JP5895780B2 - Steel plate excellent in toughness of heat-affected zone with high heat input welding and manufacturing method thereof - Google Patents

Steel plate excellent in toughness of heat-affected zone with high heat input welding and manufacturing method thereof Download PDF

Info

Publication number
JP5895780B2
JP5895780B2 JP2012198569A JP2012198569A JP5895780B2 JP 5895780 B2 JP5895780 B2 JP 5895780B2 JP 2012198569 A JP2012198569 A JP 2012198569A JP 2012198569 A JP2012198569 A JP 2012198569A JP 5895780 B2 JP5895780 B2 JP 5895780B2
Authority
JP
Japan
Prior art keywords
formula
toughness
heat input
less
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012198569A
Other languages
Japanese (ja)
Other versions
JP2014051726A (en
Inventor
渡部 義之
義之 渡部
石橋 清司
清司 石橋
児島 明彦
明彦 児島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2012198569A priority Critical patent/JP5895780B2/en
Publication of JP2014051726A publication Critical patent/JP2014051726A/en
Application granted granted Critical
Publication of JP5895780B2 publication Critical patent/JP5895780B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、大入熱溶接熱影響部(Heat Affected Zone:以下、HAZと称することがある)靭性に優れた鋼板およびその製造方法に関する。   The present invention relates to a steel sheet excellent in toughness of a high heat input welded heat affected zone (hereinafter sometimes referred to as HAZ) and a method for producing the same.

近年、溶接鋼構造物には、大型化、破壊に対する高い安全性、高能率溶接化、素材(鋼材)の経済性等が求められてきている。このような動向を受け、溶接鋼構造物に使用される鋼板に対し、(1)厚手高強度化、(2)大入熱溶接下での高HAZ靭性化、(3)低コスト化等のニーズが高まりつつある。   In recent years, welded steel structures have been required to have large size, high safety against breakage, high efficiency welding, economy of materials (steel materials), and the like. In response to such trends, steel sheets used in welded steel structures are (1) thicker and stronger, (2) higher HAZ toughness under high heat input welding, (3) lower costs, etc. Needs are growing.

具体的には、(超)高層ビルに用いられる板厚50〜100mmの厚手鋼板(以下、厚手材と称することがある)に対し、(1)降伏強度325〜650MPa、かつ引張強度490〜720MPaの確保、(2)溶接入熱量20kJ/mm以上の溶接部のシャルピー衝撃吸収エネルギー:vE(0℃)≧70Jの確保、(3)高価合金元素の低減(Ni量≦1.0質量%等)を同時に満たすことが要求される。   Specifically, for a thick steel plate (hereinafter sometimes referred to as a thick material) having a thickness of 50 to 100 mm used for (super) high-rise buildings, (1) a yield strength of 325 to 650 MPa and a tensile strength of 490 to 720 MPa. (2) Charpy impact absorption energy of welds with welding heat input of 20 kJ / mm or more: ensuring vE (0 ° C.) ≧ 70 J, (3) Reduction of expensive alloy elements (Ni amount ≦ 1.0 mass%, etc.) ) At the same time.

耐溶接冷間割れ性などの工作上の溶接性はもとより、使用性能上の溶接性、特にHAZ靭性を考慮した前記強度クラスの鋼板においては、加工熱処理:TMCP(Thermo−Mechanical Control Process)によって製造されることが多い。なかでも、板厚50〜100mmの厚手鋼板では、加速冷却によっても十分な冷速が得られないことに起因して強度確保が困難なゆえに、ボロン(B)添加による高強度化を図るケースがある。Bは、圧延後のオーステナイト(γ)粒界に固溶状態で偏析し、γ粒界からのフェライト変態を抑制、すなわち焼入性を高める効果を有する。このため、B添加は、圧延後の加速冷却によっても十分な冷速が得られにくい厚手鋼板においても高強度化が図れる。   For steel sheets of the above-mentioned strength class considering weldability on work performance, especially HAZ toughness, as well as workability such as weld cold crack resistance, manufactured by thermomechanical processing: TMCP (Thermo-Mechanical Control Process) Often done. In particular, in the case of a thick steel plate having a thickness of 50 to 100 mm, it is difficult to ensure the strength due to the fact that sufficient cooling speed cannot be obtained even by accelerated cooling, so there is a case of increasing the strength by adding boron (B). is there. B segregates in a solid solution state at the austenite (γ) grain boundary after rolling, and has an effect of suppressing ferrite transformation from the γ grain boundary, that is, improving hardenability. For this reason, the addition of B can increase the strength even in a thick steel plate in which sufficient cooling speed is difficult to obtain even by accelerated cooling after rolling.

特許文献1では、NbとBを複合添加することによって高強度化を図っている。特許文献1の実施例に示されているように、この場合の圧延終了温度は930〜1000℃と高いことが特徴であり、再結晶γから加速冷却することを必須条件として、NbとBの複合効果を発揮させて高い焼入性を引き出すことにより、強度を高めている。圧延終了温度を930℃よりも低い未再結晶域として低温圧延を行った場合、靭性は満足するものの強度特性は満足できず、Nb−B複合効果による高強度化が難しいことも示されている。   In Patent Document 1, the strength is increased by adding Nb and B in combination. As shown in the Examples of Patent Document 1, the rolling end temperature in this case is characterized by being as high as 930 to 1000 ° C., and the accelerated cooling from the recrystallization γ is an essential condition. Strength is enhanced by exerting a combined effect to bring out high hardenability. It has also been shown that when low temperature rolling is performed in an unrecrystallized region whose rolling end temperature is lower than 930 ° C., the toughness is satisfied but the strength characteristics are not satisfied, and it is difficult to increase the strength by the Nb—B composite effect. .

また、特許文献1では、大入熱溶接HAZにおけるB利用技術を開示しており、0.30〜0.38%のCeqの下で、γ中固溶Bによる粒界フェライト抑制効果(焼入性向上効果)を享受しつつ、γ中BNによる粒内フェライト促進効果(焼入性低減効果)を併用することの有効性を示している。   Patent Document 1 discloses a technique for using B in high heat input welding HAZ. Under 0.30 to 0.38% of Ceq, grain boundary ferrite suppression effect by solute B in γ (quenching) The effect of using the intragranular ferrite promoting effect (hardenability reducing effect) by BN in γ in combination with the effect of improving the property).

すなわち、特許文献1におけるB利用技術を要約すると、γ中固溶Bによる焼入性向上効果を母材と大入熱溶接HAZで利用すると同時に、γ中析出B(ここではBN)による焼入性低減効果を大入熱溶接HAZで利用している。   That is, the B utilization technique in Patent Document 1 is summarized as follows. While the effect of improving hardenability by solute B in γ is used in the base material and high heat input welding HAZ, quenching by precipitation B in γ (here, BN) is used. This effect is used in high heat input welding HAZ.

発明者らは、大入熱溶接HAZ靭性を高めるために、HAZの冷却過程でγ中に析出するVNをピン止め粒子(酸化物、硫化物)に複合析出させ、このVN複合粒子がフェライト変態核として作用してHAZ組織を微細化する技術を特許文献2、3で発明している。   In order to increase the high heat input welding HAZ toughness, the inventors made a composite precipitation of VN precipitated in γ during the cooling process of HAZ into pinned particles (oxides, sulfides), and the VN composite particles became ferrite transformed. Patent Documents 2 and 3 invent techniques to refine the HAZ structure by acting as a nucleus.

一方、非特許文献1に示されるように、V添加によって母材の強度が上昇する効果は広く知られている。   On the other hand, as shown in Non-Patent Document 1, the effect of increasing the strength of the base material by adding V is widely known.

以上説明したように、BあるいはVの添加によって、母材の強度が向上する効果と、大入熱溶接HAZの靭性が向上する効果が知られている。   As described above, the effects of improving the strength of the base metal and the toughness of the high heat input welding HAZ by adding B or V are known.

特許第3599556号公報Japanese Patent No. 3599556 特開2005−298900号公報JP 2005-298900 A 特開2007−262508号公報JP 2007-262508 A

CAMP−ISIJ、6(1993)、684CAMP-ISIJ, 6 (1993), 684

一般に、母材やHAZの強度と靭性を高める希少な元素としてNiが知られている。しかし、Niは高価な元素でもあると同時に、Ni添加鋼は表面疵が生じやすく、その手入工程が発生するという問題がある。したがって、Ni添加は、低コスト(高価合金低減)化と高HAZ靭性化との間で、また、Ni添加に伴う炭素当量(Ceq)増加により大入熱溶接HAZが硬化して脆化するため、特に厚手材の高強度化と高HAZ靭性化との間で利害が対立する。   In general, Ni is known as a rare element that increases the strength and toughness of a base material and HAZ. However, Ni is an expensive element, and at the same time, Ni-added steel has a problem that surface flaws are easily generated and a care process is required. Therefore, Ni addition increases the heat input HAZ hardened and becomes brittle between low cost (reduced expensive alloy) and high HAZ toughness, and carbon equivalent (Ceq) increase due to Ni addition. In particular, there is a conflict of interest between increasing the strength of thick materials and increasing the HAZ toughness.

このため、上述のような互いに利害が対立する上記(1)〜(3)の三つのニーズを同時に満足する鋼板の開発が強く求められているのが実情である。   For this reason, there is a strong demand for the development of a steel sheet that simultaneously satisfies the three needs (1) to (3) that conflict with each other as described above.

本発明は上記実情に鑑みてなされたものであり、(1)板厚50〜100mm、降伏強度325〜650MPa、かつ引張強度490〜720MPaの高強度で、(2)溶接入熱量≧20kJ/mmでもvE(0℃)≧70Jとなる良好な大入熱溶接HAZ靭性を有し、(3)高価合金元素の低減(Ni≦1.0質量%等)等による低コストを実現できる大入熱溶接熱影響部靭性に優れた鋼板およびその製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and (1) plate thickness of 50 to 100 mm, yield strength of 325 to 650 MPa, and tensile strength of 490 to 720 MPa, and (2) welding heat input ≧ 20 kJ / mm. However, it has good large heat input welding HAZ toughness satisfying vE (0 ° C.) ≧ 70 J, and (3) large heat input capable of realizing low cost due to reduction of expensive alloy elements (Ni ≦ 1.0 mass%, etc.) It aims at providing the steel plate excellent in the weld heat affected zone toughness, and its manufacturing method.

