JP5076959B2 - Low yield ratio high strength steel sheet with excellent ductile crack initiation characteristics and its manufacturing method - Google Patents

Low yield ratio high strength steel sheet with excellent ductile crack initiation characteristics and its manufacturing method Download PDF

Info

Publication number
JP5076959B2
JP5076959B2 JP2008041038A JP2008041038A JP5076959B2 JP 5076959 B2 JP5076959 B2 JP 5076959B2 JP 2008041038 A JP2008041038 A JP 2008041038A JP 2008041038 A JP2008041038 A JP 2008041038A JP 5076959 B2 JP5076959 B2 JP 5076959B2
Authority
JP
Japan
Prior art keywords
mass
phase
steel sheet
yield ratio
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008041038A
Other languages
Japanese (ja)
Other versions
JP2009197282A (en
Inventor
仁 末吉
信行 石川
伸夫 鹿内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008041038A priority Critical patent/JP5076959B2/en
Publication of JP2009197282A publication Critical patent/JP2009197282A/en
Application granted granted Critical
Publication of JP5076959B2 publication Critical patent/JP5076959B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、建築物や海洋構造物、造船、橋梁、ラインパイプなどに用いて好適な構造用鋼板に関し、特に地震多発地帯などで用いられる鋼板に要求される耐延性き裂発生特性に優れる引張強さが550MPa以上の低降伏比高強度鋼板とその製造方法に関するものである。   TECHNICAL FIELD The present invention relates to a structural steel plate suitable for use in buildings, offshore structures, shipbuilding, bridges, line pipes, etc., and in particular, a tensile excellent in ductile crack initiation characteristics required for steel plates used in earthquake-prone areas. The present invention relates to a low yield ratio high strength steel plate having a strength of 550 MPa or more and a method for producing the same.

近年、建築物や海洋構造物、造船、橋梁、ラインパイプなどの分野で用いられている鋼材は、安全性の向上や、操業効率の向上(例えば、パイプラインでの輸送ガスの高圧化)、使用鋼材の削減によるトータルコストの低減等を目的として、高強度化が進められている。また、上記鋼材が使用される地域は、自然環境の過酷な地域へと拡大しているため、例えば、地震多発地帯などで使用される構造物用鋼材などには、従来の要求性能とは異なる、優れた塑性変形能や耐延性破壊特性が求められるようになってきている。   In recent years, steel materials used in the fields of buildings, offshore structures, shipbuilding, bridges, line pipes, etc. have improved safety and operational efficiency (for example, increased transport gas pressure in pipelines), Higher strength is being promoted for the purpose of reducing the total cost by reducing the amount of steel used. Moreover, since the area where the above steel materials are used has expanded to the harsh areas of the natural environment, for example, structural steel materials used in earthquake-prone areas are different from the conventional required performance. Therefore, excellent plastic deformability and ductile fracture resistance have been demanded.

このような状況から、特許文献1〜3には、降伏応力と引張強さの比である降伏比を低下させることにより塑性変形能を向上させた鋼材が、また、特許文献4,5には、同じく降伏比を低下させることにより優れた耐座屈特性を有する高変形能鋼材が提案されている。しかし、たとえ低降伏比で、変形能に優れた鋼材であっても、欠陥部などの応力集中部から延性き裂が発生し、これが進展する場合には、その塑性変形能力が発揮される前に、き裂が長距離に伝播し、不安定延性破壊を生じてしまう虞がある。   From such a situation, in Patent Documents 1 to 3, steel materials having improved plastic deformability by reducing the yield ratio, which is the ratio of yield stress to tensile strength, are disclosed in Patent Documents 4 and 5. Similarly, high deformability steel materials having excellent buckling resistance properties by reducing the yield ratio have been proposed. However, even if the steel material has a low yield ratio and excellent deformability, if a ductile crack occurs from a stress-concentrated part such as a defect, and this progresses, before the plastic deformability is exerted In addition, cracks may propagate over long distances and cause unstable ductile fracture.

そこで、不安定延性破壊を防止することを目的として、高強度高変形能鋼材の開発が行われている。例えば、特許文献6には、金属組織を細粒フェライト主体の組織とすることにより、吸収エネルギーを高めた高張力鋼の製造方法が、また、特許文献7には、金属組織をフェライトとマルテンサイトの2相混合組織とすることにより、不安定延性破壊の停止性能を高めた高強度鋼管が提案されている。
特開昭55−119152号公報 特開昭63−223123号公報 特開平03−115524号公報 特開平10−330885号公報 特開2000−178689号公報 特開2002−105534号公報 特開2004−197191号公報
Therefore, development of high-strength and high-deformability steel materials has been carried out for the purpose of preventing unstable ductile fracture. For example, Patent Document 6 discloses a method for producing high-tensile steel in which absorbed energy is increased by making the metal structure a fine-grain ferrite-based structure, and Patent Document 7 describes that the metal structure is composed of ferrite and martensite. A high-strength steel pipe with improved stopping performance of unstable ductile fracture has been proposed.
JP-A-55-119152 JP 63-223123 A Japanese Patent Laid-Open No. 03-115524 Japanese Patent Laid-Open No. 10-330885 Japanese Unexamined Patent Publication No. 2000-178689 JP 2002-105534 A JP 2004-197191 A

上記特許文献6および7に記載された技術は、不安定延性破壊における耐延性き裂伝播特性を向上させた鋼材に関するものである。しかし、例えば、高圧で操業されるガスパイプラインでは、一旦、き裂が発生すると、き裂の伝播停止が困難になる場合があり、その結果、局所的な破壊でも重大な被害をもたらすことが懸念されている。そのため、ガスパイプラインに用いられる鋼材は、延性き裂の伝播が抑制されるだけでなく、たとえ損傷が生じてもき裂発生に至らない、もしくはき裂が発生しても、ガスのリークを最小限に止められるものであることが望ましい。   The technologies described in Patent Documents 6 and 7 relate to a steel material with improved ductile crack propagation characteristics in unstable ductile fracture. However, for example, in a gas pipeline operated at high pressure, once a crack has occurred, it may be difficult to stop the propagation of the crack, and as a result, there is a concern that even local destruction may cause serious damage. Has been. For this reason, steel materials used in gas pipelines not only suppress the propagation of ductile cracks, but even if damage occurs, they do not lead to crack generation, or even if cracks occur, gas leakage is minimized. It is desirable that it can be stopped to the limit.

上記要求に応えるためには、鋼材自体に内在する欠陥や外的要因によって受ける損傷、あるいは、腐食による減肉部等からのき裂の発生を確実に防止し得ることが必要である。しかし、上記特性を満たすような、延性き裂発生抵抗が大きい低降伏比高強度鋼板は、今のところ存在していないのが実情である。   In order to meet the above requirements, it is necessary to be able to surely prevent the damage caused by the defects inherent in the steel material itself or external factors, or the occurrence of cracks from the reduced thickness portion due to corrosion. However, the present situation is that there is no low yield ratio high strength steel plate with high ductile crack initiation resistance that satisfies the above characteristics.

そこで、本発明の目的は、地震多発地帯などで使用される鋼材に要求される耐延性き裂発生特性に優れる低降伏比高強度鋼板を提供すると共に、該鋼板を低コストでかつ効率よく製造することができる有利な製造方法を提案することにある。   Accordingly, an object of the present invention is to provide a low yield ratio high strength steel sheet that is excellent in ductile crack initiation characteristics required for steel materials used in earthquake-prone areas, and to produce the steel sheet at low cost and efficiently. It is to propose an advantageous manufacturing method that can be performed.

発明者らは、上記課題の解決に向けて、外的要因による損傷が存在する場合を想定し、切欠きを有する高強度鋼板の延性破壊挙動について鋭意研究を重ねた。その結果、加速冷却過程で一旦冷却を停止し、その後、ただちに再加熱処理を施すことにより、フェライト相とベイナイト相と島状マルテンサイト相からなる3相組織が得られてミクロ組織形態を最適化することができること、さらに、Ca,OおよびSの含有量を適正範囲に制御することにより、変形能を低下させることなく、切欠きからの延性き裂の発生を抑制し得ることを見出し、本発明を完成するに至った。   In order to solve the above-mentioned problems, the inventors have conducted intensive studies on the ductile fracture behavior of a high-strength steel sheet having a notch, assuming that damage due to external factors exists. As a result, the cooling is temporarily stopped in the accelerated cooling process, and then immediately reheated to obtain a three-phase structure consisting of a ferrite phase, a bainite phase, and an island martensite phase, thereby optimizing the microstructure structure. Further, it has been found that by controlling the contents of Ca, O and S within an appropriate range, the occurrence of a ductile crack from a notch can be suppressed without reducing the deformability. The invention has been completed.

