 1 to 11) having a plate thickness of 15 and 18 mm were manufactured using this.
[0052]
[Table 1]
Figure 0004066905
[0053]
After the heated slab was rolled by hot rolling, it was immediately cooled using a water-cooled accelerated cooling facility and reheated using an induction heating furnace or a gas combustion furnace. The induction furnace was installed on the same line as the accelerated cooling equipment. Table 2 shows the production conditions of each steel plate (No. 1 to 11).
[0054]
The tensile properties of the steel sheet produced as described above were measured. The measurement results are also shown in Table 2. Tensile properties were measured by performing a tensile test using a full thickness test piece in the vertical direction of rolling as a tensile test piece, and measuring the tensile strength. The tensile strength of 580 MPa or more was determined as the strength required for the present invention, and the yield ratio of 80% or less was determined as the yield ratio required for the present invention. As for the base material toughness, a Charpy test was performed using a full-size Charpy V-notch specimen in the vertical direction of rolling, and a material having an absorbed energy at −10 ° C. of 200 J or more was considered good.
[0055]
About the weld heat affected zone toughness, the Charpy test was done using the test piece which added the heat history equivalent to 40 kJ / cm of heat inputs with the reproduction | regeneration thermal cycle apparatus. And the thing with V notch Charpy absorbed energy (vE) in -30 degree | times or more and 100% of ductile fracture surface ratio (SA) was made favorable.
[0056]
[Table 2]
Figure 0004066905
[0057]
In Table 2, all of Nos. 1 to 5, which are examples of the present invention, have chemical components and production methods within the scope of the present invention, and the structure of the steel sheet is a three-phase structure of ferrite, bainite, and island martensite. The area fraction of island martensite was in the range of 3-20%. All of them had a high tensile strength of 580 MPa or more and a low yield ratio of 80% or less, and the toughness of the base material and the weld heat affected zone was good. In particular, No. using steel types C, D and E in which Ca, O and S were controlled. The weld heat-affected zone toughness of 3, 4, and 5 showed very high values for both Charpy absorbed energy and ductile fracture surface ratio.
[0058]
On the other hand, in Nos. 6 to 8, although the chemical components are within the scope of the present invention, the production method is outside the scope of the present invention, so the structure is a two-phase structure of ferrite and bainite, and the yield ratio is 80%. That was insufficient. Nos. 9 to 11 were inferior in the weld heat affected zone toughness particularly at -30 ° C because the chemical components were outside the scope of the present invention.
[0059]
【The invention's effect】
As described above, according to the present invention, it is possible to produce a low yield ratio high strength steel plate excellent in welding heat affected zone toughness with high efficiency and low cost. For this reason, steel sheets used for welding structures such as architecture, offshore structures, line pipes, shipbuilding, civil engineering, construction machinery, etc. can be manufactured stably in a large amount at a low price, and the productivity and economy are significantly increased. Can do.
[Brief description of the drawings]
FIG. 1 is a photograph of a steel sheet of the present invention observed with a scanning electron microscope (SEM).
FIG. 2 is a schematic view showing an example of a production line for carrying out the production method of the present invention.
FIG. 3 is an optical micrograph of a conventional high Mn—Mo-added steel sheet.
FIG. 4 is an optical micrograph of the steel sheet of the present invention.
[Explanation of symbols]
1: rolling line,
2: Steel plate,
3: Hot rolling mill,
4: Accelerated cooling device,
5: Inline type induction heating device,
6: Hot leveler,
F: Ferrite,
B: Bainite,
MA: Island martensite

Claims (3)

