JP4035990B2 - Super high heat input welding HAZ toughness and low yield ratio steel plate for building structure and method for producing the same - Google Patents

Super high heat input welding HAZ toughness and low yield ratio steel plate for building structure and method for producing the same Download PDF

Info

Publication number
JP4035990B2
JP4035990B2 JP2001379628A JP2001379628A JP4035990B2 JP 4035990 B2 JP4035990 B2 JP 4035990B2 JP 2001379628 A JP2001379628 A JP 2001379628A JP 2001379628 A JP2001379628 A JP 2001379628A JP 4035990 B2 JP4035990 B2 JP 4035990B2
Authority
JP
Japan
Prior art keywords
less
heat input
toughness
high heat
haz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001379628A
Other languages
Japanese (ja)
Other versions
JP2003183767A (en
Inventor
達己 木村
健次 大井
俊幸 星野
虔一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001379628A priority Critical patent/JP4035990B2/en
Publication of JP2003183767A publication Critical patent/JP2003183767A/en
Application granted granted Critical
Publication of JP4035990B2 publication Critical patent/JP4035990B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、建築構造用として好適な、厚鋼板に係り、特に超大入熱溶接を施される使途に好適な建築構造用厚鋼板に関する。なお、本発明でいう「超大入熱溶接」とは、溶接入熱量が400kJ/cmを超える溶接を意味するものとする。また、厚鋼板とは、板厚30mm以上の鋼板をいうものとする。
【0002】
【従来の技術】
近年、建築構造物の大型化に伴い、使用鋼材の厚肉化が要望され、構造物の施工効率の向上と施工コストの低減の観点から、溶接効率の向上が求められ、大入熱の高能率溶接が指向されてきた。たとえば、建築構造用ボックス柱では、サブマージアーク溶接やエレクトロスラグ溶接などの溶接入熱が400kJ/cmを超えるような大入熱溶接が適用されている。
【0003】
また、近年、建築構造物の耐震性向上が求められ、建築構造物の溶接継手部にも、高い靱性を有することが要求されるようになっている。例えば、柱−梁接合部については、0℃におけるシャルピー吸収エネルギーが70Jを超えるような、高い靱性を有することが要求されている。また、ボックス柱の溶接部にも、同様の要求がある。
【0004】
一般に、溶接熱影響部(以下、HAZ ともいう)は、溶接時に高温に晒され、結晶粒が粗大化しやすく、しかも、溶接入熱が増大するにしたがい冷却速度が遅くなり、脆弱な上部ベイナイト組織が形成され、さらに島状マルテンサイト等の脆化組織が生成されやすく、HAZ 靱性が低下しやすいことが知られている。このような大入熱溶接HAZ の靭性の低下という問題に対し、例えば、特開平2-250917 号公報、特開平2-254118 号公報、特公平3-53367号公報には、TiN を鋼中に微細分散させ、MnS または REMオキシサルファイドと複合してオーステナイト粒の粗大化を抑制し、大入熱溶接HAZ の靭性を改善する技術が提案されている。
【0005】
また、特開昭60-184663 号公報には、入熱量100kJ/cmの溶接ボンド部靱性の改善をめざし、希土類元素(REM )とTiとを複合添加し、鋼中に微細粒子を分散させてオーステナイトの粒成長を抑制し、溶接ボンド部の靱性向上を図る技術が提案されている。
また、特開昭57-51243号公報には、Ti酸化物(特に一酸化チタン)を微細分散させ、大入熱溶接HAZ の高靭性化を図る技術が提案されている。また、特開昭62-170459 号公報には、Ti窒化物の微細分散と、固溶B量を低減したうえでのBNの析出を組み合わせて、大入熱溶接HAZ の高靭性化を図る技術が提案されている。
【0006】
また、特開昭60-245768 号公報、特開昭61-79745号公報等には、Tiの酸化物を微細分散させ、フェライト変態の核生成サイトとして利用し、大入熱溶接HAZ の靭性を改善する技術が提案されている。
また、特開昭61-253344 号公報には、溶接時の冷却過程で TiNなどの上に析出するBNをフェライト変態の核として利用し、大入熱溶接HAZ の靭性を改善する技術が提案されている。
【0007】
また、特開2001-107177 号公報には、固溶Nを徹底的に低減するため、Tiと十分なAl量(0.05〜0.10%)を含有させ、さらに微細酸化物としてCa酸化物を活用して、超大入熱溶接におけるHAZ 靭性を向上させる高張力鋼板が提案されている。
さらには特開昭60-204863 号公報には、Caを添加することで硫化物の形態を制御することにより、大入熱溶接HAZ の靭性を改善する技術が提案されている。また、特公平4-14180 号公報には、REM を添加し硫化物の形態を制御することにより、大入熱溶接HAZ の靱性を改善する技術が提案されている。
【0008】
【発明が解決しようとする課題】
しかしながら、上記したTi酸化物を用いる従来技術では、酸化物を均一かつ微細に分散させることがかなりの困難を伴い、酸化物の複合化等によりその分散能を改良すべく種々の検討がなされているが、入熱が400kJ/cmを超える超大入熱溶接においてはオーステナイト粒の成長を十分抑制することが現在までのところ難かしく、超大入熱溶接HAZ を安定して高靭性とすることが困難となる。
【0009】
また、上記したTiN を主体に利用する従来技術で製造された鋼材に、400kJ/cmを超える大入熱溶接法を適用した場合、HAZ が、TiN が溶解する高温域に長時間晒されるため、TiN による結晶粒微細化の作用がなくなり、超大入熱溶接HAZ を高靭性とすることができなくなるという問題があった。また、上記した従来技術では、固溶Tiおよび固溶Nの増加に起因して、脆化組織が生成し、著しくHAZ 靱性が低下する場合があるという問題があった。
【0010】
また、特開2001-107177 号公報に記載された技術では、靱性に悪影響を及ぼす固溶N量の低減と溶融点近傍の高温域でも粒径微細化効果を有する酸化物を活用することで、超大入熱溶接における HAZ靱性の向上させたものであり、過剰にAlを含有させることが特徴である。しかし、多量のAl添加は、溶接時に溶接金属中に混入して脱酸反応に影響し、溶接部靱性を低下させるという問題があった。
【0011】
また、建築構造物では、鋼材の塑性変形を一部許容することで地震エネルギーを吸収する設計法がとられることから、建築構造物用鋼材は、降伏比:80%以下の低降伏比鋼材とすることが要求されている。
本発明は、上記した従来技術の問題を有利に解決し、母材降伏強さが490MPa以上と高く、かつ母材降伏比が80%以下と低降伏比であり、さらに溶接入熱量が400kJ/cmを超える超大入熱溶接においても優れたHAZ 靱性を有する、超大入熱溶接HAZ 靱性に優れた低降伏比建築構造用厚鋼板およびその製造方法を提供することを目的とする。なお、本発明で「超大入熱溶接HAZ 靱性に優れる」とは、400kJ/cmを超える大入熱溶接のHAZ における、0℃におけるシャルピー吸収エネルギー VO が70J以上を有する場合をいうものとする。
【0012】
【課題を解決するための手段】
本発明者らは、上記した課題を達成するために、入熱が400kJ/cmを超える超大入熱溶接HAZ の靱性におよぼす各種要因について、研究、検討を重ねた。その結果、超大入熱溶接HAZ において、高靱性を得るためには、高温に加熱された領域におけるオーステナイト粒の粗大化抑制と、冷却時にフェライト変態を促進する変態核の微細分散が重要であることを見出した。従来は、これらが不十分であったために、溶接部を安定して高靭性とすることができなかった。
【0013】
本発明者らは、フェライト変態核の微細分散のために、硫化物の形態制御の役割を担うCaに注目し、凝固時にCaS を晶出させることを想到した。CaS は酸化物に比べて低温で晶出するため、鋼中で微細かつ均一な分散が可能となる。CaS の晶出のためには、まずCa添加時の溶鋼中の溶在酸素量を0.0050mass%以下に調整することが肝要である。そして、Ca添加時の溶鋼中の溶存酸素量を0.0050mass%以下に調整したうえで、Ca,Sの添加量を次(1)式
ACR ={Ca-(0.18+130×Ca) ×O}/(1.25/S)………(1)
ここで、Ca,O,S:各合金元素の含有量(mass%)
で定義されるACR が0.3 以上0.8 以下を満足するように調整する。これにより、CaS の晶出後に固溶S量が確保でき、CaS の表面上にMnS が析出する複合硫化物を形成することを見出した。MnS はフェライト核生成能があることが知られており、さらにはその周囲にMnの希薄帯が形成されフェライト変態がさらに促進される。また、MnS 上にTiN ,BN,AlN 等のフェライト生成核が析出することによっても、より一層フェライト変態が促進することも新たに発見した。
【0014】
また、400kJ/cm以上の超大入熱溶接HAZ では、高温における滞留時間が増加するため、高温滞留域におけるオーステナイト粒の一層の微細化が必要であることに鑑み、本発明者らは、さらに検討を重ねた結果、分散粒子のサイズおよび形態を制御することが重要であることに思い至り、超大入熱溶接HAZ の高靭性化のためには、分散粒子の平均粒径を50nm以下、粒数密度を1×106 個/mm2 以上とする必要があることを見いだした。
【0015】
分散粒子のサイズおよび形態を上記した範囲に制御するためには、転炉、電気炉、真空溶解炉などの通常公知の方法で溶製し、脱酸処理や脱ガスプロセスにて、溶存酸素量を0.0050mass%以下に制御したのち、ACR が 0.3〜 0.8の範囲となるようにCa添加することで介在物制御を行ったうえで、連続鋳造法により鋼素材とすることが肝要である。なお、連続鋳造時の鋳込速度は概ね 0.1m/min 以上とすることが望ましい。
【0016】
また、本発明者らは、母材厚鋼板を低降伏比鋼板とするには、熱間圧延条件およびその後の冷却を制御することが重要であることを見出した。
本発明は、上記した知見に基づいて、さらに検討を加えて完成されたものである。
すなわち、本発明は、mass%で、C:0.03〜0.15%、Si:0.05〜0.50%、Mn:0.5 〜2.0 %、P:0.03%以下、S:0.0005〜0.0030%、Al:0.005 %以上 0.05 %未満、Ti:0.004 〜0.02%、N:0.0020〜0.0070%、Ca:0.0005〜0.0030%、O:0.0050%以下を含有し、かつ次(1)式
ACR ={Ca-(0.18+130×Ca) ×O}/(1.25/S)………(1)
(ここで、Ca,O,S:各元素の含有量(mass%))
で定義されるACR が0.3 以上0.8 以下を満足し、残部Feおよび不可避的不純物からなる組成を有し、かつCaS 表面上に MnS が析出した複合硫化物を含む分散粒子の平均粒径が50nm以下、粒数密度が1×106 個/mm2 以上である組織を有することを特徴とする降伏比80%以下を有し、超大入熱溶接HAZ 靱性に優れた、低降伏比建築構造用厚鋼板である。また、本発明では、前記組成に加えてさらに、mass%で、Nb:0.05%以下、V:0.2 %以下、Cu:1.0 %以下、Ni:1.5 %以下、Cr:0.7 %以下、Mo:0.7 %以下、B:0.0003〜0.0025%のうちから選ばれた1種または2種以上を含有することが好ましい。
【0017】
また、本発明は、mass%で、C:0.03〜0.15%、Si:0.05〜0.50%、Mn:0.5 〜2.0 %、P:0.03%以下、S:0.0005〜0.0030%、Al:0.005 %以上 0.05 %未満、Ti:0.004 〜0.02%、N:0.0020〜0.0070%、Ca:0.0005〜0.0030%、O:0.0050%以下を含有し、かつ前記(1)式で定義されるACR が0.3 以上0.8 以下を満足する組成を有し、溶鋼中の溶存酸素量を 0.0050mass %以下に調整したのち Ca を添加し、前記 ACR 0.3 以上 0.8 以下を満足するように、 Ca ,S含有量を調整したのち、連続鋳造してなる鋼素材を、1000℃〜1250℃に再加熱後、圧延終了温度をAr3変態点以上とする熱間圧延を施し、ついで、1℃/s以上の平均冷却速度で冷却し、冷却停止温度:600 〜250 ℃とする加速冷却を行った後、空冷することを特徴とする降伏比80%以下を有し超大入熱溶接HAZ 靱性に優れた低降伏比建築構造用厚鋼板の製造方法である。分散粒子のサイズおよび形態を上記した範囲に制御するためには、転炉、電気炉、真空溶解炉などの通常公知の方法で溶製し、脱酸処理や脱ガスプロセスにて溶存酸素量を0.0050mass%以下に制御したのち、ACR が 0.3〜 0.8の範囲となるようにCa添加することで介在物制御を行ったうえで、連続鋳造法により鋼素材とすることが肝要である。なお、連続鋳造時の鋳込み速度は概ね 0.1m/min 以上とすることが望ましい。
【0018】
【発明の実施の形態】
まず、厚鋼板の組成限定理由について説明する。なお、以下、mass%は単に%で表示する。
C:0.03〜0.15%
Cは、鋼の強度を増加させる元素であり、建築構造用厚鋼板として必要な強度(母材降伏強さ:490MPa以上)を得るためには、少なくとも0.03%は必要である。しかし、過剰に含有すると、溶接部の靱性、耐溶接割れ性を低下させる。このため、本発明では、Cは0.03〜0.15%の範囲に限定した。なお、好ましくは、0.03〜0.12%である。
【0019】
Si:0.05〜0.50%
Siは、脱酸剤として作用し、製鋼上0.05%以上の含有が必要であるが、0.50%を超えて含有すると、母材靱性が劣化するとともに、超大入熱溶接HAZ において島状マルテンサイトが生成し、HAZ 靱性が顕著に劣化する。このため、Siは0.05〜0.50%の範囲に限定した。なお、好ましくは、0.05〜0.40%である。
【0020】