すなわち、本発明は、C:0.03〜0.1mass%、Si:0.01〜1mass%、Mn:1.2〜2.5mass%、S:0.002mass%以下、Al:0.01〜0.07mass%、Ca:0.001〜0.003mass%、O:0.003mass%以下を含有し、Ca,SおよびOが下記(1)式;
0.8≦(1−130×O)×Ca/(1.25×S)≦2.0 ・・・(1)
ここで、(1)式中の元素記号は各元素の質量mass%
を満たして含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、金属組織がフェライト相とベイナイト相と島状マルテンサイト相の3相組織からなり、島状マルテンサイトの相分率が3〜15%、平均アスペクト比が8以下の組織を有し、降伏比が0.80以下である耐延性き裂発生特性に優れる低降伏比高強度鋼板である。
That is, the present invention is C: 0.03-0.1 mass%, Si: 0.01-1 mass%, Mn: 1.2-2.5 mass%, S: 0.002 mass% or less, Al: 0.01 -0.07mass%, Ca: 0.001-0.003mass%, O: 0.003mass% or less is contained, Ca, S, and O are following (1) Formula;
0.8 ≦ (1-130 × O) × Ca / (1.25 × S) ≦ 2.0 (1)
Here, the element symbol in the formula (1) is the mass% of each element.
In which the balance is composed of Fe and inevitable impurities, the metal structure is composed of a three-phase structure of ferrite phase, bainite phase and island martensite phase, and the phase fraction of island martensite Is a low-yield-ratio high-strength steel sheet having a structure with an average aspect ratio of 8 or less and a yield ratio of 0.80 or less and having excellent ductile crack initiation characteristics.

本発明の低降伏比高強度鋼板は、上記成分組成に加えてさらに、Nb:0.005〜0.1mass%、V:0.005〜0.1mass%およびTi:0.005〜0.1mass%のうちから選ばれる1種または2種以上を含有することを特徴とする。   In addition to the above component composition, the low yield ratio high-strength steel sheet of the present invention further includes Nb: 0.005-0.1 mass%, V: 0.005-0.1 mass%, and Ti: 0.005-0.1 mass. 1 type or 2 types or more chosen from% are characterized by the above-mentioned.

また、本発明の低降伏比高強度鋼板は、上記成分組成に加えてさらに、Cu:0.01〜0.5mass%、Ni:0.05〜0.5mass%、Cr:0.01〜0.5mass%およびMo:0.01〜0.5mass%のうちから選ばれる1種または2種以上を含有することを特徴とする。   In addition to the above component composition, the low yield ratio high-strength steel sheet of the present invention further includes Cu: 0.01 to 0.5 mass%, Ni: 0.05 to 0.5 mass%, Cr: 0.01 to 0. It is characterized by containing 1 type (s) or 2 or more types chosen from 0.5 mass% and Mo: 0.01-0.5 mass%.

また、本発明は、上記のいずれかに記載の成分組成を有する鋼スラブを1000〜1300℃に加熱後、圧延終了温度をAr変態点以上とする熱間圧延し、冷却速度5℃/s以上で450℃〜650℃の温度まで加速冷却し、その後直ちに昇温速度0.5℃/s以上で加速冷却停止温度以上の550〜700℃まで再加熱する耐延性き裂発生特性に優れる低降伏比高強度鋼板の製造方法を提案する。 In addition, the present invention is a method in which a steel slab having any of the above-described component compositions is heated to 1000 to 1300 ° C., and then hot-rolled with a rolling end temperature equal to or higher than the Ar 3 transformation point, and a cooling rate of 5 ° C./s. This is excellent in ductile cracking characteristics in which accelerated cooling is performed to a temperature of 450 ° C. to 650 ° C., and then immediately reheated to 550 to 700 ° C. above the accelerated cooling stop temperature at a heating rate of 0.5 ° C./s or higher. A method for producing high yield strength steel sheets is proposed.

本発明によれば、地震などで大きな塑性変形を受けた場合においても、延性き裂を発生することのない低降伏比高強度鋼板を提供することができる。したがって、本発明の鋼板は、安全性への要求が高い建築物や海洋構造物、造船、橋梁、ラインパイプなどに用いて好適である。   ADVANTAGE OF THE INVENTION According to this invention, even when it receives big plastic deformation by an earthquake etc., the low yield ratio high strength steel plate which does not generate | occur | produce a ductile crack can be provided. Therefore, the steel plate of the present invention is suitable for use in buildings, offshore structures, shipbuilding, bridges, line pipes, and the like that have high safety requirements.

本発明は、熱間圧延終了後の鋼板を加速冷却する過程において、ベイナイト変態途中で、即ち、まだ未変態オーステナイトが存在するベイナイト変態終了温度以上の温度領域で冷却を停止し、その後、その温度から直ちに再加熱し、未変態オーステナイト中にCを濃化せしめることによって、その後の冷却過程で、フェライト相とベイナイト相の混合相中に硬質相である島状マルテンサイト相(以下、「MA相」ともいう)を均一に生成させて、軟質相であるフェライト相とベイナイト相と硬質相であるMA相からなる3相組織を得るところに特徴がある。そして、本発明の鋼板は、上記3相組織とすることで、550MPa以上の引張強さと、0.80以下の低降伏比を有し、かつ、耐延性き裂発生特性にも優れる低降伏比高強度鋼板を得ることができる。なお、上記MA相は、3mass%ナイタール溶液(nital:硝酸アルコール溶液)でエッチング後、電解エッチングすると、容易に他の相との識別ができる。   In the process of accelerated cooling of the steel sheet after hot rolling, the present invention stops cooling in the middle of the bainite transformation, that is, in a temperature region equal to or higher than the bainite transformation finish temperature where untransformed austenite still exists, and then the temperature Immediately after heating, and by concentrating C in untransformed austenite, in the subsequent cooling process, an island-like martensite phase (hereinafter referred to as “MA phase”) which is a hard phase in the mixed phase of ferrite phase and bainite phase. It is characterized in that a three-phase structure composed of a ferrite phase that is a soft phase, a bainite phase, and an MA phase that is a hard phase is obtained. The steel sheet of the present invention has a low yield ratio that has a tensile strength of 550 MPa or more and a low yield ratio of 0.80 or less and is excellent in ductile crack initiation characteristics by having the above three-phase structure. A high-strength steel sheet can be obtained. The MA phase can be easily distinguished from other phases by electrolytic etching after etching with a 3 mass% nital solution (nitral alcohol solution).

次に、本発明の低降伏比高強度鋼板を開発する契機となった実験について説明する。
フェライト相とベイナイト相とMA相の3相組織からなり、MA相分率が異なる各種鋼材(厚鋼板)から、図1に示したような、平行部が10mmφ、評点間が26mmで、切欠底半径が0.25mmの環状切欠を有する丸棒試験片を採取して引張試験を行い、丸棒試験片の切欠底から発生したき裂が初めて確認されたときの標点間の平均歪を「延性き裂発生歪」と定義し、この歪量の大小で耐延性き裂発生特性を評価した。また、同時に、鋼材のミクロ組織を調査し、耐延性き裂発生特性との関係を調べた。
Next, an experiment that has become an opportunity to develop the low yield ratio high strength steel sheet of the present invention will be described.
From various steel materials (thick steel plates) that have a three-phase structure of ferrite phase, bainite phase, and MA phase, and have different MA phase fractions, as shown in FIG. A round bar test piece having an annular notch with a radius of 0.25 mm was sampled and subjected to a tensile test. The average strain between the gauge points when a crack generated from the notch bottom of the round bar test piece was first confirmed was “ The ductile crack initiation strain was defined, and the resistance to ductile crack initiation was evaluated based on the magnitude of this strain. At the same time, the microstructure of the steel was investigated and the relationship with the ductile crack initiation characteristics was investigated.