(1) 質量%で、
C :0.05〜0.12%
Si:0.3%以下
Mn:1.0〜2.0%
P :0.015%以下
S :0.006%以下
B :0.0005〜0.0020%
V :0.02〜0.10%
Al:0.01〜0.07%
Ti:0.005〜0.02%
N :0.002〜0.007%
O :0.004%以下
を含有し、残部が鉄および不可避的不純物からなる鋼成分であり、
下記式(1)の炭素当量Ceqが0.34〜0.45%であり、
下記式(2)の有効ボロン量eBが0.0001%以上、含有B量の1/2以下であり、下記式(3)の有効チタン量eTiが0.005%以上であり、
下記式(6)のBpが0.028〜0.24%であり、
板厚が50〜100mmであり、
溶接入熱量≧20kJ/mmでもvE(0℃)≧70Jとなる良好な大入熱溶接HAZ靭性を有し、
降伏強度が325〜650MPaであり、
引張強度が490〜720MPaである
ことを特徴とする大入熱溶接熱影響部靭性に優れた鋼板。
ここで、
Ceq=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14 ・・・(1)
eB=B−0.77{N−0.29(Ti−2OTi)} ・・・(2)
eTi=Ti−2OTi ・・・(3)
Bp=(884×[C]×(1−0.3×[C]2)+294)×eB ・・・(6)
ただし、OTiは下記式(4)による。
OTi=O−0.4Ca−0.66Mg−0.17REM−0.89Al ・・・(4)ここで、式(4)のOTiが負の値の場合、式(2)および式(3)のOTiを0%とし、
N−0.29(Ti−2OTi)が負の値の場合、式(2)のN−0.29(Ti−2OTi)を0%とし、
式(1)、式(2)、式(3)、式(4)および式(6)に示す元素は、鋼中に含有されているそれぞれの元素の含有量(質量%)とし、不可避的不純物として混入した元素も計算に含める。
(1) In mass%,
C: 0.05 to 0.12%
Si: 0.3% or less Mn: 1.0-2.0%
P: 0.015% or less S: 0.006% or less B: 0.0005-0.0020%
V: 0.02 to 0.10%
Al: 0.01 to 0.07%
Ti: 0.005-0.02%
N: 0.002 to 0.007%
O: a steel component containing 0.004% or less, the balance being iron and inevitable impurities,
The carbon equivalent Ceq of the following formula (1) is 0.34 to 0.45%,
The effective boron amount eB of the following formula (2) is 0.0001% or more and ½ or less of the B content, the effective titanium amount eTi of the following formula (3) is 0.005% or more,
Bp of the following formula (6) is 0.028 to 0.24%,
The plate thickness is 50 to 100 mm,
Even with a heat input of welding ≧ 20 kJ / mm, it has good large heat input welding HAZ toughness of vE (0 ° C.) ≧ 70 J,
The yield strength is 325 to 650 MPa,
A steel sheet excellent in high heat input heat affected zone toughness, characterized by having a tensile strength of 490 to 720 MPa.
here,
Ceq = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 (1)
eB = B-0.77 {N-0.29 (Ti-2OTi)} (2)
eTi = Ti-2OTi (3)
Bp = (884 × [C] × (1-0.3 × [C] 2 ) +294) × eB (6)
However, OTi is according to the following formula (4).
OTi = O-0.4Ca-0.66Mg-0.17REM-0.89Al (4) Here, when OTi in formula (4) is a negative value, formula (2) and formula (3) OTi of 0%
When N-0.29 (Ti-2OTi) is a negative value, N-0.29 (Ti-2OTi) in formula (2) is set to 0%,
The elements shown in Formula (1), Formula (2), Formula (3), Formula (4), and Formula (6) are unavoidable as the content (mass%) of each element contained in the steel. Include elements included in the calculation as impurities.

(2) 前記鋼成分が、さらに、質量%で、
Mg:0.0003〜0.004%
Ni:0.03〜0.80%
Cu:0.03〜1.2%
Cr:0.03〜0.80%
Mo:0.03〜0.4%
Nb:0.003〜0.03%
REM:0.0003〜0.01%
のうちの1種または2種以上を含有することを特徴とする、(1)に記載の大入熱溶接熱影響部靭性に優れた鋼板。
(2) The steel component is further in mass% ,
Mg : 0.0003 to 0.004%
Ni: 0.03-0.80%
Cu: 0.03 to 1.2%
Cr: 0.03-0.80%
Mo: 0.03-0.4%
Nb: 0.003 to 0.03%
REM: 0.0003 to 0.01%
The steel plate excellent in the high heat input welding heat-affected zone toughness according to (1), characterized by containing one or more of them.

(3) 前記鋼成分が、さらに、質量%で、
Ca:0.0003〜0.004%を含有し、かつ、前記式(1)の炭素当量Ceqが0.435以下であり、かつ、前記式(2)の有効ボロン量eBが0.0002%以上であることを特徴とする、(1)又は(2)に記載の大入熱溶接熱影響部靭性に優れた鋼板。
(3) The steel component is further mass%,
Ca: 0.0003 to 0.004%, the carbon equivalent Ceq of the formula (1) is 0.435 or less, and the effective boron amount eB of the formula (2) is 0.0002%. The steel sheet excellent in high heat input heat affected zone toughness according to (1) or (2), characterized in that it is as described above.

(4) (1)〜(3)のいずれか1項に記載の大入熱溶接熱影響部靭性に優れた鋼板の製造方法であって、(1)〜(3)のいずれか1項に記載の成分組成の連続鋳造スラブを、
1000℃を超えて1300℃以下に加熱した後、鋼表面温度が850℃以上で累積圧下量が50%以上の圧延を行い、次いで鋼表面温度が800℃以上から加速冷却を適用して500℃以下まで冷却することを特徴とする大入熱溶接熱影響部靭性に優れた鋼板の製造方法。
(4) A method for producing a steel sheet having excellent high heat input heat affected zone toughness according to any one of (1) to (3), wherein any one of (1) to (3) Continuous casting slabs with the described component composition ,
After heating above 1000 ° C. to 1300 ° C. or less, rolling is performed at a steel surface temperature of 850 ° C. or more and a cumulative reduction amount of 50% or more, and then accelerated cooling is applied from the steel surface temperature of 800 ° C. or more to 500 ° C. The manufacturing method of the steel plate excellent in the high heat input welding heat affected zone toughness characterized by cooling to the following.

(5) 前記加速冷却の後、さらに、350〜700℃で5〜60分の焼き戻し熱処理を施すことを特徴とする、上記(4)に記載の大入熱溶接熱影響部靭性に優れた鋼板の製造方法。 (5) After the accelerated cooling, further subjected to tempering heat treatment at 350 to 700 ° C. for 5 to 60 minutes, excellent in high heat input heat affected zone toughness according to (4) above A method of manufacturing a steel sheet.

本発明の大入熱溶接熱影響部靭性に優れた鋼板およびその製造方法によれば、(1)板厚50〜100mm、降伏強度325〜650MPa、かつ引張強度490〜720MPaの厚手高強度で、(2)溶接入熱量≧20kJ/mmでもvE(0℃)≧70Jとなる良好な大入熱溶接HAZ靭性を有し、(3)高価合金元素の低減(Ni≦1.0質量%等)等による低い製造コストを実現できる。   According to the steel plate excellent in high heat input welding heat-affected zone toughness of the present invention and its production method, (1) thick and high strength with a plate thickness of 50 to 100 mm, a yield strength of 325 to 650 MPa, and a tensile strength of 490 to 720 MPa, (2) Welding heat input ≥ 20 kJ / mm, vE (0 ° C) ≥ 70 J good high heat input welding HAZ toughness, (3) Reduction of expensive alloy elements (Ni ≤ 1.0 mass%, etc.) A low manufacturing cost due to the above can be realized.

このような本発明による厚手高強度鋼板が高層ビルをはじめとする各種の溶接構造物に使用されることで、溶接構造物の大型化、破壊に対する高い安全性、建造における溶接の高能率化、素材である鋼材の経済性等々が同時に満たされることから、その産業上の効果は計り知れない。   Such a thick high-strength steel sheet according to the present invention is used for various welded structures including high-rise buildings, so that the welded structures are enlarged, high safety against breakage, high efficiency of welding in construction, Since the economics of steel as a raw material are satisfied at the same time, the industrial effects are immeasurable.

(C量によって予想される最高硬さ)×(eBの寄与)を指標とするBpと継ぎ手靭性との関係を示す図である。It is a figure which shows the relationship between Bp which uses (the contribution of eB of the highest hardness anticipated by the amount of C) x (contribution of eB) as an index, and joint toughness.

以下、本発明の大入熱溶接熱影響部靭性に優れた鋼板およびその製造方法の実施の形態について説明する。   Hereinafter, the embodiment of the steel plate excellent in the high heat input heat affected zone toughness of the present invention and the manufacturing method thereof will be described.

なお、この実施形態は、発明の趣旨をより良く理解させるために詳細に説明するものであるから、特に指定のない限り、本発明を限定するものではない。   In addition, since this embodiment is described in detail for better understanding of the gist of the invention, the present invention is not limited unless otherwise specified.

(超)高層ビル等の溶接構造物に使用される鋼板においては、(1)大きな板厚での高い強度、(2)良好な大入熱溶接HAZ靭性、(3)低い製造コスト等のニーズが高まっている。すなわち、具体的には、板厚が50〜100mmであり、降伏強度が325〜650MPaであり、引張強度が490〜720MPaである低コストを実現できる溶接入熱量≧20kJ/mmでもvE(0℃)≧70Jとなる良好な大入熱溶接HAZ靭性を有する鋼板が要求される。   In steel plates used for welded structures such as (super) high-rise buildings, (1) high strength with large plate thickness, (2) good high heat input welding HAZ toughness, (3) low manufacturing cost, etc. Is growing. Specifically, vE (0 ° C.) even when the welding heat input ≧ 20 kJ / mm can realize a low cost with a plate thickness of 50 to 100 mm, a yield strength of 325 to 650 MPa, and a tensile strength of 490 to 720 MPa. ) A steel sheet having good high heat input welding HAZ toughness satisfying ≧ 70 J is required.

このようなニーズに対し、本発明に係る大入熱溶接熱影響部靭性に優れた鋼板およびその製造方法を提供する。   In order to meet such needs, a steel plate excellent in high heat input heat affected zone toughness according to the present invention and a manufacturing method thereof are provided.

本発明の要点は、TMCP型で製造する厚手鋼板において、強度、大入熱溶接HAZ靭性および低コスト等を同時に満足するため、BとVを複合添加することを特徴とし、これら窒化物形成元素と結合するNを精緻に制御することでγ中のBとVの存在状態を最適化し、母材と大入熱溶接HAZの変態組織を制御する技術である。具体的には、γ中のBは、母材と大入熱溶接HAZの両方において、Bの一部をBNとして析出させる思想である。一方、γ中のVは、母材では固溶Vとして、大入熱溶接HAZでは析出V(VN等)として利用する思想である。以下、詳細を説明する。   The main point of the present invention is that, in a thick steel plate manufactured by TMCP type, in order to satisfy simultaneously strength, high heat input welding HAZ toughness, low cost, etc., B and V are added in combination, and these nitride forming elements Is a technique for optimizing the existence state of B and V in γ by precisely controlling N bonded to the base metal and controlling the transformation structure of the base metal and the high heat input welding HAZ. Specifically, B in γ is an idea that a part of B is precipitated as BN in both the base material and the high heat input welding HAZ. On the other hand, V in γ is a concept that is used as solid solution V in the base metal and as precipitation V (VN or the like) in high heat input welding HAZ. Details will be described below.

まず、本発明における最大のポイントである大入熱溶接HAZ靭性を向上させるための技術を説明するが、低コスト化の観点から高価合金であるNiに頼らずにHAZ靭性の向上を図ることも本発明の特徴の一つでもある。   First, a technique for improving the high heat input welding HAZ toughness, which is the greatest point in the present invention, will be described, but it is also possible to improve the HAZ toughness without relying on Ni which is an expensive alloy from the viewpoint of cost reduction. It is also one of the features of the present invention.

本発明の大入熱溶接HAZ靭性の支配要因は、大別して次の三つである。第一に硬さであり、第二にMA(マルテンサイト・オーステナイト混合相)であり、第三に有効結晶粒径である。   The controlling factors of the high heat input welding HAZ toughness of the present invention are roughly classified into the following three. First is hardness, second is MA (martensite / austenite mixed phase), and third is effective crystal grain size.

硬さとMAの両面から、本発明では炭素当量:Ceqを0.34〜0.45%に制限する。Ceqが0.45%を超えると、HAZが有害なまでに硬化すると同時にMAが増加し、HAZが大きく脆化するからである。また、0.34%未満であると十分な硬さ(強度)が得られない。   In terms of both hardness and MA, the present invention limits the carbon equivalent: Ceq to 0.34 to 0.45%. This is because if Ceq exceeds 0.45%, HAZ hardens to a harmful extent and at the same time MA increases, and HAZ becomes greatly brittle. Further, if it is less than 0.34%, sufficient hardness (strength) cannot be obtained.