Mn:0.5 〜2.0 %
Mnは、鋼の強度を増加させる元素であり、本発明では所定の母材強度を確保するため、0.5 %以上の含有を必要とする。一方、2.0 %を超える過剰の含有は、溶接部の靱性を著しく劣化させる。このため、本発明では、Mnは0.5 〜2.0 %の範囲に限定した。なお、好ましくは、0.6 〜 1.6%である。
【0021】
P:0.03%以下
Pは、不純物として鋼中に不可避的に含有される元素であり、鋼の靭性を劣化させるため、できるだけ低減することが好ましい。とくに、0.03%を超える含有は、HAZ の靱性劣化が著しくなる。このため、Pは0.03%以下に限定した。なお、過度のP低減は精錬コストを高騰させ経済的に不利となるため、0.005 %以上とすることが好ましい。
【0022】
S:0.0005〜0.0030%
Sは、Caを含有する本発明では、Caと結合しCaS 粒子として凝固段階で微細に晶出し、さらに溶接時にCaS 粒子上にMnS として析出し、フェライト変態核として作用し溶接部靭性を向上させる効果を有する。このような効果はS:0.0005%以上の含有で認められる。一方、0.0030%を超えて含有すると、母材および溶接部の靱性を劣化させる。このため、Sは0.0005〜0.0030%に限定した。
【0023】
Al:0.005 %以上 0.05 %未満
Alは、脱酸剤として作用し、鋼の脱酸上0.005 %以上の含有を必要とするが、0.05 %以上含有すると、母材の靱性が低下し、同時に溶接時に溶接金属部に混入して、靱性を劣化させる。このため、Alは0.005 %以上 0.05 %未満の範囲に限定した
【0024】
Ti:0.004 〜0.02%
Tiは、Nとの親和力が強く凝固時にTiN として析出して、HAZ でのオーステナイト粒の粗大化を抑制し、あるいはフェライト変態核としてHAZ の高靱性化に寄与する。このような効果は、0.004 %以上の含有で認められるが、0.02%を超えて含有すると、TiN 粒子が粗大化し、上記した効果が期待できなくなる。このため、Tiは0.004 〜0.02%の範囲に限定した。なお、好ましくは、0.005 〜 0.018%である。
【0025】
N:0.0020〜0.0070%
Nは、Tiと結合しTiN として析出して、HAZ でのオーステナイト粒の粗大化を抑制し、あるいはフェライト変態核としてHAZ の高靱性化に寄与する。このような効果を有するTiN の必要量を確保するために、0.0020%以上のNを含有する必要がある。一方、0.0070%を超えて含有すると、溶接時にTiN が溶解する温度まで加熱される領域では、固溶N量が増加し、靱性が著しく低下する。このため、Nは0.0020〜0.0070%の範囲に限定した。
【0026】
Ca:0.0005〜0.0030%
Caは、硫化物の形態を制御して鋼の延性向上に寄与する元素である。このような効果を発揮させるには少なくとも0.0005%含有することが必要であるが、0.0030%を超えて含有しても効果が飽和する。このため、本発明では、Caは0.0005〜0.0030%の範囲に限定した。なお、本発明では、後述するように、Ca添加直前の溶存酸素量を0.0050%以下に調整したのち、Caを添加して、Ca酸化物の生成を抑制してCaS を晶出させる。CaS は、溶鋼中で酸化物に比べて低温で晶出するため、鋼中で微細かつ均一な分散が可能となり、このCaS 微細粒子はMnS と複合して溶接時にフェライト変態核として作用し、HAZ 靭性の向上に寄与する。
【0027】
O:0.0050%以下
Oは、不可避的不純物として含有され、鋼中では酸化物として存在し、清浄度を低下させる。このため、本発明ではできるだけ低減することが好ましい。O含有量が0.0050%を超えるとCaO系介在物が粗大化して、靭性に悪影響を及ぼす。また、本発明では、CaをCaS として晶出させるために、Caとの結合力が強いOはCa添加前に、脱ガスを強化するか、脱酸剤を投入して、溶鋼中のOを0.0050%以下に低減しておくことが好ましい。
【0028】
また、本発明では、Ca添加時の溶鋼中の溶在酸素量を0.0050mass%以下に調整したうえで、Ca,Sを次(1)式
ACR ={Ca-(0.18+130×Ca) ×O}/(1.25/S)………(1)
(ここで、Ca,O,S:各元素の含有量(mass%))
で定義されるACR が0.3 以上0.8 以下を満足するように添加、調整する。
【0029】
ACR が、0.3 未満では、CaS が晶出しないため、SはMnS 単独の形態で析出する。このMnS は鋼板製造時の圧延で伸長されて均一かつ微細に分散しないため、母材の靱性低下を引き起こすとともに、超大入熱溶接HAZ においてMnS が溶融し微細分散が達成されないため、HAZ の靭性向上が達成できない。一方、ACR が、0.8 超えると、Sが完全にCaによって固定され、フェライト生成核として働くMnS がCaS 上に析出しない。このため、HAZ 靭性の向上が達成されない。ACR が、0.3 以上0.8 以下を満足してはじめて、CaS 上にMnS が析出した複合硫化物の形態となる。この複合硫化物の存在により、フェライト変態の核として機能し、HAZ の組織が微細化され、HAZ 靭性が向上する。
【0030】
上記した基本組成に加えてさらに、強度増加の目的で必要に応じ、Nb:0.05%以下、V:0.2 %以下、Cu:1.0 %以下、Ni:1.5 %以下、Cr:0.7 %以下、Mo:0.7 %以下、B:0.0003〜0.0025%のうちから選ばれた1種または2種以上を含有することができる。
Nb、V、Cu、Ni、Cr、Mo、Bは、いずれも鋼の強度を増加させる元素であり、母材強度、溶接継手部強度の確保のために、必要に応じ選択して含有することが好ましい。
【0031】
Nbは、母材の強度および靱性を向上させるとともに、継手部強度を増加させる作用を有する。このような効果は、0.005 %以上の含有で顕著となるが、0.05%を超える含有は、HAZ 靱性の低下を招く。このため、本発明では、Nbは0.05%以下に限定することが好ましい。
Vは、母材の強度および靱性を向上させるとともに、VNとして析出し、フェライト変態の核として作用する。このような効果は、0.01%以上の含有で顕著となるが、0.2 %を超える含有は、かえって靱性の低下を招く。このため、Vは0.2 %以下に限定することが好ましい。
【0032】
Niは、母材の高靱性を保ちつつ強度を増加させる元素であり、本発明では0.05%以上の含有が望ましいが、1.5 %を超えて含有しても効果が飽和し、含有量に見合う効果が期待できなくなり、経済的に不利となる。このため、本発明では、Niは1.5 %以下に限定することが好ましい。なお、より好ましくは 0.1〜 1.0%である。
【0033】
Cuは、Niと同様、強度を増加するとともに、靭性を向上させる作用を有する。このような効果は0.05%以上の含有で顕著となるが、1.0 %を超える含有は熱間脆性を生じ、鋼板の表面性状が劣化する。このため、Cuは1.0 %以下に限定することが好ましい。
また、Cr,Moは、いずれも鋼材(母材)の高強度化に有効に作用する元素である。このような効果は、Cr:0.05%以上、Mo:0.05%以上の含有で顕著となる。一方、過剰に含有すると、いずれも靱性に悪影響を与えるため、Cr:0.7 %以下、Mo:0.7 %以下にそれぞれ限定することが好ましい。
【0034】
Bは、焼入れ性の向上を介して、鋼の強度を増加させる作用を有するとともに、HAZ ではBNを形成し、固溶Nの低減とフェライト変態核として働く。このような効果は、0.0003%以下ではその効果が十分ではなく、一方、0.0025%を超えて含有すると焼入れ性が著しく増加し母剤靱性の劣化を招く恐れがある。このため、Bは0.0003〜0.0025%の範囲に限定することが好ましい。
【0035】
上記した成分以外の残部は、Feおよび不可避的不純物である。
また、本発明の厚鋼板は、CaS 表面上に MnS が析出した複合硫化物を含む分散粒子の平均粒径が50nm以下、粒数密度が1×106 個/mm2 以上である組織を有する。
分散粒子の平均粒径が50nmを超えると、HAZ の高温滞留域における分散粒子のオーステナイト粒ピン止め効果が小さくなり、HAZ が粗粒化するためHAZ 靱性が低下する。また、分散粒子の粒数密度が1×106 個/mm2 未満では、同様に、HAZ の高温滞留域でのオーステナイト粒のピン止め効果が小さくなり、HAZ が粗粒化しHAZ 靱性が低下する。このようなことから、分散粒子は、平均粒径を50nm以下とし、その粒数密度を1×106 個/mm2 以上に限定した。なお、本発明でいう分散粒子は、TiN や表面に MnS が析出したCa硫化物/酸化物などで代表される粒子である。
【0036】
なお、分散粒子の平均粒径および単位面積当たりの粒数密度は、鋼板から採取した試験片のL断面を研磨し、さらに研磨面を電解腐食して分散粒子を現出したのち、走査型電子顕微鏡を用いて倍率:2000倍で各10視野観察し、撮像して、得られた画像を、画像解析装置を用いて処理し算出するものとする。
つぎに、本発明厚鋼板の製造方法について説明する。
【0037】
上記した組成の溶鋼を、転炉、電気炉、真空溶解炉等通常公知の方法で溶製し、脱酸処理や脱ガスプロセスにて、ガス成分の制御を行ったのち、CaSiワイヤの添加による介在物制御したうえで連続鋳造法などの鋳造方法で鋼素材(スラブ)とする。なお、溶製時に、CaをCaS として晶出させるために、Caとの結合力が強いOはCa添加前に、脱ガスを強化するか、脱酸剤を投入して、溶鋼中のOを0.0050%以下に低減しておくことが好ましい。また、本発明では、Ca添加時の溶鋼中の溶在酸素量を0.0050%以下に調整したうえで、ACR が0.3 以上0.8 以下を満足するようにCa,Sを添加、調整することが好ましい。
【0038】
また、分散粒子のサイズおよび形態を上記した範囲に制御するためには、凝固段階においては、連続鋳造時の鋳込速度や、冷却速度を制御して、凝固組織の微細化を図ることが好ましい。
ついで、これら鋼素材を、1000〜1250℃に再加熱する。
再加熱温度が1000℃未満では、熱間圧延での変形抵抗が高くなり、1パス当たりの圧下量が大きくとれなくなることから、圧延パス数が増加し、圧延能率を招くとともに、鋼素材(スラブ)中の鋳造欠陥を圧着することができない場合がある。一方、再加熱温度が1250℃を超えると、凝固過程で析出したTiN がオストワルド成長により粗大化し、超大入熱溶接時の溶接接合部近傍におけるオーステナイトのピン止め効果が失われ、HAZ 靱性が低下する。このため、鋼素材の再加熱温度は1000〜1250℃の範囲とすることが好ましい。なお、より好ましくは、1100〜1200℃である。
【0039】
再加熱された鋼素材は、ついで、圧延終了温度をAr3変態点以上とする熱間圧延を施され厚鋼板とされる。圧延終了温度がAr3変態点未満の低い温度となると、フェライトが加工されるため、鋼板の降伏点が上昇し、降伏比が増加する。このため、熱間圧延の圧延終了温度はAr3変態点以上に限定することが好ましい。なお、Ar3変態点は化学組成との相関が概ね次式
Ar3=910 −273 C+25Si−74Mn−56Ni−16Cr−9Mo −5Cu −1620Nb
(ただし、C,Mn,Ni,Cr,Mo,Cu:各合金元素の含有量(mass%))で整理できる。
【0040】
降伏比を安定して、80%以下とすること、さらには、音響異方性を小さくすることを考慮すると、圧延終了温度は、(Ar3変態点+70℃)以上とすることがより好ましい。また、圧延終了温度が1000℃を超えると、生成する組織が粗くなり母材の靱性が低下する。このため、圧延終了温度は1000℃以下とすることが好ましい。
【0041】
熱間圧延終了後、平均冷却速度が1℃/s以上の加速冷却を600 〜250 ℃(冷却停止温度)まで行う。加速冷却の冷却速度が1℃未満では、組織が粗大化し、母材靭性が低下する。加速冷却時の平均冷却速度の上限については本発明では特に規定しないが、条切り歪を低減するという観点からは10℃/s以下とすることが望ましい。また、加速冷却の冷却停止温度が600 ℃を超えると、引張強さTSが低くなりすぎ、一方、250 ℃未満では降伏比が増大する。このため、加速冷却の冷却停止温度は250 〜600 ℃の範囲とすることが好ましい。なお、加速冷却後は、室温まで空冷させる。
【0042】
また、本発明では、鋼板の残留応力低減の観点から、焼戻し処理を行ってもなんら問題はない。
以上のように、本発明によれば、Ca,Sを限定された範囲で含有し、かつ分散粒子サイズおよび分布を所定の範囲に制御することにより、400kJ/cmを超える超大入熱溶接におけるHAZ 靱性に優れた建築構造用厚鋼板を安価にしかも安定して製造できる。
【0043】
【実施例】
表1に示す組成の溶鋼を、転炉−脱ガスプロセスで溶製し、連続鋳造法で鋼素材(230 〜 310mm厚スラブ)とした。なお、本発明例は、溶製中で、Ca添加直前の溶存酸素量を0.0050mass%以下に調整した。ついで、鋼素材を表2に示す条件で再加熱し、表2に示す条件の熱間圧延を施し、厚鋼板とした。熱間圧延後、表2に示す条件で加速冷却を施した。なお、加速冷却後は、空冷とした。
【0044】
得られた厚鋼板について、母材組織、母材引張特性、母材靭性を調査した。
(1)母材組織
得られた厚鋼板から、試験片を採取し、分散粒子の平均粒径、および粒数密度を調べた。分散粒子の平均粒径および単位面積当たりの粒数密度は、試験片のL断面を研磨し、さらに研磨面を電解腐食して分散粒子を現出したのち、走査型電子顕微鏡を用いて倍率:2000倍で各10視野観察し、撮像して、得られた画像を、画像解析装置を用いて算出し、各視野ごとの平均値を求め、さらに各視野の平均値を求め、各鋼板の値とした。
(2)母材引張特性
得られた厚鋼板の板厚の1/4t部C方向から、JIS 4号引張試験片を採取し、JIS Z 2204の規定に準拠して引張試験を実施し、降伏点YP、引張強さTS、降伏比YRを求めた。
(3)母材靭性
得られた厚鋼板の板厚の1/4t部C方向から、JIS 4号衝撃試験片を採取し、JIS Z 2242の規定に準拠してシャルピー衝撃試験を実施し、破面遷移温度vTrs、0℃における吸収エネルギーvE0 を求めた。
【0045】
また、得られた厚鋼板について、超大入熱溶接のHAZ 靭性を調査した。
(4)超大入熱溶接HAZ 靭性
得られた厚鋼板から採取した熱サイクル試験片を採取して、入熱400kJ/cmのサブマージアーク溶接ボンド部または入熱:800kJ/cmのエレクトロスラグ溶接ボンド部相当の熱サイクル(最高加熱温度:1400℃、800 〜500 ℃の冷却時間:550 s,平均冷却速度:0.55℃/s)、または入熱:1200kJ/cm のエレクトロスラグ溶接ボンド部相当の熱サイクル(最高加熱温度:1400℃、800 〜500 ℃の冷却時間:1000s、平均冷却速度:0.3 ℃/s)を付与した。これら熱サイクル試験片から、シャルピー衝撃試験片を採取し、JIS Z 2242の規定に準拠して、0℃でシャルピー衝撃試験を実施し、吸収エネルギーvE0 (J)を求め、大入熱溶接HAZ 靭性を評価した。
【0046】
得られた結果を表3に示す。
【0047】
【表1】