質量%で、C:0.03〜0.1%、Si:0.01〜0.5%、Mn:1.2〜2.5%、Al:0.08%以下、Ti:0.008〜0.025%、N:0.004〜0.007%を含有し、かつTi量とN量との比であるTi/Nが2〜4であり、残部Feおよび不可避的不純物からなる鋼を、Ar3温度以上の圧延終了温度で熱間圧延して鋼板とした後、5℃/s以上の冷却速度で450〜650℃まで加速冷却を行い、その後直ちに0.5℃/s以上の昇温速度で550〜750℃まで再加熱を行うことで鋼板の金属組織を、フェライトとベイナイトと島状マルテンサイトとの3相組織として、島状マルテンサイトの面積分率を3〜20%とすることを特徴とする溶接熱影響部靱性に優れた低降伏比高強度鋼板の製造方法。In mass%, C: 0.03-0.1%, Si: 0.01-0.5%, Mn: 1.2-2.5%, Al: 0.08% or less, Ti: 0.008 to 0.025% N: containing 0.004 to 0.007%, and Ri Ti / N is 2 to 4 der, which is the ratio of the Ti content and N content, it the balance Fe and unavoidable impurities The steel is hot-rolled at a rolling finish temperature of Ar3 temperature or higher to form a steel plate, accelerated to 450 to 650 ° C at a cooling rate of 5 ° C / s or higher, and then immediately 0.5 ° C / s or higher. of the steel sheet metal structure by performing reheated to 550 to 750 ° C. at a heating rate, a 3-phase structure of the ferrites and the bainite and island martensite, the area fraction of the island martensite 3-20 %. A method for producing a low-yield ratio high-strength steel sheet excellent in weld heat-affected zone toughness. さらに、質量%で、Ca:0.001〜0.003%を含有し、不純物として含有されるO、SがO:0.003%以下、S:0.005%以下であり、かつCa、O、Sの含有量が下記(1)式を満たすことを特徴とする請求項1に記載の溶接熱影響部靱性に優れた低降伏比高強度鋼板の製造方法。
0.4≦(1−130×[O])×[Ca]/(1.25×[S])≦0.8 …(1)
但し、(1)式の元素記号は各含有元素の質量%を示す。
Further, in mass%, Ca: 0.001 to 0.003%, O and S contained as impurities are O: 0.003% or less, S: 0.005% or less, and Ca, The method for producing a low-yield-ratio high-strength steel sheet excellent in weld heat affected zone toughness according to claim 1, wherein the contents of O and S satisfy the following formula (1).
0.4 ≦ (1-130 × [O]) × [Ca] / (1.25 × [S]) ≦ 0.8 (1)
However, the element symbol of the formula (1) indicates mass% of each contained element.
さらに、質量%で、Mo:0.4%以下、Nb:0.07%以下、V:0.1%以下、Cu:0.5%以下、Ni:0.5%以下、Cr:0.5%以下、B:0.005%以下の中から選ばれる1種又は2種以上を添加することを特徴とする請求項1または請求項2に記載の溶接熱影響部靱性に優れた低降伏比高強度鋼板の製造方法。Furthermore, by mass%, Mo: 0.4% or less, Nb: 0.07% or less, V: 0.1% or less, Cu: 0.5% or less, Ni: 0.5% or less, Cr: 0.00%. The low yield with excellent weld heat affected zone toughness according to claim 1 or 2, wherein one or more selected from 5% or less and B: 0.005% or less are added. A method for producing a specific high strength steel sheet.
JP2003204990A 2003-07-31 2003-07-31 Manufacturing method of low yield ratio high strength high toughness steel sheet with excellent weld heat affected zone toughness Expired - Lifetime JP4066905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003204990A JP4066905B2 (en) 2003-07-31 2003-07-31 Manufacturing method of low yield ratio high strength high toughness steel sheet with excellent weld heat affected zone toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003204990A JP4066905B2 (en) 2003-07-31 2003-07-31 Manufacturing method of low yield ratio high strength high toughness steel sheet with excellent weld heat affected zone toughness

Publications (2)

Publication Number Publication Date
JP2005048224A JP2005048224A (en) 2005-02-24
JP4066905B2 true JP4066905B2 (en) 2008-03-26

Family

ID=34263802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003204990A Expired - Lifetime JP4066905B2 (en) 2003-07-31 2003-07-31 Manufacturing method of low yield ratio high strength high toughness steel sheet with excellent weld heat affected zone toughness

Country Status (1)

