JP6048627B2 - Manufacturing method of steel plates for high heat input welding - Google Patents

Manufacturing method of steel plates for high heat input welding Download PDF

Info

Publication number
JP6048627B2
JP6048627B2 JP2016534097A JP2016534097A JP6048627B2 JP 6048627 B2 JP6048627 B2 JP 6048627B2 JP 2016534097 A JP2016534097 A JP 2016534097A JP 2016534097 A JP2016534097 A JP 2016534097A JP 6048627 B2 JP6048627 B2 JP 6048627B2
Authority
JP
Japan
Prior art keywords
less
steel
heat input
toughness
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016534097A
Other languages
Japanese (ja)
Other versions
JPWO2016009595A1 (en
Inventor
亮 荒尾
亮 荒尾
長谷 和邦
和邦 長谷
遠藤 茂
茂 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Application granted granted Critical
Publication of JP6048627B2 publication Critical patent/JP6048627B2/en
Publication of JPWO2016009595A1 publication Critical patent/JPWO2016009595A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、船舶や建築・土木等の分野における各種鋼構造物に使用される、降伏応力が460MPa以上で板厚が25mm以上50mm以下の非調質高張力鋼に関わり、特に入熱量が200kJ/cmを超える大入熱溶接を施した場合においても優れた継手特性を有する大入熱溶接用鋼板の製造方法に関する。   The present invention relates to a non-tempered high strength steel having a yield stress of 460 MPa or more and a plate thickness of 25 mm or more and 50 mm or less, which is used for various steel structures in the fields of ships, construction, civil engineering, etc., and in particular, the heat input is 200 kJ. The present invention relates to a method for producing a steel plate for high heat input welding having excellent joint characteristics even when high heat input welding exceeding / cm is performed.

船舶や建築・土木等の分野における各種鋼構造物に使用される鋼材は、高強度化や厚肉化が進んでいる。このような鋼材の高強度化や厚肉化に伴い、鋼材が溶接施工される際には、サブマージアーク溶接、エレクトロガス溶接およびエレクトロスラグ溶接などの生産能率に優れた大入熱溶接が適用される機会が増えている。
船舶や建築・土木等の分野における各種鋼構造物においては、母材の特性に加え、溶接部の強度や靱性等の継手特性にも優れていることが要求される。しかし、大入熱溶接後の溶接熱影響部(以下、「HAZ」とも称する。)は、組織制御などによって製造工程で作りこまれた母材の特性が熱影響によって無効化されるため、靱性が低下することが知られている。これに対して、HAZの靱性低下を抑制するため、種々の大入熱溶接用鋼が提案されている。
Steel materials used in various steel structures in the fields of ships, construction, civil engineering, etc. are becoming stronger and thicker. As steel materials are strengthened and thickened, high heat input welding with excellent production efficiency such as submerged arc welding, electrogas welding, and electroslag welding is applied when the steel materials are welded. Opportunities are increasing.
Various steel structures in the fields of ships, construction, civil engineering, etc. are required to have excellent joint properties such as strength and toughness of the welded part in addition to the properties of the base material. However, the weld heat affected zone (hereinafter also referred to as “HAZ”) after high heat input welding has a toughness because the characteristics of the base material created in the manufacturing process by the structure control or the like are invalidated by the heat effect. Is known to decrease. On the other hand, various high heat input welding steels have been proposed in order to suppress HAZ toughness deterioration.

HAZの靱性を向上させる技術としては、例えば、TiNを鋼中に微細分散させることにより、HAZのオーステナイト粒の粗大化を抑制したり、又は分散させたTiNをHAZでのフェライト変態核として利用したりする技術が実用化されている。しかし、TiNを鋼中に微細分散させる技術は、HAZがTiNの溶解する温度以上となる場合には、靱性低下を抑制するための効果を得ることができなかった。さらに、TiNを鋼中に微細分散させる技術は、TiNの溶解に伴い生じる固溶Tiおよび固溶Nにより地組織が脆化し、靱性が著しく低下するという問題があった。   As a technique for improving the toughness of HAZ, for example, TiN is finely dispersed in steel to suppress coarsening of HAZ austenite grains, or dispersed TiN is used as a ferrite transformation nucleus in HAZ. Have been put to practical use. However, the technique of finely dispersing TiN in steel cannot obtain an effect for suppressing a decrease in toughness when HAZ is equal to or higher than the temperature at which TiN dissolves. Furthermore, the technique of finely dispersing TiN in steel has a problem that the solid structure becomes brittle due to the solid solution Ti and solid solution N generated by dissolution of TiN, and the toughness is remarkably lowered.

HAZにおけるTiNの溶解の問題に対して、特許文献1には、鋼中に粒度5μm以下のTiO(但し、x:0.65〜1.3)を微細分散させる技術が開示されている。特許文献1では、HAZの高温域でも溶解しないTi酸化物を微細分散させ、Ti酸化物を針状フェライトの生成核とすることで、HAZの靱性低下が抑制される。また、特許文献1のようにTi酸化物を利用する技術では、酸化物を均一に微細分散させることが困難であるため、酸化物を複合化することなどで分散能を改善する検討が行われている。To solve the problem of dissolution of TiN in HAZ, Patent Document 1 discloses a technique for finely dispersing TiO x (where x: 0.65 to 1.3) having a particle size of 5 μm or less in steel. In Patent Document 1, a decrease in the toughness of HAZ is suppressed by finely dispersing a Ti oxide that does not dissolve even in a high temperature region of HAZ and using the Ti oxide as a production nucleus of acicular ferrite. In addition, in the technique using Ti oxide as in Patent Document 1, it is difficult to uniformly disperse the oxide uniformly, and therefore, studies have been made to improve the dispersibility by combining oxides. ing.

また、HAZの靱性を改善する技術として、例えば特許文献2には、HAZの組織を微細化させるBNを積極的に析出させるため、鋼組成のうちB、Nおよびsol.Al量を調整する技術が開示されている。さらに、特許文献3には、HAZの靱性が高靱性領域となるようにTi−B−N量を調整し、更に介在物の形態制御をするためにCaまたはCeを添加する技術が開示されている。さらに、特許文献4には、溶接のボンド部において安定な硫・酸化物を形成させるために、鋼組成を低N−低Ti系として、REMを添加する技術が開示されている。   Further, as a technique for improving the toughness of HAZ, for example, Patent Document 2 discloses that BN for refining the structure of HAZ is positively precipitated, so that B, N and sol. A technique for adjusting the amount of Al is disclosed. Furthermore, Patent Document 3 discloses a technique of adjusting the amount of Ti—B—N so that the toughness of HAZ becomes a high toughness region, and further adding Ca or Ce to control the form of inclusions. Yes. Furthermore, Patent Document 4 discloses a technique of adding REM with a steel composition having a low N-low Ti system in order to form a stable sulfur / oxide in a weld bond.

しかし、特許文献1〜4に記載の技術は、入熱量が200kJ/cmを超える大入熱溶接においては、HAZのオーステナイトの粒成長を十分に抑制することが難しく、HAZの靱性低下を防止するのが困難であった。これに対して、大入熱溶接においてもHAZの靱性を改善する技術として、特許文献5には、鋼組成のCa、OおよびS量を適正に制御することで、Ca系非金属介在物を鋼中に微細分散させる技術が開示されている。特許文献5によれば、Ca系金属介在物が変態核となってHAZでのフェライト変態を促進させるため、400kJ/cmを超える大入熱溶接においてもHAZの靱性を向上させることができる。   However, in the techniques described in Patent Documents 1 to 4, it is difficult to sufficiently suppress the grain growth of HAZ austenite in large heat input welding in which the heat input exceeds 200 kJ / cm, and the HAZ toughness is prevented from being lowered. It was difficult. On the other hand, as a technique for improving the toughness of HAZ even in high heat input welding, Patent Document 5 discloses a Ca-based nonmetallic inclusion by appropriately controlling the amounts of Ca, O, and S in the steel composition. A technique for finely dispersing in steel is disclosed. According to Patent Document 5, since Ca-based metal inclusions become transformation nuclei and promote ferrite transformation in HAZ, the toughness of HAZ can be improved even in high heat input welding exceeding 400 kJ / cm.

特開昭57−51243号公報JP 57-51243 A 特開昭62−170459号公報JP-A-62-170459 特開昭60−204863号公報JP 60-204863 A 特公平4−14180号公報Japanese Patent Publication No. 4-14180 特許第3546308号公報Japanese Patent No. 3546308

ところで、近年、降伏強度が460MPaクラスを超える高強度鋼に大入熱溶接を適用する機会が増えてきている。特にこのような高強度鋼板のうち、板厚が25mm以上50mm以下の中厚高張力鋼については、高強度化に伴う薄肉化によって鋼材重量を低減できるため、高効率な運搬船用に適用される需要が高まっている。
しかし、引用文献5に記載の技術は、降伏強度が390MPaクラスの鋼材を対象としており、降伏強度が460MPaクラスを超えるような高強度鋼よりも炭素当量が低い鋼材に適用される。このため、引用文献5の技術を降伏強度が460MPaクラスを超えるような高強度鋼に適用した場合、炭素当量が高いためにHAZの結晶粒内がフェライトとベイナイトの混合組織となることから、HAZの靱性等の継手特性を改善することが困難であった。さらに、引用文献1〜4に記載の技術は、上記のように、入熱量が200kJ/cmを超える大入熱溶接においては、HAZ靱性等の継手特性が改善されなかった。
そこで、本発明は、上記の課題に着目してなされたものであり、溶接入熱が200kJ/cm以上となる大入熱溶接下においても、優れた継手特性を有する、降伏強度が460MPa以上で、板厚が25mm以上50mm以下の大入熱溶接用鋼板の製造方法を提供することを目的とする。
By the way, in recent years, the opportunity to apply high heat input welding to high strength steels whose yield strength exceeds 460 MPa class has been increasing. Among these high-strength steel plates, especially for medium-thickness and high-strength steels with a thickness of 25 mm or more and 50 mm or less, the steel material weight can be reduced by thinning due to the increase in strength, and therefore, it is applied to highly efficient transport vessels. Demand is increasing.
However, the technique described in the cited document 5 is intended for steel materials having a yield strength of 390 MPa class, and is applied to steel materials having a carbon equivalent lower than that of high strength steel having a yield strength exceeding 460 MPa class. For this reason, when the technique of the cited document 5 is applied to high strength steel whose yield strength exceeds 460 MPa class, since the carbon equivalent is high, the HAZ crystal grains have a mixed structure of ferrite and bainite. It was difficult to improve joint characteristics such as toughness. Furthermore, in the techniques described in the cited documents 1 to 4, joint characteristics such as HAZ toughness were not improved in the large heat input welding in which the heat input amount exceeds 200 kJ / cm as described above.
Therefore, the present invention has been made paying attention to the above-mentioned problems, and has excellent joint characteristics even under large heat input welding where the welding heat input is 200 kJ / cm or more, and the yield strength is 460 MPa or more. An object of the present invention is to provide a method for producing a steel plate for high heat input welding having a thickness of 25 mm or more and 50 mm or less.