Figure 0004035990
【0048】
【表2】
Figure 0004035990
【0049】
【表3】
Figure 0004035990
【0050】
本発明例はいずれも、TSが490MPa以上の高強度で、降伏比が75%程度と良好な母材特性と、400kJ/cmを超える超大入熱溶接のHAZ における0℃での吸収エネルギーがいずれも100J以上と、極めて良好な超大入熱溶接HAZ 靭性を有している厚鋼板である。これに対し、本発明の範囲を外れる比較例は、とくにHAZ の組織を所定の組織とすることができず、超大入熱溶接のHAZ における0℃での吸収エネルギーがいずれも51J以下と低く、超大入熱溶接HAZ 靭性が低下した厚鋼板である。また、圧延終了温度がAr3変態点未満の比較例(鋼板No. 4)、冷却停止温度が250 ℃未満の比較例(鋼板No. 6)では、80%を超える高い降伏比を示している。また、冷却停止温度が600 ℃を超える比較例(鋼板No. 7)では、TSが490MPa未満と低強度であった。
【0051】
なお、本発明の厚鋼板は、超大入熱溶接用を想定したものであるが、炭酸ガス溶接などの小入熱溶接(入熱20kJ/cm 程度)多層溶接を行っても、十分高いHAZ 靱性が得られ、小入熱溶接用として十分適用できることはいうまでもない。
【0052】
【発明の効果】
以上のように、本発明によれば、超大入熱溶接HAZ 靭性に優れた構造用厚鋼板が安価にしかも安定して製造でき、産業上格段の効果を奏する。また、本発明によれば、建築構造物の接合部品質を格段に向上できるという効果もある。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thick steel plate suitable for use in a building structure, and more particularly to a thick steel plate for a building structure suitable for use in which super-high heat input welding is performed. In the present invention, “super large heat input welding” means welding in which the heat input of welding exceeds 400 kJ / cm. The thick steel plate is a steel plate having a thickness of 30 mm or more.
[0002]
[Prior art]
In recent years, with the increase in the size of building structures, the use of thicker steel materials has been demanded. From the viewpoint of improving the construction efficiency of the structure and reducing the construction cost, it is required to improve the welding efficiency and increase the high heat input. Efficiency welding has been oriented. For example, high heat input welding, such as submerged arc welding and electroslag welding, with a heat input exceeding 400 kJ / cm is applied to box columns for building structures.
[0003]
In recent years, improvement in earthquake resistance of building structures has been demanded, and the welded joints of building structures are also required to have high toughness. For example, the column-beam joint is required to have high toughness such that the Charpy absorbed energy at 0 ° C. exceeds 70 J. Moreover, the same request | requirement also exists in the welding part of a box pillar.
[0004]
In general, the weld heat affected zone (hereinafter also referred to as HAZ) is exposed to high temperatures during welding, the crystal grains tend to coarsen, and the cooling rate decreases as the welding heat input increases, resulting in a fragile upper bainite structure. It is known that brittle structures such as island martensite are easily formed and HAZ toughness is liable to be reduced. For example, Japanese Patent Application Laid-Open No. 2-250917, Japanese Patent Application Laid-Open No. 2-254118, and Japanese Patent Publication No. 3-53367 address the problem of toughness degradation of such high heat input HAZ. A technique for finely dispersing and combining with MnS or REM oxysulfide to suppress coarsening of austenite grains and improve the toughness of high heat input welded HAZ has been proposed.
[0005]
JP-A-60-184663 discloses that a rare earth element (REM) and Ti are added together to disperse fine particles in steel with the aim of improving the toughness of a weld bond with a heat input of 100 kJ / cm. A technique for suppressing the austenite grain growth and improving the toughness of the weld bond has been proposed.
Japanese Patent Application Laid-Open No. 57-51243 proposes a technique for finely dispersing a Ti oxide (particularly titanium monoxide) to increase the toughness of the high heat input welded HAZ. JP-A-62-170459 discloses a technique for increasing the toughness of high heat input welded HAZ by combining fine dispersion of Ti nitride and precipitation of BN while reducing the amount of dissolved B. Has been proposed.
[0006]
JP-A-60-245768, JP-A-61-79745, etc. disclose that the oxide of Ti is finely dispersed and used as a nucleation site for ferrite transformation, and the toughness of high heat input welding HAZ is improved. Improvement techniques have been proposed.
Japanese Patent Application Laid-Open No. 61-253344 proposes a technique for improving the toughness of high heat input welding HAZ by using BN precipitated on TiN during the cooling process during welding as the core of ferrite transformation. ing.
[0007]
JP-A-2001-107177 discloses that Ti and a sufficient amount of Al (0.05 to 0.10%) are contained in order to thoroughly reduce solid solution N, and Ca oxide is used as a fine oxide. Therefore, high-tensile steel sheets that improve the HAZ toughness in ultra-high heat input welding have been proposed.
Furthermore, Japanese Patent Application Laid-Open No. 60-204863 proposes a technique for improving the toughness of high heat input welded HAZ by controlling the form of sulfide by adding Ca. Japanese Patent Publication No. 4-14180 proposes a technique for improving the toughness of high heat input HAZ by adding REM and controlling the form of sulfide.
[0008]
[Problems to be solved by the invention]
However, in the prior art using the above-described Ti oxide, it is quite difficult to disperse the oxide uniformly and finely, and various studies have been made to improve the dispersibility by combining oxides. However, in super high heat input welding where the heat input exceeds 400 kJ / cm, it has been difficult so far to sufficiently suppress the growth of austenite grains, and it is difficult to make the super high heat input weld HAZ stable and high toughness. It becomes.
[0009]
In addition, when a high heat input welding method exceeding 400 kJ / cm is applied to steel materials manufactured with the above-described conventional technology mainly using TiN, HAZ is exposed to a high temperature range where TiN dissolves for a long time. There was a problem that the grain refinement effect due to TiN was lost and the super high heat input welded HAZ could not be made tough. In addition, the above-described prior art has a problem that an embrittled structure is formed due to an increase in solute Ti and solute N, and the HAZ toughness may be significantly reduced.
[0010]
In addition, in the technology described in Japanese Patent Application Laid-Open No. 2001-107177, by utilizing an oxide having a grain size refinement effect even in a high temperature region near the melting point and a reduction in the amount of solid solution N that adversely affects toughness, This is an improved HAZ toughness in ultra-high heat input welding, and is characterized by excessive Al content. However, a large amount of Al added to the weld metal during welding affects the deoxidation reaction, resulting in a problem of reducing the toughness of the weld.
[0011]
In addition, since a design method is adopted for building structures that absorbs seismic energy by allowing some plastic deformation of steel materials, steel materials for building structures are made of steel with a low yield ratio of 80% or less. Is required to do.
The present invention advantageously solves the problems of the prior art described above, the base material yield strength is as high as 490 MPa or more, the base material yield ratio is 80% or less, and the welding heat input is 400 kJ / An object of the present invention is to provide a steel plate for low-yield-ratio building structures that has excellent HAZ toughness even in super-high heat input welding exceeding cm, and has excellent super-high heat input HAZ toughness, and a method for producing the same. In the present invention, “super high heat input welding HAZ toughness” means “Charpy absorbed energy at 0 ° C. in HAZ of high heat input welding exceeding 400 kJ / cm”.VEOShall have a value of 70 J or more.
[0012]
[Means for Solving the Problems]
In order to achieve the above-mentioned problems, the present inventors have studied and studied various factors affecting the toughness of the super high heat input weld HAZ having a heat input exceeding 400 kJ / cm. As a result, in ultra-high heat input welding HAZ, in order to obtain high toughness, it is important to suppress coarsening of austenite grains in the region heated to high temperature and to finely disperse transformation nuclei that promote ferrite transformation during cooling. I found. Conventionally, since these were insufficient, the welded portion could not be stably made high in toughness.
[0013]
The present inventors have focused on Ca, which plays a role in controlling the morphology of sulfides, for fine dispersion of ferrite transformation nuclei, and have conceived that CaS is crystallized during solidification. Since CaS crystallizes at a lower temperature than oxides, fine and uniform dispersion is possible in the steel. In order to crystallize CaS, it is important to first adjust the amount of dissolved oxygen in molten steel to 0.0050 mass% or less when Ca is added. And after adjusting the amount of dissolved oxygen in molten steel at the time of Ca addition to 0.0050 mass% or less, addition amount of Ca and S is expressed by the following equation (1).
ACR = {Ca- (0.18 + 130 x Ca) x O} / (1.25 / S) (1)
Here, Ca, O, S: content of each alloy element (mass%)
Adjust so that the ACR defined in the above satisfies 0.3 or more and 0.8 or less. As a result, it has been found that the amount of dissolved S can be secured after the crystallization of CaS, and a composite sulfide in which MnS is precipitated is formed on the surface of CaS. MnS is known to have the ability to produce ferrite nuclei, and furthermore, a thin Mn band is formed around it to further promote ferrite transformation. It was also discovered that the ferrite transformation is further promoted by the precipitation of ferrite nuclei such as TiN, BN, and AlN on MnS.
[0014]
In addition, in the ultra-high heat input welding HAZ of 400 kJ / cm or more, since the residence time at high temperature increases, the inventors further studied in view of the need for further miniaturization of austenite grains in the high temperature residence region. As a result, it became important to control the size and shape of the dispersed particles.To increase the toughness of the super high heat input welding HAZ, the average particle size of the dispersed particles was 50 nm or less, Density is 1 × 106Piece / mm2I found that there is a need to do more.
[0015]
In order to control the size and form of the dispersed particles within the above-mentioned range, it is melted by a generally known method such as a converter, an electric furnace, a vacuum melting furnace, etc., and the amount of dissolved oxygen in the deoxidation treatment or degassing process It is important to control the inclusion by adding Ca so that the ACR is in the range of 0.3 to 0.8, and to use a continuous casting method to control the steel material. The casting speed during continuous casting is preferably about 0.1 m / min or more.
[0016]
  Further, the present inventors have found that it is important to control hot rolling conditions and subsequent cooling in order to make the base material thick steel plate a low yield ratio steel plate.
  The present invention has been completed based on the above findings and further studies.
  That is, the present invention is mass%, C: 0.03-0.15%, Si: 0.05-0.50%, Mn: 0.5-2.0%, P: 0.03% or less, S: 0.0005-0.0030%, Al: 0.005%more than 0.05 %Less thanTi: 0.004 to 0.02%, N: 0.0020 to 0.0070%, Ca: 0.0005 to 0.0030%, O: 0.0050% or less, and the following formula (1)
          ACR = {Ca- (0.18 + 130 x Ca) x O} / (1.25 / S) (1)
(Ca, O, S: content of each element (mass%))