図2は、3相組織を有する鋼板のMA相の相分率と、降伏比と延性き裂発生歪との関係を示したグラフである。図2から、降伏比は、MA相分率が3%以上の広い範囲で0.80以下の低い値を示しているが、延性き裂発生歪はMA相分率の増加に伴って低下するが、15%を超えると急激に低下することがわかる。   FIG. 2 is a graph showing the relationship between the phase fraction of the MA phase of a steel sheet having a three-phase structure, the yield ratio, and the ductile crack initiation strain. From FIG. 2, the yield ratio shows a low value of 0.80 or less over a wide range where the MA phase fraction is 3% or more, but the ductile crack initiation strain decreases as the MA phase fraction increases. However, when it exceeds 15%, it turns out that it falls rapidly.

3相組織を有する鋼板において、MA相の相分率が高い範囲まで延性き裂発生歪が高い理由は、以下のように考えている。フェライト相とベイナイト相とMA相の3相組織を有する鋼板が加工を受けた場合、再加熱処理によって生成したフェライト相と焼き戻されたベイナイト相はMA相に比べて軟質であるため、フェライト相とベイナイト相が加工初期から変形を開始する。一方、引張強さは、硬質なMA相によって確保されるため、降伏応力と引張強さの比、即ち、降伏比(=降伏応力/引張強さ)が低下するため、加工硬化指数が大きくなり、変形能が向上する。   The reason why the ductile crack initiation strain is high up to a range where the phase fraction of the MA phase is high in the steel plate having a three-phase structure is considered as follows. When a steel sheet having a three-phase structure of a ferrite phase, a bainite phase, and an MA phase is subjected to processing, the ferrite phase generated by reheating treatment and the tempered bainite phase are softer than the MA phase. And the bainite phase begins to deform from the beginning of processing. On the other hand, since the tensile strength is ensured by the hard MA phase, the ratio of yield stress to tensile strength, that is, the yield ratio (= yield stress / tensile strength) is lowered, so that the work hardening index is increased. , Deformability is improved.

そこで、発明者らは、上記結果にさらに検討を加えた結果、成分組成、製造条件を適正に制御した上で、さらにMA相の相分率と平均アスペクト比を適正な範囲に制御することにより、耐延性き裂発生特性に優れる低降伏比高強度鋼板が得られることを見出し、本発明を完成させた。   Therefore, the inventors further examined the above results, and after appropriately controlling the component composition and production conditions, further controlling the phase fraction and average aspect ratio of the MA phase to an appropriate range. The present inventors have found that a low-yield-ratio high-strength steel sheet having excellent ductile crack initiation characteristics can be obtained, and the present invention has been completed.

次に、本発明の鋼板が有すべき成分組成について説明する。
C:0.03〜0.1mass%
Cは、MA相の生成を促進し、鋼板の強度を高めるために必要な元素である。0.03mass%未満の添加では、MA相分率が低くて所望とする強度が得られず、一方、0.1mass%を超えて添加すると、溶接性が低下する。よって、Cは0.03〜0.1mass%の範囲とする。
Next, the component composition that the steel sheet of the present invention should have will be described.
C: 0.03-0.1 mass%
C is an element necessary for promoting the formation of the MA phase and increasing the strength of the steel sheet. If the addition is less than 0.03 mass%, the MA phase fraction is low and the desired strength cannot be obtained. On the other hand, if the addition exceeds 0.1 mass%, the weldability decreases. Therefore, C is set to a range of 0.03 to 0.1 mass%.

Si:0.01〜1mass%
Siは、脱酸剤として、また、鋼の強度を高めるために添加する元素である。0.01mass%未満では、脱酸効果が十分でなく、一方、1mass%を超える添加は、靭性や溶接性を低下させる。よって、Siは0.01〜1mass%の範囲とする。
Si: 0.01-1 mass%
Si is an element added as a deoxidizer and to increase the strength of steel. If it is less than 0.01 mass%, the deoxidation effect is not sufficient, while addition exceeding 1 mass% decreases toughness and weldability. Therefore, Si is set to a range of 0.01 to 1 mass%.

Mn:1.2〜2.5mass%
Mnは、鋼の強度と靭性を高めるために、また、焼入れ性を高めてMA相の生成を促進するために添加する。しかし、1.2mass%未満の添加では、その効果が十分ではなく、一方、2.5mass%を超える添加は、溶接性を低下させる。よって、Mnは1.2〜2.5mass%の範囲とする。
Mn: 1.2 to 2.5 mass%
Mn is added to increase the strength and toughness of the steel and to increase the hardenability and promote the formation of the MA phase. However, if the addition is less than 1.2 mass%, the effect is not sufficient, while the addition exceeding 2.5 mass% decreases the weldability. Therefore, Mn is set to a range of 1.2 to 2.5 mass%.

S:0.002mass%以下
Sは、不可避的に不純物として混入する元素であり、一般には、鋼中に硫化物系介在物として存在し、変形時におけるボイド発生の起点となる。したがって、延性き裂の発生を防止するには、Sの含有量は厳しく規制する必要がある。しかし、0.002mass%以下であれば、上記悪影響が小さい。よって、Sは、0.002mass%を上限とする。好ましくは0.001mass%以下である。
S: 0.002 mass% or less S is an element that is inevitably mixed as an impurity, and generally exists as a sulfide-based inclusion in steel and serves as a starting point for void generation during deformation. Therefore, in order to prevent the occurrence of ductile cracks, the S content must be strictly regulated. However, if it is 0.002 mass% or less, the above-mentioned adverse effect is small. Therefore, S has an upper limit of 0.002 mass%. Preferably it is 0.001 mass% or less.

Al:0.01〜0.07mass%
Alは、Siと同様、製鋼工程で、脱酸剤として添加するが、0.01mass%未満の添加では、脱酸効果が十分でなく、一方、0.07mass%を超える添加は、酸化物系介在物の量が増加し、靭性を低下させる。よって、Alは0.01〜0.07mass%の範囲とする。
Al: 0.01-0.07 mass%
Al is added as a deoxidizing agent in the steel making process, as is the case with Si. However, if the addition is less than 0.01 mass%, the deoxidation effect is not sufficient, while the addition exceeding 0.07 mass% is an oxide type. Increasing amounts of inclusions reduce toughness. Therefore, Al is set to a range of 0.01 to 0.07 mass%.

Ca:0.001〜0.003mass%
Caは、硫化物系介在物の形態を制御し、延性を改善する有効な元素であるが、0.001mass%未満の添加では、その効果が得られない。一方、0.003mass%を超えて添加しても、上記効果が飽和する。また、清浄度の低下や、粗大CaOの生成により靭性が低下する他、取鍋のノズル閉塞の原因ともなり、生産性を阻害する。よって、Caは0.001〜0.003mass%の範囲とする。
Ca: 0.001 to 0.003 mass%
Ca is an effective element for controlling the form of sulfide inclusions and improving ductility, but the effect cannot be obtained with addition of less than 0.001 mass%. On the other hand, even if added over 0.003 mass%, the above effect is saturated. Moreover, toughness falls by the fall of a cleanliness or the production | generation of coarse CaO, and it becomes the cause of the nozzle blockade of a ladle, and inhibits productivity. Therefore, Ca is set to a range of 0.001 to 0.003 mass%.

O:0.003mass%以下
Oは、不可避的不純物であり、粗大な酸化物系介在物を生成し、延性および靭性に悪影響を及ぼす。よって、本発明においては、Oは0.003mass%以下に制限する。
O: 0.003 mass% or less O is an unavoidable impurity, generates coarse oxide inclusions, and adversely affects ductility and toughness. Therefore, in the present invention, O is limited to 0.003 mass% or less.

