JP5439887B2 - High-strength steel and manufacturing method thereof - Google Patents

High-strength steel and manufacturing method thereof Download PDF

Info

Publication number
JP5439887B2
JP5439887B2 JP2009073113A JP2009073113A JP5439887B2 JP 5439887 B2 JP5439887 B2 JP 5439887B2 JP 2009073113 A JP2009073113 A JP 2009073113A JP 2009073113 A JP2009073113 A JP 2009073113A JP 5439887 B2 JP5439887 B2 JP 5439887B2
Authority
JP
Japan
Prior art keywords
mass
less
toughness
steel
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009073113A
Other languages
Japanese (ja)
Other versions
JP2009263777A (en
Inventor
智之 横田
克行 一宮
佳子 梶田
公宏 西村
伸夫 鹿内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009073113A priority Critical patent/JP5439887B2/en
Publication of JP2009263777A publication Critical patent/JP2009263777A/en
Application granted granted Critical
Publication of JP5439887B2 publication Critical patent/JP5439887B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、船舶や海洋構造物、ラインパイプ、圧力容器等に用いられる高張力鋼とその製造方法に関し、特に、降伏応力(YS)が460MPa以上で、母材の強度・靭性に優れるだけでなく溶接部の靭性(CTOD特性)にも優れる高張力鋼とその製造方法に関するものである。   The present invention relates to a high-strength steel used for ships, offshore structures, line pipes, pressure vessels, and the like, and its manufacturing method. In particular, the yield stress (YS) is 460 MPa or more, and only the strength and toughness of the base material is excellent. In particular, the present invention relates to a high-strength steel excellent in toughness (CTOD characteristics) of a welded portion and a manufacturing method thereof.

船舶や海洋構造物等に用いられる鋼は、溶接接合して所望の形状の構造物等に仕上げられるのが普通である。そのため、これらの鋼には、構造物等の安全性を確保する観点から、母材自体の強度や靭性に優れることは勿論のこと、溶接継手の溶接部(溶接金属や熱影響部)の靭性にも優れていることが要求される。   Steel used for ships, marine structures and the like is usually welded and finished to have a desired shape. Therefore, these steels are not only excellent in strength and toughness of the base metal itself from the viewpoint of ensuring the safety of structures and the like, but also toughness of welded joints (welded metal and heat affected zone) of welded joints. It is required to be excellent.

鋼の靭性の評価基準としては、従来、主にシャルピー衝撃試験による吸収エネルギーが用いられてきた。しかし、近年では、より信頼性を高めるために、き裂開口変位試験(Crack Tip Opening Displacement Test、以降「CTOD試験」と略記する)が用いられることが多い。この試験は、靭性の評価部に疲労予き裂を発生させた試験片を3点曲げし、破壊直前のき裂底の口開き量(塑性変形量)を測定し、脆性破壊の発生抵抗を評価するものである。   Conventionally, absorbed energy by Charpy impact test has been mainly used as an evaluation standard for toughness of steel. However, in recent years, a crack opening displacement test (hereinafter referred to as “CTOD test”) is often used in order to increase reliability. In this test, a test piece that had fatigue cracks in the toughness evaluation part was bent at three points, and the amount of opening (plastic deformation) at the crack bottom just before fracture was measured to determine the resistance to brittle fracture. It is something to evaluate.

ところで、上記用途に用いられるような板厚が厚い鋼には、一般に、多層溶接が施されるが、このような溶接では、熱影響部は複雑な熱履歴を受けるため、局所脆化域が発生し易く、特にボンド部(溶接金属と母材との境界)や2相域再熱部(溶接1サイクル目で粗粒となり、2サイクル目でαとγの2相域に加熱される領域)の靭性の低下が大きいという問題がある。ボンド部は、溶融点直下の高温に曝されるため、オーステナイト粒が粗大化し、引き続く冷却により、脆弱な上部ベイナイト組織に変態し易いからである。また、ボンド部には、ウィドマンステッテン組織や島状マルテンサイトといった脆化組織が生成するため、靭性はさらに低下する。   By the way, in general, multi-layer welding is performed on steel having a large thickness as used in the above-mentioned applications. However, in such welding, since the heat-affected zone receives a complicated heat history, there is a local embrittlement region. Easily generated, especially in bond areas (boundary between weld metal and base metal) and two-phase reheat zone (coarse grains in the first cycle of welding and heated to two phases of α and γ in the second cycle) ) Has a problem of large reduction in toughness. This is because the bond portion is exposed to a high temperature just below the melting point, so that austenite grains are coarsened and are easily transformed into a fragile upper bainite structure by subsequent cooling. In addition, since a brittle structure such as a Widmanstatten structure or island martensite is generated in the bond portion, the toughness is further reduced.