ACR defined by is satisfied from 0.3 to 0.8, and has a composition comprising the balance Fe and inevitable impurities, andCaS On the surface MnS Containing complex sulfidesThe average particle size of the dispersed particles is 50nm or less, and the particle number density is 1x106Piece / mm2It is a steel plate for building structures with a low yield ratio, having a yield ratio of 80% or less, and having excellent super-high heat input welding HAZ toughness. Further, in the present invention, in addition to the above composition, mass%, Nb: 0.05% or less, V: 0.2% or less, Cu: 1.0% or less, Ni: 1.5% or less, Cr: 0.7% or less, Mo: 0.7 % Or less, B: It is preferable to contain one or more selected from 0.0003 to 0.0025%.
[0017]
  Moreover, this invention is mass%, C: 0.03-0.15%, Si: 0.05-0.50%, Mn: 0.5-2.0%, P: 0.03% or less, S: 0.0005-0.0030%, Al: 0.005%more than 0.05 %Less than, Ti: 0.004 to 0.02%, N: 0.0020 to 0.0070%, Ca: 0.0005 to 0.0030%, O: 0.0050% or less, and ACR defined by the formula (1) satisfies 0.3 to 0.8 Has compositionThe amount of dissolved oxygen in the molten steel 0.0050mass After adjusting to less than% Ca And said ACR But 0.3 more than 0.8 To satisfy the following: Ca , Continuous casting after adjusting S contentAfter reheating the steel material to 1000 ° C to 1250 ° C, the rolling end temperature is set to Ar.ThreeIt is characterized by performing hot rolling at a transformation point or higher, then cooling at an average cooling rate of 1 ° C./s or higher, performing cooling at a cooling stop temperature of 600 to 250 ° C., and then air cooling. Super high heat input welding HAZ with a yield ratio of 80% or less and low toughness ratio.. MinIn order to control the size and form of the dispersed particles within the above-mentioned range, the powder is melted by a generally known method such as a converter, electric furnace, vacuum melting furnace, etc., and the amount of dissolved oxygen is reduced by a deoxidation process or a degassing process. After controlling to 0.0050 mass% or less, it is important to control the inclusions by adding Ca so that the ACR is in the range of 0.3 to 0.8, and to use a steel material by continuous casting. The casting speed during continuous casting is preferably about 0.1 m / min or more.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
First, the reason for limiting the composition of the thick steel plate will be described. Hereinafter, mass% is simply displayed as%.
C: 0.03-0.15%
C is an element that increases the strength of steel, and at least 0.03% is necessary to obtain the strength necessary for a steel plate for building structures (base material yield strength: 490 MPa or more). However, when it contains excessively, the toughness of a weld part and weld cracking resistance will be reduced. For this reason, in this invention, C was limited to 0.03 to 0.15% of range. In addition, Preferably, it is 0.03 to 0.12%.
[0019]
Si: 0.05-0.50%
Si acts as a deoxidizer, and it is necessary to contain 0.05% or more in steelmaking. However, if it exceeds 0.50%, the toughness of the base metal deteriorates, and island martensite is formed in super high heat input welding HAZ. And HAZ toughness deteriorates significantly. For this reason, Si was limited to the range of 0.05 to 0.50%. In addition, Preferably, it is 0.05 to 0.40%.
[0020]
Mn: 0.5-2.0%
Mn is an element that increases the strength of steel, and in the present invention, it is necessary to contain 0.5% or more in order to ensure a predetermined base metal strength. On the other hand, an excessive content exceeding 2.0% significantly deteriorates the toughness of the weld. For this reason, in this invention, Mn was limited to 0.5 to 2.0% of range. In addition, Preferably, it is 0.6 to 1.6%.
[0021]
P: 0.03% or less
P is an element inevitably contained in the steel as an impurity, and is preferably reduced as much as possible in order to deteriorate the toughness of the steel. In particular, if the content exceeds 0.03%, the toughness of HAZ will deteriorate significantly. For this reason, P was limited to 0.03% or less. In addition, since excessive P reduction raises refining cost and becomes economically disadvantageous, it is preferable to set it as 0.005% or more.
[0022]
S: 0.0005-0.0030%
In the present invention containing Ca, in the present invention containing Ca, it binds to Ca and finely crystallizes in the solidification stage as CaS particles, and further precipitates as MnS on the CaS particles during welding and acts as a ferrite transformation nucleus to improve weld toughness. Has an effect. Such an effect is recognized when the content of S is 0.0005% or more. On the other hand, when it contains exceeding 0.0030%, the toughness of a base material and a welding part will deteriorate. For this reason, S was limited to 0.0005 to 0.0030%.
[0023]
  Al: 0.005%more than 0.05 %Less than
  Al acts as a deoxidizing agent and needs to contain 0.005% or more on steel deoxidation,0.05 %more thanIf it is contained, the toughness of the base material is lowered, and at the same time, it is mixed into the weld metal part during welding and deteriorates the toughness. Therefore, Al is 0.005%more than 0.05 %Less thanLimited to.
[0024]
Ti: 0.004 to 0.02%
Ti has a strong affinity for N and precipitates as TiN during solidification, thereby suppressing the coarsening of austenite grains in HAZ or contributing to high toughness of HAZ as a ferrite transformation nucleus. Such an effect is recognized when the content is 0.004% or more. However, if the content exceeds 0.02%, the TiN particles become coarse, and the above-described effects cannot be expected. For this reason, Ti was limited to the range of 0.004 to 0.02%. In addition, Preferably, it is 0.005 to 0.018%.
[0025]
N: 0.0020-0.0070%
N combines with Ti and precipitates as TiN to suppress the coarsening of austenite grains in HAZ, or contributes to high toughness of HAZ as a ferrite transformation nucleus. In order to secure the necessary amount of TiN having such an effect, it is necessary to contain 0.0020% or more of N. On the other hand, if the content exceeds 0.0070%, in the region heated to a temperature at which TiN dissolves during welding, the amount of solute N increases and the toughness significantly decreases. For this reason, N was limited to the range of 0.0020 to 0.0070%.
[0026]
Ca: 0.0005 to 0.0030%
Ca is an element that contributes to improving the ductility of steel by controlling the form of sulfide. In order to exert such an effect, it is necessary to contain at least 0.0005%, but even if it exceeds 0.0030%, the effect is saturated. For this reason, in this invention, Ca was limited to 0.0005 to 0.0030% of range. In the present invention, as will be described later, after adjusting the amount of dissolved oxygen immediately before the addition of Ca to 0.0050% or less, Ca is added to suppress the formation of Ca oxide and crystallize CaS. Since CaS crystallizes in molten steel at a temperature lower than that of oxides, it becomes possible to disperse finely and uniformly in the steel. These CaS fine particles are combined with MnS and act as ferrite transformation nuclei during welding. Contributes to improved toughness.
[0027]
O: 0.0050% or less
O is contained as an unavoidable impurity and is present as an oxide in the steel, reducing the cleanliness. For this reason, it is preferable to reduce as much as possible in the present invention. When the O content exceeds 0.0050%, CaO inclusions are coarsened and adversely affect toughness. Further, in the present invention, in order to crystallize Ca as CaS, O having a strong binding force with Ca reinforces degassing or introduces a deoxidizer before adding Ca to add O in molten steel. It is preferable to reduce it to 0.0050% or less.
[0028]
Moreover, in this invention, after adjusting the amount of dissolved oxygen in the molten steel at the time of Ca addition to 0.0050 mass% or less, Ca and S are made into following Formula (1).
ACR = {Ca- (0.18 + 130 x Ca) x O} / (1.25 / S) (1)
(Ca, O, S: content of each element (mass%))
Add and adjust so that the ACR defined in the above satisfies 0.3 or more and 0.8 or less.
[0029]
When ACR is less than 0.3, CaS does not crystallize, so S precipitates in the form of MnS alone. This MnS is stretched during rolling during steel plate manufacturing and does not disperse uniformly and finely, causing a decrease in the toughness of the base metal, and MnS melts and superfine dispersion is not achieved in super-high heat input welding HAZ, improving HAZ toughness Cannot be achieved. On the other hand, when ACR exceeds 0.8, S is completely fixed by Ca, and MnS that works as a ferrite formation nucleus does not precipitate on CaS. For this reason, improvement in HAZ toughness is not achieved. Only when the ACR satisfies 0.3 or more and 0.8 or less is the composite sulfide in which MnS is deposited on CaS. The presence of this composite sulfide functions as the core of ferrite transformation, refines the HAZ structure, and improves HAZ toughness.
[0030]
In addition to the basic composition described above, Nb: 0.05% or less, V: 0.2% or less, Cu: 1.0% or less, Ni: 1.5% or less, Cr: 0.7% or less, Mo: One or two or more selected from 0.7% or less and B: 0.0003 to 0.0025% can be contained.
Nb, V, Cu, Ni, Cr, Mo, and B are all elements that increase the strength of steel, and should be selected and contained as necessary to ensure the strength of the base metal and welded joints. Is preferred.
[0031]
Nb has the effect of increasing the strength and toughness of the base material and increasing the joint strength. Such an effect becomes remarkable when the content is 0.005% or more. However, when the content exceeds 0.05%, the HAZ toughness is lowered. For this reason, in the present invention, Nb is preferably limited to 0.05% or less.
V improves the strength and toughness of the base material and precipitates as VN and acts as a nucleus of ferrite transformation. Such an effect becomes remarkable when the content is 0.01% or more. However, when the content exceeds 0.2%, the toughness is reduced. For this reason, it is preferable to limit V to 0.2% or less.
[0032]
Ni is an element that increases the strength while maintaining the high toughness of the base metal. In the present invention, Ni is preferably contained in an amount of 0.05% or more, but if it exceeds 1.5%, the effect is saturated and the effect is commensurate with the content. Will not be expected and will be economically disadvantageous. Therefore, in the present invention, Ni is preferably limited to 1.5% or less. In addition, More preferably, it is 0.1 to 1.0%.
[0033]
Cu, like Ni, has the effect of increasing strength and improving toughness. Such an effect becomes remarkable when the content is 0.05% or more. However, when the content exceeds 1.0%, hot brittleness occurs, and the surface properties of the steel sheet deteriorate. For this reason, it is preferable to limit Cu to 1.0% or less.
Cr and Mo are both elements that effectively work to increase the strength of steel (base material). Such an effect becomes remarkable when Cr: 0.05% or more and Mo: 0.05% or more are contained. On the other hand, since excessive contents adversely affect toughness, it is preferable to limit to Cr: 0.7% or less and Mo: 0.7% or less, respectively.
[0034]
B has the effect of increasing the strength of the steel through the improvement of hardenability, and at the same time, HAZ forms BN and acts as a solute N reduction and ferrite transformation nucleus. Such an effect is not sufficient when the content is 0.0003% or less. On the other hand, if the content exceeds 0.0025%, the hardenability is remarkably increased and the base material toughness may be deteriorated. For this reason, it is preferable to limit B to 0.0003 to 0.0025% of range.