上記目的を達成するために、本発明の一態様に係る大入熱溶接用鋼板の製造方法は、質量%で、C:0.03%以上0.10%以下、Si:0.01%以上0.10%以下、Mn:0.8%以上2.0%以下、P:0.020%以下、S:0.0005%以上0.0050%以下、Al:0.005%以上0.100%以下、Nb:0.003%以上0.030%以下、Ti:0.005%以上0.050%以下、Cu:0.10%以上0.50%以下、Ni:0.30%以上2.00%以下、N:0.0030%以上0.0100%以下、B:0.0003%以上0.0025%以下、Ca:0.0005%以上0.0030%以下、O:0.0040%未満を含有し、かつ、下記(1)式で定義されるACRが0超1未満、下記(2)式で定義されるCeqが0.38以上0.43以下を満たして各成分が含有され、残部がFeおよび不可避的不純物からなる鋼素材を、1050℃以上1200℃以下に加熱し、加熱した鋼素材を、圧延後の板厚tが25mm以上50mm以下、累積圧下率が40%以上となるように、850℃以下かつ圧延終了時にAr変態点以上となる温度域で熱間圧延し、熱間圧延した鋼素材を、表面温度が(−t×1.5)+400℃以上かつ(−t×1.5)+620℃以下となるまで、5℃/秒以上の冷却速度で水冷し、水冷し鋼素材を、空冷することで降伏強度が460MPa以上の大入熱溶接用鋼板を製造することを特徴とする。
ACR=(Ca−(0.18+130×Ca)×O)/(1.25×S)
・・・(1)
eq=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15
・・・(2)
なお、表面温度の条件式におけるtは熱間圧延後の鋼素材の厚みを示し、(1)式および(2)式において、各元素記号は鋼素材中の各元素の含有量(質量%)を示す。
In order to achieve the above object, the method for manufacturing a steel plate for high heat input welding according to one embodiment of the present invention is, in mass%, C: 0.03% or more and 0.10% or less, Si: 0.01% or more. 0.10% or less, Mn: 0.8% or more and 2.0% or less, P: 0.020% or less, S: 0.0005% or more and 0.0050% or less, Al: 0.005% or more and 0.100 %: Nb: 0.003% to 0.030%, Ti: 0.005% to 0.050%, Cu: 0.10% to 0.50%, Ni: 0.30% to 2 0.000% or less, N: 0.0030% or more and 0.0100% or less, B: 0.0003% or more and 0.0025% or less, Ca: 0.0005% or more and 0.0030% or less, O: 0.0040% And ACR defined by the following formula (1) is more than 0 and less than 1, and the following formula (2) Being defined C eq is contained in each component satisfies 0.38 or more 0.43 or less, the steel material and the balance being Fe and unavoidable impurities, was heated to 1050 ° C. or higher 1200 ° C. or less, heated steel material , Hot rolled at a temperature range of 850 ° C. or less and Ar 3 transformation point or more at the end of rolling, so that the sheet thickness t after rolling is 25 mm or more and 50 mm or less and the cumulative reduction ratio is 40% or more. The rolled steel material is water-cooled at a cooling rate of 5 ° C./second or more until the surface temperature becomes (−t × 1.5) + 400 ° C. or higher and (−t × 1.5) + 620 ° C. or lower. A steel sheet for high heat input welding with a yield strength of 460 MPa or more is manufactured by air-cooling the steel material.
ACR = (Ca− (0.18 + 130 × Ca) × O) / (1.25 × S)
... (1)
C eq = C + Mn / 6 + (Cr + Mo + V) / 5 + (Cu + Ni) / 15
... (2)
In addition, t in the surface temperature conditional expression indicates the thickness of the steel material after hot rolling, and in the expressions (1) and (2), each element symbol indicates the content (mass%) of each element in the steel material. Indicates.

鋼素材は、質量%で、V:0%超0.20%以下、Cr:0%超0.40%以下およびMo:0%超0.40%以下のうちから選ばれる1種以上をさらに含有してもよい。
鋼素材は、質量%で、Mg:0.0005%以上0.0050%以下、Zr:0.0010%以上0.0200%以下、REM:0.0010%以上0.0200%以下のうちから選ばれる1種以上をさらに含有してもよい。
The steel material is, in mass%, one or more selected from V: more than 0% to 0.20% or less, Cr: more than 0% to 0.40% or less, and Mo: more than 0% to 0.40% or less You may contain.
The steel material is, in mass%, selected from Mg: 0.0005% to 0.0050%, Zr: 0.0010% to 0.0200%, REM: 0.0010% to 0.0200%. One or more types may be further contained.

本発明によれば、溶接入熱が200kJ/cm以上となる大入熱溶接下においても、優れた継手特性を有する、降伏強度が460MPa以上で、板厚が25mm以上50mm以下の大入熱溶接用鋼板の製造方法が提供される。   According to the present invention, even under high heat input welding with a heat input of 200 kJ / cm or more, high heat input welding having excellent joint characteristics, yield strength of 460 MPa or more, and plate thickness of 25 mm or more and 50 mm or less. A method for manufacturing a steel sheet is provided.

本発明の大入熱溶接用鋼板は、板厚が25mm以上50mm以下、降伏強度が460MPa以上であり、さらに溶接入熱が200kJ/cm以上の大入熱溶接用の非調質高張力鋼板である。このような大入熱溶接用鋼は、特に継手の引張強度の確保のために、板厚が50mm超の厚鋼板に対する板厚低減による母材の塑性拘束の減少を考慮した成分設計が行われる必要がある。一方で、大入熱溶接用鋼において継手強度を確保するための成分設計が行われると、HAZの粗粒域における靱性確保が困難となる。さらに、継手強度を確保するための上記成分設計を適用した大入熱溶接用鋼に対して、従来の厚鋼板の製造方法を適用すると、母材強度が過剰となるため、母材の延性が低下する。   The steel plate for high heat input welding of the present invention is a non-tempered high strength steel plate for high heat input welding having a plate thickness of 25 mm or more and 50 mm or less, a yield strength of 460 MPa or more, and a welding heat input of 200 kJ / cm or more. is there. In order to ensure the tensile strength of the joint, such high heat input welding steel is specifically designed in consideration of the reduction in the plastic restraint of the base metal due to the reduction of the plate thickness for the thick steel plate having a plate thickness of more than 50 mm. There is a need. On the other hand, when the component design for ensuring the joint strength is performed in the high heat input welding steel, it becomes difficult to ensure the toughness in the coarse grain region of the HAZ. Furthermore, when the conventional method for producing thick steel sheets is applied to the steel for high heat input welding to which the above-described component design for ensuring joint strength is applied, the base metal strength becomes excessive. descend.

これに対し、本発明者らは種々の検討を重ね、以下の(a)〜(c)の知見を得た。
(a)大入熱溶接熱影響部の靭性向上には、高温領域でのオーステナイト粒の粗大化を抑制し、その後の冷却過程において粒内フェライトを生成させることにより、ベイナイト中の島状マルテンサイト(以下、「MA」とも称する。)量を低減させることが肝要である。さらに、MA量の低減ためには、鋼組成におけるC、SiおよびP含有量の低減が肝要である。
(b)焼入性の指標である炭素当量(Ceq)が適正な範囲に入るよう成分調整を行うことにより、継手の引張強度と靭性とを両立させる事ができる。
(c)母材強度の抑制には復熱によるセルフテンパーが有効であり、圧延後の冷却において板厚に応じた冷却停止温度制御を行うことで母材強度を適正な範囲にコントロールできる。さらに、板厚に応じた冷却停止温度制御を行うことで、延性や靱性等の母材強度以外の他の特性も両立させることができる。
In contrast, the present inventors have made various studies and obtained the following findings (a) to (c).
(A) In order to improve the toughness of the heat-affected zone with high heat input welding, it is possible to suppress the austenite grain coarsening in the high-temperature region, and to generate intragranular ferrite in the subsequent cooling process. , Also referred to as “MA”.) It is important to reduce the amount. Furthermore, in order to reduce the amount of MA, it is important to reduce the C, Si and P contents in the steel composition.
(B) By adjusting the components so that the carbon equivalent (C eq ), which is an index of hardenability, falls within an appropriate range, both the tensile strength and toughness of the joint can be achieved.
(C) Self-tempering by recuperation is effective for suppressing the base metal strength, and the base metal strength can be controlled within an appropriate range by controlling the cooling stop temperature according to the plate thickness in the cooling after rolling. Furthermore, by controlling the cooling stop temperature according to the plate thickness, it is possible to achieve other characteristics other than the base material strength such as ductility and toughness.