上記問題に対する対策として、例えば、鋼中にTiNを微細に分散させて、オーステナイト粒の粗大化を抑制したり、フェライト変態核として利用したりする技術が実用化されている。さらに、特許文献1や特許文献2には、希土類元素(REM)をTiと共に複合添加して鋼中に微細粒子を分散させることにより、オーステナイト粒成長を抑制し、溶接部の靭性を向上する技術が開示されている。その他に、Tiの酸化物を分散させる技術や、BNのフェライト核生成能と酸化物分散とを組み合わせる技術、さらには、CaやREMを添加して硫化物の形態を制御することにより靭性を高める技術も提案されている。   As a countermeasure against the above problem, for example, a technique of finely dispersing TiN in steel to suppress coarsening of austenite grains or to use as a ferrite transformation nucleus has been put into practical use. Further, Patent Document 1 and Patent Document 2 describe a technique for suppressing the austenite grain growth and improving the toughness of the welded portion by adding a rare earth element (REM) together with Ti and dispersing fine particles in the steel. Is disclosed. In addition, technology to disperse Ti oxide, technology to combine ferrite nucleation ability of BN and oxide dispersion, and further to improve toughness by controlling the form of sulfide by adding Ca and REM Technology has also been proposed.

一方、上記2相域再熱部、即ち最初の溶接で融点直下の高温に曝された領域が、続く溶接時の再加熱によりフェライトとオーステナイトの2相域となる領域が、最も脆化する原因は、2パス目以降の溶接時の再加熱により、オーステナイト領域に炭素が濃化し、これが冷却中に、島状マルテンサイトを含む脆弱なベイナイト組織を生成し、靭性を低下させるからである。そこで、この対策として、低C、低Si化することにより島状マルテンサイトの生成を抑制し、さらにCuを添加することにより母材強度を確保する技術が開示されている(例えば、特許文献3参照)。   On the other hand, the above-mentioned two-phase region reheat zone, that is, the region exposed to the high temperature immediately below the melting point in the first welding, the region that becomes the two-phase region of ferrite and austenite by the reheating at the time of the subsequent welding, This is because carbon is concentrated in the austenite region due to reheating at the time of welding after the second pass, and this generates a fragile bainite structure including island martensite during cooling and lowers toughness. Therefore, as a countermeasure, a technique is disclosed in which generation of island martensite is suppressed by reducing C and Si, and the strength of the base material is ensured by adding Cu (for example, Patent Document 3). reference).

さらに、特許文献4には、上記溶接時の再加熱による脆化組織の生成を抑制する方法として、硫化物の形態制御のために添加しているCaの添加量を適正範囲に制御した上で、Niを添加することにより、溶接熱影響部の靭性特性(CTOD特性)を向上させる技術が開示されている。   Furthermore, in Patent Document 4, as a method of suppressing the formation of an embrittled structure due to reheating during the above-described welding, the amount of Ca added for controlling the form of sulfide is controlled within an appropriate range. A technique for improving the toughness characteristic (CTOD characteristic) of the weld heat affected zone by adding Ni is disclosed.

特公平03−053367号公報Japanese Patent Publication No. 03-053367 特開昭60−184663号公報JP 60-184663 A 特開平05−186823号公報JP 05-186823 A 特開2007−231312公報JP 2007-231312 A

しかしながら、熱影響部の靭性が低下するという上述した問題は、上記従来技術によってある程度の改善がなされたものの、まだ幾つかの解決すべき問題点が残されている。例えば、TiNを利用する技術では、TiNが溶解する温度域まで加熱されるボンド部においてはその作用がなくなり、それどころか、固溶Tiおよび固溶Nによる基地組織の脆化によって著しい靭性の低下が起こることがある。また、Tiの酸化物を利用する技術では、酸化物の微細分散が十分均質にできないという問題がある。さらに、近年、船舶や海洋構造物等が大型化するのに伴って、それらに用いられる鋼材には、より高強度化、厚肉化することが求められている。それらの要求に応えるには、特許文献3の技術とは逆に、合金元素を多量に添加することが有効である。しかし、合金元素の多量の添加は、溶接時の再加熱による脆化組織の生成を促進し、溶接熱影響部の靭性の低下を招くという問題点を有している。また、特許文献4に開示された技術は、高強度化および厚肉化のため、マトリックスの高靭化に有効なNiの添加を必須としているため、原料コストが上昇するという問題点がある。   However, although the above-described problem that the toughness of the heat-affected zone is lowered has been improved to some extent by the above-described prior art, some problems to be solved still remain. For example, in the technology using TiN, the action is lost in the bond portion heated to a temperature range where TiN dissolves, and on the contrary, the toughness is significantly lowered due to the embrittlement of the base structure due to solute Ti and solute N. Sometimes. Further, the technology using Ti oxide has a problem that fine dispersion of the oxide cannot be sufficiently homogeneous. Furthermore, in recent years, as ships, offshore structures and the like increase in size, steel materials used for them are required to have higher strength and thickness. In order to meet these requirements, it is effective to add a large amount of alloy elements, contrary to the technique of Patent Document 3. However, the addition of a large amount of alloy elements has a problem in that the formation of a brittle structure is promoted by reheating during welding, and the toughness of the weld heat affected zone is reduced. In addition, the technique disclosed in Patent Document 4 has a problem in that the raw material cost increases because it is essential to add Ni effective for increasing the toughness of the matrix in order to increase the strength and increase the thickness.