合金元素の総量規制とも言うべきCeqが0.34〜0.45%であっても、C、Mn、あるいは選択的添加を許容するCr、Moなど個々の元素が限定範囲を超えると、本発明のように中庸なCeqでHAZがベイナイト主体となる場合においては、HAZ硬化が大きく、脆化も大きい。これが後述する合金添加範囲を限定する大きな理由の一つである。   Even if Ceq, which should be said to be the total amount control of alloy elements, is 0.34 to 0.45%, if individual elements such as C, Mn, or Cr, Mo that allow selective addition exceed the limited range, the present invention. When HAZ is mainly bainite with moderate Ceq, the HAZ hardening is large and the embrittlement is also large. This is one of the main reasons for limiting the alloy addition range described later.

合金範囲の限定に当たり、本発明者らの広範な実験によれば、ベイナイト主体HAZではこれら合金の中で唯一Vのみが硬化しにくいことを知見した。この新知見に基づき、Vによる母材の強化分を相殺するようにC、Mn、Cr、Moなどの合金元素を低減すれば、Ceq低減分、もしくは同一CeqであってもHAZ硬さは低減され、HAZ靭性が向上する。このような母材とHAZでのV硬化挙動の差異を利用したHAZ靭性向上技術は従来なかったものである。   In limiting the range of alloys, according to the inventors' extensive experiments, it has been found that only V is hard to harden among these alloys in bainite-based HAZ. Based on this new knowledge, if the alloying elements such as C, Mn, Cr, and Mo are reduced so as to offset the strengthening of the base metal due to V, the HAZ hardness is reduced even if the Ceq is reduced or the same Ceq. And HAZ toughness is improved. There has been no HAZ toughness improvement technology that utilizes the difference in V-curing behavior between such a base material and HAZ.

次いで、化学量論的な計算上の有効ボロン量:eBを0.0001%以上、含有B量の1/2以下に制御することで、HAZにおいてB焼入性の過剰な発現を回避し、過度な硬化とMA増加を抑える。   Next, an effective boron amount in stoichiometric calculation: eB is controlled to be 0.0001% or more and ½ or less of the content of B to avoid excessive expression of B hardenability in HAZ, Suppresses excessive curing and MA increase.

MAの観点から、本発明では可能な限りSiを低減することが好ましい。また、Nbは、従来、TMCP鋼において制御圧延効果を享受するため不可欠な元素とされるが、本発明のTMCP条件では母材材質への寄与が小さいにも関わらずMA生成を助長するため、これも可能な限り低減することが好ましい。さらに、MoはCeqの係数が大きく、Cとの相互作用も大きいために焼入性が高くMA生成を助長するばかりでなく、比較的高価な元素でもあるので、本発明においては必要に応じて選択的に添加する場合でも、可能な限り低減することが好ましい。   From the viewpoint of MA, in the present invention, it is preferable to reduce Si as much as possible. In addition, Nb is conventionally considered as an indispensable element for enjoying the controlled rolling effect in TMCP steel, but the TMCP condition of the present invention promotes MA generation despite a small contribution to the base material material. It is preferable to reduce this as much as possible. Furthermore, since Mo has a large coefficient of Ceq and a large interaction with C, it not only has high hardenability but also promotes MA formation, and is also a relatively expensive element. Even in the case of selective addition, it is preferable to reduce it as much as possible.

さらに、有効結晶粒径の観点から、本発明では二つのHAZ組織微細化技術を適用することが好ましい。第一の技術は、γ中のB析出物とV析出物を変態核として同時に利用することである。上記式(2)で表される有効ボロン量(eB)が0.0001%以上、含有B量の1/2以下となるようにN量を適正に制御することで、大入熱溶接の冷却中にγ粒界やγ粒内にBN、VNあるいはV(C,N)が析出し、これらの単独あるいは複合の粒子がフェライトのみならずベイナイトの変態核としても有効に作用し、HAZ組織を微細化する。   Furthermore, from the viewpoint of effective crystal grain size, it is preferable to apply two HAZ structure refinement techniques in the present invention. The first technique is to simultaneously use B precipitates and V precipitates in γ as transformation nuclei. Cooling of high heat input welding by appropriately controlling the N amount so that the effective boron amount (eB) represented by the above formula (2) is 0.0001% or more and ½ or less of the contained B amount. BN, VN, or V (C, N) precipitates in the γ grain boundaries and γ grains, and these single or composite particles effectively act not only as ferrite but also as bainite transformation nuclei. Refine.

また、HAZ組織を微細化する第二の技術は、CaやMgの適正添加によって微細な酸化物や硫化物を多数分散させ、γ粒成長をピン止め効果によって抑制することで、ベイナイトのパケットを微細化する。微細な酸化物や硫化物の一部にはB析出物やV析出物が複合析出し、ピン止め粒子に変態核としての機能が付加されることで、γ粒界から変態するベイナイトをより一層微細化する効果もある。以上のHAZ組織微細化技術は、結果的にHAZの焼入性を低めるので、硬さとMAを低減する観点からも貢献する。   In addition, the second technology for refining the HAZ structure is to disperse many fine oxides and sulfides by appropriately adding Ca and Mg, and suppress γ grain growth by the pinning effect, thereby reducing the bainite packet. Refine. B precipitates and V precipitates are compounded in a part of fine oxides and sulfides, and the function as a transformation nucleus is added to the pinned particles, so that bainite transformed from the γ grain boundary is further enhanced. There is also an effect of miniaturization. The above HAZ microstructure refinement technique results in lowering the hardenability of HAZ, and thus contributes from the viewpoint of reducing hardness and MA.

上記第一の技術によって0℃のシャルピー吸収エネルギーを確保し、これに第二の技術を組み合わせることでHAZ組織を極限まで微細化すれば、−20℃あるいは−40℃のシャルピー吸収エネルギーを確保できる可能性もある。   If Charpy absorbed energy of 0 ° C. is secured by the first technique and the HAZ structure is refined to the limit by combining this with the second technique, Charpy absorbed energy of −20 ° C. or −40 ° C. can be secured. There is a possibility.

以上説明した硬さ低減、MA低減、HAZ組織微細化の施策を通じて、本発明の大入熱溶接HAZはNiに頼ることなく高いvE(0℃)を達成することができる。
上述した二つの制約、つまり、有効ボロン量(eB)が0.0001%以上、含有B量の1/2以下でCeqが0.45%以下である場合に、残る技術課題である厚手高強度化のための技術を説明する。
Through the measures for reducing hardness, reducing MA, and refining the HAZ structure as described above, the high heat input welding HAZ of the present invention can achieve high vE (0 ° C.) without depending on Ni.
When the above-mentioned two constraints, that is, the effective boron amount (eB) is 0.0001% or more, ½ or less of the B content and Ceq is 0.45% or less, the thick high strength that remains as a technical problem remains. The technology for conversion will be explained.

板厚50〜100mmの鋼板において所定の強度を確保するためには、鋼成分ならびにTMCP条件を適正範囲に制御限定する必要があるのはいうまでもない。   Needless to say, in order to ensure a predetermined strength in a steel plate having a thickness of 50 to 100 mm, it is necessary to control and limit the steel components and the TMCP conditions to an appropriate range.

まず、鋼成分の総量ともいえる下記式(1)に示す炭素当量Ceqは焼入性を表す指標でもあり、0.34〜0.45%にする必要がある。
Ceq=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14
・・・(1)
炭素当量Ceqが0.34%未満の低い焼入性では、eBを制御し微量の固溶Bを利用する本発明においても板厚100mmの下で325MPa以上の降伏強度と490MPa以上の引張強度を安定的に確保するのは難しいので、炭素当量Ceqを0.34%以上とした。一方、HAZの硬化とMA生成を抑制するために、Ceqを0.45%以下するが、0.41%以下または0.39%以下に制限してもよい。したがって、炭素当量Ceqを0.34〜0.45%とした。
First, the carbon equivalent Ceq shown in the following formula (1), which can be said to be the total amount of steel components, is also an index representing hardenability and needs to be 0.34 to 0.45%.
Ceq = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14
... (1)
In the low hardenability with a carbon equivalent Ceq of less than 0.34%, the yield strength of 325 MPa or more and the tensile strength of 490 MPa or more are also obtained under a plate thickness of 100 mm in the present invention in which eB is controlled and a small amount of solute B is used. Since it is difficult to ensure stably, the carbon equivalent Ceq is set to 0.34% or more. On the other hand, in order to suppress the hardening of HAZ and the formation of MA, Ceq is set to 0.45% or less, but may be limited to 0.41% or less or 0.39% or less. Therefore, the carbon equivalent Ceq is set to 0.34 to 0.45%.

本発明の鋼板の製造方法としては、前記した鋼成分のスラブは1000℃を越えて1300℃以下に加熱する必要がある。1000℃以下の低温加熱では、凝固偏析した合金元素が十分に固溶せず析出物のまま残存する懸念があり、圧延後の加速冷却時において合金元素による焼入性が十分に発揮されず、強度を安定的に確保するのが難しい。一方、1300℃を超える高温加熱だと、γ粒が著しく粗大化し、圧延によってもγ粒の細粒化が不十分となり、靭性を安定的に確保するのが難しい。   As a manufacturing method of the steel plate of the present invention, the slab of the steel component described above needs to be heated to 1000 ° C. or higher and 1300 ° C. or lower. At low temperature heating of 1000 ° C. or less, there is a concern that the solidified and segregated alloy element is not sufficiently dissolved and remains as a precipitate, and the hardenability by the alloy element is not sufficiently exhibited during accelerated cooling after rolling, It is difficult to ensure a stable strength. On the other hand, when the heating is higher than 1300 ° C., the γ grains become extremely coarse, and the γ grains are not sufficiently refined even by rolling, and it is difficult to stably ensure toughness.

加熱されたスラブは、鋼表面温度が850℃以上で累積圧下量が50%以上の圧延を行う必要がある。850℃未満の低温圧延を行うと、γが未再結晶化して焼入性が大幅に低下するため、限定されたCeq下で強度を安定的に確保するのが難しい。一方、850℃以上のγ再結晶域での累積圧下量が50%未満であると、γ再結晶粒の細粒化が不十分となり、靭性を安定的に確保するのが難しい。   The heated slab needs to be rolled at a steel surface temperature of 850 ° C. or more and a cumulative reduction amount of 50% or more. When low-temperature rolling at a temperature lower than 850 ° C. is performed, γ is not recrystallized and the hardenability is significantly reduced, so that it is difficult to stably secure the strength under the limited Ceq. On the other hand, if the cumulative reduction amount in the γ recrystallization region at 850 ° C. or higher is less than 50%, the γ recrystallized grains are insufficiently refined and it is difficult to stably ensure toughness.

圧延終了後、鋼表面温度が800℃以上から加速冷却を適用して500℃以下まで冷却する必要がある。800℃未満からの加速冷却を適用すると、圧延終了後から加速冷却開始までの間にγ再結晶粒が成長して靭性が劣化する懸念が生じる。一方、加速冷却を500℃より高温で停止すると、本発明が対象とする板厚50mm以上では、鋼板内部が十分冷却されないために変態が完了せず、加速冷却終了後は未変態部が放冷、すなわち徐冷されることになるため、ベイナイト組織分率が少なくなって強度が不足する。加速冷却においては、0.3m/m/min以上の水量密度を確保することが、強度と靭性を両立するために好ましい。 After rolling, it is necessary to apply accelerated cooling from a steel surface temperature of 800 ° C. or higher to 500 ° C. or lower. When accelerated cooling from less than 800 ° C. is applied, there is a concern that γ recrystallized grains grow from the end of rolling to the start of accelerated cooling and the toughness deteriorates. On the other hand, when the accelerated cooling is stopped at a temperature higher than 500 ° C., when the thickness is 50 mm or more, the transformation is not completed because the inside of the steel sheet is not sufficiently cooled, and the untransformed portion is allowed to cool after completion of the accelerated cooling. That is, since it is gradually cooled, the bainite structure fraction decreases and the strength is insufficient. In accelerated cooling, it is preferable to secure a water density of 0.3 m 3 / m 2 / min or more in order to achieve both strength and toughness.