0.8≦((1−130×O)×Ca)/(1.25×S)≦2.0
本発明の鋼では、上記成分組成を満たしていることに加えてさらに、Ca,OおよびSが、下記(1)式を満たして含有することが必要である。
0.8≦((1−130×O)×Ca)/(1.25×S)≦2.0 ・・・(1)
(但し、上記式中の各元素記号は、それぞれの元素の含有量(mass%))
この(1)式は、延性き裂発生の起点となる粗大な硫化物系介在物の生成を抑制し、延性き裂の発生に影響のない硫化物形態に制御するために、O:0.001〜0.003mass%、S:0.002mass%以下に制御した上で、さらに、Ca含有量からCaOの生成により消費されたCa分を除いた有効Ca量(Ca*)を、実験により求めた下記(2)の回帰式;
Ca*=(1−130×O)×Ca ・・・(2)
(但し、上記式中の各元素記号は、それぞれの元素の含有量(mass%))
を用いて計算し、次いで、CaとSの化学量論比に基いて、有効CaとSの原子比(Ca*/(1.25×S))を、0.8〜2.0の範囲に制御する必要があることを示したものである。
すなわち、Ca*/(1.25×S)が0.8未満では、SをCaSとして十分に固定できないため、粗大なMnSが生成し、耐延性き裂発生特性が低下し、一方、Ca*/(1.25×S)が2.0を超えると、粗大なCa系酸化物や硫化物が生成し、耐延性き裂発生特性を低下させるので、Ca,SおよびOは、上記(1)式を満たして含有することが必要である。
0.8 ≦ ((1-130 × O) × Ca) / (1.25 × S) ≦ 2.0
In the steel of the present invention, in addition to satisfying the above component composition, it is necessary that Ca, O, and S further satisfy the following formula (1).
0.8 ≦ ((1-130 × O) × Ca) / (1.25 × S) ≦ 2.0 (1)
(However, each element symbol in the above formula is the content of each element (mass%))
This formula (1) suppresses the formation of coarse sulfide inclusions that are the starting point of ductile crack generation, and controls the sulfide form so as not to affect the generation of ductile cracks. After controlling to 001 to 0.003 mass%, S: 0.002 mass% or less, the effective Ca amount (Ca *) excluding the Ca content consumed by the generation of CaO from the Ca content is obtained by experiments. The following regression formula (2):
Ca * = (1-130 × O) × Ca (2)
(However, each element symbol in the above formula is the content of each element (mass%))
Then, based on the stoichiometric ratio of Ca and S, the effective Ca to S atomic ratio (Ca * / (1.25 × S)) is in the range of 0.8 to 2.0. It is shown that it is necessary to control.
That is, when Ca * / (1.25 × S) is less than 0.8, S cannot be sufficiently fixed as CaS, so that coarse MnS is generated and ductile crack resistance is deteriorated. When /(1.25×S) exceeds 2.0, coarse Ca-based oxides and sulfides are generated and the ductile crack generation characteristics are lowered. Therefore, Ca, S, and O are the above (1 ) It is necessary to contain and satisfy the formula.

本発明の鋼板は、上記必須成分の他に、Cu:0.01〜0.5mass%、Ni:0.01〜0.5mass%、Cr:0.01〜0.5mass%およびMo:0.01〜0.5mass%のうちから選ばれる1種または2種以上を含有することができる。
Cu,Ni,CrおよびMoは、鋼の強度および靭性を高め、さらに焼入れ性を向上してMA相の生成を促進する元素であり、要求される強度に応じて添加することができる。各元素とも、0.01mass%未満の添加では十分な効果が得られず、一方、0.5mass%を超える添加は、溶接性の低下を招く。よって、これらの元素を添加する場合は、それぞれ0.01〜0.5mass%の範囲で添加するのが好ましい。
The steel plate of the present invention has Cu: 0.01 to 0.5 mass%, Ni: 0.01 to 0.5 mass%, Cr: 0.01 to 0.5 mass%, and Mo: 0.0. One or more selected from 01 to 0.5 mass% can be contained.
Cu, Ni, Cr and Mo are elements that increase the strength and toughness of the steel, further improve the hardenability and promote the formation of the MA phase, and can be added according to the required strength. For each element, a sufficient effect cannot be obtained if it is added in an amount of less than 0.01 mass%. On the other hand, if it exceeds 0.5 mass%, weldability is deteriorated. Therefore, when adding these elements, it is preferable to add in the range of 0.01-0.5 mass%, respectively.

また、本発明の鋼板は、上記成分の他に、Nb:0.005〜0.1mass%、V:0.005〜0.1mass%およびTi:0.005〜0.1mass%のうちから選ばれる1種または2種以上を含有することができる。
Nb,VおよびTiは、鋼板の強度および靭性を高める元素であり、要求される強度に応じて添加することができる。各元素とも、0.005mass%未満の添加では十分な効果が得られず、一方、0.1mass%を超える添加は、溶接部の靭性を低下させる。よって、これらの元素を添加する場合は、それぞれ0.005〜0.1mass%の範囲で添加するのが好ましい。
Moreover, the steel plate of this invention is chosen from Nb: 0.005-0.1mass%, V: 0.005-0.1mass%, and Ti: 0.005-0.1mass% other than the said component. 1 type, or 2 or more types can be contained.
Nb, V, and Ti are elements that increase the strength and toughness of the steel sheet, and can be added according to the required strength. For each element, a sufficient effect cannot be obtained if it is added in an amount of less than 0.005 mass%. On the other hand, if it exceeds 0.1 mass%, the toughness of the welded portion is lowered. Therefore, when adding these elements, it is preferable to add in the range of 0.005-0.1 mass%, respectively.

本発明の鋼板は、上記成分以外の残部は、Feおよび不可避的不純物からなる。ただし、上記以外の成分が、不可避的不純物として通常認められる量以上添加されていても、本発明の作用効果を害しない限り、許容される。   In the steel sheet of the present invention, the balance other than the above components consists of Fe and inevitable impurities. However, even if components other than those described above are added in an amount that is normally recognized as an inevitable impurity, it is allowed as long as the effects of the present invention are not impaired.

次に、本発明の鋼板のミクロ組織について説明する。
ミクロ組織:フェライト相とベイナイト相とMA相からなる3相組織
本発明の鋼板は、軟質のフェライト相とベイナイト相と硬質のMA相の3相からなるミクロ組織を有することが必要である。上記3相からなるミクロ組織は、熱間圧延後の加速冷却過程において、ベイナイト変態途中すなわち未変態オーステナイトが存在する温度域で冷却を一旦停止し、その後、直ちに再加熱し、未変態オーステナイトからフェライトが生じる際、未変態オーステナイト中にCを濃化させ、その後の冷却過程でMA相を生成させることにより、製造効率を低下させることなく、得ることができる。
Next, the microstructure of the steel sheet of the present invention will be described.
Microstructure: Three-phase structure composed of ferrite phase, bainite phase, and MA phase The steel sheet of the present invention needs to have a microstructure composed of three phases of a soft ferrite phase, a bainite phase, and a hard MA phase. The microstructure consisting of the above three phases is such that in the accelerated cooling process after hot rolling, the cooling is temporarily stopped during the bainite transformation, that is, in the temperature range where untransformed austenite exists, and then immediately reheated, from the untransformed austenite to the ferrite. Can be obtained without reducing the production efficiency by concentrating C in the untransformed austenite and generating the MA phase in the subsequent cooling process.

図3は、C:0.05mass%C、Si:0.2mass%、Mn:1.8mass%を含有する本発明の鋼板のミクロ組織を、走査型電子顕微鏡(SEM)で観察した組織写真を示したものであり、フェライト相とベイナイト相の混合相中に、MA相が均一に分散生成している様子が確認できる。   FIG. 3 is a structural photograph of the microstructure of the steel sheet of the present invention containing C: 0.05 mass% C, Si: 0.2 mass%, Mn: 1.8 mass% observed with a scanning electron microscope (SEM). It can be confirmed that the MA phase is uniformly dispersed in the mixed phase of the ferrite phase and the bainite phase.

MA相分率:3〜15%
MA相の相分率は、低降伏比かつ耐延性き裂発生特性に優れる鋼板を得るために、3〜15%の範囲であることが必要である。上述した図2からわかるように、MA相分率が3%未満では降伏比が高く、一方、15%を超えると、延性き裂が容易に発生するようになるからである。なお、より優れた低降伏比と耐延性き裂発生特性を得るためには、MA相分率は5〜12%の範囲が好ましい。ここで、MA相の相分率とは、全組織に対するMA相の体積分率(%)のことであり、その体積分率は、鋼板断面の面積分率(%)で代えることができる。
MA phase fraction: 3-15%
The phase fraction of the MA phase needs to be in the range of 3 to 15% in order to obtain a steel sheet having a low yield ratio and excellent ductile crack initiation characteristics. As can be seen from FIG. 2 described above, when the MA phase fraction is less than 3%, the yield ratio is high, whereas when it exceeds 15%, a ductile crack is easily generated. In order to obtain a more excellent low yield ratio and ductile crack initiation characteristics, the MA phase fraction is preferably in the range of 5 to 12%. Here, the phase fraction of the MA phase is the volume fraction (%) of the MA phase with respect to the entire structure, and the volume fraction can be replaced with the area fraction (%) of the cross section of the steel sheet.