<成分組成>
[基本成分組成]
次に、本発明の実施の形態について、詳細に説明する。まず、本発明の鋼材が有すべき基本成分組成について説明する。説明において、化学成分に関する%表示は全て質量%を意味する。
<Ingredient composition>
[Basic component composition]
Next, embodiments of the present invention will be described in detail. First, the basic component composition that the steel material of the present invention should have will be described. In the description, all percentages relating to chemical components mean mass%.

C:0.03%以上0.10%以下
Cは、鋼材の強度を高める元素であり、構造用鋼として必要な強度を確保するためには、0.03%以上含有させる必要がある。一方、Cの含有量が0.10%を超えると、ボンド部近傍のHAZでMAが生成し易くなるため、上限は0.10%以下とする。好ましくは、Cの含有量は0.05%以上0.08%以下である。ここで、ボンド部近傍は、溶融線直近のHAZ中で最も粗粒化が著しい領域のことを意味する。
C: 0.03% or more and 0.10% or less C is an element that increases the strength of the steel material, and in order to ensure the strength necessary for structural steel, it is necessary to contain 0.03% or more. On the other hand, if the C content exceeds 0.10%, MA tends to be generated in the HAZ near the bond portion, so the upper limit is made 0.10% or less. Preferably, the C content is 0.05% or more and 0.08% or less. Here, the vicinity of the bond portion means a region where the coarsening is most remarkable in the HAZ immediately adjacent to the melting line.

Si:0.01%以上0.10%以下
Siは、鋼を溶製する際の脱酸剤として添加される元素であり、0.01%以上の添加が必要である。しかし、Siの含有量が0.10%を超えると、母材の靱性が低下する。さらに、Siの含有量が0.10%を超えると、大入熱溶接後のボンド部近傍のHAZにMAが生成することで、靱性の低下が生じ易くなる。よって、Siの含有量は0.01%以上0.10%以下の範囲とする。好ましくは、Siの含有量は0.08%以下である。
Si: 0.01% or more and 0.10% or less Si is an element added as a deoxidizer when melting steel, and it is necessary to add 0.01% or more. However, if the Si content exceeds 0.10%, the toughness of the base material decreases. Furthermore, if the Si content exceeds 0.10%, MA is generated in the HAZ in the vicinity of the bond portion after the high heat input welding, so that the toughness is easily lowered. Therefore, the Si content is in the range of 0.01% to 0.10%. Preferably, the Si content is 0.08% or less.

Mn:0.8%以上2.0%以下
Mnは、母材の強度を確保するために、0.8%以上添加する。一方、Mnの含有量が2.0%を超えるとHAZの靭性を著しく劣化させるため、Mnの含有量は、0.8%以上2.0%以下とする。好ましくは、Mnの含有量は1.2%以上2.0%以下である。
P:0.020%以下
Pは、ボンド部近傍のHAZでのMA生成を促進させ、靭性を大きく低下させるため、0.020%以下の含有量とする。好ましくは、Pの含有量は0.010%以下である。
Mn: 0.8% or more and 2.0% or less Mn is added in an amount of 0.8% or more in order to ensure the strength of the base material. On the other hand, if the Mn content exceeds 2.0%, the toughness of the HAZ is remarkably deteriorated, so the Mn content is set to 0.8% or more and 2.0% or less. Preferably, the Mn content is 1.2% or more and 2.0% or less.
P: 0.020% or less P has a content of 0.020% or less in order to promote MA formation in HAZ near the bond portion and greatly reduce toughness. Preferably, the P content is 0.010% or less.

S:0.0005%以上0.0050%以下
Sは、フェライトの核生成サイトとして作用するMnSあるいはCaSを形成するために必要な元素である。このため、Sの含有量は0.0005%以上とする。しかしながら、過度に含有すると母材の靭性の低下を招くため、Sの含有量の上限は0.0050%とする。
S: 0.0005% or more and 0.0050% or less S is an element necessary for forming MnS or CaS acting as a nucleation site of ferrite. For this reason, content of S shall be 0.0005% or more. However, since an excessive content causes a decrease in the toughness of the base material, the upper limit of the S content is set to 0.0050%.

Al:0.005%以上0.100%以下
Alは、鋼の脱酸のために添加される元素であり、0.005%以上含有させる必要がある。しかし、Alの含有量が0.100%を超えると、母材の靱性のみならず、溶接金属の靱性も低下する。よって、Alの含有量は0.005%以上0.100%以下とする。好ましくは、Alの含有量は0.010%以上0.100%以下である。
Al: 0.005% or more and 0.100% or less Al is an element added for deoxidation of steel, and it is necessary to contain 0.005% or more. However, if the Al content exceeds 0.100%, not only the toughness of the base metal but also the toughness of the weld metal is lowered. Therefore, the Al content is set to be 0.005% or more and 0.100% or less. Preferably, the Al content is 0.010% or more and 0.100% or less.

Nb:0.003%以上0.030%以下
Nbは、母材および継手の強度を確保するために必要な元素である。しかし、Nbの含有量が0.003%未満の場合、強度への向上効果は小さい。一方、Nbの含有量が0.030%を超える場合、ボンド部近傍のHAZにMAが生成するため靱性が低下する。よって、Nbの含有量は0.003%以上0.030%以下の範囲とする。好ましくは、Nbの含有量は0.008%以上0.0020%以下である。
Nb: 0.003% to 0.030% Nb is an element necessary for ensuring the strength of the base material and the joint. However, when the Nb content is less than 0.003%, the effect of improving the strength is small. On the other hand, when the Nb content exceeds 0.030%, MA is generated in the HAZ in the vicinity of the bond portion, so that the toughness is lowered. Therefore, the Nb content is in the range of 0.003% to 0.030%. Preferably, the Nb content is 0.008% or more and 0.0020% or less.

Ti:0.005以上0.050%以下
Tiは、溶鋼の凝固時にTiNとなって母材中に析出し、オーステナイト粒の粗大化を抑制することで母材靭性の向上に寄与する元素であり、添加が必須である。また同時に、Tiは、Bと結合しうるNを低減させ、鋼中の固溶Bを確保するため、母材強度を確保する上で有効に作用する。また、TiNは、HAZにおいてはフェライトの変態核となり、HAZの高靱性化に寄与する。斯かる効果を得るためには、Tiの含有量は0.005%以上が必要であり、0.015%以上とすることが好ましい。一方、Tiの含有量が0.050%を超える場合、析出したTiNが粗大化し、上記効果が得られなくなる。よって、Tiの含有量は、0.005%以上0.050%以下の範囲とする。好ましくは、Tiの含有量は0.010%以上0.0035%以下である。
Ti: 0.005 or more and 0.050% or less Ti is an element that contributes to the improvement of the base metal toughness by becoming TiN during solidification of the molten steel and precipitating in the base metal and suppressing the coarsening of the austenite grains. Addition is essential. At the same time, Ti reduces N that can be combined with B and ensures solid solution B in the steel, so that it works effectively in securing the strength of the base material. In addition, TiN becomes a ferrite transformation nucleus in HAZ and contributes to high toughness of HAZ. In order to obtain such an effect, the Ti content needs to be 0.005% or more, and preferably 0.015% or more. On the other hand, when the Ti content exceeds 0.050%, the precipitated TiN becomes coarse and the above effect cannot be obtained. Therefore, the Ti content is in the range of 0.005% to 0.050%. Preferably, the Ti content is 0.010% or more and 0.0035% or less.

Cu:0.10%以上0.50%以下
Cuは、母材および継手の強度確保に寄与する元素である。特に、ボンド部近傍のHAZにおいて、顕著なMA生成を伴うことなく継手強度の向上に寄与するため添加が必須である。斯かる効果を得るために、Cuの含有量は、0.10%以上とする。一方、Cuの含有量が0.50%を越える場合、母材および継手の強度確保の効果は飽和する。このため、Cuの含有量の上限は、0.50%とする。好ましくは、Cuの含有量は0.020%以上0.040%以下である。
Cu: 0.10% to 0.50% Cu is an element that contributes to securing the strength of the base material and the joint. In particular, in the HAZ in the vicinity of the bond portion, addition is essential because it contributes to the improvement of joint strength without accompanying significant MA generation. In order to obtain such an effect, the Cu content is 0.10% or more. On the other hand, when the Cu content exceeds 0.50%, the effect of securing the strength of the base material and the joint is saturated. For this reason, the upper limit of the Cu content is 0.50%. Preferably, the Cu content is 0.020% or more and 0.040% or less.

Ni:0.30%以上2.00%以下
Niは、母材の靭性を向上させるとともに、母材の強度も上昇させる元素である。また、Niは、Cu添加による連続鋳造時の割れの発生を抑制する効果もある。斯かる効果を得るために、Niの含有量は、0.30%以上とする。一方、Niの含有量が2.0%を超える場合、母材の強度向上の効果は飽和する。このため、Niの含有量は、0.30%以上2.00%以下とする。好ましくは、Niの含有量は0.50%以上1.50%以下である。
Ni: 0.30% or more and 2.00% or less Ni is an element that improves the toughness of the base material and increases the strength of the base material. Ni also has the effect of suppressing the occurrence of cracks during continuous casting due to the addition of Cu. In order to obtain such an effect, the Ni content is set to 0.30% or more. On the other hand, when the Ni content exceeds 2.0%, the effect of improving the strength of the base material is saturated. For this reason, content of Ni shall be 0.30% or more and 2.00% or less. Preferably, the Ni content is 0.50% or more and 1.50% or less.