さらに本発明では、強度を安定かつ十分に確保することを狙って、下記の二つの手段を講じる。   Furthermore, in the present invention, the following two measures are taken with the aim of ensuring the strength stably and sufficiently.

第一の手段は、TMCP条件の精緻な制御と、eBを0.0001%以上、含有B量の1/2以下に制御することでγ中に焼入性に寄与する固溶Bと変態核として寄与する析出B(BN)を併用することで、高強度と細粒化効果による高靭性に同時に達成するものである。   The first means is the precise control of TMCP conditions and the control of eB to 0.0001% or more and ½ or less of the content of B to contribute to hardenability in γ and solute B and transformation nuclei. In combination with precipitation B (BN) that contributes to high strength and high toughness due to the fine graining effect, it is achieved at the same time.

第二の手段は、V炭化物による析出強化を利用して母材強度を高める。本発明のTMCP条件では、V添加が極めて有効な強化手段である。これは、鋼成分(Ceq)とTMCP条件を適正化して得られるベイナイト組織が加速冷却や焼戻処理においてV炭化物(VC、V等)が微細高密度に析出する素地として好適なためである。本発明でVを添加するもう一つの意義は先述した通り大入熱溶接HAZにある。 The second means increases the base material strength by utilizing precipitation strengthening by V carbide. Under the TMCP conditions of the present invention, V addition is a very effective strengthening means. This is because the bainite structure obtained by optimizing the steel components (Ceq) and TMCP conditions is suitable as a substrate on which V carbides (VC, V 4 C 3 and the like) precipitate finely and densely in accelerated cooling and tempering treatment. It is. Another significance of adding V in the present invention is high heat input welding HAZ as described above.

加速冷却後に350〜700℃で5〜60分の焼戻熱処理をおこなうことにより、製造コストは上昇するものの、強度や伸び、シャルピー衝撃特性を、高精度で所定の範囲に制御できる。焼戻熱処理の温度や時間が350℃未満や5分未満など不完全であると、十分な焼戻効果が発揮されない。また、焼戻熱処理の温度や時間が700℃超えや60分超えなど過剰であると、析出物の粗大化などを通じて強度低下とシャルピー衝撃特性劣化し、適正な機械的性質が得られない。   By performing tempering heat treatment at 350 to 700 ° C. for 5 to 60 minutes after accelerated cooling, the manufacturing cost increases, but the strength, elongation, and Charpy impact characteristics can be controlled within a predetermined range with high accuracy. If the temperature and time of the tempering heat treatment are incomplete such as less than 350 ° C. or less than 5 minutes, a sufficient tempering effect cannot be exhibited. On the other hand, if the temperature and time of the tempering heat treatment are excessive, such as exceeding 700 ° C. or exceeding 60 minutes, the strength deteriorates and Charpy impact characteristics deteriorate due to the coarsening of precipitates, and appropriate mechanical properties cannot be obtained.

<化学成分組成>
以下に本発明における鋼板(および鋼板の製造に用いられる連続鋳造スラブ)の化学成分についての限定理由を説明する。
<Chemical component composition>
Below, the reason for limitation about the chemical component of the steel plate (and continuous casting slab used for manufacture of a steel plate) in this invention is demonstrated.

「C:炭素」0.05〜0.12%
Cは、強度向上のために重要な元素である。低温加熱、低温圧延を徹底したTMCP型厚手鋼板において、所定の強度を安定確保するために、0.05%以上のCを含有させる必要がある。好ましくは、0.06%以上または0.07%以上のCを含有させることにより、より安定して強度を高めることができる。また、後述する理由から、本発明ではNb、Ni、Moの含有量を必要最小限に抑える必要があるので、これらの元素を増加して高強度化することは困難である。したがって、Cは非常に重要な強化元素である。さらに、Cは大入熱HAZにおけるV(C、N)変態核の析出を促す効果もある。しかしながら、良好なHAZ靭性を安定確保するためには、Cを0.12%以下に抑える必要がある。Cを0.11%以下または0.10%以下に制限してもよい。
“C: Carbon” 0.05 to 0.12%
C is an important element for improving the strength. In a TMCP type thick steel plate thoroughly subjected to low temperature heating and low temperature rolling, it is necessary to contain 0.05% or more of C in order to ensure a predetermined strength stably. Preferably, the strength can be increased more stably by containing 0.06% or more or 0.07% or more of C. Further, for the reason described later, in the present invention, it is necessary to suppress the contents of Nb, Ni, and Mo to the minimum necessary, and it is difficult to increase these elements to increase the strength. Therefore, C is a very important strengthening element. Furthermore, C also has an effect of promoting precipitation of V (C, N) transformation nuclei in the high heat input HAZ. However, in order to stably secure good HAZ toughness, C needs to be suppressed to 0.12% or less. C may be limited to 0.11% or less or 0.10% or less.

「Si:ケイ素」0.3%以下
Siは、脱酸作用を有するが、強力な脱酸元素であるAlが十分に含有されている場合には不要である。母材を強化する作用もあるが、他の元素に比べるとその効果は相対的に小さい。比較的高い炭素当量Ceqが必要となる本発明の大入熱溶接HAZでは、SiはMA生成を助長する危険性が高いため、0.3%以下に抑える必要がある。HAZ靭性の観点からSiを極力低くすることが好ましく、0.20%以下、0.16%以下または0.13%以下に制限してもよい。
“Si: silicon” 0.3% or less Si has a deoxidizing action, but is unnecessary when Al, which is a strong deoxidizing element, is sufficiently contained. There is also an effect of strengthening the base material, but the effect is relatively small compared to other elements. In the high heat input welding HAZ of the present invention, which requires a relatively high carbon equivalent Ceq, Si has a high risk of promoting MA formation, so it is necessary to suppress it to 0.3% or less. From the viewpoint of HAZ toughness, Si is preferably as low as possible, and may be limited to 0.20% or less, 0.16% or less, or 0.13% or less.

「Mn:マンガン」1.0〜2.0%
Mnは、経済的に強度を確保するために1.0%以上の含有量が必要である。ただし、2.0%を超えてMnを含有させると、スラブの中心偏析の有害性が顕著となる上、大入熱溶接HAZの硬化とMA生成を助長して脆化させるため、これを上限とする。強度を確保するためには、Mnを1.1%以上または1.2%以上に制限してもより。大入熱溶接HAZの硬化とMA生成を抑制するために、1.8%以下、1.6%以下または1.5%以下に制限してもよい。
“Mn: Manganese” 1.0-2.0%
Mn must have a content of 1.0% or more in order to ensure strength economically. However, if Mn is contained in excess of 2.0%, the hazard of central segregation of the slab becomes noticeable, and the high heat input welding HAZ is hardened and embrittled by MA formation. And In order to secure the strength, Mn may be limited to 1.1% or more or 1.2% or more. In order to suppress the hardening and MA formation of the high heat input welding HAZ, it may be limited to 1.8% or less, 1.6% or less, or 1.5% or less.

「P:リン」0.015%以下
Pは、不純物元素であり、良好な脆性破壊伝播停止特性と大入熱溶接HAZ靭性を安定的に確保するために、0.015%以下に低減する必要がある。
“P: Phosphorus” 0.015% or less P is an impurity element, and it is necessary to reduce it to 0.015% or less in order to stably secure good brittle fracture propagation stopping characteristics and high heat input HAZ toughness. There is.

「S:硫黄」0.006%以下
Sは、0.005%以下に抑える必要がある。Sが0.006%を超えると、硫化物の一部が粗大化して破壊起点として有害性をもたらし、母材と大入熱溶接HAZの靭性が劣化する。靭性向上のため、Sを0.004%以下または0.003%以下に制限してもよい。
“S: sulfur” 0.006% or less S needs to be suppressed to 0.005% or less. When S exceeds 0.006%, a part of the sulfide is coarsened to cause harmfulness as a fracture starting point, and the toughness of the base metal and the high heat input welding HAZ is deteriorated. In order to improve toughness, S may be limited to 0.004% or less or 0.003% or less.

「B:ボロン(ホウ素)」0.0005〜0.0020%
Bは、本発明の特徴的な元素である。すでに詳述したように、本発明では母材と大入熱溶接HAZの両方において、γ中に一部を固溶Bとして存在させるとともに、一部をBNとして析出させるため、下記式(2)で示す有効ボロン量eBを0.0001%以上、含有B量の1/2以下に制御する。γ中に析出させたBNは変態核として作用し、HAZの組織微細化、硬さ低減、MA低減を通じて靭性を高める。これらのために、Bを0.0005%以上含有させる必要がある。必要に応じて、Bを0.0008%以上に制限しても良い。一方、0.0020%を超えてBを含有させると、粗大なB析出物が生成してHAZ靭性が劣化するため、これを上限とする。過剰な固溶B、すなわち過度な焼入性制御とHAZ靭性向上を高位安定して両立させるため、Bを0.0015%以下に制限しても良い。
eB=B−0.77{N−0.29(Ti−2OTi)} ・・・(2)
“B: Boron” 0.0005 to 0.0020%
B is a characteristic element of the present invention. As already described in detail, in the present invention, in both the base material and the high heat input welding HAZ, in order to cause a part of γ to exist as solute B and to precipitate a part as BN, the following formula (2) Is controlled to 0.0001% or more and 1/2 or less of the B content. BN precipitated in γ acts as a transformation nucleus and enhances toughness through HAZ microstructure refinement, hardness reduction, and MA reduction. For these reasons, it is necessary to contain 0.0005% or more of B. If necessary, B may be limited to 0.0008% or more. On the other hand, if B is contained in excess of 0.0020%, coarse B precipitates are generated and the HAZ toughness deteriorates, so this is the upper limit. In order to achieve an excessively solid solution B, that is, an excessive hardenability control and HAZ toughness improvement at the same time, B may be limited to 0.0015% or less.
eB = B-0.77 {N-0.29 (Ti-2OTi)} (2)

「V:バナジウム」0.02〜0.10%
Vは、本発明の特徴的な元素である。すでに詳述したように、Vは本発明のTMCP条件において母材を効果的に強化する。その一方で、Vは本発明の大入熱溶接HAZにおいて硬化やMA増加を抑えると同時に、γ中に析出させたVNやV(C,N)は変態核として作用し、HAZ組織を微細化して靭性を高める。この効果を発揮するためには、0.02%以上のVが必要である。HAZの靭性をより高めるために、Vを0.03%以上に制限することがより好ましい。しかしながら、Vが0.10%を超えると、HAZの組織微細化効果が飽和すると同時にHAZの硬化が著しくなるので、HAZ靭性が劣化する。したがって、Vの含有量を0.10%以下にする必要がある。必要に応じて、Vを0.07%以下に制限してもよい。
"V: Vanadium" 0.02-0.10%
V is a characteristic element of the present invention. As already detailed, V effectively strengthens the base material in the TMCP conditions of the present invention. On the other hand, V suppresses hardening and MA increase in the high heat input welding HAZ of the present invention, and at the same time, VN and V (C, N) precipitated in γ act as transformation nuclei to refine the HAZ structure. Increase toughness. In order to exhibit this effect, 0.02% or more of V is necessary. In order to further increase the toughness of the HAZ, it is more preferable to limit V to 0.03% or more. However, if V exceeds 0.10%, the effect of refining the HAZ structure is saturated, and at the same time, the hardening of the HAZ becomes remarkable, so that the HAZ toughness deteriorates. Therefore, the V content needs to be 0.10% or less. If necessary, V may be limited to 0.07% or less.