Country Link
JP (1) JP4066905B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102644024A (en) * 2012-05-08 2012-08-22 首钢总公司 Low-alloy low-yield-ratio steel for oceaneering structure and production method thereof
KR20140138933A (en) 2012-03-29 2014-12-04 제이에프이 스틸 가부시키가이샤 Low yield ratio high-strength steel plate having superior strain aging resistance, production method therefor, and high-strength welded steel pipe using same
KR20140138932A (en) 2012-03-29 2014-12-04 제이에프이 스틸 가부시키가이샤 Low yield ratio high-strength steel plate having superior strain aging resistance, production method therefor, and high-strength welded steel pipe using same

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4926447B2 (en) * 2005-05-13 2012-05-09 新日本製鐵株式会社 Manufacturing method of high strength steel with excellent weld crack resistance
CN100439543C (en) * 2006-03-24 2008-12-03 宝山钢铁股份有限公司 Hot-rolled super-strength martensitic steel and method for manufacturing same
JP5141073B2 (en) * 2007-03-30 2013-02-13 Jfeスチール株式会社 X70 grade or less low yield ratio high strength high toughness steel pipe and method for producing the same
JP5076959B2 (en) * 2008-02-22 2012-11-21 Jfeスチール株式会社 Low yield ratio high strength steel sheet with excellent ductile crack initiation characteristics and its manufacturing method
JP5172391B2 (en) * 2008-03-03 2013-03-27 株式会社神戸製鋼所 Steel sheet with excellent toughness and uniform elongation of weld heat affected zone
JP5162382B2 (en) * 2008-09-03 2013-03-13 株式会社神戸製鋼所 Low yield ratio high toughness steel plate
CN102549189B (en) 2009-09-30 2013-11-27 杰富意钢铁株式会社 Steel plate with low yield ratio, high strength, and high toughness and process for producing same
JP5532800B2 (en) * 2009-09-30 2014-06-25 Jfeスチール株式会社 Low yield ratio high strength high uniform stretch steel plate with excellent strain aging resistance and method for producing the same
RU2502820C1 (en) 2009-09-30 2013-12-27 ДжФЕ СТИЛ КОРПОРЕЙШН Plate steel characterised by low ratio between yield point and ultimate strength, high strength and high uniform relative elongation, and method for its manufacture
CN102691013A (en) * 2011-03-21 2012-09-26 江苏亚星锚链股份有限公司 Heat treatment technology of R5 mooring chain swivel shackle
CN102691014A (en) * 2011-03-21 2012-09-26 江苏亚星锚链股份有限公司 Heat treatment process of R5 mooring chain Kenter shackle
CN102953017B (en) * 2011-08-25 2015-01-21 宝山钢铁股份有限公司 Low yield ratio and high strength coiled tubing steel and manufacture method thereof
CN103774050A (en) * 2012-10-25 2014-05-07 吴雪 High-ductility steel with low yield ratio
CN103774052A (en) * 2012-10-25 2014-05-07 吴雪 Method for preparing high-strength steel plate with thickness of 20 mm
CN103773935A (en) * 2012-10-25 2014-05-07 吴雪 Process for rolling low yield ratio and high plasticity steel plate with thickness of 40 nm
WO2015099222A1 (en) * 2013-12-26 2015-07-02 주식회사 포스코 Hot-rolled steel plate having excellent welding property and burring property and method for manufacturing same
WO2015151468A1 (en) * 2014-03-31 2015-10-08 Jfeスチール株式会社 Steel material for highly-deformable line pipes having superior strain aging characteristics and anti-hic characteristics, method for manufacturing same, and welded steel pipe
CN106133175B (en) * 2014-03-31 2018-09-07 杰富意钢铁株式会社 The high deformability line-pipes steel and its manufacturing method and welded still pipe of resistance to distortion aging property and the characteristic good of resistance to HIC
DE102014221068A1 (en) * 2014-10-16 2016-04-21 Sms Group Gmbh Plant and method for the production of heavy plates
CN104404384B (en) * 2014-12-19 2016-08-24 山东钢铁股份有限公司 A kind of 550MPa level low compression ratio high tenacity ocean engineering Platform Steel plate and production method
CN108467996B (en) * 2018-03-27 2019-05-31 本钢板材股份有限公司 The dual-phase hot-rolled acid-cleaning plate of wheel spoke ferrite-martensite and preparation method
CN109338214B (en) * 2018-10-11 2021-06-22 石家庄钢铁有限责任公司 High-strength high-toughness steel for rock drilling tool and production method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140138933A (en) 2012-03-29 2014-12-04 제이에프이 스틸 가부시키가이샤 Low yield ratio high-strength steel plate having superior strain aging resistance, production method therefor, and high-strength welded steel pipe using same
KR20140138932A (en) 2012-03-29 2014-12-04 제이에프이 스틸 가부시키가이샤 Low yield ratio high-strength steel plate having superior strain aging resistance, production method therefor, and high-strength welded steel pipe using same
US9657868B2 (en) 2012-03-29 2017-05-23 Jfe Steel Corporation High strength steel plate having low yield ratio excellent in terms of strain ageing resistance, method of manufacturing the same and high strength welded steel pipe made of the same
US10358708B2 (en) 2012-03-29 2019-07-23 Jfe Steel Corporation High strength steel plate having low yield ratio excellent in terms of strain ageing resistance, method of manufacturing the same and high strength welded steel pipe made of the same
CN102644024A (en) * 2012-05-08 2012-08-22 首钢总公司 Low-alloy low-yield-ratio steel for oceaneering structure and production method thereof
CN102644024B (en) * 2012-05-08 2013-06-26 首钢总公司 Low-alloy low-yield-ratio steel for oceaneering structure and production method thereof