そこで、本発明の目的は、従来技術が抱える上記問題点を解決し、合金元素の添加量を増やさざるを得ない厚肉の高強度鋼板においても、母材の強度・靭性に優れるとともに、溶接熱影響部の靭性にも優れる高張力鋼とその好適な製造方法を提案することにある。   Therefore, the object of the present invention is to solve the above-mentioned problems of the prior art, and even in a thick high-strength steel plate that has to increase the amount of addition of alloy elements, it is excellent in the strength and toughness of the base material, and is welded. The object is to propose a high-strength steel excellent in the toughness of the heat-affected zone and a suitable production method thereof.

発明者らは、厚肉の高張力鋼の母材強度・靭性を向上すると共に、溶接熱影響部の靭性をも改善することができる方法について鋭意検討した。その結果、溶接熱影響部の靭性低下は、脆化組織の生成に起因していることから、この溶接熱影響部の靭性を向上させるためには、溶接時に高温加熱される領域におけるオーステナイト粒の粗大化を抑制したうえで、さらに、溶接後の冷却時のフェライト変態を促進させるために、変態核を均一微細に分散させてやることが有効であることを見出した。   The inventors diligently studied a method capable of improving the base metal strength and toughness of the thick high-strength steel and also improving the toughness of the weld heat affected zone. As a result, the decrease in toughness of the weld heat affected zone is due to the formation of an embrittled structure, so in order to improve the toughness of this weld heat affected zone, the austenite grains in the region heated at high temperature during welding It has been found that it is effective to disperse the transformation nuclei uniformly and finely in order to suppress the coarsening and to further promote the ferrite transformation during cooling after welding.

そこで、発明者らは、上記脆化組織の生成を抑制する方法についてさらに検討した結果、硫化物の形態制御のために添加しているCaの添加量を適正範囲に制御することが有効であること、また、溶接熱影響部の靭性(CTOD特性)を向上するには、Mnの添加が有効であることを見出した。   Thus, as a result of further study on the method for suppressing the formation of the embrittlement structure, the inventors are effective to control the addition amount of Ca added for the morphology control of the sulfide within an appropriate range. In addition, it has been found that the addition of Mn is effective for improving the toughness (CTOD characteristics) of the weld heat affected zone.

また、母材の強度・靭性に及ぼす圧延条件の影響について検討したところ、圧延後の冷却を、冷却速度が大きい前段冷却と小さい後段冷却とからなる2段冷却とし、それぞれの冷却速度を適正に制御してやれば、鋼板組織がアシキュラーフェライト主体の組織となり、母材の強度・靭性に優れた高張力鋼を製造できることを見出した。さらに、母材の強度と靭性をより高めるには、オーステナイトの低温域で、未再結晶域を形成する効果が大きいNbを有効利用することが重要であることを見出した。そして、これらの技術を適正に組み合わせることによって初めて本発明を完成するに至った。   In addition, when the influence of rolling conditions on the strength and toughness of the base metal was examined, the cooling after rolling was changed to two-stage cooling consisting of a pre-stage cooling with a large cooling rate and a small post-stage cooling, and each cooling rate was appropriately set. It has been found that if controlled, the steel sheet structure becomes a structure mainly composed of acicular ferrite, and a high-strength steel excellent in the strength and toughness of the base material can be produced. Furthermore, it has been found that in order to further increase the strength and toughness of the base material, it is important to effectively use Nb which has a large effect of forming an unrecrystallized region in the low temperature region of austenite. The present invention has been completed only by properly combining these techniques.

すなわち、本発明は、C:0.03〜0.10mass%、Si:0.30mass%以下、Mn:1.66〜2.30mass%、P:0.012mass%以下、S:0.005mass%以下、Al:0.005〜0.06mass%、Nb:0.004〜0.05mass%、Ti:0.005〜0.02mass%、N:0.001〜0.005mass%、Ca:0.0005〜0.003mass%を含有し、かつ、Ca,SおよびOが下記(1)式;
0<(Ca−(0.18+130×Ca)×O)/1.25/S<1 ・・・(1)
ここで、Ca,SおよびOは、各元素の含有量(mass%)
を満たして含有し、残部がFeおよび不可避的不純物からなる成分組成を有することを特徴とする高張力鋼である。
That is, the present invention includes C: 0.03 to 0.10 mass%, Si: 0.30 mass% or less, Mn: 1.66 to 2.30 mass%, P: 0.012 mass% or less, S: 0.005 mass. %: Al: 0.005-0.06 mass%, Nb: 0.004-0.05 mass%, Ti: 0.005-0.02 mass%, N: 0.001-0.005 mass%, Ca: 0 .0005 to 0.003 mass%, and Ca, S and O are represented by the following formula (1):
0 <(Ca− (0.18 + 130 × Ca) × O) /1.25/S <1 (1)
Here, Ca, S and O are the contents of each element (mass%).
Is a high-strength steel characterized in that it has a component composition consisting of Fe and inevitable impurities.