「Al:アルミニウム」0.01〜0.07%
Alは、脱酸を担い、O(酸素)を低減して鋼の清浄度を高めるために必要である。Al以外のSi、Ti、Ca、Mg、REM等も脱酸作用があるが、たとえこれらの元素が含有される場合でも、0.01%以上のAlがないと安定的にOを0.004%以下に抑えることは難しい。ただし、Alが0.07%を超えるとアルミナ系粗大酸化物がクラスター化する傾向を強め、破壊起点としての有害性が顕在化するため、これを上限とする。Alを0.06%以下、0.04%または0.03%以下に制限することがより好ましい。
"Al: Aluminum" 0.01-0.07%
Al is necessary for carrying out deoxidation and reducing O (oxygen) to increase the cleanliness of the steel. Si, Ti, Ca, Mg, REM, etc. other than Al also have a deoxidizing action, but even when these elements are contained, O is stably added to 0.004 if 0.01% or more Al is not present. It is difficult to keep it below%. However, if Al exceeds 0.07%, the tendency of the alumina-based coarse oxide to cluster is strengthened, and the harmfulness as a fracture starting point becomes obvious, so this is the upper limit. More preferably, Al is limited to 0.06% or less, 0.04% or 0.03% or less.

「Ti:チタン」0.005〜0.02%、
「N:窒素」0.002〜0.007%、
「eB:有効ボロン量」0.0001%以上、含有B量の1/2以下、
Tiは、Nと結合してTiNを形成し、スラブ再加熱時と大入熱溶接HAZでピン止め粒子として作用し、γ細粒化を介して母材やHAZの組織を微細化して靭性を高める。そして、TiNを形成した残りのNはBと結合してBNを形成し、さらにγ中に固溶Bとしても存在させ、B焼入性をも活用する。以上の効果を同時に発揮するために、Tiを0.005〜0.02%、Nを0.002〜0.007%、eBを0.0001%以上、含有B量の1/2以下とする必要がある。TiとNが、それぞれ0.005%、0.002%に満たないと、TiNによるピン止め効果が十分に発揮されず、母材とHAZの靭性が劣化する。TiとNがそれぞれ0.02%、0.007%を超えると、TiC析出や固溶N増加によって母材とHAZの靭性が劣化する。さらに、TiとNが適正範囲にあっても。eBが含有B量の1/2を超えると、γ中の固溶B量が過剰となってB焼入性が過度に発現し、母材強度のばらつきやHAZの硬化(脆化)をもたらす。Tiは0.015%以下に制限することがより好ましい。なお、N量は、含有量の前記の範囲に限定するが、後述するeB、eTiを制御する上で自ずと制約されるものである。
“Ti: titanium” 0.005 to 0.02%,
“N: Nitrogen” 0.002 to 0.007%,
“EB: effective boron content” 0.0001% or more, 1/2 or less of the content B,
Ti combines with N to form TiN, acts as pinning particles during slab reheating and high heat input welding HAZ, refines the base material and HAZ structure through gamma refinement, and improves toughness Increase. And the remaining N which formed TiN couple | bonds with B, forms BN, and also makes it exist as solid solution B in (gamma), and also utilizes B hardenability. In order to exhibit the above effects simultaneously, Ti is 0.005 to 0.02%, N is 0.002 to 0.007%, eB is 0.0001% or more, and 1/2 or less of the content B content. There is a need. If Ti and N are less than 0.005% and 0.002%, respectively, the pinning effect by TiN is not sufficiently exhibited, and the toughness of the base material and the HAZ deteriorates. When Ti and N exceed 0.02% and 0.007%, respectively, the toughness of the base material and the HAZ deteriorates due to TiC precipitation and increase in solute N. Furthermore, even if Ti and N are in the proper range. When eB exceeds 1/2 of the B content, the amount of dissolved B in γ is excessive and B hardenability is excessively exhibited, resulting in variations in base material strength and HAZ hardening (brittleness). . More preferably, Ti is limited to 0.015% or less. In addition, although N amount is limited to the said range of content, when controlling eB and eTi mentioned later, it is restricted naturally.

以下に、有効ボロン量:eBの考え方を説明する。なお、以下に示す元素を含む式において、元素は、それぞれの元素の含有量(質量%)を表す。   Hereinafter, the concept of effective boron amount: eB will be described. In addition, in the formula containing the element shown below, an element represents content (mass%) of each element.

化学成分として添加されたTiは、溶鋼中の脱酸で消費される場合があり(低Alの場合に起こりやすい)、脱酸後に残ったTiが凝固後のγ中でTiNを形成する。この際、Tiに対してNが過剰であると、TiNを形成した後に残ったNがBの一部と結合してBNを形成する。そして、BNを形成した残りのBが固溶Bとして焼入性を発現する。この焼入性に寄与するγ中の固溶B量を本発明では有効ボロン量(eB)として扱う。
各元素の添加量、熱力学的な反応順序、生成物質の化学量論組成に基づいたeBの計算方法について以下に説明する。
Ti added as a chemical component may be consumed by deoxidation in molten steel (prone to occur in the case of low Al), and Ti remaining after deoxidation forms TiN in γ after solidification. At this time, if N is excessive with respect to Ti, N remaining after forming TiN is combined with a part of B to form BN. And the remaining B which formed BN expresses hardenability as the solid solution B. In the present invention, the amount of dissolved B in γ that contributes to the hardenability is treated as the effective boron amount (eB).
An eB calculation method based on the amount of each element added, the thermodynamic reaction sequence, and the stoichiometric composition of the product will be described below.

まず、脱酸力の高い順に、Ca、Mg、REM(希土類元素)、AlがOと結合すると仮定する。この際の脱酸生成物として、CaO、MgO、REM、Alを仮定して、脱酸されるO量を計算する。 First, it is assumed that Ca, Mg, REM (rare earth element), and Al are combined with O in descending order of deoxidizing power. Assuming CaO, MgO, REM 2 O 3 , and Al 2 O 3 as deoxidation products at this time, the amount of O to be deoxidized is calculated.

Tiよりも脱酸力の強いこれらの元素によって脱酸が完了しない場合、これらの強脱酸元素による脱酸後に残存し。弱脱酸元素であるTiによって脱酸され得る残存酸素量OTi(%)は、下記式(4)で表される。
OTi(%)=O−0.4Ca−0.66Mg−0.17REM−0.89Al ・・・ (4)
ただし、上記式(4)において、不可避的不純物扱いの成分元素も計算に含める。また、OTiが0%より小さい場合、残存酸素量OTiを0%とみなす。
When deoxidation is not completed by these elements having a stronger deoxidizing power than Ti, they remain after deoxidation by these strong deoxidizing elements. The residual oxygen amount OTi (%) that can be deoxidized by Ti, which is a weak deoxidizing element, is represented by the following formula (4).
OTi (%) = O−0.4Ca−0.66Mg−0.17REM−0.89Al (4)
However, in the above formula (4), component elements that are treated as inevitable impurities are also included in the calculation. When OTi is smaller than 0%, the residual oxygen amount OTi is regarded as 0%.

この場合、残った酸素(つまり、OTi)をTiが脱酸することになる。なお、意図的に添加してない不可避的不純物扱いの脱酸に寄与する成分元素も酸素と結合する。残存酸素量OTiはTiによって脱酸され得る残存酸素量であり、Tiと結合してTiを形成する。このとき3個のOに対して2個のTiが結合する。したがって、Tiを質量%で考えると、Oの原子量は16なので、Oが3個で48である。また、Tiの原子量は48なので、Tiが2個で96である。よって、Tiを構成するTiはO(ここではOTi)の2倍の質量と計算される。これが脱酸で消費されるTiの量である。そこで、Tiを仮定して、脱酸で消費されるTiを差し引いた残りのチタン量である有効チタン量:eTiは、下記式(3)で表される。
eTi=Ti−2OTi ・・・ (3)
In this case, Ti deoxidizes the remaining oxygen (that is, OTi). In addition, the component element which contributes to deoxidation treated as an inevitable impurity that is not intentionally added also binds to oxygen. The residual oxygen amount OTi is a residual oxygen amount that can be deoxidized by Ti, and combines with Ti to form Ti 2 O 3 . At this time, two Ti bonds to three Os. Therefore, when Ti 2 O 3 is considered in terms of mass%, the atomic weight of O is 16, so that three Os are 48. Further, since the atomic weight of Ti is 48, two Ti are 96. Therefore, Ti constituting Ti 2 O 3 is calculated to be twice the mass of O (here, OTi). This is the amount of Ti consumed by deoxidation. Therefore, assuming Ti 2 O 3 , the effective titanium amount: eTi, which is the remaining titanium amount after subtracting Ti consumed in deoxidation, is expressed by the following formula (3).
eTi = Ti-2OTi (3)

このeTiが、HAZ靭性改善効果があるTiNを生成するTi量となる。脱酸で消費されるTiを差し引いた残りのTiが0.005%未満であると、TiNによるピン止め効果が十分に発揮されず、厚手母材と大入熱溶接HAZ靭性が劣化する。このため、eTiを0.005%以上確保する必要がある。   This eTi is the amount of Ti that produces TiN having an effect of improving HAZ toughness. If the remaining Ti after subtracting Ti consumed by deoxidation is less than 0.005%, the pinning effect by TiN is not sufficiently exhibited, and the thick base material and the high heat input weld HAZ toughness deteriorate. For this reason, it is necessary to ensure eTi 0.005% or more.

また、脱酸で残った0.005%以上のTiがTiNを形成した後に残存する窒素量Nrは、下記式(5)で表される。
Nr(%)=N−0.29(Ti−2OTi) ・・・(5)
ここで、Nrが正の値の場合には窒素が残存していることを、Nrが0または負の値の場合にはNが残存していないことを意味する。
Nr>0の場合:Nが残る
Nr≦0の場合:Nが残らない
Further, the nitrogen amount Nr remaining after 0.005% or more of Ti remaining after deoxidation forms TiN is expressed by the following formula (5).
Nr (%) = N-0.29 (Ti-2OTi) (5)
Here, when Nr is a positive value, it means that nitrogen remains, and when Nr is 0 or a negative value, it means that N does not remain.
When Nr> 0: N remains Nr ≦ 0: N does not remain

また、Nrが0%より大きくなる場合、つまり窒素が残存している場合は、Bの一部がBNとして消費されるので、下記式(2)によって有効ボロン量eBが計算される。
eB(%)=B−0.77{N−0.29(Ti−2OTi)} ・・・(2)
Further, when Nr is greater than 0%, that is, when nitrogen remains, a part of B is consumed as BN. Therefore, the effective boron amount eB is calculated by the following equation (2).
eB (%) = B-0.77 {N-0.29 (Ti-2OTi)} (2)

また、Nrが0または負の値となって窒素が残らない場合は、eBは、鋼中に含有されるB量となる。つまり、Nrが0%より小さい場合、Nr=N−0.29(Ti−2OTi)を0%として式(2)の計算を行うと、eBを算出できる。   When Nr is 0 or a negative value and nitrogen does not remain, eB is the amount of B contained in the steel. That is, when Nr is less than 0%, eB can be calculated by calculating Equation (2) with Nr = N-0.29 (Ti-2OTi) being 0%.