N:0.0030%以上0.0100%以下
Nは、溶鋼の凝固時にTiNとなって母材中に析出し、オーステナイト粒の粗大化を抑制することで母材靱性の向上に寄与する元素である。斯かる効果を得るために、Nの含有量は、0.0030%以上とする。一方、Nの含有量が0.0100%を超える場合、溶接熱サイクルによりTiNが溶解する領域において、固溶Nが増大することで靱性が劣化する。このため、Nの含有量は、0.0030%以上0.0100%以下とする。好ましくは、Nの含有量は0.0040%以上0.0080%以下である。
N: 0.0030% or more and 0.0100% or less N is an element that contributes to the improvement of the base material toughness by forming TiN during the solidification of the molten steel and precipitating in the base material and suppressing the coarsening of the austenite grains. is there. In order to obtain such an effect, the N content is set to 0.0030% or more. On the other hand, when the N content exceeds 0.0100%, the toughness deteriorates due to the increase in the solid solution N in the region where the TiN is dissolved by the welding heat cycle. For this reason, content of N shall be 0.0030% or more and 0.0100% or less. Preferably, the N content is 0.0040% or more and 0.0080% or less.

B:0.0003%以上0.0025%以下
Bは、HAZでBNとなることで、固溶Nを低減させる元素であり、ACR(Atomic concentration ratio)制御と組み合わせることで効果的なフェライト変態核となり、フェライトを生成してHAZの靱性を向上させる。これらの効果を得るために、Bの含有量は、0.0003%以上とする。しかし、Bの含有量が0.0025%を超える場合、母材である鋼板およびHAZの靱性の低下が生じる。このため、Bの含有量は0.0003%以上0.0025%以下の範囲とする。好ましくは、Bの含有量は0.008%以上0.0020%以下である。
B: 0.0003% or more and 0.0025% or less B is an element that reduces solute N by becoming BN in HAZ, and is an effective ferrite transformation nucleus in combination with ACR (Atomic Concentration Ratio) control. Thus, ferrite is generated to improve the toughness of the HAZ. In order to obtain these effects, the B content is set to 0.0003% or more. However, when the B content exceeds 0.0025%, the toughness of the steel plate and the HAZ as the base material is reduced. For this reason, the B content is in the range of 0.0003% to 0.0025%. Preferably, the B content is 0.008% or more and 0.0020% or less.

Ca:0.0005%以上0.0030%以下
Caは、フェライトの生成核として利用されるCaSとしてSを固定することで靱性を改善させる元素であり、ACR制御をする上で必須の元素である。斯かる効果を得るために、Caの含有量は、0.0005%以上とする。一方、Caの含有量が0.0030%を超える場合、靱性改善の効果が飽和する。このため、Caの含有量は、0.0005%以上0.0030%以下の範囲とする。
O:0.0040%未満
Oは、CaS上にMnSが析出した複合粒化物の生成に間接的に影響を与える元素である。このため、Oの含有量は、0.0040%未満とする。好ましくは、Oの含有量は0.0030%未満である。
Ca: 0.0005% or more and 0.0030% or less Ca is an element that improves toughness by fixing S as CaS used as a ferrite nucleus, and is an essential element for ACR control. . In order to obtain such an effect, the Ca content is set to 0.0005% or more. On the other hand, when the content of Ca exceeds 0.0030%, the effect of improving toughness is saturated. For this reason, content of Ca shall be 0.0005% or more and 0.0030% or less of range.
O: Less than 0.0040% O is an element that indirectly affects the formation of a composite granulated product in which MnS is precipitated on CaS. Therefore, the O content is less than 0.0040%. Preferably, the O content is less than 0.0030%.

本発明の大入熱溶接用鋼板において、鋼材の組成成分は、上記組成範囲を満たしていることに加え、さらに下記(1)式および(2)式に定義するACRおよび炭素当量Ceqの範囲を満たす。
ACR=(Ca−(0.18+130×Ca)×O)/(1.25×S) ・・・(1)
eq=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15 ・・・(2)
なお、(1)式および(2)式において、各元素記号は鋼材中の各元素の含有量(質量%)を示す。
In the steel sheet for high heat input welding according to the present invention, the composition component of the steel material satisfies the above composition range, and further, ranges of ACR and carbon equivalent C eq defined in the following formulas (1) and (2) Meet.
ACR = (Ca− (0.18 + 130 × Ca) × O) / (1.25 × S) (1)
C eq = C + Mn / 6 + (Cr + Mo + V) / 5 + (Cu + Ni) / 15 (2)
In addition, in (1) Formula and (2) Formula, each element symbol shows content (mass%) of each element in steel materials.

ACR:0超1未満
ACRは、各成分範囲の鋼を大入熱溶接した際、HAZの靱性の良好性を示すパラメータ式であり、0超1未満とする。Ca、OおよびSの含有量を上記ACRの範囲を満足させるように規定することにより、CaS上にMnSが析出した複合粒化物が生成され、フェライトの生成核となる。この複合粒化物を微細分散させることで変態組織が微細化し、溶接熱影響部の靱性が向上する。ACRが0以下の場合、CaSが晶出せずに、SがMnS単体として析出する。析出したMnSは、鋼板製造時に圧延方向に伸長することで、母材靱性を低下させる。また、HAZにおいてMnSが溶融するため、優れた靱性が得られない。一方、ACRが1以上の場合、ほとんどのSがCaによって固定され、フェライト生成核となる複合介在物を得ることができない。このため、HAZ組織が微細化せず、靱性向上効果を得ることができない。さらに、ACRを0超1未満とすることで、微細分散したMnSおよびCaSの複合硫化物上にBNが複合析出し、より能力の高いフェライト生成核として利用可能となることから、更なるHAZ靭性の向上が達成可能となる。
ACR: more than 0 and less than 1 ACR is a parameter formula indicating the toughness of HAZ when steel of each component range is subjected to high heat input welding, and is set to more than 0 and less than 1. By defining the contents of Ca, O and S so as to satisfy the above ACR range, a composite granulated product in which MnS is precipitated on CaS is generated, which becomes a ferrite generation nucleus. By finely dispersing the composite granulated material, the transformation structure is refined and the toughness of the heat affected zone is improved. When ACR is 0 or less, CaS does not crystallize but S precipitates as MnS simple substance. Precipitated MnS extends in the rolling direction during the production of the steel sheet, thereby lowering the base material toughness. Moreover, since MnS melts in HAZ, excellent toughness cannot be obtained. On the other hand, when ACR is 1 or more, most of S is fixed by Ca, and composite inclusions that become ferrite nuclei cannot be obtained. For this reason, the HAZ structure is not refined and the effect of improving toughness cannot be obtained. Furthermore, by setting the ACR to more than 0 and less than 1, BN precipitates on the finely dispersed composite sulfide of MnS and CaS, and can be used as a ferrite nuclei with higher ability. Improvement can be achieved.

eq:0.38以上0.43以下
eqは、各成分範囲の鋼を大入熱溶接した際、継手引張強度および継手靱性を両立させるための指標となるパラメータ式であり、0.38以上0.43以下とする。(2)式中の元素の含有量を、上記Ceqの範囲を満足させるように規定することにより、HAZにおいて570MPaを超える継手強度を達成しながら、良好な靱性を確保する事ができる。Ceqが0.38以下の場合、鋼板の焼入性が不足し、HAZの軟化域の硬度が著しく低下するため所望する継手強度を得る事ができない。一方、Ceqが0.43以上の場合、鋼板の焼入性が過剰となり、ボンド部近傍においてフェライト生成が抑制されるとともにMAの生成が促進されるため優れた靱性を得る事が出来ない。なお、(2)式中には、Cr、MoおよびVが含まれるが、本発明の基本成分組成においては、不可避的に混入するような場合を除き、Cr、MoおよびVが含有されていなくてもよい。
以上が本発明の大入熱溶接用鋼板の基本成分組成である。なお、上記成分以外の残部は、Feおよび不可避的不純物からなる。
C eq : 0.38 or more and 0.43 or less C eq is a parameter formula that serves as an index for achieving both joint tensile strength and joint toughness when steel of each component range is subjected to high heat input welding. More than 0.43. By defining the content of the element in the formula (2) so as to satisfy the above range of C eq , good toughness can be ensured while achieving joint strength exceeding 570 MPa in HAZ. When C eq is 0.38 or less, the hardenability of the steel sheet is insufficient and the hardness of the HAZ softened region is remarkably lowered, so that the desired joint strength cannot be obtained. On the other hand, when C eq is 0.43 or more, the hardenability of the steel sheet becomes excessive, and ferrite formation is suppressed in the vicinity of the bond portion and MA formation is promoted, so that excellent toughness cannot be obtained. In addition, in the formula (2), Cr, Mo and V are included, but in the basic component composition of the present invention, Cr, Mo and V are not included unless they are inevitably mixed. May be.
The above is the basic component composition of the steel plate for high heat input welding of the present invention. The balance other than the above components is composed of Fe and inevitable impurities.

[成分の変形例]
次に、本発明の大入熱溶接用鋼板の成分組成の変形例について説明する。本発明の大入熱溶接用鋼板は、上記の基本成分組成に加えて、V、CrおよびMoのうちから選ばれる1種以上の元素を下記の範囲かつ上記(2)式を満足する範囲でさらに含有することができる。V、CrおよびMoのうちから選ばれる1種以上を選択的元素として含有することにより、強度向上などの効果を得ることができる。
[Modification of component]
Next, the modification of the component composition of the steel plate for high heat input welding of this invention is demonstrated. In addition to the above basic component composition, the steel plate for high heat input welding of the present invention contains at least one element selected from V, Cr and Mo within the following range and the range satisfying the above formula (2). Furthermore, it can contain. By including at least one selected from V, Cr and Mo as a selective element, effects such as strength improvement can be obtained.