本発明の鋼板は、上記MA相以外の残部は、主としてフェライト相とベイナイト相であるが、鋼板強度を確保する観点からは、ベイナイト相の相分率は、10%以上であることが好ましい。なお、フェライト相、ベイナイト相およびMA相の3相以外には、パーライト相やセメンタイト相などの異種相が存在することができる。しかし、これらの異種相が存在すると、強度が低下するため、それら異種相の相分率は少ないほどよい。ただし、それらの相分率の合計が5%以下であれば、本発明の作用効果に悪影響を及ぼすことはないので許容される。   In the steel sheet of the present invention, the remainder other than the MA phase is mainly a ferrite phase and a bainite phase, but from the viewpoint of securing the steel sheet strength, the phase fraction of the bainite phase is preferably 10% or more. In addition to the three phases of ferrite phase, bainite phase and MA phase, heterogeneous phases such as pearlite phase and cementite phase can exist. However, when these different phases are present, the strength decreases, so that the smaller the phase fraction of these different phases, the better. However, if the total of these phase fractions is 5% or less, it does not adversely affect the function and effect of the present invention, and thus is allowed.

MA相の平均アスペクト比:8以下
MA相の平均アスペクト比は8以下であることが必要である。このMA相の平均アスペクト比が8を超えると、変形時に、伸長したMA相の先端近傍のフェライト相やベイナイト相との界面に歪が集中し、延性き裂の起点となって、耐延性き裂発生特性が劣化するからである。ここで、MA相のアスペクト比とは、図3に示したような伸長したMA相の長径と短径の比(長径/短径)と定義する。また、平均アスペクト比は、300個のMA相のアスペクト比の平均値である。
Average aspect ratio of MA phase: 8 or less The average aspect ratio of the MA phase needs to be 8 or less. When the average aspect ratio of the MA phase exceeds 8, strain is concentrated at the interface with the ferrite phase and bainite phase near the tip of the elongated MA phase during deformation, and becomes a starting point of a ductile crack. This is because the crack generation characteristics deteriorate. Here, the aspect ratio of the MA phase is defined as the ratio of the major axis to the minor axis (major axis / minor axis) of the elongated MA phase as shown in FIG. The average aspect ratio is an average value of the aspect ratios of 300 MA phases.

次に、本発明の鋼板の機械的特性について説明する。
降伏比:0.80以下
本発明は、引張強さが550MPa以上の高強度鋼板を対象としているが、その鋼板は、降伏比が0.80以下であることが必要である。降伏比が0.80を超えると、鋼材の変形能が低下するだけでなく、欠陥部近傍での歪集中が大きくなる結果、欠陥を有する断面で塑性変形が局在化して起こるようになり、延性き裂が容易に起こるようになるからである。好ましくは、降伏比は0.75以下である。
Next, the mechanical characteristics of the steel sheet of the present invention will be described.
Yield ratio: 0.80 or less The present invention is intended for a high-strength steel sheet having a tensile strength of 550 MPa or more, but the steel sheet needs to have a yield ratio of 0.80 or less. When the yield ratio exceeds 0.80, not only the deformability of the steel material decreases, but also the strain concentration near the defect portion increases, resulting in localized plastic deformation in the cross section having the defect, This is because ductile cracks easily occur. Preferably, the yield ratio is 0.75 or less.

延性き裂発生歪:2.5%以上
また、本発明の鋼板は、低降伏比であることに加えて、延性き裂が起こり難いことが必要である。耐延性き裂に対する抵抗性は、延性き裂発生歪で評価することができ、本発明の鋼板は、上記延性き裂発生歪が2.5%以上であることが必要である。ここで、上記延性き裂発生歪とは、図1に示した切欠底半径が0.25mmの環状切欠を有する丸棒試験片に種々の量の引張歪を付与してから除荷し、その試験片の切欠底断面の組織を観察した際に、延性き裂の発生が最初に認められたときにおける標点間の平均歪のことである。なお、延性き裂発生歪が2.5%以上という優れた耐延性き裂発生特性は、上述した成分組成を有する鋼板の組織を、上述した3相組織とすることにより実現することができる。
Ductile crack initiation strain: 2.5% or more In addition to having a low yield ratio, the steel sheet of the present invention needs to be resistant to ductile cracks. The resistance to ductile cracking can be evaluated by ductile crack initiation strain, and the steel sheet of the present invention is required to have the ductile crack initiation strain of 2.5% or more. Here, the above-described ductile crack initiation strain refers to the unloading after applying various amounts of tensile strain to the round bar test piece having an annular notch with a notch bottom radius of 0.25 mm shown in FIG. When observing the structure of the notch bottom cross section of the test piece, it is the average strain between the gauge points when the occurrence of a ductile crack was first observed. It should be noted that the excellent ductile crack initiation characteristic with a ductile crack initiation strain of 2.5% or more can be realized by making the structure of the steel sheet having the above-described component composition the above-described three-phase structure.

次に、本発明に係る低降伏比高強度鋼板の製造方法について説明する。
スラブ加熱温度:1000〜1300℃
本発明の鋼板は、上述した本発明に適合する成分組成を有する鋼を、転炉や電気炉あるいはさらに真空脱ガス処理等の2次精錬を経る通常の方法で溶製し、鋼スラブとした後、その鋼スラブを加熱炉で加熱し、熱間圧延して製造する。ここで、上記鋼スラブの加熱温度は、1000〜1300℃の範囲とする必要がある。加熱温度が1000℃未満では、炭化物の固溶が不十分となるため、十分な強度が得られず、一方、1300℃を超える加熱は、圧延後の鋼板組織が粗大化し、靭性が低下するためである。
Next, the manufacturing method of the low yield ratio high strength steel plate according to the present invention will be described.
Slab heating temperature: 1000-1300 ° C
The steel sheet of the present invention is a steel slab obtained by melting a steel having a composition suitable for the above-described present invention by a normal method through secondary refining such as a converter, an electric furnace or further vacuum degassing. Thereafter, the steel slab is heated in a heating furnace and hot rolled. Here, the heating temperature of the steel slab needs to be in the range of 1000 to 1300 ° C. When the heating temperature is less than 1000 ° C, the solid solution of the carbide becomes insufficient, so that sufficient strength cannot be obtained. On the other hand, heating exceeding 1300 ° C causes the steel sheet structure after rolling to become coarse and toughness is reduced. It is.

圧延終了温度
スラブを加熱後、熱間圧延して鋼板に加工するが、この熱間圧延における圧延終了温度は、Ar変態点以上とする必要がある。圧延終了温度がAr変態点未満では、その後の冷却時に起こるフェライト変態速度が低下し、加速冷却後の再加熱時に、未変態オーステナイトへのCの濃縮が不十分となり、MA相が生成し難くなる。さらに、圧延終了温度がAr変態点未満では、初析フェライトが析出して圧延されるため、加工フェライト相が残存するので、耐延性き裂発生特性が低下する。なお、圧延終了温度の上限については、特に規定しないが、未再結晶域で圧延し、組織の微細化を図るためには950℃以下であることが好ましい。ここで、Ar変態点は、鋼板の成分組成によって変化し、通常、下記(3)式で求めることができる。
Ar変態点(℃)=910−310×C−80×Mn−20×Cu−15×Cr−55×Ni−80×Mo ・・・(2)
ここで、上式の元素記号は各元素の含有量(mass%)である。
Rolling end temperature After the slab is heated, it is hot rolled and processed into a steel sheet. The rolling end temperature in this hot rolling needs to be not less than the Ar 3 transformation point. If the rolling end temperature is less than the Ar 3 transformation point, the ferrite transformation rate that occurs during the subsequent cooling decreases, and during reheating after accelerated cooling, the concentration of C into untransformed austenite becomes insufficient, making it difficult to produce the MA phase. Become. Furthermore, when the rolling end temperature is less than the Ar 3 transformation point, proeutectoid ferrite is precipitated and rolled, and thus the processed ferrite phase remains, so that the ductile crack generation characteristics are deteriorated. In addition, although it does not prescribe | regulate especially about the upper limit of rolling completion temperature, it is preferable that it is 950 degrees C or less in order to roll in a non-recrystallized area and to refine | miniaturize a structure | tissue. Here, the Ar 3 transformation point varies depending on the component composition of the steel sheet, and can usually be obtained by the following equation (3).
Ar 3 transformation point (° C.) = 910-310 × C-80 × Mn-20 × Cu-15 × Cr-55 × Ni-80 × Mo (2)
Here, the element symbol of the above formula is the content (mass%) of each element.