次に、上述した残存酸素量OTiの式(4)におけるCa、Mg、REM、Alの係数について述べると、溶鋼中での脱酸反応(酸化反応)による生成物(酸化物)としてCaO、MgO、REM、Alを仮定し、これらの酸化物として存在するO量を質量%で計算する。例えば、CaOの場合、原子量はCaが40でOが16であるから、Caの質量%に対して16/40=0.4のOが結合する(O as CaO=0.4Ca)。Alであれば、原子量はAlが27でOが16であるから、Alの質量%に対して(16×3)/(27×2)=0.89のOが結合する(O as Al=0.89Al)。以下同様の計算概念として、上述のOTi式(4)の各元素の係数(0.66:Mg、0.17:REM、)を規定した。 Next, the coefficients of Ca, Mg, REM, and Al in the above-described residual oxygen amount OTi formula (4) will be described. As products (oxides) by deoxidation reaction (oxidation reaction) in molten steel, CaO, MgO , REM 2 O 3 and Al 2 O 3 are assumed, and the amount of O present as these oxides is calculated by mass%. For example, in the case of CaO, since the atomic weight is 40 for Ca and 16 for O, 16/40 = 0.4 O is bonded to the mass% of Ca (O as CaO = 0.4Ca). In the case of Al 2 O 3 , since the atomic weight is 27 for Al and 16 for O, O of (16 × 3) / (27 × 2) = 0.89 is bonded to the mass% of Al (O as Al 2 O 3 = 0.89 Al). Hereinafter, as the same calculation concept, coefficients (0.66: Mg, 0.17: REM) of each element of the above-mentioned OTi formula (4) were defined.

また、有効ボロン量eBの導出式の概念を、低温側から高温側に遡って示すと以下のようになる。
有効ボロン量eB(%)=成分B量−(B as BN)
→(B as BN)=0.77{N−(N as TiN)}
→(N as TiN)=0.29{(Ti−(Ti as Ti)}
→(Ti as Ti)=2{O−(O as CaO)−(O as MgO)−(O as REM}−(O as ZrO)−(O as Al)}
→(O as CaO)=0.4Ca
→(O as MgO)=0.66Mg
→(O as REM)=0.17REM
→(O as Al)=0.89Al
The concept of the derivation formula for the effective boron amount eB is shown as follows from the low temperature side to the high temperature side.
Effective boron amount eB (%) = component B amount- (B as BN)
→ (B as BN) = 0.77 {N- (N as TiN)}
→ (N as TiN) = 0.29 {(Ti- (Ti as Ti 2 O 3 )}
→ (Ti as Ti 2 O 3 ) = 2 {O— (O as CaO) — (O as MgO) — (O as REM 2 O 3 } — (O as ZrO 2 ) — (O as Al 2 O 3 ) }
→ (O as CaO) = 0.4Ca
→ (O as MgO) = 0.66Mg
→ (O as REM 2 O 3 ) = 0.17REM
→ (O as Al 2 O 3 ) = 0.89Al

次に、有効ボロン量eBの導出式概念を、高温側から低温側への反応順に示すと以下のようになる。すなわち、製鋼での精錬→凝固工程において、以下の順で反応する。   Next, the derivation concept of the effective boron amount eB is shown as follows in the order of reaction from the high temperature side to the low temperature side. That is, it reacts in the following order in the refining → solidification process in steelmaking.

液相(溶鋼中)での脱酸反応(1600℃付近)
Oとの化学的親和力の強い順にCaO→MgO→REM→Alの反応が生じ、溶鋼中の溶存Oが減少していく。これで脱酸が完了する場合は、OTi≦0で表される。脱酸が完了せずに溶存Oが残る場合は、OTi>0、Tief=Ti−2OTi≧0.005(%)で表され、Alより弱脱酸元素であるTiがTiとして脱酸に寄与し、成分Tiから脱酸で消費されたTi as Tiを差し引いた残りの有効チタン量eTiが0.005%以上となる。
Deoxidation reaction in liquid phase (in molten steel) (around 1600 ° C)
The reaction of CaO → MgO → REM 2 O 3 → Al 2 O 3 occurs in the order of strong chemical affinity with O, and dissolved O in the molten steel decreases. When deoxidation is completed by this, it is represented by OTi ≦ 0. When dissolved O remains without completion of deoxidation, it is expressed by OTi> 0, Tief = Ti-2OTi ≧ 0.005 (%), and Ti, which is a weaker deoxidation element than Al, is desorbed as Ti 2 O 3. The remaining effective titanium amount eTi obtained by subtracting Ti as Ti 2 O 3 consumed by deoxidation from the component Ti becomes 0.005% or more.

固相(凝固γ中)での脱窒反応(1300℃付近〜800℃付近)
Nとの化学的親和力の強い順にTiN→BN→AlNの反応が生じ、固相γ中の固溶Nが減少していく。まず、脱酸で消費された残りのTiが脱窒反応を起こす。これで脱窒が完了する場合は、N−0.29(Ti−2OTi)≦0で表され、γ中に固溶Nが存在しないので、BがBNを形成せずにすべてが固溶Bとして存在する。一方、Tiによって脱窒が完了せず、固溶Nが残る場合は、N−0.29(Ti−2OTi)>0で表され、Bの一部がBNを生成して残りが固溶Bとなる。
Denitrification reaction in solid phase (in solidification γ) (around 1300 ° C to 800 ° C)
The reaction of TiN → BN → AlN occurs in the order of strong chemical affinity with N, and the solid solution N in the solid phase γ decreases. First, the remaining Ti consumed by deoxidation causes a denitrification reaction. When denitrification is completed by this, N−0.29 (Ti−2OTi) ≦ 0 is expressed, and since solute N does not exist in γ, B does not form BN, but all solute B Exists as. On the other hand, when denitrification is not completed by Ti and solid solution N remains, it is represented by N-0.29 (Ti-2OTi)> 0, and a part of B generates BN and the remaining is solid solution B. It becomes.

一方、Tiよりも脱酸力の強い元素によって脱酸が完了する場合には、下記式を満たす。   On the other hand, when deoxidation is completed by an element having a stronger deoxidizing power than Ti, the following formula is satisfied.

OTi≦0
この場合、Tiは脱酸では消費されない。TiがTiNを形成し、Nが残る場合は下記式を満たす。
OTi ≦ 0
In this case, Ti is not consumed by deoxidation. When Ti forms TiN and N remains, the following formula is satisfied.

N−0.29Ti>0
この際のeBは下記式で計算される。
N-0.29Ti> 0
At this time, eB is calculated by the following equation.

eB(%)=B−0.77(N−0.29Ti)
TiがTiNを形成し、Nが残らない場合は下記式を満たす。
eB (%) = B-0.77 (N-0.29 Ti)
When Ti forms TiN and N does not remain, the following formula is satisfied.

N−0.29≦0
この際のeBは下記式で計算される。
N−0.29 ≦ 0
At this time, eB is calculated by the following equation.

eB(%)=B−0.77{N−0.29(Ti−2OTi)}
ここで、Ti−2OTiは、有効チタン量eTiである。
eB (%) = B-0.77 {N-0.29 (Ti-2OTi)}
Here, Ti-2OTi is an effective titanium amount eTi.

上記各式において、式(N−0.29eTi)はTiによって脱窒された残りのNであり、Bと結合してBNを形成しうる。このとき1個のBに対して1個のNが結合する。したがって、BNを質量%で考えると、Bの原子量は10.8であり、Nの原子量は14である。よって、BNを構成するBはN(ここではN−0.29eTi)の0.77倍の質量と計算される。これが脱窒で消費されるBの量である。   In each of the above formulas, the formula (N-0.29eTi) is the remaining N denitrified by Ti, and can combine with B to form BN. At this time, one N is bonded to one B. Therefore, when BN is considered in mass%, the atomic weight of B is 10.8, and the atomic weight of N is 14. Therefore, B constituting BN is calculated to be 0.77 times the mass of N (here, N-0.29 eTi). This is the amount of B consumed by denitrification.

また、上記各式において、式(N−0.29eTi)における0.29eTiは、N as TiNを意味する。ここで、原子量はTiが48でNが14であるから、eTi(脱酸で消費されたTiを差し引いた残りのTi)の質量%に対して14/48=0.29のNが結合する。また、N−0.29Ti≦0であれば、NはすべてTiNで固定され、γ素地中に固溶Nは存在しない。一方、N−0.29eTi>0ならば、γ素地中にはTiNの他に固溶Nが存在するので、この固溶Nは、Bと結合してBNを生成し、有効ボロン量を減少させる。   Moreover, in each said formula, 0.29eTi in a formula (N-0.29eTi) means NasTiN. Here, since the atomic weight is 48 for Ti and 14 for N, N of 14/48 = 0.29 is bonded to the mass% of eTi (the remaining Ti after subtracting Ti consumed in deoxidation). . If N−0.29Ti ≦ 0, all N is fixed with TiN, and no solute N exists in the γ substrate. On the other hand, if N-0.29eTi> 0, solid solution N exists in addition to TiN in the γ substrate, so this solid solution N combines with B to produce BN, reducing the effective boron content. Let

下記式(6)で示すBpは、多数の実験室溶製鋼での解析から導出した経験式であり、(C量によって予想される最高硬さ)×(eBの寄与)でパラメータ化したものである。
Bp=(884×[C]×(1−0.3×[C]2)+294)×eB ・・・(6)
Bp shown in the following formula (6) is an empirical formula derived from analysis in many laboratory molten steels, and is parameterized by (maximum hardness expected by C amount) × (contribution of eB). is there.
Bp = (884 × [C] × (1-0.3 × [C] 2 ) +294) × eB (6)

有効ボロン量eBが高いほど、HAZ硬さが高くなりやすく、特に今回のような大入熱溶接の粗大なHAZ組織における靭性に大きく影響する。   As the effective boron amount eB is higher, the HAZ hardness tends to be higher, and particularly affects the toughness in the coarse HAZ structure of the high heat input welding as in this time.

図1は、横軸にBp、縦軸に継ぎ手靭性をとったもので、○はvE0,●はvE−20のデータである。図1のように、Bpが0.24%を超えると溶接HAZの著しい硬さ上昇を引き起こし、HAZ靭性が劣化するため、上限を0.24%に限定した。なお、下限については、本発明が限定するC、eBの最小値であるそれぞれ0.05%、0.0001%の時、Bpは最小値0.028%となり自ずと限定され、これを下限値とする。   FIG. 1 shows Bp on the horizontal axis and joint toughness on the vertical axis, where ◯ is the data for vE0 and ● is the data for vE-20. As shown in FIG. 1, when Bp exceeds 0.24%, the hardness of the welded HAZ is significantly increased and the HAZ toughness is deteriorated, so the upper limit is limited to 0.24%. As for the lower limit, when the minimum values of C and eB defined by the present invention are 0.05% and 0.0001%, respectively, Bp is naturally limited to a minimum value of 0.028%. To do.

「O:酸素」0.004%以下
Oは、0.004%以下に抑える必要がある。Oが0.004%を超えると、酸化物の一部が粗大化して破壊起点として有害性をもたらし、母材と大入熱溶接HAZの靭性が劣化する。一方で、HAZのピン止め効果を利用する際には、Oは0.001%以上確保する必要がある。その理由は、HAZの溶融線近傍において、HAZ靭性を高めるためにCaやMgの適正添加によって微細な酸化物を多数分散させた場合に、ピン止め効果を強化してγ細粒化を図るためである。Oが0.001%未満だと、酸化物個数が不足して十分なピン止め効果が得られない場合がある。
“O: Oxygen” 0.004% or less O must be suppressed to 0.004% or less. When O exceeds 0.004%, a part of the oxide is coarsened to cause harmfulness as a fracture starting point, and the toughness of the base material and the high heat input welding HAZ is deteriorated. On the other hand, when utilizing the pinning effect of HAZ, O needs to be secured at 0.001% or more. The reason for this is to reinforce the pinning effect and achieve γ grain refinement when a large number of fine oxides are dispersed by appropriate addition of Ca and Mg in the vicinity of the HAZ melting line to increase HAZ toughness. It is. If O is less than 0.001%, the number of oxides may be insufficient and a sufficient pinning effect may not be obtained.