V:0%超0.20%以下
Vは、VNとして析出し、母材の強度・靱性の向上に寄与すると共に、フェライト生成核としても作用する元素である。斯かる効果を得るためには、Vの含有量は、0.005%以上であることが好ましい。しかし、Vの含有量が過剰となる場合、靱性の低下を招き、さらに合金コストの増加を招くため、Vの含有量の上限は0.20%とするのが好ましい。
V: more than 0% and 0.20% or less V is an element that precipitates as VN and contributes to the improvement of strength and toughness of the base material, and also acts as a ferrite forming nucleus. In order to obtain such an effect, the V content is preferably 0.005% or more. However, when the V content is excessive, the toughness is lowered and the alloy cost is further increased. Therefore, the upper limit of the V content is preferably 0.20%.

Cr:0%超0.40%以下
Crは、母材の高強度化に有効な元素である。斯かる効果を得るためには、Crの含有量は、0.02%以上とすることが好ましい。しかし、Crの含有量が過剰となる場合、Crは、靱性に悪影響を及ぼし、さらに合金コストの増加を招く。このため、Crの含有量の上限は、0.40%とするのが好ましい。
Cr: more than 0% to 0.40% or less Cr is an element effective for increasing the strength of the base material. In order to obtain such an effect, the Cr content is preferably 0.02% or more. However, when the Cr content is excessive, Cr adversely affects toughness and further increases the alloy cost. For this reason, the upper limit of the Cr content is preferably 0.40%.

Mo:0%超0.40%以下
Moは、Crと同様に、母材の高強度化に有効な元素である。斯かる効果を得るためには、Moの含有量は、0.02%以上とすることが好ましい。しかし、Moの含有量が過剰となる場合、Moは、靱性に悪影響を及ぼし、さらに合金コストの増加を招く。このため、Moの含有量の上限は、0.40%とするのが好ましい。
Mo: more than 0% and 0.40% or less Mo, like Cr, is an element effective for increasing the strength of the base material. In order to obtain such an effect, the Mo content is preferably 0.02% or more. However, when the Mo content is excessive, Mo adversely affects toughness and further increases the alloy cost. For this reason, the upper limit of the Mo content is preferably 0.40%.

さらに、本発明の大入熱溶接用鋼板の成分組成は、基本成分組成または基本成分組成にV、CrおよびMoのうちから選ばれる1種以上の元素を含有した上記の成分組成に加えて、Mg、ZrおよびREMから選ばれる1種以上を選択的元素として下記の範囲で含有することができる。
Mg:0.0005%以上0.0050%以下
Mgは、酸化物の分散による靱性改善効果を有する元素である。斯かる効果を発現させるには、Mgの含有量は0.0005%以上とすることが好ましい。一方、Mgの含有量が0.0050%を超える場合には、靱性改善効果が飽和する。このため、Mgの含有量は、0.0005%以上0.0050%以下の範囲とすることが好ましい。
Further, the component composition of the steel plate for high heat input welding of the present invention is in addition to the above component composition containing one or more elements selected from V, Cr and Mo in the basic component composition or the basic component composition, One or more selected from Mg, Zr and REM can be contained as selective elements in the following range.
Mg: 0.0005% or more and 0.0050% or less Mg is an element having an effect of improving toughness due to oxide dispersion. In order to exhibit such an effect, the Mg content is preferably 0.0005% or more. On the other hand, when the Mg content exceeds 0.0050%, the toughness improving effect is saturated. For this reason, the content of Mg is preferably in the range of 0.0005% to 0.0050%.

Zr:0.0010%以上0.0200%以下
Zrは、Mgと同様に、酸化物の分散による靱性改善効果を有する元素である。斯かる効果を発現させるには、Zrの含有量は0.0005%以上とすることが好ましい。一方、Zrの含有量が0.0200%を超える場合には、靱性改善効果が飽和する。このため、Zrの含有量は、0.0005%以上0.0200%以下の範囲とすることが好ましい。
Zr: 0.0010% or more and 0.0200% or less Zr is an element having an effect of improving toughness due to oxide dispersion, like Mg. In order to exhibit such an effect, the Zr content is preferably 0.0005% or more. On the other hand, when the content of Zr exceeds 0.0200%, the toughness improving effect is saturated. For this reason, it is preferable to make content of Zr into the range of 0.0005% or more and 0.0200% or less.

REM:0.0010%以上0.0200%以下
REMは、MgやZrと同様に、酸化物の分散による靱性改善効果を有する元素である。斯かる効果を発現させるには、REMの含有量は0.0010%以上とすることが好ましい。一方、REMの含有量が0.0200%を超える場合には、靱性改善効果が飽和する。このため、REMの含有量は、0.0010%以上0.0200%以下の範囲とすることが好ましい。
REM: 0.0010% or more and 0.0200% or less REM is an element having an effect of improving toughness due to oxide dispersion, similarly to Mg and Zr. In order to exhibit such an effect, the REM content is preferably 0.0010% or more. On the other hand, when the content of REM exceeds 0.0200%, the toughness improving effect is saturated. For this reason, it is preferable to make content of REM into the range of 0.0010% or more and 0.0200% or less.

<大入熱溶接用鋼板の製造方法>
次に、本発明に係る大入熱溶接用鋼板の製造方法について説明する。本発明に係る大入熱用鋼板の製造方法では、まず、上記組成の溶鋼が、転炉、電気炉、真空溶解炉等の精錬設備を用いた通常の精錬方法で溶製され、溶製された溶鋼が連続鋳造法や造塊法等の鋳造方法で鋳造されることでスラブ等の鋼素材が製造される。なお、以下の製造方法の説明において、鋼板温度の記述は、すべて鋼板表面の温度を示す。
<Manufacturing method of steel plate for large heat input welding>
Next, the manufacturing method of the steel plate for high heat input welding which concerns on this invention is demonstrated. In the method for producing a steel plate for large heat input according to the present invention, first, the molten steel having the above composition is melted and melted by a normal refining method using refining equipment such as a converter, an electric furnace, a vacuum melting furnace and the like. The molten steel is cast by a casting method such as a continuous casting method or an ingot casting method to produce a steel material such as a slab. In the following description of the manufacturing method, the descriptions of the steel plate temperature all indicate the temperature of the steel plate surface.

次いで、製造した鋼素材が、加熱炉にて1050℃以上1200℃以下の温度に加熱される。本発明では、鋼素材中のNb炭窒化物を完全に固溶させるため、鋼素材の加熱温度は1050℃以上とする。一方、加熱温度が1200℃を超えると、TiNが粗大となり靱性が劣化する。   Next, the manufactured steel material is heated to a temperature of 1050 ° C. or higher and 1200 ° C. or lower in a heating furnace. In the present invention, in order to completely dissolve Nb carbonitride in the steel material, the heating temperature of the steel material is set to 1050 ° C. or higher. On the other hand, when heating temperature exceeds 1200 degreeC, TiN will become coarse and toughness will deteriorate.

さらに、加熱した鋼素材が、圧延後の板厚tが25mm以上50mm以下、累積圧下率が40%以上となるように、850℃以下かつ圧延終了時にAr変態点以上となる温度域で熱間圧延され、鋼板となる。Ar変態点(℃)は、鋼素材の組成に応じて下記(3)式で算出される温度である。
Ar変態点=900−332C+6Si−77Mn−20Cu−50Ni−18Cr−68Mo ・・・(3)
なお、(3)式において、C、Si、Mn、Cu、Ni、CrおよびMoは、各元素の含有量(質量%)をそれぞれ示す。
Further, the heated steel material is heated at a temperature range of 850 ° C. or lower and an Ar 3 transformation point or higher at the end of rolling so that the sheet thickness t after rolling is 25 mm or more and 50 mm or less and the cumulative rolling reduction is 40% or more. It is rolled into a steel plate. Ar 3 transformation point (° C.) is a temperature calculated by the following equation (3) according to the composition of the steel material.
Ar 3 transformation point = 900-332C + 6Si-77Mn-20Cu-50Ni-18Cr-68Mo (3)
In the formula (3), C, Si, Mn, Cu, Ni, Cr, and Mo indicate the content (% by mass) of each element.

熱間圧延では、鋼板のミクロ組織を微細化するために、850℃以下の温度域で累積圧下率40%以上の圧延が行われる。累積圧下率が40%に満たない場合は、組織が粗大化となり、鋼板の靱性が低下する。また、上記の圧延条件に加え、圧延終了時の温度をAr変態点以上となる温度域で圧延が行われる。圧延終了時の温度がAr変態点よりも低い場合、圧延中あるいは圧延直後にフェライトが生成し、表層組織が加工フェライトとなり延性が著しく低下する。なお、熱間圧延では、850℃以下の温度域で累積圧下率40%以上の圧延が含まれればよく、他の圧延が排除されるものではない。In hot rolling, rolling with a cumulative reduction of 40% or more is performed in a temperature range of 850 ° C. or lower in order to refine the microstructure of the steel sheet. When the cumulative rolling reduction is less than 40%, the structure becomes coarse and the toughness of the steel sheet is lowered. In addition to the above rolling conditions, rolling is performed in a temperature range where the temperature at the end of rolling is equal to or higher than the Ar 3 transformation point. When the temperature at the end of rolling is lower than the Ar 3 transformation point, ferrite is generated during or immediately after rolling, the surface structure becomes processed ferrite, and the ductility is significantly reduced. In the hot rolling, it is only necessary to include rolling with a cumulative reduction of 40% or more in a temperature range of 850 ° C. or lower, and other rolling is not excluded.