[0035]
  The balance other than the above components is Fe and inevitable impurities.
  The thick steel plate of the present invention isCaS On the surface MnS Containing complex sulfidesThe average particle size of the dispersed particles is 50nm or less, and the particle number density is 1x106Piece / mm2Having an organization that is more than
  If the average particle size of the dispersed particles exceeds 50 nm, the austenite grain pinning effect of the dispersed particles in the high temperature retention region of HAZ is reduced, and HAZ coarsens and HAZ toughness decreases. The number density of dispersed particles is 1 × 106Piece / mm2If it is less than the same, the pinning effect of austenite grains in the high-temperature residence zone of HAZ is reduced, and HAZ coarsens and HAZ toughness decreases. Therefore, the dispersed particles have an average particle size of 50 nm or less and a particle number density of 1 × 106Piece / mm2Limited to the above. The dispersed particles in the present invention are TiN andOn the surface MnS PrecipitatedParticles represented by Ca sulfide / oxide.
[0036]
The average particle size and the number density per unit area of the dispersed particles are determined by polishing the L cross section of the test piece collected from the steel plate, and further electrolytically corroding the polished surface to reveal the dispersed particles. It is assumed that 10 fields of view are observed at a magnification of 2000 × using a microscope, imaged, and the obtained image is processed and calculated using an image analyzer.
Below, the manufacturing method of this invention thick steel plate is demonstrated.
[0037]
By melting the molten steel with the above composition by a generally known method such as a converter, electric furnace, vacuum melting furnace, etc., and after controlling the gas components in the deoxidation treatment and degassing process, by adding CaSi wire After controlling the inclusions, the steel material (slab) is made by a casting method such as a continuous casting method. In addition, in order to crystallize Ca as CaS during melting, O having a strong binding force with Ca reinforces degassing or introduces a deoxidizer before adding Ca to add O in molten steel. It is preferable to reduce it to 0.0050% or less. In the present invention, it is preferable to add and adjust Ca and S so that the dissolved oxygen content in the molten steel at the time of Ca addition is adjusted to 0.0050% or less and ACR satisfies 0.3 or more and 0.8 or less.
[0038]
In order to control the size and form of the dispersed particles in the above-described range, it is preferable to refine the solidification structure by controlling the casting speed and the cooling speed during continuous casting in the solidification stage. .
Then, these steel materials are reheated to 1000-1250 ° C.
If the reheating temperature is less than 1000 ° C., the deformation resistance in hot rolling becomes high, and the amount of reduction per pass cannot be increased. Therefore, the number of rolling passes increases, which leads to rolling efficiency, and the steel material (slab ) The casting defects inside may not be crimped. On the other hand, when the reheating temperature exceeds 1250 ° C, TiN precipitated during the solidification process becomes coarse due to Ostwald growth, and the pinning effect of austenite near the weld joint during super-high heat input welding is lost, and HAZ toughness decreases. . For this reason, it is preferable to make the reheating temperature of a steel raw material into the range of 1000-1250 degreeC. In addition, More preferably, it is 1100-1200 degreeC.
[0039]
The reheated steel material is then given the rolling end temperature ArThreeIt is hot rolled to the transformation point or higher to make a thick steel plate. Rolling end temperature is ArThreeWhen the temperature is lower than the transformation point, since ferrite is processed, the yield point of the steel sheet rises and the yield ratio increases. For this reason, the rolling end temperature of hot rolling is ArThreeIt is preferable to limit to the transformation point or higher. ArThreeThe transformation point is roughly related to the chemical composition as follows:
ArThree= 910 -273 C + 25Si-74Mn-56Ni-16Cr-9Mo -5Cu -1620Nb
(However, C, Mn, Ni, Cr, Mo, Cu: Content of each alloy element (mass%)).
[0040]
Considering that the yield ratio is stabilized to 80% or less, and that the acoustic anisotropy is reduced, the rolling end temperature is (ArThree(Transformation point + 70 ° C.) or more is more preferable. On the other hand, when the rolling end temperature exceeds 1000 ° C., the structure to be produced becomes rough and the toughness of the base material decreases. For this reason, it is preferable that rolling completion temperature shall be 1000 degrees C or less.
[0041]
After the hot rolling, accelerated cooling with an average cooling rate of 1 ° C./s or more is performed to 600 to 250 ° C. (cooling stop temperature). When the cooling rate of accelerated cooling is less than 1 ° C., the structure becomes coarse and the base material toughness decreases. The upper limit of the average cooling rate during accelerated cooling is not particularly defined in the present invention, but is preferably 10 ° C./s or less from the viewpoint of reducing the cut strain. In addition, when the cooling stop temperature of accelerated cooling exceeds 600 ° C, the tensile strength TS becomes too low, whereas when it is less than 250 ° C, the yield ratio increases. For this reason, the cooling stop temperature for accelerated cooling is preferably in the range of 250 to 600 ° C. In addition, after accelerated cooling, it cools to room temperature.
[0042]
In the present invention, there is no problem even if tempering is performed from the viewpoint of reducing the residual stress of the steel sheet.
As described above, according to the present invention, by containing Ca and S in a limited range and controlling the dispersed particle size and distribution to a predetermined range, HAZ in super high heat input welding exceeding 400 kJ / cm. A steel plate for building structures with excellent toughness can be manufactured at low cost and stably.
[0043]
【Example】
Molten steel having the composition shown in Table 1 was melted by a converter-degassing process and made into a steel material (230-310 mm thick slab) by a continuous casting method. In the examples of the present invention, the amount of dissolved oxygen immediately before addition of Ca was adjusted to 0.0050 mass% or less during melting. Then, the steel material was reheated under the conditions shown in Table 2, and hot rolled under the conditions shown in Table 2 to obtain a thick steel plate. After hot rolling, accelerated cooling was performed under the conditions shown in Table 2. In addition, it was set as air cooling after accelerated cooling.
[0044]
About the obtained thick steel plate, the base material structure, the base material tensile characteristics, and the base material toughness were investigated.
(1) Base material structure
A test piece was collected from the obtained thick steel plate, and the average particle diameter and particle number density of the dispersed particles were examined. The average particle size and the number density per unit area of the dispersed particles were determined by polishing the L cross section of the test piece, further electrolytically corroding the polished surface to reveal the dispersed particles, and then using a scanning electron microscope. Observe each field of view at 2000 times, take an image, calculate the obtained image using an image analyzer, determine the average value for each field, further determine the average value of each field, the value of each steel plate It was.
(2) Base material tensile properties
JIS No. 4 tensile test specimens were collected from the direction of 1 / 4t part C of the thickness of the obtained steel plate, and subjected to a tensile test in accordance with the provisions of JIS Z 2204, yield point YP, tensile strength TS. The yield ratio YR was determined.
(3) Base material toughness
JIS No. 4 impact test specimens were collected from the direction of 1 / 4t part C of the thickness of the obtained steel plate, and Charpy impact tests were conducted in accordance with the provisions of JIS Z 2242. Fracture surface transition temperature vTrs, 0 Absorbed energy at ° C vE0Asked.
[0045]
The obtained thick steel plate was investigated for HAZ toughness of super high heat input welding.
(4) Super large heat input welding HAZ toughness
A heat cycle test piece taken from the obtained thick steel plate was collected and a heat cycle equivalent to a submerged arc welding bond part with a heat input of 400 kJ / cm or an electroslag weld bond part with a heat input of 800 kJ / cm (maximum heating temperature: 1400 ° C, 800-500 ° C cooling time: 550 s, average cooling rate: 0.55 ° C / s), or heat input: 1200 kJ / cm electroslag weld bond thermal cycle (maximum heating temperature: 1400 ° C, 800 ˜500 ° C. cooling time: 1000 s, average cooling rate: 0.3 ° C./s). Charpy impact test specimens are collected from these thermal cycle test specimens, and subjected to Charpy impact tests at 0 ° C in accordance with the provisions of JIS Z 2242.0(J) was determined and the high heat input welding HAZ toughness was evaluated.
[0046]
The obtained results are shown in Table 3.
[0047]
[Table 1]
Figure 0004035990
[0048]
[Table 2]
Figure 0004035990
[0049]
[Table 3]
Figure 0004035990
[0050]
In all of the examples of the present invention, TS has a high strength of 490 MPa or higher, a good base material property with a yield ratio of about 75%, and the absorbed energy at 0 ° C in HAZ of super high heat input welding exceeding 400 kJ / cm. Is a thick steel plate with very good super high heat input welding HAZ toughness of over 100J. On the other hand, in the comparative example outside the scope of the present invention, the HAZ structure cannot be made a predetermined structure, and the absorbed energy at 0 ° C. in the HAZ of super large heat input welding is all as low as 51 J or less. Super high heat input welding HAZ Thick steel plate with reduced toughness. Also, the rolling end temperature is ArThreeThe comparative example (steel plate No. 4) below the transformation point and the comparative example (steel plate No. 6) having a cooling stop temperature of less than 250 ° C. show a high yield ratio exceeding 80%. Further, in the comparative example (steel plate No. 7) in which the cooling stop temperature exceeded 600 ° C., TS had a low strength of less than 490 MPa.
[0051]
The steel plate of the present invention is intended for super-high heat input welding, but it has sufficiently high HAZ toughness even when performing multi-layer welding such as carbon dioxide welding or other small heat input welding (heat input of about 20 kJ / cm). Needless to say, it can be sufficiently applied for small heat input welding.
[0052]
【The invention's effect】
As described above, according to the present invention, a structural steel plate excellent in super high heat input welding HAZ toughness can be manufactured at low cost and stably, and an industrially significant effect is achieved. Moreover, according to this invention, there also exists an effect that the junction part quality of a building structure can be improved significantly.