本発明の高張力鋼は、上記成分組成に加えてさらに、B:0.0003〜0.0025mass%、V:0.2mass%以下、Cu:1mass%以下、Ni:0.75mass%以下、Cr:0.7mass%以下およびMo:0.7mass%以下の中から選ばれる1種または2種以上を含有することを特徴とする。
In addition to the above component composition, the high-strength steel of the present invention further includes B: 0.0003 to 0.0025 mass%, V: 0.2 mass% or less, Cu: 1 mass% or less, Ni: 0.75 mass% or less, One or more selected from Cr: 0.7 mass% or less and Mo: 0.7 mass% or less are contained.

また、本発明は、C:0.03〜0.10mass%、Si:0.30mass%以下、Mn:1.66〜2.30mass%、P:0.012mass%以下、S:0.005mass%以下、Al:0.005〜0.06mass%、Nb:0.004〜0.05mass%、Ti:0.005〜0.02mass%、N:0.001〜0.005mass%、Ca:0.0005〜0.003mass%を含有し、かつ、Ca,SおよびOが下記(1)式;
0<(Ca−(0.18+130×Ca)×O)/1.25/S<1
・・・(1)
ここで、Ca,SおよびOは、各元素の含有量(mass%)
を満たして含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを1050〜1200℃に加熱後、950℃以上の温度域における累積圧下率が30%以上、950℃未満の温度域における累積圧下率が30〜70%となる熱間圧延を施し、その後、熱間圧延終了温度から600〜450℃間の冷却停止温度までを5〜45℃/secで冷却する前段冷却と、上記前段冷却停止温度から450℃以下の冷却停止温度までを1℃/sec以上5℃/sec未満で冷却する後段冷却を施すことを特徴とする高張力鋼の製造方法を提案する。
In the present invention, C: 0.03 to 0.10 mass%, Si: 0.30 mass% or less, Mn: 1.66 to 2.30 mass%, P: 0.012 mass% or less, S: 0.005 mass %: Al: 0.005-0.06 mass%, Nb: 0.004-0.05 mass%, Ti: 0.005-0.02 mass%, N: 0.001-0.005 mass%, Ca: 0 .0005 to 0.003 mass%, and Ca, S and O are represented by the following formula (1):
0 <(Ca− (0.18 + 130 × Ca) × O) /1.25/S <1
... (1)
Here, Ca, S and O are the contents of each element (mass%).
After heating a steel slab having a composition composed of Fe and unavoidable impurities to 1050 to 1200 ° C., the cumulative rolling reduction in a temperature range of 950 ° C. or higher is 30% or more and less than 950 ° C. Pre-stage cooling in which the cumulative rolling reduction in the region is 30 to 70%, and then the hot rolling is cooled from 5 to 45 ° C./sec from the hot rolling end temperature to the cooling stop temperature between 600 to 450 ° C., The present invention proposes a method for producing a high-strength steel, characterized in that post-stage cooling is performed in which cooling is performed at a temperature of 1 ° C./sec or more and less than 5 ° C./sec from the preceding stage cooling stop temperature to a cooling stop temperature of 450 ° C. or less.

本発明の高張力鋼の製造方法に用いる鋼スラブは、上記成分組成に加えてさらに、B:0.0003〜0.0025mass%、V:0.2mass%以下、Cu:1mass%以下、Ni:0.75mass%以下、Cr:0.7mass%以下およびMo:0.7mass%以下の中から選ばれる1種または2種以上を含有することを特徴とする。

In addition to the above component composition, the steel slab used in the method for producing high-tensile steel according to the present invention further includes B: 0.0003 to 0.0025 mass%, V: 0.2 mass% or less, Cu: 1 mass% or less, Ni: It is characterized by containing one or more selected from 0.75 mass% or less, Cr: 0.7 mass% or less, and Mo: 0.7 mass% or less.

また、本発明の製造方法は、後段冷却後の鋼に、450〜650℃の焼戻処理を施すことを特徴とする。   In addition, the production method of the present invention is characterized in that a tempering treatment at 450 to 650 ° C. is performed on the steel after the subsequent stage cooling.