熱間圧延した後、鋼板は、表面温度が(−t×1.5)+400℃以上かつ(−t×1.5)+620℃以下となるまで、5℃/秒以上の冷却速度で水冷される。ここで、tは鋼板の厚みを示す。冷却停止温度が(−t×1.5)+400℃未満である場合、復熱によるセルフテンパー効果が十分に得られず母材強度が過剰となり、延性及び靱性が低下する。一方、冷却停止温度が(−t×1.5)+620℃よりも高い場合、母材がフェライトもしくはフェライト+ベイナイトの混合組織となってしまい母材強度が不足する。また、本発明の鋼板では、460MPa以上の降伏強度を出すため、鋼板の金属組織はベイナイト主体の組織とする。加速冷却時の冷却速度が5℃/sec未満の場合、充分に焼きが入らずフェライト主体のミクロ組織を呈し、460MPa以上の降伏強度を確保することが困難となる。
鋼板を水冷した後、鋼板を空冷することで、大入熱溶接用鋼板が製造される。
After hot rolling, the steel sheet is water-cooled at a cooling rate of 5 ° C./second or more until the surface temperature becomes (−t × 1.5) + 400 ° C. or more and (−t × 1.5) + 620 ° C. or less. The Here, t indicates the thickness of the steel sheet. When the cooling stop temperature is less than (−t × 1.5) + 400 ° C., the self-temper effect due to recuperation cannot be sufficiently obtained, the base material strength becomes excessive, and the ductility and toughness are lowered. On the other hand, when the cooling stop temperature is higher than (−t × 1.5) + 620 ° C., the base material becomes a mixed structure of ferrite or ferrite + bainite, and the base material strength is insufficient. In the steel sheet of the present invention, the yield strength of 460 MPa or more is obtained, so that the metal structure of the steel sheet is a bainite-based structure. When the cooling rate at the time of accelerated cooling is less than 5 ° C./sec, sufficient quenching does not occur and a ferrite-based microstructure is exhibited, making it difficult to ensure a yield strength of 460 MPa or more.
After water-cooling the steel sheet, the steel sheet for high heat input welding is manufactured by air-cooling the steel sheet.

<まとめ>
(1)本発明に係る大入熱溶接用鋼板の製造方法は、質量%で、C:0.03%以上0.10%以下、Si:0.01%以上0.10%以下、Mn:0.8%以上2.0%以下、P:0.020%以下、S:0.0005%以上0.0050%以下、Al:0.005%以上0.100%以下、Nb:0.003%以上0.030%以下、Ti:0.005%以上0.050%以下、Cu:0.10%以上0.50%以下、Ni:0.30%以上2.00%以下、N:0.0030%以上0.0100%以下、B:0.0003%以上0.0025%以下、Ca:0.0005%以上0.0030%以下、O:0.0040%未満を含有し、かつ、下記(1)式で定義されるACRが0超1未満、下記(2)式で定義されるCeqが0.38以上0.43以下を満たして上記成分が含有され、残部がFeおよび不可避的不純物からなる鋼素材を、1050℃以上1200℃以上に加熱し、加熱した鋼素材を、圧延後の板厚tが25mm以上50mm以下、累積圧下率が40%以上となるように、850℃以下かつ圧延終了時にAr変態点以上となる温度域で熱間圧延し、熱間圧延した鋼素材を、表面温度が(−t×1.5)+400℃以上かつ(−t×1.5)+620℃以下となるまで、5℃/sec以上の冷却速度で水冷し、水冷し鋼素材を、空冷する。
ACR=(Ca−(0.18+130×Ca)×O)/(1.25×S) ・・・(1)
eq=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15 ・・・(2)
なお、表面温度の条件式におけるtは熱間圧延後の鋼素材の厚みを示し、(1)式および(2)式において、各元素記号は鋼素材中の各元素の含有量(質量%)を示す。
<Summary>
(1) The manufacturing method of the steel plate for high heat input welding which concerns on this invention is the mass%, C: 0.03% or more and 0.10% or less, Si: 0.01% or more and 0.10% or less, Mn: 0.8% or more and 2.0% or less, P: 0.020% or less, S: 0.0005% or more and 0.0050% or less, Al: 0.005% or more and 0.100% or less, Nb: 0.003 %: 0.030% or less, Ti: 0.005% or more and 0.050% or less, Cu: 0.10% or more and 0.50% or less, Ni: 0.30% or more and 2.00% or less, N: 0 .0030% or more and 0.0100% or less, B: 0.0003% or more and 0.0025% or less, Ca: 0.0005% or more and 0.0030% or less, O: less than 0.0040%, and The ACR defined by the formula (1) is more than 0 and less than 1, and the C eq defined by the following formula (2) is 0.38. The steel material containing 0.43 or less and containing the above components, the balance being Fe and inevitable impurities is heated to 1050 ° C. or more and 1200 ° C. or more, and the heated steel material has a sheet thickness t after rolling of A steel material that has been hot-rolled and hot-rolled at a temperature range of 850 ° C. or lower and an Ar 3 transformation point or higher at the end of rolling so that the cumulative reduction ratio is 25% or more and 50 mm or less and 40% or more is obtained. The steel material is cooled with water at a cooling rate of 5 ° C./sec or more until it becomes (−t × 1.5) + 400 ° C. or more and (−t × 1.5) + 620 ° C. or less, and the steel material is air-cooled.
ACR = (Ca− (0.18 + 130 × Ca) × O) / (1.25 × S) (1)
C eq = C + Mn / 6 + (Cr + Mo + V) / 5 + (Cu + Ni) / 15 (2)
In addition, t in the surface temperature conditional expression indicates the thickness of the steel material after hot rolling, and in the expressions (1) and (2), each element symbol indicates the content (mass%) of each element in the steel material. Indicates.

本発明では、特に鋼素材の合金含有量を上記(1)の構成とすることにより、溶接を受けた鋼板組織において高温領域でのオーステナイト粒の粗大化が抑制される。そして、その後の冷却過程において、微細分散させた複合介在物を生成核とする粒内フェライトにより組織が微細化し、さらにベイナイト中のMA量が低減することから、HAZの靱性が向上する。併せて、Ceqの範囲を上記(1)の構成とすることにより、継手の引張強度および靱性の向上を両立させることができる。In the present invention, especially by setting the alloy content of the steel material to the configuration of (1) above, coarsening of austenite grains in the high temperature region is suppressed in the steel sheet structure subjected to welding. Then, in the subsequent cooling process, the structure is refined by intragranular ferrite using finely dispersed composite inclusions as production nuclei, and the amount of MA in bainite is further reduced, so that the toughness of HAZ is improved. In addition, by setting the range of C eq to the configuration of (1) above, it is possible to simultaneously improve the tensile strength and toughness of the joint.

さらに、本発明では、鋼素材を加熱する温度を上記(1)の構成とすることにより、TiNの粗大化に伴う靱性の劣化を防止することができる。また、熱間圧延による累積圧下率および熱間圧延時の温度を上記(1)の構成とすることにより、母材組織の粗大化による靱性の低下を防止することができる。さらに、熱間圧延後の温度を上記(1)の構成とすることにより、表面組織が加工フェライトとなることに伴う延性の低下を防止することができる。さらに、本発明では、冷却停止後の表面温度を上記(1)の構成とすることにより、母材強度を適正な範囲にコントロールすることができ、さらに延性や靱性等の他の特性の向上を両立させることができる。   Furthermore, in this invention, the temperature which heats a steel raw material is made into the structure of said (1), and deterioration of toughness accompanying the coarsening of TiN can be prevented. Moreover, the fall of toughness by coarsening of a base material structure | tissue can be prevented by making the cumulative reduction rate by hot rolling and the temperature at the time of hot rolling into the structure of said (1). Furthermore, by setting the temperature after hot rolling to the configuration of (1) above, it is possible to prevent a decrease in ductility due to the surface structure becoming processed ferrite. Furthermore, in the present invention, by setting the surface temperature after stopping cooling to the configuration of (1) above, the strength of the base material can be controlled within an appropriate range, and other properties such as ductility and toughness can be improved. Both can be achieved.

したがって、上記(1)の構成によれば、溶接入熱が200kJ/cm以上の大入熱溶接下においても優れた継手特性を有し、降伏強度が460MPa以上、ボンド部HAZ靱性を示す破面遷移温度vTrsが−40℃以下および板厚が25mm以上50mm以下となる大入熱溶接用鋼板を安定的に製造することが可能となる。   Therefore, according to the configuration of (1) above, the fracture surface has excellent joint characteristics even under high heat input welding with a heat input of 200 kJ / cm or more, yield strength is 460 MPa or more, and exhibits bond HAZ toughness. A steel plate for high heat input welding having a transition temperature vTrs of −40 ° C. or less and a plate thickness of 25 mm or more and 50 mm or less can be stably produced.

(2)上記(1)の構成において、鋼素材は、質量%で、V:0%超0.20%以下、Cr:0%超0.40%以下およびMo:0%超0.40%以下のうちから選ばれる1種以上をさらに含有する。
上記(2)の構成によれば、母材の靱性の低下を抑えながらも、母材の強度を向上させることができる。
(3)上記(1)または(2)の構成において、鋼素材は、質量%で、Mg:0.0005%以上0.0050%以下、Zr:0.0010%以上0.0200%以下、REM:0.0010%以上0.0200%以下のうちから選ばれる1種以上をさらに含有する。
上記(3)の構成によれば、酸化物の分散による靱性改善効果を得ることができる。
(2) In the configuration of (1) above, the steel material is, in mass%, V: more than 0% to 0.20% or less, Cr: more than 0% to 0.40% or less, and Mo: more than 0% to 0.40%. It further contains one or more selected from the following.
With configuration (2) above, it is possible to improve the strength of the base material while suppressing a decrease in the toughness of the base material.
(3) In the configuration of (1) or (2), the steel material is in mass%, Mg: 0.0005% to 0.0050%, Zr: 0.0010% to 0.0200%, REM : It further contains 1 or more types chosen from 0.0010% or more and 0.0200% or less.
According to the configuration of (3) above, an effect of improving toughness due to oxide dispersion can be obtained.