Claims (3)

mass%で、
C:0.03〜0.15%、 Si:0.05〜0.50%、
Mn:0.5 〜2.0 %、 P:0.03%以下、
S:0.0005〜0.0030%、 Al:0.005 %以上 0.05 %未満
Ti:0.004 〜0.02%、 N:0.0020〜0.0070%、
Ca:0.0005〜0.0030% O:0.0050%以下
を含有し、かつ下記(1)式で定義されるACR が0.3 以上0.8 以下を満足し、残部Feおよび不可避的不純物からなる組成を有し、かつCaS 表面上に MnS が析出した複合硫化物を含む分散粒子の平均粒径が50nm以下、粒数密度が1×106 個/mm2 以上である組織を有することを特徴とする降伏比80%以下を有し、超大入熱溶接HAZ 靱性に優れた低降伏比建築構造用厚鋼板。

ACR ={Ca-(0.18+130×Ca) ×O}/(1.25/S)………(1)
ここで、Ca,O,S:各元素の含有量(mass%)
mass%
C: 0.03-0.15%, Si: 0.05-0.50%
Mn: 0.5 to 2.0%, P: 0.03% or less,
S: 0.0005 to 0.0030%, Al: 0.005 % or more and less than 0.05 %
Ti: 0.004 to 0.02%, N: 0.0020 to 0.0070%,
Ca: 0.0005 to 0.0030% O: 0.0050% or less, ACR defined by the following formula (1) satisfies 0.3 or more and 0.8 or less, and has a composition composed of the balance Fe and inevitable impurities, and CaS Yield ratio of 80% or less, characterized in that the dispersed particles containing composite sulfide with MnS deposited on the surface have a structure with an average particle size of 50 nm or less and a particle number density of 1 × 10 6 particles / mm 2 or more. Super high heat input welding HAZ Steel plate for building structure with low yield ratio and excellent toughness.
Record
ACR = {Ca- (0.18 + 130 x Ca) x O} / (1.25 / S) (1)
Here, Ca, O, S: content of each element (mass%)
前記組成に加えてさらに、mass%で、Nb:0.05%以下、V:0.2 %以下、Cu:1.0 %以下、Ni:1.5 %以下、Cr:0.7 %以下、Mo:0.7 %以下、B:0.0003〜0.0025%のうちから選ばれた1種または2種以上を含有することを特徴とする請求項1に記載の超大入熱溶接HAZ 靱性に優れた低降伏比建築構造用厚鋼板。  In addition to the above composition, mass%, Nb: 0.05% or less, V: 0.2% or less, Cu: 1.0% or less, Ni: 1.5% or less, Cr: 0.7% or less, Mo: 0.7% or less, B: 0.0003 The super-high heat input welded HAZ tough steel sheet for building structures with low yield ratio excellent in toughness according to claim 1, comprising one or more selected from ˜0.0025%. mass%で、
C:0.03〜0.15%、 Si:0.05〜0.50%、
Mn:0.5 〜2.0 %、 P:0.03%以下、
S:0.0005〜0.0030%、 Al:0.005 %以上 0.05 %未満
Ti:0.004 〜0.02%、 N:0.0020〜0.0070%、
Ca:0.0005〜0.0030%
を含有し、かつ下記(1)式で定義されるACR が0.3 以上0.8 以下を満足する組成を有し、溶鋼中の溶存酸素量を 0.0050mass %以下に調整したのち Ca を添加し、前記 ACR 0.3 以上 0.8 以下を満足するように、 Ca 、S含有量を調整したのち、連続鋳造してなる鋼素材を、1000℃〜1250℃に再加熱後、圧延終了温度をAr3変態点以上とする熱間圧延を施し、ついで、1℃/s以上の平均冷却速度で冷却し、冷却停止温度:600 〜250 ℃とする加速冷却を行った後、空冷することを特徴とする降伏比80%以下を有し、超大入熱溶接HAZ 靱性に優れた低降伏比建築構造用厚鋼板の製造方法。