本発明によれば、母材が降伏応力460MPa以上の高強度を有すると共に靭性にも優れ、しかも、溶接後の熱影響部の靭性(CTOD特性)にも優れる高強度鋼を安価に製造することができるので、船舶や海洋構造物等の大型化に大きく寄与する。   According to the present invention, a high-strength steel whose base material has a high strength with a yield stress of 460 MPa or more, is excellent in toughness, and is excellent in the toughness (CTOD characteristics) of a heat-affected zone after welding is manufactured at low cost. Can greatly contribute to the increase in size of ships and offshore structures.

熱間圧延後の前段冷却速度(圧延終了温度から600〜450℃間の冷却停止温度までの冷却速度)が母材特性に及ぼす影響を示すグラフである。It is a graph which shows the influence which the pre-stage cooling rate after a hot rolling (cooling rate from the rolling completion temperature to the cooling stop temperature between 600-450 degreeC) has on a base material characteristic.

本発明の基本的な技術思想について説明する。
本発明の第1の特徴は、溶接熱影響部の靭性を向上するために、硫化物の形態制御を目的として添加しているCaの化合物(CaS)の晶出を有効利用するところにある。このCaSは、酸化物に比べて低温で晶出するため、均一に微細分散することができる。そして、CaSの添加量および添加時の溶鋼中の溶存酸素量を適性範囲に制御することによって、CaS晶出後でも固溶Sが確保されるので、CaSの表面上にMnSが析出して複合硫化物を形成する。このMnSには、フェライト核生成能があることが知られており、さらに、析出したMnSの周囲には、Mnの希薄帯が形成されるので、フェライト変態がより促進される。このMn希薄帯の効果は、鋼中のMn添加量を増加させることにより、より効果的に発現するようになる。しかも、析出したMnS上には、TiN,BN,AlN等のフェライト生成核も析出するので、よりいっそうフェライト変態が促進される。
また、Mn添加量を増加することにより、溶接熱影響部において脆化組織である島状マルテンサイトを極力生成させずに母材強度を効果的に高めることができる。これは、Mn添加量の増加により、溶接後の冷却中に生成する島状マルテンサイトがセメンタイトに分解しやすくなり、熱影響部組織中の島状マルテンサイトが低減するためである。これらの効果の結果、Niの添加を必須とすることなく、溶接熱影響部の靭性を確保することができる。
The basic technical idea of the present invention will be described.
The first feature of the present invention is to effectively use the crystallization of a Ca compound (CaS) added for the purpose of controlling the morphology of sulfides in order to improve the toughness of the weld heat affected zone. Since this CaS crystallizes at a lower temperature than the oxide, it can be uniformly finely dispersed. Then, by controlling the amount of CaS added and the amount of dissolved oxygen in the molten steel at the time of addition to an appropriate range, solid solution S is ensured even after crystallization of CaS, so that MnS is precipitated on the surface of CaS and combined. Forms sulfides. This MnS is known to have a ferrite nucleation ability. Further, since a Mn dilute band is formed around the precipitated MnS, the ferrite transformation is further promoted. The effect of this Mn dilute band is more effectively expressed by increasing the amount of Mn added in the steel. Moreover, since ferrite-forming nuclei such as TiN, BN, and AlN also precipitate on the precipitated MnS, the ferrite transformation is further promoted.
Further, by increasing the amount of Mn added, the base metal strength can be effectively increased without generating island martensite, which is an embrittled structure, in the weld heat affected zone as much as possible. This is because the island-like martensite generated during cooling after welding is easily decomposed into cementite due to the increase in the amount of Mn added, and the island-like martensite in the heat-affected zone structure is reduced. As a result of these effects, the toughness of the weld heat affected zone can be ensured without making the addition of Ni essential.

上記技術によって、高温でも溶解しないフェライト変態生成核を微細に分散させることが可能となり、溶接熱影響部の組織を微細化するとともに、島状マルテンサイトの生成を極力抑えることで、高い靭性を得ることができる。また、多層溶接時の熱サイクルにより2相域に再加熱される領域においても、最初の溶接熱影響部の組織が微細化されるので、未変態の領域の靭性が向上し、さらに、再変態するオーステナイト粒も微細化するので、靭性の低下の度合いを小さく抑えることができる。   The above technology makes it possible to finely disperse ferrite transformation nuclei that do not melt even at high temperatures, refine the structure of the weld heat-affected zone, and minimize the formation of island martensite to obtain high toughness. be able to. Even in the region reheated to the two-phase region by the thermal cycle during multi-layer welding, the structure of the first weld heat affected zone is refined, so that the toughness of the untransformed region is improved and the retransformation is further improved. Since the austenite grains to be refined are also made fine, the degree of toughness reduction can be kept small.