加速冷却
本発明では、後述する熱間圧延に続く加速冷却後の再加熱によって、Cを濃縮させた未変態オーステナイトを、その後の冷却によってMA相へと変態させる。そのためには、熱間圧延後の鋼板の冷却は、圧延終了温度から、まだ未変態オーステナイトが存在するベイナイト変態終了温度(B点)以上である450〜650℃の温度までを、冷却速度5℃/s以上で加速冷却し、その温度域で冷却を停止する必要がある。
Accelerated cooling In the present invention, untransformed austenite enriched with C is transformed into the MA phase by subsequent cooling by reheating after accelerated cooling following hot rolling described later. For this purpose, the steel sheet after hot rolling is cooled from a rolling end temperature to a temperature of 450 to 650 ° C. that is not lower than the bainite transformation end temperature ( Bf point) where untransformed austenite still exists. It is necessary to perform accelerated cooling at a temperature of ° C / s or higher and stop cooling in that temperature range.

冷却停止温度が450℃未満では、ベイナイト変態が完了してしまうため、再加熱後の冷却時にMA相が十分に生成しない。また、一部に未変態オーステナイトが残存してMA相が生成したとしても、ベイナイトの粒界またはラス間に針状に析出するため、MA相のアスペクト比が増加して耐延性き裂発生特性が低下する。一方、冷却停止温度が650℃を超えると、冷却中に析出するパーライトにCが消費されて、未変態オーステナイトにCが濃化せず、MA相が生成し難くなる。よって、加速冷却停止温度は450〜650℃の範囲とする。MA相の生成をより促進するためには、500〜650℃が好ましい。   If the cooling stop temperature is less than 450 ° C., the bainite transformation is completed, and therefore, the MA phase is not sufficiently generated during cooling after reheating. Moreover, even if untransformed austenite remains in part and the MA phase is formed, since it precipitates in a needle shape between the grain boundaries or laths of bainite, the aspect ratio of the MA phase increases and ductile crack initiation characteristics Decreases. On the other hand, if the cooling stop temperature exceeds 650 ° C., C is consumed in the pearlite that precipitates during cooling, and C does not concentrate in the untransformed austenite, making it difficult to produce the MA phase. Therefore, the accelerated cooling stop temperature is in the range of 450 to 650 ° C. In order to further promote the formation of the MA phase, 500 to 650 ° C. is preferable.

また、加速冷却速度を5℃/s以上とする理由は、5℃/s未満では、冷却時にパーライト相が多く生成し、ベイナイト相による高強度化が得られないからである。ベイナイト相による変態強化を十分に活用したい場合には、圧延終了後の加速冷却速度は10℃/s以上とするのが好ましい。加速冷却の方法については、特に制限はなく、製造プロセスによって任意の設備を用いることができる。   Moreover, the reason why the accelerated cooling rate is set to 5 ° C./s or more is that when it is less than 5 ° C./s, a large amount of pearlite phase is generated during cooling, and high strength cannot be obtained by the bainite phase. When it is desired to fully utilize transformation strengthening by the bainite phase, the accelerated cooling rate after the rolling is preferably 10 ° C./s or more. There is no restriction | limiting in particular about the method of accelerated cooling, Arbitrary facilities can be used by a manufacturing process.

再加熱処理
次に、本発明の製造方法では、未変態オーステナイトが存在するB点以上の温度域で加速冷却停止後、直ちに再加熱を行うことが重要であり、具体的には、加速冷却停止温度から0.5℃/s以上の昇温速度で、ベイナイト変態終了温度(B点)以上の550〜700℃まで再加熱を行う必要がある。昇温速度が0.5℃/s未満では、加熱中にパーライト変態が生じるため、十分な量のMA相が得られなくなる他、目的の再加熱温度に達するまでに長時間を要するため、製造効率が悪化する。
Reheating treatment Next, in the production method of the present invention, it is important to immediately perform reheating after accelerating cooling is stopped in the temperature range above the Bf point where untransformed austenite exists. It is necessary to reheat from the stop temperature to a temperature of 550 to 700 ° C. that is higher than the bainite transformation end temperature (B f point) at a temperature increase rate of 0.5 ° C./s or more. If the rate of temperature rise is less than 0.5 ° C./s, pearlite transformation occurs during heating, so that a sufficient amount of MA phase cannot be obtained, and it takes a long time to reach the desired reheating temperature. Efficiency deteriorates.

また、再加熱温度がB点以下であると、ベイナイト変態が完了し、未変態オーステナイトが存在しなくなる。さらに、再加熱温度が550℃未満では、未変態オーステナイトへのC濃化が不十分となり、MA相が生成し難くなる。一方、再加熱温度が700℃を超えると、ベイナイト相の軟化により十分な強度が得られないからである。なお、確実に未変態オーステナイトへCを濃化させるためには、再加熱開始温度(加速冷却停止温度)より50℃以上昇温するのが好ましい。 Further, when the reheating temperature is equal to or lower than the Bf point, the bainite transformation is completed and untransformed austenite does not exist. Furthermore, when the reheating temperature is less than 550 ° C., C concentration to untransformed austenite becomes insufficient, and the MA phase is hardly generated. On the other hand, if the reheating temperature exceeds 700 ° C., sufficient strength cannot be obtained due to softening of the bainite phase. In order to reliably concentrate C into untransformed austenite, it is preferable to raise the temperature by 50 ° C. or more from the reheating start temperature (accelerated cooling stop temperature).

なお、上記再加熱温度では、特に保持時間を設ける必要はなく、再加熱後ただちに冷却しても、十分なMA相を得ることができる。しかし、よりCの濃化を促進させて、十分な量のMA相分率を確保するためには、30分以内の保持時間を設けることが好ましい。30分を超えて加熱保持すると、ベイナイト相中の転位の回復が起こり、強度が低下する場合がある。再加熱後の冷却は、特に制限されないが、空冷(放冷)でも十分にFA相を生成させることができる。   In addition, at the said reheating temperature, it is not necessary to provide holding time in particular, and even if it cools immediately after reheating, sufficient MA phase can be obtained. However, in order to further promote the concentration of C and secure a sufficient amount of MA phase fraction, it is preferable to provide a holding time of 30 minutes or less. When heated and held for more than 30 minutes, dislocation recovery in the bainite phase occurs, and the strength may decrease. Although cooling after reheating is not particularly limited, the FA phase can be sufficiently generated even by air cooling (cooling by standing).

次に、本発明の鋼板を製造するための設備について説明する。
加速冷却後に再加熱を行うための加熱装置は、加速冷却を行う冷却設備の下流側に設置するのが好ましい。加熱装置としては、鋼板の急速加熱が可能であるガス燃焼炉や誘導加熱装置を用いることができるが、誘導加熱装置の方がガス燃焼炉に比べて、冷却後の鋼板を迅速に加熱でき、温度制御も容易で、コストも比較的低いので好ましい。また、複数の誘導加熱装置を連続して直列に配置することは、ライン速度や鋼板の種類・寸法の大きな変化がある場合でも、使用する誘導加熱装置の数や供給電力を適宜変更するだけで、容易に昇温速度や再加熱温度を操作することが可能となるので好ましい。
Next, equipment for manufacturing the steel sheet of the present invention will be described.
A heating device for performing reheating after accelerated cooling is preferably installed on the downstream side of a cooling facility that performs accelerated cooling. As the heating device, a gas combustion furnace or induction heating device capable of rapid heating of the steel plate can be used, but the induction heating device can heat the cooled steel plate more quickly than the gas combustion furnace, Temperature control is also easy and the cost is relatively low, which is preferable. In addition, arranging a plurality of induction heating devices in series can be done by simply changing the number of induction heating devices to be used and the power supply even if there is a large change in line speed or type / size of steel sheet. It is preferable because the heating rate and the reheating temperature can be easily controlled.