ACR ={Ca-(0.18+130×Ca) ×O}/(1.25/S)………(1)
ここで、Ca,O,S:各元素の含有量(mass%)
mass%
C: 0.03-0.15%, Si: 0.05-0.50%
Mn: 0.5 to 2.0%, P: 0.03% or less,
S: 0.0005 to 0.0030%, Al: 0.005 % or more and less than 0.05 %
Ti: 0.004 to 0.02%, N: 0.0020 to 0.0070%,
Ca: 0.0005 to 0.0030%
Containing, and have a composition ACR that is defined by the following formula (1) satisfies 0.3 to 0.8, was added Ca After adjusting the amount of dissolved oxygen in the molten steel below 0.0050 mass%, the ACR and so they satisfy the 0.3 to 0.8, Ca, after adjusting the S content, a steel material obtained by continuous casting, after reheating to 1000 ° C. to 1250 ° C., the rolling end temperature than the Ar 3 transformation point Yield ratio 80%, characterized in that it is subjected to hot rolling, then cooled at an average cooling rate of 1 ° C./s or more, accelerated cooling to a cooling stop temperature of 600 to 250 ° C., and then air-cooled Super high heat input welding HAZ A method for manufacturing a steel plate for building structures with low yield ratio and excellent toughness.
Record
ACR = {Ca- (0.18 + 130 x Ca) x O} / (1.25 / S) (1)
Here, Ca, O, S: content of each element (mass%)
JP2001379628A 2001-12-13 2001-12-13 Super high heat input welding HAZ toughness and low yield ratio steel plate for building structure and method for producing the same Expired - Lifetime JP4035990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001379628A JP4035990B2 (en) 2001-12-13 2001-12-13 Super high heat input welding HAZ toughness and low yield ratio steel plate for building structure and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001379628A JP4035990B2 (en) 2001-12-13 2001-12-13 Super high heat input welding HAZ toughness and low yield ratio steel plate for building structure and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003183767A JP2003183767A (en) 2003-07-03
JP4035990B2 true JP4035990B2 (en) 2008-01-23