本発明の第2の特徴は、鋼材圧延後の冷却を、前段冷却と後段冷却の2段階に分け、後段冷却より前段冷却の冷却速度を大きく制御するところにある。この点について、実験結果を基に説明する。
C:0.08mass%、Si:0.2mass%、Mn:1.8mass%を基本成分とする鋼スラブを、1150℃に加熱後、950℃以上の累積圧下率を40%、950℃未満での累積圧下率を50%、圧延終了温度を850℃とする熱間圧延後、圧延終了温度から500℃までを冷却速度5〜45℃/sec、より好ましくは5〜20℃/secで冷却する前段冷却と、さらに、350℃までを冷却速度3℃/secで冷却する後段冷却を施し、その後、空冷して板厚10〜50mmの厚鋼板とした。この厚鋼板について、引張強度特性および−40℃における靭性特性(シャルピー衝撃吸収エネルギー)を測定した。
The second feature of the present invention lies in that the cooling after rolling the steel material is divided into two stages, a pre-stage cooling and a post-stage cooling, and the cooling rate of the pre-stage cooling is controlled more greatly than the post-stage cooling. This point will be described based on experimental results.
After heating a steel slab containing C: 0.08 mass%, Si: 0.2 mass%, and Mn: 1.8 mass% to 1150 ° C, the cumulative reduction ratio of 950 ° C or higher is 40%, less than 950 ° C. After hot rolling with a cumulative rolling reduction of 50% and a rolling end temperature of 850 ° C., cooling from the rolling end temperature to 500 ° C. is performed at a cooling rate of 5 to 45 ° C./sec, more preferably 5 to 20 ° C./sec. Pre-stage cooling and further post-stage cooling to 350 ° C. at a cooling rate of 3 ° C./sec were performed, followed by air cooling to obtain a thick steel plate having a thickness of 10 to 50 mm. About this thick steel plate, the tensile strength characteristic and the toughness characteristic (Charpy impact absorption energy) in -40 degreeC were measured.

図1は、上記測定結果について、母材強度および靭性に及ぼす前段の冷却速度の影響を示したものであり、圧延終了温度から500℃までの前段冷却の冷却速度を5〜45℃/secの範囲に制御することによって、降伏応力が460MPa以上の高強度で、vE-40℃が200J以上である強度−靭性バランスに優れた鋼板が得られることがわかる。   FIG. 1 shows the influence of the preceding cooling rate on the base material strength and toughness with respect to the above measurement results. The cooling rate of the former cooling from the rolling end temperature to 500 ° C. is 5 to 45 ° C./sec. It can be seen that by controlling to the range, a steel sheet having a high strength with a yield stress of 460 MPa or more and an excellent strength-toughness balance with a vE-40 ° C. of 200 J or more can be obtained.

さらに、上記冷却速度で冷却した鋼板は、アシキュラーフェライト主体の組織となることもわかった。一般に、高強度鋼を得ようとした場合、島状マルテンサイトなどをラス間に含む比較的粗大な上部ベイナイト組織となると、靭性が大きく低下する。そこで、高強度と高靭性を両立させるためには、圧延条件の工夫などにより微細なアシキュラーフェライト組織とすることが必要となる。しかし、発明者らは、圧延後の冷却を前段冷却とそれよりも冷却速度が遅い後段冷却とに分け、それぞれの冷却速度を適正に制御することによって、アシキュラーフェライト主体の組織とし、優れた強度−靭性バランスを有する鋼板を得ることができることを見出した。これは、前段の冷却速度を速くすることで、変態核生成密度を高め、変態後の組織を粗大ベイナイト組織でなく緻密なアシキュラーフェライト組織にすることができるからである。さらに、後段の冷却速度については、前段の冷却速度より速過ぎると、島状マルテンサイトを生成し、母材の靭性を劣化させること、一方、後段の冷却速度を遅くし過ぎると、母材の強度が低下してしまうことから、適正な範囲に制御する必要があることも見出した。
本発明は、上記知見に基づき完成したものである。
Furthermore, it has been found that the steel sheet cooled at the cooling rate has a structure mainly composed of acicular ferrite. Generally, when trying to obtain high-strength steel, the toughness is greatly reduced when a relatively coarse upper bainite structure including island-like martensite and the like between the laths is obtained. Therefore, in order to achieve both high strength and high toughness, it is necessary to obtain a fine acicular ferrite structure by devising rolling conditions. However, the inventors divided the cooling after rolling into pre-stage cooling and post-stage cooling with a slower cooling rate than that, and by appropriately controlling each cooling rate, the structure was mainly composed of acicular ferrite, and was excellent. It has been found that a steel sheet having a strength-toughness balance can be obtained. This is because by increasing the cooling rate in the previous stage, the transformation nucleation density can be increased, and the transformed structure can be made into a dense acicular ferrite structure instead of a coarse bainite structure. Furthermore, with regard to the cooling rate of the subsequent stage, if it is too faster than the cooling rate of the previous stage, island-shaped martensite is generated and the toughness of the base material is deteriorated. It has also been found that it is necessary to control within an appropriate range since the strength decreases.
The present invention has been completed based on the above findings.