「Ca:カルシウム」0.0003〜0.004%、
「Mg:マグネシウム」0.0003〜0.004%、
Ca、Mgは、溶鋼への添加順序を考慮しつつ、一方あるいは両方を0.0003%以上含有させることで、CaやMgを含有する10〜500nmの酸化物や硫化物を1000個/mm以上確保することができる。CaやMgが0.0003%未満だと、大入熱溶接HAZのピン止め粒子である酸化物や硫化物の個数が不足する場合がある。しかしながら、それぞれ0.004%超含有させると、酸化物や硫化物が粗大化してピン止め粒子の個数が不足すると同時に、破壊起点としての有害性も顕著となり、良好なHAZ靭性が得られない場合がある。なお、Nbを添加する場合には、大入熱溶接HAZのピン止め効果による細粒化効果を併用が好ましいので、Mgを添加することが望ましい。
“Ca: calcium” 0.0003 to 0.004%,
“Mg: Magnesium” 0.0003 to 0.004%,
Ca and Mg are added in an amount of 0.0003% or more while considering the order of addition to the molten steel, and 1000 oxides / sulfides of 10 to 500 nm containing Ca and Mg are contained / mm 2. This can be ensured. If Ca or Mg is less than 0.0003%, the number of oxides and sulfides that are pinning particles of the high heat input welding HAZ may be insufficient. However, if each content exceeds 0.004%, the oxides and sulfides become coarse and the number of pinning particles is insufficient, and at the same time, the harmfulness as a fracture starting point becomes significant, and good HAZ toughness cannot be obtained. There is. In addition, when adding Nb, since it is preferable to use the fine graining effect by the pinning effect of the high heat input welding HAZ, it is desirable to add Mg.

「Ni:ニッケル」0.03〜0.80%
Niは、靭性の劣化を抑えて強度を確保するために有効である。そのためには0.03%以上のNiを含有させることが好ましい。しかしながら、Niは合金コストが非常に高い上に、表面疵の手入れ工程が発生するという問題がある。したがって、Niは0.80%以下に抑えることが好ましい。また、Niの含有量は極力低くすることが好ましく、0.70%以下、0.50%以下または0.30%以下に制限しても良い。
"Ni: Nickel" 0.03-0.80%
Ni is effective for suppressing strength deterioration and ensuring strength. For that purpose, it is preferable to contain 0.03% or more of Ni. However, Ni has a problem that the alloy cost is very high and a surface flaw cleaning process occurs. Therefore, Ni is preferably suppressed to 0.80% or less. The Ni content is preferably as low as possible and may be limited to 0.70% or less, 0.50% or less, or 0.30% or less.

「Cu:銅」0.03〜1.2%
「Cr:クロム」0.03〜0.80%
「Mo:モリブデン」0.03〜0.4%
Cu、Cr、Moは、強度を確保するために有効であり、その効果を享受するため少なくとも0.03%以上の含有が必要である。一方、大入熱溶接HAZ靭性を劣化させる観点から、それぞれ1.2%、0.80%、0.4%が上限である。MoはNi同様に高価な元素であり、さらにHAZのMA生成を助長する危険性も高いので、Moの含有量はNi同様に極力低くすることが好ましい。HAZ靭性向上のため、Cu、Crを0.5%以下または0.3%以下に、Moを0.3%以下または0.1%以下に制限しても良い。
"Cu: Copper" 0.03-1.2%
"Cr: Chromium" 0.03-0.80%
"Mo: Molybdenum" 0.03-0.4%
Cu, Cr, and Mo are effective for securing the strength, and in order to enjoy the effect, the content of at least 0.03% is necessary. On the other hand, from the viewpoint of degrading high heat input welding HAZ toughness, the upper limit is 1.2%, 0.80%, and 0.4%, respectively. Mo is an expensive element like Ni, and also has a high risk of promoting the MA formation of HAZ. Therefore, the content of Mo is preferably as low as Ni. In order to improve the HAZ toughness, Cu and Cr may be limited to 0.5% or less or 0.3% or less, and Mo may be limited to 0.3% or less or 0.1% or less.

「Nb:ニオブ」0.003〜0.03%
Nbは、焼入性と析出の両面から強度を確保するために有効である。しかし、圧延γ再結晶化や大入熱溶接HAZ靭性に対してNbは有害である。Nbの強度向上効果を享受するためには、0.003%以上のNbを含有させることが好ましい。より好ましくは、0.008%以上含有させると良い。しかし、多過ぎる添加は圧延γ再結晶化や大入熱溶接HAZ靭性に対するNbの有害さが顕在化するため、本発明では0.03%以下の微量Nbしか含有させないことが好ましい。0.02%以下、0.01%以下に抑えることがより好ましい。他の元素添加により強度確保が可能であれば、Nbを含有しないことがHAZ靭性の観点からさらに好ましい。
"Nb: Niobium" 0.003-0.03%
Nb is effective for securing strength from both aspects of hardenability and precipitation. However, Nb is harmful to rolling γ recrystallization and high heat input welding HAZ toughness. In order to enjoy the strength improvement effect of Nb, it is preferable to contain 0.003% or more of Nb. More preferably, the content is 0.008% or more. However, too much addition reveals the harmfulness of Nb to rolled γ recrystallization and high heat input welding HAZ toughness. Therefore, in the present invention, it is preferable to contain only a small amount of Nb of 0.03% or less. It is more preferable to suppress to 0.02% or less and 0.01% or less. If strength can be ensured by adding other elements, it is more preferable not to contain Nb from the viewpoint of HAZ toughness.

「REM:希土類元素(ランタノイド系元素)」0.0003〜0.01%
REM(希土類元素)は、脱酸と脱硫に関与して、中心偏析部の粗大な延伸MnSの生成を抑えて硫化物を球状無害化し、母材と大入熱溶接HAZの靭性を改善する。これらの効果を発揮するためには、少なくとも0.0003%である。ただし、含有量を増やしても効果は飽和するため、経済性の観点から上限は0.01%である。なお、本発明で含有するREMとは、LaやCeなどのランタノイド系元素である。
なお、鋼成分の残部はFeおよび不可避不純物である。
“REM: rare earth element (lanthanoid element)” 0.0003 to 0.01%
REM (rare earth element) participates in deoxidation and desulfurization, suppresses the formation of coarse stretched MnS in the central segregation part, makes the sulfide harmless in spherical form, and improves the toughness of the base material and the high heat input welding HAZ. In order to exhibit these effects, it is at least 0.0003%. However, since the effect is saturated even if the content is increased, the upper limit is 0.01% from the viewpoint of economy. The REM contained in the present invention is a lanthanoid element such as La or Ce.
The balance of the steel component is Fe and inevitable impurities.

以上説明したように、本発明に係る大入熱溶接熱影響部靭性に優れた鋼板およびその製造方法によれば、(1)板厚50〜100mm、降伏強度325〜650MPa、かつ引張強度490〜720MPaの厚手高強度で、(2)溶接入熱量≧20kJ/mmでもvE(0℃)≧70Jとなる良好な大入熱溶接HAZ靭性を有し、(3)高価合金元素の低減(Ni≦1.0質量%等)等による低い製造コストを実現できる。   As explained above, according to the steel plate excellent in high heat input welding heat-affected zone toughness and the manufacturing method thereof according to the present invention, (1) plate thickness 50 to 100 mm, yield strength 325 to 650 MPa, and tensile strength 490 to 720 MPa thick high strength, (2) good high heat input HAZ toughness with vE (0 ° C.) ≧ 70 J even when welding heat input ≧ 20 kJ / mm, (3) reduction of expensive alloy elements (Ni ≦ Low manufacturing costs such as 1.0% by mass) can be realized.

このような本発明による厚手高強度鋼板が(超)高層ビルをはじめとする各種の溶接構造物に使用されることで、溶接構造物の大型化、破壊に対する高い安全性、建造における溶接の高能率化、素材である鋼材の経済性等々が同時に満たされることから、その産業上の効果は計り知れない。   Such a thick high-strength steel sheet according to the present invention is used in various welded structures including (super) high-rise buildings, so that the welded structures are increased in size, high in safety against breakage, and high in welding in construction. Since the efficiency and economic efficiency of the steel material are satisfied at the same time, the industrial effects are immeasurable.

以下、本発明に係る大入熱溶接熱影響部靭性に優れた鋼板およびその製造方法の実施例を挙げ、本発明をより具体的に説明するが、本発明は、もとより下記実施例に限定されるものではなく、前、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれるものである。   Hereinafter, examples of the steel plate excellent in high heat input welding heat-affected zone toughness according to the present invention and its manufacturing method will be given to explain the present invention more specifically, but the present invention is originally limited to the following examples. However, the present invention can be carried out with appropriate modifications within a range that can meet the gist of the preceding and following descriptions, and these are all included in the technical scope of the present invention.

(サンプル作製)
製鋼工程において溶鋼の脱酸・脱硫と鋼成分を制御し、連続鋳造によって表1に示す鋼成分のスラブを作製した。そして、前記スラブを表2に示す製造条件で板厚50〜100mmの厚鋼板を作製した。
(Sample preparation)
In the steelmaking process, the deoxidation / desulfurization of the molten steel and the steel components were controlled, and the steel component slabs shown in Table 1 were produced by continuous casting. And the thick steel plate with a plate thickness of 50-100 mm was produced on the manufacturing conditions shown in Table 2 for the slab.

鋼成分、製造条件とも本発明が限定する範囲(特許請求の範囲)にある鋼1〜24の本発明例は、表3に示すように、母材の強度(降伏強度、引張強度)・靭性はもとより、溶接入熱50kJ/mm超のエレクトロスラグ溶接(ESW)継手靭性もきわめて良好であることが確認された。   As shown in Table 3, the present invention examples of steels 1 to 24, which are within the limits (claims) of the present invention for both steel components and production conditions, show the strength of the base metal (yield strength, tensile strength) and toughness. In addition, it has been confirmed that the electroslag weld (ESW) joint toughness with a welding heat input of more than 50 kJ / mm is extremely good.

これに対し、比較例である鋼25〜34は、鋼成分が本発明の限定範囲を逸脱しているため、母材特性および/またはESW継手靭性が本発明例に対し明らかに劣る。   On the other hand, since steel components 25-34 which are comparative examples deviate from the limitation range of the present invention, the base material characteristics and / or the ESW joint toughness are clearly inferior to the present invention examples.

すなわち、鋼25は、C量が低いため、継手靭性は良好であるが、製造条件が適正であっても強度が低い。鋼26は、逆にC量が高いため、製造条件が適正であっても母材靭性が低く、継手靭性にも劣る。鋼27は、Mn量が低く、Ceqも低いため、継手靭性は良好であるが、製造条件が適正であっても強度が低い。鋼28は、Mn量が高く、Ceqも高いため、製造条件が適正であっても母材靭性が低く、継手靭性も劣る。鋼29は、B量が低いためeB量が低く(負の値)、製造条件が適正であっても強度が低く、継手靭性も劣る。鋼30は、Al量が低いのに加え、eTi量も低いため、継手靭性が劣る。鋼31は、Ti量が低いためeTi量が低いだけでなく、eB量も低い(負の値)のため、母材靭性、継手靭性ともに劣る。鋼32は、N量が低く、eB量が高すぎるため、強度がやや高く、母材靭性、継手靭性に劣る。鋼33は、Si量が高いため、特にHAZでMA−constituentの生成が顕著となって、継手靭性に劣る。鋼34は、Vが無添加のため、HAZの組織制御が不十分となって、継手靭性に劣る。   That is, since the steel 25 has a low C content, the joint toughness is good, but the strength is low even if the manufacturing conditions are appropriate. On the contrary, the steel 26 has a high C content, so that the base material toughness is low and the joint toughness is inferior even if the manufacturing conditions are appropriate. Steel 27 has a low Mn content and a low Ceq, so the joint toughness is good, but the strength is low even if the manufacturing conditions are appropriate. Since the steel 28 has a high Mn content and a high Ceq, the base material toughness is low and the joint toughness is inferior even if the manufacturing conditions are appropriate. Since steel 29 has a low B content, the eB content is low (negative value), the strength is low even when the manufacturing conditions are appropriate, and the joint toughness is also inferior. Steel 30 is inferior in joint toughness because the amount of eTi is low in addition to the low amount of Al. Steel 31 not only has a low eTi content because of a low Ti content, but also has a low eB content (a negative value), so both the base metal toughness and joint toughness are inferior. Steel 32 has a low N content and an eB content that is too high, so that the strength is slightly high and the base metal toughness and joint toughness are poor. Since the steel 33 has a high Si content, the formation of MA-constituent is particularly remarkable in HAZ, and the joint toughness is inferior. In steel 34, since V is not added, the structure control of HAZ becomes insufficient and the joint toughness is inferior.