Family

ID=27591097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001379628A Expired - Lifetime JP4035990B2 (en) 2001-12-13 2001-12-13 Super high heat input welding HAZ toughness and low yield ratio steel plate for building structure and method for producing the same

Country Status (1)

Country Link
JP (1) JP4035990B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4539100B2 (en) * 2004-02-03 2010-09-08 Jfeスチール株式会社 Super high heat input welded heat affected zone
JP4252974B2 (en) * 2005-05-25 2009-04-08 株式会社日本製鋼所 Clad steel base material and method for producing clad steel using the clad steel base material
JP5435837B2 (en) * 2006-03-20 2014-03-05 新日鐵住金株式会社 Welded joint of high-tensile thick steel plate
JP5076939B2 (en) * 2008-02-07 2012-11-21 Jfeスチール株式会社 High-strength thick steel plate with excellent toughness and brittle crack propagation stopping characteristics for high heat input welds and its manufacturing method
JP5076959B2 (en) * 2008-02-22 2012-11-21 Jfeスチール株式会社 Low yield ratio high strength steel sheet with excellent ductile crack initiation characteristics and its manufacturing method
JP5157518B2 (en) * 2008-02-22 2013-03-06 Jfeスチール株式会社 Corrosion-resistant steel for marine vessels with excellent high heat input weld toughness and method for producing the same
JP5157519B2 (en) * 2008-02-22 2013-03-06 Jfeスチール株式会社 Corrosion-resistant steel for marine vessels with excellent high heat input weld toughness and method for producing the same
JP5076961B2 (en) * 2008-02-22 2012-11-21 Jfeスチール株式会社 High strength marine corrosion resistant steel with excellent high heat input weld toughness and method for producing the same
KR101119378B1 (en) 2008-10-20 2012-03-06 가부시키가이샤 고베 세이코쇼 Thick steel plate
JP5365145B2 (en) * 2008-11-07 2013-12-11 Jfeスチール株式会社 Low yield ratio steel sheet for construction excellent in toughness of large heat input welds and method for producing the same
JP5432539B2 (en) * 2009-01-28 2014-03-05 株式会社神戸製鋼所 Steel with excellent toughness in weld heat affected zone
JP5407477B2 (en) * 2009-03-26 2014-02-05 Jfeスチール株式会社 Low yield ratio steel plate for building structures with excellent high heat input weld toughness and method for producing the same
JP5493658B2 (en) * 2009-09-30 2014-05-14 Jfeスチール株式会社 A method for producing non-tempered thick high-strength steel with high heat input heat-affected zone toughness.
JP5895780B2 (en) * 2012-09-10 2016-03-30 新日鐵住金株式会社 Steel plate excellent in toughness of heat-affected zone with high heat input welding and manufacturing method thereof
CN106574316B (en) * 2014-07-15 2019-10-01 杰富意钢铁株式会社 The manufacturing method of high input energy welding steel plate

Also Published As

Publication number Publication date
JP2003183767A (en) 2003-07-03

Similar Documents

Publication Publication Date Title
JP5076658B2 (en) Steel material for large heat input welding
JP4035990B2 (en) Super high heat input welding HAZ toughness and low yield ratio steel plate for building structure and method for producing the same
JP5842314B2 (en) High heat input welding steel
JP5432539B2 (en) Steel with excellent toughness in weld heat affected zone
WO2004022807A1 (en) Steel product for high heat input welding and method for production thereof
JP4041447B2 (en) Thick steel plate with high heat input welded joint toughness
JP4981262B2 (en) Manufacturing method of low yield ratio steel for low temperature with excellent weld toughness
JP4096839B2 (en) Manufacturing method of high yield thick steel plate with low yield ratio and excellent toughness of heat affected zone
JP5818343B2 (en) Thick steel plate with excellent toughness in weld heat affected zone
JP2005187853A (en) Method for producing high strength thick steel plate excellent in toughness in extra-high heat input welded-heat affected part
JP4507669B2 (en) Manufacturing method of low yield ratio steel for low temperature with excellent weld toughness
JP3733898B2 (en) Manufacturing method of thick high-tensile steel with excellent heat input weld toughness
JP2002256379A (en) Steel for high heat input welding
JP5233365B2 (en) Steel material for large heat input welding
JP5233364B2 (en) Steel material for large heat input welding
JP2005213534A (en) Method for producing steel material excellent in toughness at welding heat affected zone
JP4066879B2 (en) Manufacturing method of thick-walled high-tensile steel plate with excellent weld heat affected zone CTOD characteristics
JP5493658B2 (en) A method for producing non-tempered thick high-strength steel with high heat input heat-affected zone toughness.
JP2011074448A (en) Steel for high heat input welding
JP3644398B2 (en) Manufacturing method of non-tempered thick high-tensile steel sheet with excellent weld heat-affected zone toughness
JP4539100B2 (en) Super high heat input welded heat affected zone
JP2003221643A (en) Steel product showing excellent toughness of heat- affected zone in ultra-high heat input welding
JP2002371338A (en) Steel superior in toughness at laser weld
JP4039223B2 (en) Thick steel plate with excellent super tough heat input weld heat affected zone toughness and method for producing the same
JP3941596B2 (en) Manufacturing method of steel plate for building structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071022

R150 Certificate of patent or registration of utility model

Ref document number: 4035990

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term