次に、本発明に係る高張力鋼が有すべき成分組成について説明する。
C:0.03〜0.10mass%
Cは、鋼の強度に最も大きく影響する元素であり、構造用鋼として必要な強度(YS≧460MPa)を確保するためには0.03mass%以上含有させる必要がある。しかし、逆に、多過ぎると、母材靭性の低下や溶接時の低温割れを引き起こすので、上限を0.10mass%とする。
Next, the component composition that the high-strength steel according to the present invention should have will be described.
C: 0.03-0.10 mass%
C is an element that has the greatest influence on the strength of the steel, and in order to ensure the strength necessary for structural steel (YS ≧ 460 MPa), it is necessary to contain 0.03 mass% or more. However, conversely, if too much, lowering of the toughness of the base metal and cold cracking during welding are caused, so the upper limit is made 0.10 mass%.

Si:0.30mass%以下
Siは、脱酸材として、また、鋼を高強度化するために添加される成分であり、その効果を得るためには、0.01mass%以上添加するのが好ましい。しかし、0.30mass%を超えると、母材および溶接部の靭性を低下させるため0.30mass%以下とする必要がある。好ましくは、0.01〜0.20mass%の範囲である。
Si: 0.30 mass% or less Si is a component to be added as a deoxidizer and to increase the strength of steel, and in order to obtain the effect, it is preferable to add 0.01 mass% or more. . However, if it exceeds 0.30 mass%, the toughness of the base metal and the welded portion is lowered, so that it is necessary to be 0.30 mass% or less. Preferably, it is the range of 0.01-0.20 mass%.

Mn:1.60〜2.30mass%
Mnは、母材の強度を確保するために有効な元素であるが、本発明では、溶接熱影響部の組織微細化を促進すると共に、脆化組織の形成を極力抑制して、溶接熱影響部の靭性(CTOD特性)を改善するために添加する重要な元素である。この効果を得るためには、1.60mass%以上添加する必要がある。一方、2.30mass%を超えると、母材や溶接部の靭性を著しく低下させるため、2.30mass%以下とする。好ましくは、1.65〜2.15mass%の範囲である。
Mn: 1.60 to 2.30 mass%
Mn is an element effective for securing the strength of the base material, but in the present invention, the refinement of the structure of the heat affected zone of the weld is promoted and the formation of the brittle structure is suppressed as much as possible, thereby affecting the heat of welding. It is an important element to be added in order to improve the toughness of the part (CTOD characteristics). In order to acquire this effect, it is necessary to add 1.60 mass% or more. On the other hand, if it exceeds 2.30 mass%, the toughness of the base metal and the welded portion is remarkably lowered, so that it is 2.30 mass% or less. Preferably, it is the range of 1.65 to 2.15 mass%.

P:0.015mass%以下
Pは、不可避的に混入する不純物であり、0.015mass%を超えると、母材や溶接部の靭性を低下させるため、0.015mass%以下に制限する。好ましくは、0.010mass%以下である。
P: 0.015 mass% or less P is an impurity that is inevitably mixed, and if it exceeds 0.015 mass%, the toughness of the base metal and the welded portion is lowered, so that it is limited to 0.015 mass% or less. Preferably, it is 0.010 mass% or less.

S:0.005mass%以下
Sは、不可避的に混入する不純物であり、0.005mass%を超えて含有すると、母材および溶接部の靭性を低下させるため、0.005mass%以下とする。好ましくは、0.0035mass%以下である。
S: 0.005 mass% or less S is an impurity that is inevitably mixed, and if contained in excess of 0.005 mass%, the toughness of the base metal and the welded portion is lowered, so the content is made 0.005 mass% or less. Preferably, it is 0.0035 mass% or less.

Al:0.005〜0.06mass%
Alは、溶鋼を脱酸するために添加される元素であり、0.005mass%以上含有させる必要がある。一方、0.06mass%を超えて添加すると、母材の靭性を低下させるとともに、溶接による希釈によって溶接金属部に混入し、靭性を低下させるため、0.06mass%以下に制限する必要がある。好ましくは、0.010〜0.055mass%である。
Al: 0.005-0.06 mass%
Al is an element added to deoxidize molten steel, and it is necessary to contain 0.005 mass% or more. On the other hand, if added over 0.06 mass%, the toughness of the base metal is reduced and mixed into the weld metal part by dilution by welding to reduce the toughness. Therefore, it is necessary to limit to 0.06 mass% or less. Preferably, it is 0.010-0.055 mass%.