図4は、本発明の鋼板を製造する圧延ライン設備列の一例を示したものである。圧延ライン1には、上流から下流側に向かって熱間圧延機3、加速冷却装置4、誘導加熱装置5、ホットレベラー6が配置されており、誘導加熱装置5は、加速冷却装置4の下流の同一ライン上に設置されている。この配列とすることにより、加速冷却終了後、迅速に再加熱処理が行えるので、圧延冷却後の鋼板温度を過度に低下させることなく加熱処理を施すことができる。なお、加熱装置としてガス燃焼炉を用いるような場合には、上記のように圧延設備等と同一ライン上に設置してもよいが、機側に加熱炉を設置し、鋼板を再加熱後、再びライン上に戻す構成としてもよい。   FIG. 4 shows an example of a rolling line equipment row for producing the steel plate of the present invention. In the rolling line 1, a hot rolling mill 3, an acceleration cooling device 4, an induction heating device 5, and a hot leveler 6 are arranged from upstream to downstream, and the induction heating device 5 is downstream of the acceleration cooling device 4. Are installed on the same line. By adopting this arrangement, the reheating treatment can be performed quickly after completion of the accelerated cooling, so that the heating treatment can be performed without excessively reducing the steel plate temperature after the rolling cooling. In addition, when using a gas combustion furnace as a heating device, it may be installed on the same line as the rolling equipment as described above, but after installing the heating furnace on the machine side and reheating the steel plate, It is good also as a structure which returns on a line again.

以上説明した本発明によれば、上記の成分組成を有する鋼スラブに、上記の製造方法を適用して鋼板とし、上記ミクロ組織を付与することで、地震などで生じる大きな塑性変形を受けても、延性き裂が発生し難く、しかも低降伏比かつ高強度の鋼板を、低コストでかつ高効率に製造することが可能となる。   According to the present invention described above, a steel slab having the above component composition is applied to the steel plate by applying the above manufacturing method, and the microstructure is imparted to the steel slab even if it is subjected to large plastic deformation caused by an earthquake or the like. Further, it is possible to produce a steel plate having a low yield ratio and a high strength that is less likely to generate a ductile crack at a low cost and with a high efficiency.

表1に示した成分組成を有するA〜Mの鋼を常法の製鋼プロセスで溶製し、連続鋳造法で鋼スラブとし、これらの鋼スラブを加熱し、熱間圧延し、圧延終了後、直ちに水冷型の加速冷却設備を用いて所定の冷却停止温度まで冷却し、その後、誘導加熱炉またはガス燃焼炉を用いて再加熱し、空冷することにより、板厚15mmのNo.1〜18の厚鋼板を得た。なお、各鋼板の製造条件の詳細は表2に示した。また、再加熱装置は、誘導加熱炉は、図4に示したように加速冷却設備と同一ライン上に設置し、ガス燃焼炉は、加速冷却後のラインの側に近接して設置したものを用いた。   The steels A to M having the composition shown in Table 1 are melted by a conventional steelmaking process to form steel slabs by a continuous casting method. These steel slabs are heated, hot-rolled, and after rolling, Immediately after cooling to a predetermined cooling stop temperature using a water cooling type accelerated cooling facility, reheating using an induction heating furnace or a gas combustion furnace and air cooling, a No. 15 having a plate thickness of 15 mm was obtained. 1-18 thick steel plates were obtained. The details of the manufacturing conditions for each steel sheet are shown in Table 2. As shown in FIG. 4, the reheating apparatus is installed on the same line as the accelerated cooling equipment as shown in FIG. 4, and the gas combustion furnace is installed close to the line after the accelerated cooling. Using.

Figure 0005076959
Figure 0005076959

Figure 0005076959
Figure 0005076959

上記のようにして製造した各鋼板について、板厚中心部付近のミクロ組織を観察し、10視野の組織写真を得て、これを画像解析し、MA相の相分率とMA相の平均アスペクト比を求めた。なお、平均アスペクト比は、300個のMA相の平均値である。
また、上記の各鋼板から、平行部が6mmφ×30mmの丸棒試験片を採取し、引張試験して、引張強さと降伏比を測定した。
また、延性き裂発生歪は、上記の各鋼板から、図1に示したような、平行部が10mmφ、評点間が26mmで、切欠底半径が0.25mmの環状切欠を有する丸棒試験片を採取し種々の量の引張歪を付与してから除荷し、切欠底断面組織を観察して、延性き裂の発生が最初に認められたときの標点間の平均歪を延性き裂発生歪として求めた。
For each steel plate produced as described above, the microstructure near the central portion of the plate thickness was observed, a structure photograph of 10 fields of view was obtained, this was subjected to image analysis, the phase fraction of the MA phase and the average aspect of the MA phase The ratio was determined. The average aspect ratio is an average value of 300 MA phases.
Further, from each of the steel plates, a round bar test piece having a parallel portion of 6 mmφ × 30 mm was collected and subjected to a tensile test to measure the tensile strength and the yield ratio.
In addition, the ductile crack initiation strain is a round bar test piece having an annular notch having a parallel portion of 10 mmφ, a score interval of 26 mm, and a notch bottom radius of 0.25 mm as shown in FIG. Unload the sample after applying various amounts of tensile strain, observe the cross-sectional structure of the notch bottom, and determine the average strain between the gauge points when a ductile crack is first observed. Obtained as the generated strain.

表2に、製造条件と共に、ミクロ組織構成、MA相の相分率、MA相の平均アスペクト比、引張強さ、降伏比および延性き裂発生歪の測定結果を併せて示した。表2から、本発明例の鋼板は、いずれもフェライト相とベイナイト相とMA相の3相組織を有しており、降伏比が0.80以下、延性き裂発生歪が2.5%以上であり、優れた変形能と耐延性き裂発生特性を有していることがわかる。一方、比較例の鋼板は、成分組成または製造条件のいずれかが本発明範囲から外れているため、組織がフェライト相とベイナイト相とMA相の3相組織が得られないか、あるいは、MA相の分率あるいは平均アスペクト比が本発明の規定範囲外のものとなり、その結果、降伏比が高いかまたは延性き裂発生歪が小さく、本発明が所期した特性が得られていない。   Table 2 shows the measurement results of the microstructure structure, the phase fraction of the MA phase, the average aspect ratio of the MA phase, the tensile strength, the yield ratio, and the ductile crack initiation strain as well as the production conditions. From Table 2, the steel sheets of the examples of the present invention all have a three-phase structure of ferrite phase, bainite phase and MA phase, yield ratio is 0.80 or less, and ductile crack initiation strain is 2.5% or more. It can be seen that it has excellent deformability and ductile crack initiation characteristics. On the other hand, since either the component composition or the manufacturing conditions of the steel plate of the comparative example is out of the scope of the present invention, a three-phase structure of the ferrite phase, the bainite phase, and the MA phase cannot be obtained, or the MA phase As a result, the yield ratio is high or the ductile crack initiation strain is small, and the desired characteristics of the present invention are not obtained.

延性き裂発生歪の測定に用いた環状切欠きを有する丸棒試験片を説明する図である。It is a figure explaining the round bar test piece which has the annular notch used for the measurement of a ductile crack generating distortion. フェライト相とベイナイト相とMA相の3相組織鋼において、MA相分率が降伏比と延性き裂発生歪に及ぼす影響を示すグラフである。It is a graph which shows the influence which the MA phase fraction has on the yield ratio and ductile crack initiation strain in the three-phase structure steel of ferrite phase, bainite phase and MA phase. 本発明の鋼板のミクロ組織を走査型電子顕微鏡で観察した写真である。It is the photograph which observed the microstructure of the steel plate of the present invention with the scanning electron microscope. 本発明の鋼板を製造する製造ラインの一例を説明する概略図である。It is the schematic explaining an example of the manufacturing line which manufactures the steel plate of this invention.