次に、本発明者らが行った実施例について説明する。
まず、150kgの高周波溶解炉を用いて、表1に示す成分組成を有するNo.1〜23の溶鋼をそれぞれ溶製し、鋳造することで鋼塊(鋼素材)を製造した。次いで、各鋼塊を熱間圧延することで種々の厚さの鋼片を製造した。さらに、得られた鋼片を種々の圧延および加速冷却条件により、圧延および加速冷却することで厚さが25mm以上50mm未満の鋼板を製造した。その後、各鋼板から長手方向が板幅方向と一致するようにJISZ2201に記載の1A号試験片を採取し、降伏応力YS(MPa)、引張強さTS(MPa)および全伸びEl(%)を計測した。なお、表1において、鋼No.1〜8は本発明の実施例であり、鋼No.9〜23は成分組成が本発明の範囲外となる比較例である。
Next, examples performed by the present inventors will be described.
First, using a 150 kg high frequency melting furnace, No. 1 having the component composition shown in Table 1. Steel ingots (steel materials) were manufactured by melting and casting molten steels 1 to 23, respectively. Subsequently, the steel ingots of various thickness were manufactured by hot-rolling each steel ingot. Furthermore, the obtained steel slab was rolled and accelerated cooled under various rolling and accelerated cooling conditions to produce a steel plate having a thickness of 25 mm or more and less than 50 mm. Then, the 1A No. 1A test piece described in JISZ2201 was collected from each steel plate so that the longitudinal direction coincided with the plate width direction, and yield stress YS (MPa), tensile strength TS (MPa), and total elongation El (%) were determined. Measured. In Table 1, steel No. 1 to 8 are examples of the present invention. 9-23 are comparative examples in which the component composition is outside the scope of the present invention.

Figure 0006048627
Figure 0006048627

また、各鋼片の板厚の1/4となる位置からJISZ2202に記載のVノッチシャルピー衝撃試験片を採取し、採取したシャルピー試験片について試験温度が−100℃〜40℃の範囲で適宜シャルピー衝撃試験を行った。シャルピー試験の結果から、延性破面率50%となる破面遷移温度vTrs(℃)を求め、母材靱性を評価した。   In addition, a V-notch Charpy impact test piece described in JISZ2202 was taken from a position at which the thickness of each steel piece was ¼, and the Charpy test piece was collected with appropriate Charpy within a test temperature range of −100 ° C. to 40 ° C. An impact test was performed. From the result of the Charpy test, the fracture surface transition temperature vTrs (° C.) at which the ductile fracture surface ratio was 50% was determined, and the base material toughness was evaluated.

さらに、ボンド部近傍部のHAZ靱性を評価するために、各厚鋼板から幅80mm×長さ80mm×厚さ15mmの試験片を採取し、採取した試験片を1450℃に加熱した後、800℃〜500℃の間を250secで冷却する再現熱サイクルを施した。熱処理を施したこれらの試験片から2mmVノッチシャルピー試験片を採取し、採取したシャルピー試験片について試験温度が−100℃〜40℃の範囲で適宜シャルピー衝撃試験を行った。シャルピー試験の結果から、延性破面率50%となる破面遷移温度vTrs(℃)を求め、ボンド部近傍部の靱性を評価した。なお、再現熱サイクルの条件は、入熱量300kJ/cmのエレクトロガス溶接の場合のボンド部近傍の熱サイクルに相当し、想定最大入熱にあたる板厚40mmでの1パス溶接を模擬した。   Furthermore, in order to evaluate the HAZ toughness in the vicinity of the bond part, a test piece of width 80 mm × length 80 mm × thickness 15 mm was taken from each thick steel plate, and the collected test piece was heated to 1450 ° C. and then 800 ° C. The reproduction | regeneration thermal cycle which cools between -500 degreeC in 250 seconds was given. A 2 mmV notch Charpy test piece was collected from these heat-treated test pieces, and the collected Charpy test piece was appropriately subjected to a Charpy impact test within a test temperature range of −100 ° C. to 40 ° C. From the result of the Charpy test, the fracture surface transition temperature vTrs (° C.) at which the ductile fracture surface ratio was 50% was determined, and the toughness in the vicinity of the bond portion was evaluated. The conditions of the reproducible heat cycle correspond to the heat cycle in the vicinity of the bond part in the case of electrogas welding with a heat input of 300 kJ / cm, and simulated one-pass welding with a plate thickness of 40 mm corresponding to the assumed maximum heat input.

表2に、圧延条件、加速冷却条件、上記手順にて評価を行った母材の引張特性(YS、TS、El)、およびボンド部近傍HAZ靱性の試験結果を併せて示す。なお、表2において、鋼板No.1〜16は本発明の実施例であり、鋼板No.17〜22は鋼No.1〜8から採取した鋼板を本発明の範囲外となる条件で圧延および冷却した比較例であり、鋼板No.23〜44は鋼No.9〜30から採取した鋼板を本発明の範囲外となる条件で圧延および冷却した比較例である。   Table 2 also shows the test results of rolling conditions, accelerated cooling conditions, tensile properties (YS, TS, El) of the base material evaluated by the above procedure, and HAZ toughness in the vicinity of the bond part. In Table 2, the steel plate No. 1 to 16 are examples of the present invention. 17-22 are steel No. This is a comparative example in which the steel plates taken from 1 to 8 were rolled and cooled under conditions that fall outside the scope of the present invention. Nos. 23 to 44 are steel Nos. It is the comparative example which rolled and cooled the steel plate extract | collected from 9-30 on the conditions which become outside the scope of the present invention.

Figure 0006048627
Figure 0006048627

実施例である鋼板No.1〜16は、降伏応力YSが460MPa以上、引張強さTSが570MPa以上、全伸びElが16%以上、母材靱性の評価となる破面遷移温度vTrsが−50℃以下の優れた母材特性を有することが確認できた。また、鋼板No.1〜16は、ボンド部近傍HAZ靱性の評価となる破面遷移温度vTrsが−40℃以下となり、大入熱溶接部において優れた靱性が得られることが確認できた。   Steel plate No. which is an example. Nos. 1 to 16 are excellent base materials having a yield stress YS of 460 MPa or more, a tensile strength TS of 570 MPa or more, a total elongation El of 16% or more, and a fracture surface transition temperature vTrs for evaluating base material toughness of −50 ° C. or less. It was confirmed that it had characteristics. Steel plate No. In Nos. 1 to 16, it was confirmed that the fracture surface transition temperature vTrs for evaluating the HAZ toughness in the vicinity of the bond part was −40 ° C. or lower, and excellent toughness was obtained in the high heat input welded part.

一方、比較例である鋼板No.17〜22においては、鋼の成分組成が本発明に含まれるものの、製造条件が外れているため、母材の引張特性、靭性もしくは伸びのいずれかもしくは複数が実施例に対して低位となることが確認できた。また、比較例である鋼板No.23〜44においては、製造条件が本発明に合致しているものの、鋼の成分組成が外れているため、特にボンド部近傍HAZ靱性もしくは継手の引張強度のいずれかもしくは双方が、実施例に対し、低位の値となることが確認できた。   On the other hand, in steel plate Nos. 17 to 22, which are comparative examples, although the component composition of steel is included in the present invention, since the manufacturing conditions are out of the range, one or more of the tensile properties, toughness or elongation of the base material is present. It was confirmed that it was lower than that of the example. Moreover, in steel plate No. 23-44 which is a comparative example, although manufacturing conditions correspond to this invention, since the component composition of steel has remove | deviated, especially either bond part vicinity HAZ toughness or the tensile strength of a joint It was also confirmed that both values were lower than those of the examples.

Claims (3)