Figure 0005895780
Figure 0005895780

Figure 0005895780
Figure 0005895780

Figure 0005895780
Figure 0005895780

Figure 0005895780
Figure 0005895780

Claims (5)

質量%で、
C :0.05〜0.12%
Si:0.3%以下
Mn:1.0〜2.0%
P :0.015%以下
S :0.006%以下
B :0.0005〜0.0020%
V :0.02〜0.10%
Al:0.01〜0.07%
Ti:0.005〜0.02%
N :0.002〜0.007%
O :0.004%以下
を含有し、残部が鉄および不可避的不純物からなる鋼成分であり、
下記式(1)の炭素当量Ceqが0.34〜0.45%であり、
下記式(2)の有効ボロン量eBが0.0001%以上、含有B量の1/2以下であり、下記式(3)の有効チタン量eTiが0.005%以上であり、
下記式(6)のBpが0.028〜0.24%であり、
板厚が50〜100mmであり、
溶接入熱量≧20kJ/mmでもvE(0℃)≧70Jとなる良好な大入熱溶接HAZ靭性を有し、
降伏強度が325〜650MPaであり、
引張強度が490〜720MPaである
ことを特徴とする大入熱溶接熱影響部靭性に優れた鋼板。
ここで、
Ceq=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14 ・・・(1)
eB=B−0.77{N−0.29(Ti−2OTi)} ・・・(2)
eTi=Ti−2OTi ・・・(3)
Bp=(884×[C]×(1−0.3×[C]2)+294)×eB ・・・(6)
ただし、OTiは下記式(4)による。
OTi=O−0.4Ca−0.66Mg−0.17REM−0.89Al ・・・(4)ここで、式(4)のOTiが負の値の場合、式(2)および式(3)のOTiを0%とし、
N−0.29(Ti−2OTi)が負の値の場合、式(2)のN−0.29(Ti−2OTi)を0%とし、
式(1)、式(2)、式(3)、式(4)および式(6)に示す元素は、鋼中に含有されているそれぞれの元素の含有量(質量%)とし、不可避的不純物として混入した元素も計算に含める。
% By mass
C: 0.05 to 0.12%
Si: 0.3% or less Mn: 1.0-2.0%
P: 0.015% or less S: 0.006% or less B: 0.0005-0.0020%
V: 0.02 to 0.10%
Al: 0.01 to 0.07%
Ti: 0.005-0.02%
N: 0.002 to 0.007%
O: a steel component containing 0.004% or less, the balance being iron and inevitable impurities,
The carbon equivalent Ceq of the following formula (1) is 0.34 to 0.45%,
The effective boron amount eB of the following formula (2) is 0.0001% or more and ½ or less of the B content, the effective titanium amount eTi of the following formula (3) is 0.005% or more,
Bp of the following formula (6) is 0.028 to 0.24%,
The plate thickness is 50 to 100 mm,
Even with a heat input of welding ≧ 20 kJ / mm, it has good large heat input welding HAZ toughness of vE (0 ° C.) ≧ 70 J,
The yield strength is 325 to 650 MPa,
A steel sheet excellent in high heat input heat affected zone toughness, characterized by having a tensile strength of 490 to 720 MPa.
here,
Ceq = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 (1)
eB = B-0.77 {N-0.29 (Ti-2OTi)} (2)
eTi = Ti-2OTi (3)
Bp = (884 × [C] × (1-0.3 × [C] 2 ) +294) × eB (6)
However, OTi is according to the following formula (4).
OTi = O-0.4Ca-0.66Mg-0.17REM-0.89Al (4) Here, when OTi in formula (4) is a negative value, formula (2) and formula (3) OTi of 0%
When N-0.29 (Ti-2OTi) is a negative value, N-0.29 (Ti-2OTi) in formula (2) is set to 0%,
The elements shown in Formula (1), Formula (2), Formula (3), Formula (4), and Formula (6) are unavoidable as the content (mass%) of each element contained in the steel. Include elements included in the calculation as impurities.
前記鋼成分が、さらに、質量%で、
Mg:0.0003〜0.004%
Ni:0.03〜0.80%
Cu:0.03〜1.2%
Cr:0.03〜0.80%
Mo:0.03〜0.4%
Nb:0.003〜0.03%
REM:0.0003〜0.01%
のうちの1種または2種以上を含有することを特徴とする、請求項1に記載の大入熱溶接熱影響部靭性に優れた鋼板。
The steel component is further in mass% ,
Mg : 0.0003 to 0.004%
Ni: 0.03-0.80%
Cu: 0.03 to 1.2%
Cr: 0.03-0.80%
Mo: 0.03-0.4%
Nb: 0.003 to 0.03%
REM: 0.0003 to 0.01%
The steel plate excellent in the high heat input heat affected zone toughness of Claim 1 characterized by containing 1 type, or 2 or more types of these.
前記鋼成分が、さらに、質量%で、  The steel component is further in mass%,
Ca:0.0003〜0.004%を含有し、かつ、前記式(1)の炭素当量Ceqが0.435以下であり、かつ、前記式(2)の有効ボロン量eBが0.0002%以上であることを特徴とする、請求項1又は請求項2に記載の大入熱溶接熱影響部靭性に優れた鋼板。Ca: 0.0003 to 0.004%, the carbon equivalent Ceq of the formula (1) is 0.435 or less, and the effective boron amount eB of the formula (2) is 0.0002%. It is the above, The steel plate excellent in the high heat input heat affected zone toughness of Claim 1 or Claim 2 characterized by the above-mentioned.
請求項1〜3のいずれか1項に記載の大入熱溶接熱影響部靭性に優れた鋼板の製造方法であって、請求項1〜3のいずれか1項に記載の成分組成の連続鋳造スラブを、It is a manufacturing method of the steel plate excellent in the high heat input welding heat-affected zone toughness of any one of Claims 1-3, Comprising: Continuous casting of the component composition of any one of Claims 1-3 Slab,
1000℃を超えて1300℃以下に加熱した後、鋼表面温度が850℃以上で累積圧下量が50%以上の圧延を行い、次いで鋼表面温度が800℃以上から加速冷却を適用して500℃以下まで冷却するAfter heating above 1000 ° C. to 1300 ° C. or less, rolling is performed at a steel surface temperature of 850 ° C. or more and a cumulative reduction amount of 50% or more, and then accelerated cooling is applied from the steel surface temperature of 800 ° C. to 500 ° C. Cool to
ことを特徴とする大入熱溶接熱影響部靭性に優れた鋼板の製造方法。A method for producing a steel sheet excellent in toughness of heat-affected zone with high heat input welding.
前記加速冷却の後、さらに、350〜700℃で5〜60分の焼き戻し熱処理を施すことを特徴とする、請求項4に記載の大入熱溶接熱影響部靭性に優れた鋼板の製造方法。  The method for producing a steel sheet excellent in high heat input heat affected zone toughness according to claim 4, further comprising a tempering heat treatment at 350 to 700 ° C. for 5 to 60 minutes after the accelerated cooling. .
JP2012198569A 2012-09-10 2012-09-10 Steel plate excellent in toughness of heat-affected zone with high heat input welding and manufacturing method thereof Active JP5895780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012198569A JP5895780B2 (en) 2012-09-10 2012-09-10 Steel plate excellent in toughness of heat-affected zone with high heat input welding and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012198569A JP5895780B2 (en) 2012-09-10 2012-09-10 Steel plate excellent in toughness of heat-affected zone with high heat input welding and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014051726A JP2014051726A (en) 2014-03-20
JP5895780B2 true JP5895780B2 (en) 2016-03-30

Family

ID=50610460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012198569A Active JP5895780B2 (en) 2012-09-10 2012-09-10 Steel plate excellent in toughness of heat-affected zone with high heat input welding and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5895780B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113122769B (en) * 2019-12-31 2022-06-28 宝山钢铁股份有限公司 Low-silicon low-carbon equivalent Gepa-grade complex phase steel plate/steel strip and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002235114A (en) * 2001-02-05 2002-08-23 Kawasaki Steel Corp Method for producing thick high tensile strength steel excellent in toughness of high heat input weld zone
JP4035990B2 (en) * 2001-12-13 2008-01-23 Jfeスチール株式会社 Super high heat input welding HAZ toughness and low yield ratio steel plate for building structure and method for producing the same
JP5493659B2 (en) * 2009-09-30 2014-05-14 Jfeスチール株式会社 High strength steel with excellent toughness of heat affected zone

Also Published As

Publication number Publication date
JP2014051726A (en) 2014-03-20

Similar Documents

Publication Publication Date Title
JP4612735B2 (en) Manufacturing method of thick high-strength steel plate with excellent brittle fracture propagation stop characteristics and high heat input weld heat affected zone toughness, and thick high strength steel plate with excellent brittle fracture propagation stop characteristics and high heat input weld heat affected zone toughness
JP4681690B2 (en) Manufacturing method of thick high strength steel plate with excellent heat input heat affected zone toughness, and thick high strength steel plate with high heat input heat affected zone toughness
JP6460292B1 (en) High Mn steel and manufacturing method thereof
JP5085364B2 (en) Manufacturing method of thick high-strength steel plate with excellent brittle fracture propagation stop characteristics and high heat input weld heat affected zone toughness, and thick high strength steel plate with excellent brittle fracture propagation stop characteristics and high heat input weld heat affected zone toughness
JP4660315B2 (en) Manufacturing method of thick high strength steel plate with excellent toughness and thick high strength steel plate with excellent toughness
JP5079419B2 (en) Steel for welded structure with excellent toughness of weld heat affected zone, method for producing the same, and method for producing welded structure
JP5076658B2 (en) Steel material for large heat input welding
JP5212124B2 (en) Thick steel plate and manufacturing method thereof
JP6245352B2 (en) High-tensile steel plate and manufacturing method thereof
JP3546308B2 (en) Large heat input welding steel
JP6048627B2 (en) Manufacturing method of steel plates for high heat input welding
JP5966907B2 (en) Steel material for large heat input welding
JP2007284712A (en) Method for producing thick high-strength steel plate excellent in toughness and thick high-strength steel plate excellent in toughness
JP2012188749A (en) Thick steel plate with high toughness in multi-pass welded part and multi-pass welded joint
JP5895780B2 (en) Steel plate excellent in toughness of heat-affected zone with high heat input welding and manufacturing method thereof
JPS6352090B2 (en)
JP4912725B2 (en) Manufacturing method of steel sheet with excellent weld heat affected zone toughness
JP7206701B2 (en) steel plate
JPS6256518A (en) Production of high strength steel sheet for high heat input welding
JP7272471B2 (en) steel plate
JP5659949B2 (en) Thick steel plate excellent in toughness of weld heat affected zone and method for producing the same
JP2012188750A (en) High toughness steel for high heat input welding and manufacturing method thereof
JP4599770B2 (en) Welded structural steel with excellent low temperature toughness
JP5685960B2 (en) High strength steel with excellent toughness of weld heat affected zone
JP2020033584A (en) steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140811

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160215

R151 Written notification of patent or utility model registration

Ref document number: 5895780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350