Also Published As

Publication number Publication date
JP2005048224A (en) 2005-02-24

Similar Documents

Publication Publication Date Title
JP4066905B2 (en) Manufacturing method of low yield ratio high strength high toughness steel sheet with excellent weld heat affected zone toughness
JP4844687B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP5821173B2 (en) Low yield ratio high strength high uniform stretch steel sheet and method for producing the same
JP5354164B2 (en) Low yield ratio high strength thick steel plate and method for producing the same
JP5532800B2 (en) Low yield ratio high strength high uniform stretch steel plate with excellent strain aging resistance and method for producing the same
JP5092498B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
WO2004111286A1 (en) Steel plate and welded steel tube exhibiting low yield ratio, high strength and high toughness and method for production thereof
JP2009270194A (en) PROCESS FOR PRODUCTION OF 780 MPa-GRADE HIGH-TENSILE-STRENGTH STEEL PLATE EXCELLENT IN LOW-TEMPERATURE TOUGHNESS
JP2006291349A (en) Line pipe steel sheet having high deformation performance and its manufacturing method
JP4507708B2 (en) Low yield ratio high strength high toughness steel sheet manufacturing method
JP4547944B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP5089224B2 (en) Manufacturing method of on-line cooling type high strength steel sheet
JP5217413B2 (en) High strength steel plate with excellent weld heat affected zone toughness and method for producing the same
JP4412098B2 (en) Low yield ratio high strength steel sheet with excellent weld heat affected zone toughness and method for producing the same
JP2007138210A (en) Steel sheet for high strength line pipe in with reduced lowering of yield stress caused by bauschinger effect and its production method
JP2006265722A (en) Production method of steel sheet for high-tension linepipe
JP2005060825A (en) Steel sheet with low yield ratio, high strength and high toughness, and manufacturing method therefor
JP4311020B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP4507730B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP4742617B2 (en) Manufacturing method of high-strength steel sheet with excellent weld heat-affected zone toughness
JP2004218081A (en) Method for producing high-tension steel plate
JP2004269964A (en) Method for producing high strength steel sheet
JP4412099B2 (en) High strength steel plate with excellent weld heat affected zone toughness and method for producing the same
JP3975920B2 (en) Low yield ratio high strength high toughness steel sheet and method for producing the same
JP2003226922A (en) Manufacturing method for high strength steel sheet having excellent hic resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060526

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071231

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4066905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term