質量%で、
C:0.03%以上0.10%以下、
Si:0.01%以上0.10%以下、
Mn:0.8%以上2.0%以下、
P:0.020%以下、
S:0.0005%以上0.0050%以下、
Al:0.005%以上0.100%以下、
Nb:0.003%以上0.030%以下、
Ti:0.005%以上0.050%以下、
Cu:0.10%以上0.50%以下、
Ni:0.30%以上2.00%以下、
N:0.0030%以上0.0100%以下、
B:0.0003%以上0.0025%以下、
Ca:0.0005%以上0.0030%以下、
O:0.0040%未満を含有し、かつ、
下記(1)式で定義されるACRが0超1未満、下記(2)式で定義されるCeqが0.38以上0.43以下を満たして各成分が含有され、残部がFeおよび不可避的不純物からなる鋼素材を、1050℃以上1200℃以下に加熱し、
加熱した前記鋼素材を、圧延後の板厚が25mm以上50mm以下、累積圧下率が40%以上となるように、850℃以下かつ圧延終了時にAr変態点以上となる温度域で熱間圧延し、
熱間圧延した前記鋼素材を、表面温度が(−t×1.5)+400℃以上かつ(−t×1.5)+620℃以下となるまで、5℃/sec以上の冷却速度で水冷し、
水冷し前記鋼素材を、空冷することで降伏強度が460MPa以上の大入熱溶接用鋼板を製造することを特徴とする大入熱溶接用鋼板の製造方法。
ACR=(Ca−(0.18+130×Ca)×O)/(1.25×S)
・・・(1)
eq=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15
・・・(2)
なお、表面温度の条件式におけるtは熱間圧延後の前記鋼素材の厚みを示し、(1)式および(2)式において、各元素記号は前記鋼素材中の各元素の含有量(質量%)を示す。
% By mass
C: 0.03% to 0.10%,
Si: 0.01% or more and 0.10% or less,
Mn: 0.8% or more and 2.0% or less,
P: 0.020% or less,
S: 0.0005% or more and 0.0050% or less,
Al: 0.005% or more and 0.100% or less,
Nb: 0.003% to 0.030%,
Ti: 0.005% or more and 0.050% or less,
Cu: 0.10% or more and 0.50% or less,
Ni: 0.30% or more and 2.00% or less,
N: 0.0030% or more and 0.0100% or less,
B: 0.0003% or more and 0.0025% or less,
Ca: 0.0005% or more and 0.0030% or less,
O: less than 0.0040%, and
ACR defined by the following formula (1) is more than 0 and less than 1, C eq defined by the following formula (2) satisfies 0.38 or more and 0.43 or less, each component is contained, and the balance is Fe and inevitable A steel material composed of mechanical impurities is heated to 1050 ° C. or higher and 1200 ° C. or lower,
Hot rolling the heated steel material at a temperature range of 850 ° C. or less and Ar 3 transformation point or more at the end of rolling so that the thickness after rolling is 25 mm or more and 50 mm or less and the cumulative rolling reduction is 40% or more. And
The hot-rolled steel material is water-cooled at a cooling rate of 5 ° C./sec or higher until the surface temperature becomes (−t × 1.5) + 400 ° C. or higher and (−t × 1.5) + 620 ° C. or lower. ,
Method for producing a high heat input welding steel plates, characterized in that the steel material was cooled, the yield strength by cooling to produce a high heat input welding steel plates above 460 MPa.
ACR = (Ca− (0.18 + 130 × Ca) × O) / (1.25 × S)
... (1)
C eq = C + Mn / 6 + (Cr + Mo + V) / 5 + (Cu + Ni) / 15
... (2)
Note that t in the surface temperature conditional expression indicates the thickness of the steel material after hot rolling, and in the expressions (1) and (2), each element symbol indicates the content (mass of each element in the steel material). %).
前記鋼素材は、質量%で、V:0%超0.20%以下、Cr:0%超0.40%以下およびMo:0%超0.40%以下のうちから選ばれる1種以上をさらに含有することを特徴とする請求項1に記載の大入熱溶接用鋼板の製造方法。  The steel material contains at least one selected from the group consisting of V: more than 0% and 0.20% or less, Cr: more than 0% and 0.40% and Mo: more than 0% and 0.40% or less. Furthermore, it contains, The manufacturing method of the steel plate for high heat input welding of Claim 1 characterized by the above-mentioned. 前記鋼素材は、質量%で、Mg:0.0005%以上0.0050%以下、Zr:0.0010%以上0.0200%以下、REM:0.0010%以上0.0200%以下のうちから選ばれる1種以上をさらに含有することを特徴とする請求項1または2に記載の大入熱溶接用鋼板の製造方法。  The steel material is in mass%, Mg: 0.0005% or more and 0.0050% or less, Zr: 0.0010% or more and 0.0200% or less, REM: 0.0010% or more and 0.0200% or less. The method for producing a steel sheet for high heat input welding according to claim 1 or 2, further comprising one or more selected.
JP2016534097A 2014-07-15 2015-06-23 Manufacturing method of steel plates for high heat input welding Active JP6048627B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014144864 2014-07-15
JP2014144864 2014-07-15
PCT/JP2015/003142 WO2016009595A1 (en) 2014-07-15 2015-06-23 Method of manufacturing steel plate for high-heat input welding

Publications (2)

Publication Number Publication Date
JP6048627B2 true JP6048627B2 (en) 2016-12-21
JPWO2016009595A1 JPWO2016009595A1 (en) 2017-04-27

Family

ID=55078109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016534097A Active JP6048627B2 (en) 2014-07-15 2015-06-23 Manufacturing method of steel plates for high heat input welding

Country Status (4)

Country Link
JP (1) JP6048627B2 (en)
KR (1) KR101971772B1 (en)
CN (1) CN106574316B (en)
WO (1) WO2016009595A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190352749A1 (en) * 2016-10-27 2019-11-21 Jfe Steel Corporation Steel material for high heat input welding
KR20180074415A (en) * 2016-12-23 2018-07-03 주식회사 포스코 High heat input welded joint having excellent impact toughtness
KR102289071B1 (en) * 2017-05-22 2021-08-11 제이에프이 스틸 가부시키가이샤 Steel plate and method of producing same
CN114703424B (en) * 2022-03-31 2023-02-28 张家港荣盛特钢有限公司 High heat input welded steel sheet and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242853A (en) * 2008-03-31 2009-10-22 Jfe Steel Corp Steel member for high-heat input welding
JP2010111924A (en) * 2008-11-07 2010-05-20 Jfe Steel Corp Low yield ratio steel plate for building having excellent high heat input weld zone toughness and method for producing the same
JP2011074403A (en) * 2009-09-16 2011-04-14 Jfe Steel Corp Steel for high heat input welding
JP2012162801A (en) * 2011-01-18 2012-08-30 Jfe Steel Corp Method for producing taper plate

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS546308A (en) 1977-06-16 1979-01-18 Ishikawajima Harima Heavy Ind Pedestal in steel
JPS5751243A (en) 1980-09-12 1982-03-26 Nippon Steel Corp Steel products for welding
JPS60204863A (en) 1984-03-28 1985-10-16 Kobe Steel Ltd Steel for high heat input welded structure
JPS62170459A (en) 1986-01-22 1987-07-27 Sumitomo Metal Ind Ltd High tension steel plate for high heat input welding
JPH0414180A (en) 1990-05-07 1992-01-20 Toshiba Corp Image forming and storing device
JP4035990B2 (en) * 2001-12-13 2008-01-23 Jfeスチール株式会社 Super high heat input welding HAZ toughness and low yield ratio steel plate for building structure and method for producing the same
CN101289728B (en) * 2007-04-20 2010-05-19 宝山钢铁股份有限公司 Low-yield ratio, high heat input welding, high-strength and high ductility steel plate and method of manufacture
JP5439887B2 (en) * 2008-03-31 2014-03-12 Jfeスチール株式会社 High-strength steel and manufacturing method thereof
CN102041459B (en) * 2009-10-23 2012-09-19 宝山钢铁股份有限公司 Steel plate HT690 capable of being subjected to high heat input welding and manufacturing method thereof
CN102719745B (en) * 2012-06-25 2014-07-23 宝山钢铁股份有限公司 High-strength low-temperature steel with high hydrogen induced cracking (HIC) and sulfide stress corrosion cracking (SSC) resistance and manufacturing method thereof
JP5949682B2 (en) 2012-07-03 2016-07-13 Jfeスチール株式会社 Manufacturing method of steel plate for high heat input welding with excellent brittle crack propagation stop properties
JP5958428B2 (en) * 2012-07-30 2016-08-02 Jfeスチール株式会社 Manufacturing method of steel plates for high heat input welding
CN103320719B (en) * 2013-06-19 2015-05-20 宝山钢铁股份有限公司 Low-cost large-heat-input-weldable high-toughness steel plate and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242853A (en) * 2008-03-31 2009-10-22 Jfe Steel Corp Steel member for high-heat input welding
JP2010111924A (en) * 2008-11-07 2010-05-20 Jfe Steel Corp Low yield ratio steel plate for building having excellent high heat input weld zone toughness and method for producing the same
JP2011074403A (en) * 2009-09-16 2011-04-14 Jfe Steel Corp Steel for high heat input welding
JP2012162801A (en) * 2011-01-18 2012-08-30 Jfe Steel Corp Method for producing taper plate

Also Published As

Publication number Publication date
CN106574316A (en) 2017-04-19
KR101971772B1 (en) 2019-04-23
KR20170007815A (en) 2017-01-20
JPWO2016009595A1 (en) 2017-04-27
CN106574316B (en) 2019-10-01
WO2016009595A1 (en) 2016-01-21

Similar Documents

Publication Publication Date Title
JP4673784B2 (en) High strength steel sheet having excellent weld heat affected zone toughness and method for producing the same
JP5076658B2 (en) Steel material for large heat input welding
WO2010134220A1 (en) Steel material for high heat input welding
JP6648271B2 (en) High-strength steel excellent in brittle crack propagation resistance and brittle crack initiation resistance in welds and method for producing the same
JP5949682B2 (en) Manufacturing method of steel plate for high heat input welding with excellent brittle crack propagation stop properties
JP6048627B2 (en) Manufacturing method of steel plates for high heat input welding
JP5796636B2 (en) Steel material for large heat input welding
JP6418418B2 (en) Steel material for large heat input welding
JP3546308B2 (en) Large heat input welding steel
TWI526545B (en) Steel material for welding
JP5849892B2 (en) Steel material for large heat input welding
JP5966907B2 (en) Steel material for large heat input welding
JP4237904B2 (en) Ferritic heat resistant steel sheet with excellent creep strength and toughness of base metal and welded joint and method for producing the same
US10300564B2 (en) Weld joint
JP2005213534A (en) Method for producing steel material excellent in toughness at welding heat affected zone
JP6226163B2 (en) High-tensile steel plate with excellent low-temperature toughness in heat affected zone and its manufacturing method
JP6299676B2 (en) High-tensile steel plate and manufacturing method thereof
JP2011074445A (en) Method for manufacturing non-heat-treated high-tensile-strength thick steel superior in toughness at heat-affected zone in high-heat-input weld
JP7272471B2 (en) steel plate
JP2002371338A (en) Steel superior in toughness at laser weld
JP5659949B2 (en) Thick steel plate excellent in toughness of weld heat affected zone and method for producing the same
JP4357080B2 (en) Solidified grain refined steel and solidified grain refined austenitic stainless steel and their welded joints
JP5857693B2 (en) Steel plate for large heat input and manufacturing method thereof
JP5895780B2 (en) Steel plate excellent in toughness of heat-affected zone with high heat input welding and manufacturing method thereof
JP6036884B2 (en) A method for producing a non-tempered high-tensile steel sheet with excellent high heat input welding characteristics and ductility.

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161107

R150 Certificate of patent or registration of utility model

Ref document number: 6048627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250