符号の説明Explanation of symbols

1:圧延ライン
2:鋼板
3:熱間圧延機
4:加速冷却装置
5:誘導加熱装置
6:ホットレベラー
1: Rolling line 2: Steel plate 3: Hot rolling mill 4: Accelerated cooling device 5: Induction heating device 6: Hot leveler

Claims (4)

C:0.03〜0.1mass%、Si:0.01〜1mass%、Mn:1.2〜2.5mass%、S:0.002mass%以下、Al:0.01〜0.07mass%、Ca:0.001〜0.003mass%、O:0.003mass%以下を含有し、Ca,SおよびOが下記(1)式を満たして含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、金属組織がフェライト相とベイナイト相と島状マルテンサイト相の3相組織からなり、島状マルテンサイトの相分率が3〜15%、平均アスペクト比が8以下の組織を有し、降伏比が0.80以下である低降伏比高強度鋼板。

0.8≦(1−130×O)×Ca/(1.25×S)≦2.0 ・・・(1)
ここで、(1)式中の元素記号は各元素の質量mass%
C: 0.03-0.1 mass%, Si: 0.01-1 mass%, Mn: 1.2-2.5 mass%, S: 0.002 mass% or less, Al: 0.01-0.07 mass%, Component: Ca: 0.001 to 0.003 mass%, O: 0.003 mass% or less, Ca, S and O satisfy the following formula (1), the balance being Fe and inevitable impurities The metal structure is composed of a three-phase structure of a ferrite phase, a bainite phase, and an island-like martensite phase, and the island-like martensite has a phase fraction of 3 to 15% and an average aspect ratio of 8 or less. A low yield ratio high strength steel sheet with a yield ratio of 0.80 or less.
0.8 ≦ (1-130 × O) × Ca / (1.25 × S) ≦ 2.0 (1)
Here, the element symbol in the formula (1) is the mass% of each element.
上記成分組成に加えてさらに、Nb:0.005〜0.1mass%、V:0.005〜0.1mass%およびTi:0.005〜0.1mass%のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1に記載の低降伏比高強度鋼板。 In addition to the above component composition, Nb: 0.005 to 0.1 mass%, V: 0.005 to 0.1 mass%, and Ti: 0.005 to 0.1 mass%, or one or two selected The low yield ratio high-strength steel sheet according to claim 1, comprising the above. 上記成分組成に加えてさらに、Cu:0.01〜0.5mass%、Ni:0.05〜0.5mass%、Cr:0.01〜0.5mass%およびMo:0.01〜0.5mass%のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1または2に記載の低降伏比高強度鋼板。 In addition to the above component composition, Cu: 0.01 to 0.5 mass%, Ni: 0.05 to 0.5 mass%, Cr: 0.01 to 0.5 mass%, and Mo: 0.01 to 0.5 mass The low yield ratio high-strength steel sheet according to claim 1, wherein the steel sheet contains one or more selected from%. 請求項1〜3のいずれかに記載の成分組成を有する鋼スラブを1000〜1300℃に加熱後、圧延終了温度をAr変態点以上とする熱間圧延し、冷却速度5℃/s以上で450℃〜650℃の温度まで加速冷却し、その後直ちに昇温速度0.5℃/s以上で加速冷却停止温度以上の550〜700℃まで再加熱する低降伏比高強度鋼板の製造方法。 A steel slab having the component composition according to any one of claims 1 to 3 is heated to 1000 to 1300 ° C, and then hot-rolled at a rolling end temperature of Ar 3 transformation point or higher, at a cooling rate of 5 ° C / s or higher. A method for producing a low-yield-ratio high-strength steel sheet that is acceleratedly cooled to a temperature of 450 ° C. to 650 ° C., and then immediately reheated to a temperature of 550 to 700 ° C. that is higher than the accelerated cooling stop temperature at a heating rate of 0.5 ° C./s or higher.
JP2008041038A 2008-02-22 2008-02-22 Low yield ratio high strength steel sheet with excellent ductile crack initiation characteristics and its manufacturing method Active JP5076959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008041038A JP5076959B2 (en) 2008-02-22 2008-02-22 Low yield ratio high strength steel sheet with excellent ductile crack initiation characteristics and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008041038A JP5076959B2 (en) 2008-02-22 2008-02-22 Low yield ratio high strength steel sheet with excellent ductile crack initiation characteristics and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2009197282A JP2009197282A (en) 2009-09-03
JP5076959B2 true JP5076959B2 (en) 2012-11-21

Family

ID=41141110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008041038A Active JP5076959B2 (en) 2008-02-22 2008-02-22 Low yield ratio high strength steel sheet with excellent ductile crack initiation characteristics and its manufacturing method

Country Status (1)

Country Link
JP (1) JP5076959B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2775031C (en) * 2009-09-30 2015-03-24 Jfe Steel Corporation Low yield ratio, high strength and high uniform elongation steel plate and method for manufacturing the same
JP5640899B2 (en) * 2010-06-08 2014-12-17 新日鐵住金株式会社 Steel for line pipe
CN103014554B (en) * 2011-09-26 2014-12-03 宝山钢铁股份有限公司 Low-yield-ratio high-tenacity steel plate and manufacture method thereof
JP6064320B2 (en) * 2012-01-04 2017-01-25 Jfeスチール株式会社 Low yield ratio high strength steel plate with excellent ductile fracture resistance
CN106164314B (en) 2014-03-31 2018-10-30 杰富意钢铁株式会社 The high deformability line-pipes steel and its manufacturing method and welded still pipe of resistance to distortion aging property and the characteristic good of resistance to HIC
CN105603298A (en) * 2016-02-03 2016-05-25 舞阳钢铁有限责任公司 Low-yield-tensile-ratio steel plate for superwide bridges and production method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4035990B2 (en) * 2001-12-13 2008-01-23 Jfeスチール株式会社 Super high heat input welding HAZ toughness and low yield ratio steel plate for building structure and method for producing the same
JP4066905B2 (en) * 2003-07-31 2008-03-26 Jfeスチール株式会社 Manufacturing method of low yield ratio high strength high toughness steel sheet with excellent weld heat affected zone toughness
JP4997805B2 (en) * 2005-03-31 2012-08-08 Jfeスチール株式会社 High-strength thick steel plate, method for producing the same, and high-strength steel pipe
JP4730088B2 (en) * 2005-12-27 2011-07-20 Jfeスチール株式会社 Low yield ratio high strength thick steel plate and method for producing the same

Also Published As

Publication number Publication date
JP2009197282A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
JP5098256B2 (en) Steel sheet for high-strength line pipe with low yield stress reduction due to the Bauschinger effect with excellent hydrogen-induced cracking resistance and method for producing the same
JP5776398B2 (en) Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
JP5499733B2 (en) Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same
JP5055774B2 (en) A steel plate for line pipe having high deformation performance and a method for producing the same.
JP4951997B2 (en) A method for producing a high-tensile steel sheet having a tensile strength of 550 MPa or more.
JP5499731B2 (en) Thick high-tensile hot-rolled steel sheet with excellent HIC resistance and method for producing the same
JP6048436B2 (en) Tempered high tensile steel plate and method for producing the same
JP4696570B2 (en) Manufacturing method of high-tensile steel material with excellent hydrogen embrittlement resistance
JP2012172256A (en) Low yield ratio high strength hot rolled steel sheet having excellent low temperature toughness and method for manufacturing the same
JP2010196165A (en) Thick high-tensile-strength hot-rolled steel sheet having excellent low-temperature toughness and process for producing the same
JP5991175B2 (en) High-strength steel sheet for line pipes with excellent material uniformity in the steel sheet and its manufacturing method
JP5401863B2 (en) Manufacturing method for thick-walled high-tensile hot-rolled steel sheet with excellent low-temperature toughness
JP2008184638A (en) Thick high tensile strength steel plate, and method for producing the same
JP2010196161A (en) Method for manufacturing heavy gauge high tensile strength hot rolled steel sheet with excellent hic resistance
JP5076959B2 (en) Low yield ratio high strength steel sheet with excellent ductile crack initiation characteristics and its manufacturing method
JP5521482B2 (en) Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same
JPWO2016157863A1 (en) High-strength and high-toughness steel plate and method for producing the same
WO2014175122A1 (en) H-shaped steel and method for producing same
JP2010222680A (en) Method for manufacturing high strength high toughness steel excellent in workability
JP5477089B2 (en) Manufacturing method of high strength and high toughness steel
JP2017214618A (en) Production method of low yield ratio high strength hot rolled steel sheet excellent in low temperature toughness
JP5439889B2 (en) Thick steel plate for thick and high toughness steel pipe material and method for producing the same
JP5991174B2 (en) High-strength steel sheet for sour-resistant pipes with excellent material uniformity in the steel sheet and its manufacturing method
JP5151034B2 (en) Manufacturing method of steel plate for high tension line pipe and steel plate for high tension line pipe
JP6565890B2 (en) Low yield ratio and high strength hot rolled steel sheet with excellent low temperature toughness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120813

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5076959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250