Nb:0.004〜0.05mass%
Nbは、オーステナイトの低温度域で未再結晶域を形成するので、その温度域で圧延を施すことにより、母材の組織微細化および高靭性化を図ることができる。また、圧延・冷却後に焼戻処理を施すことにより、析出強化を図ることもできる。したがって、Nbは、鋼の強化を図る観点からは重要な添加元素である。上記効果を得るためには、Nbを0.004mass%以上添加する必要がある。しかし、0.05mass%を超えて過剰に添加した場合には、溶接部の靭性を劣化させるので、上限は0.05mass%とする。
Nb: 0.004 to 0.05 mass%
Since Nb forms a non-recrystallized region in the low temperature range of austenite, the microstructure of the base material can be refined and the toughness can be increased by rolling in that temperature range. In addition, precipitation strengthening can be achieved by performing a tempering treatment after rolling and cooling. Therefore, Nb is an important additive element from the viewpoint of strengthening steel. In order to acquire the said effect, it is necessary to add Nb 0.004 mass% or more. However, if it is added excessively exceeding 0.05 mass%, the toughness of the welded portion is deteriorated, so the upper limit is made 0.05 mass%.

Ti:0.005〜0.02mass%
Tiは、溶鋼が凝固する際にTiNとなって析出し、溶接部におけるオーステナイトの粗大化を抑制し、また、フェライトの変態核となるため、溶接部の高靭性化に寄与する。それらの効果を得るためには、0.005mass%以上添加する必要がある。一方、0.02mass%を超えて添加すると、TiN粒子が粗大化し、母材や溶接部の靭性改善効果が得られなくなる。よって、Tiの添加量は0.005〜0.02mass%の範囲とする。
Ti: 0.005-0.02 mass%
Ti precipitates as TiN when the molten steel solidifies, suppresses coarsening of austenite in the welded portion, and becomes a transformation nucleus of ferrite, thereby contributing to the increase in toughness of the welded portion. In order to obtain these effects, it is necessary to add 0.005 mass% or more. On the other hand, if added over 0.02 mass%, the TiN particles become coarse, and the effect of improving the toughness of the base metal and the welded portion cannot be obtained. Therefore, the amount of Ti added is in the range of 0.005 to 0.02 mass%.

N:0.001〜0.005mass%
Nは、溶接部の組織の粗大化を抑制するTiNを形成させるために必要な元素であり、0.001mass%以上添加する。一方、0.005mass%を超えて添加すると、固溶Nが母材や溶接部の靭性を著しく低下させることから上限を0.005mass%とする。なお、組織の粗大化を抑制するピンニング(pinning)に十分な量のTiN形成させるためには、0.003〜0.005mass%の範囲が好ましい。
N: 0.001 to 0.005 mass%
N is an element necessary for forming TiN that suppresses the coarsening of the structure of the welded portion, and is added in an amount of 0.001 mass% or more. On the other hand, if added over 0.005 mass%, the solid solution N significantly reduces the toughness of the base metal and the welded portion, so the upper limit is made 0.005 mass%. In order to form a sufficient amount of TiN for pinning that suppresses the coarsening of the structure, a range of 0.003 to 0.005 mass% is preferable.

Ca:0.0005〜0.003mass%
Caは、Sを固定することによって靭性を向上する元素である。この効果を発現させるためには、少なくとも0.0005mass%の添加が必要である。しかし、0.003mass%を超えて含有しても、その効果が飽和するので、Caは、0.0005〜0.003mass%の範囲で添加する。
Ca: 0.0005 to 0.003 mass%
Ca is an element that improves toughness by fixing S. In order to develop this effect, it is necessary to add at least 0.0005 mass%. However, since the effect is saturated even if it contains exceeding 0.003 mass%, Ca is added in the range of 0.0005 to 0.003 mass%.

0<(Ca−(0.18+130×Ca)×O)/1.25/S<1
高温でも溶解しないフェライト変態生成核CaSを微細分散させるためには、Ca,SおよびOは、下記(1)式;
0<(Ca−(0.18+130×Ca)×O)/1.25/S<1 ・・・(1)
ここで、Ca,S,O:各元素の含有量(mass%)
の関係を満たして含有する必要がある。上記式中の、(Ca−(0.18+130×Ca)×O)/(1.25/S)は、硫化物形態制御に有効なCaとSの原子濃度の比を示す値であり、この値から、硫化物の形態を推定することができる(持田他、「鉄と鋼」、日本鉄鋼協会、第66年(1980)、第3号、P.354〜362)。
0 <(Ca− (0.18 + 130 × Ca) × O) /1.25/S <1
In order to finely disperse the ferrite transformation nuclei CaS that does not dissolve even at high temperatures, Ca, S and O are represented by the following formula (1):
0 <(Ca− (0.18 + 130 × Ca) × O) /1.25/S <1 (1)
Here, Ca, S, O: Content of each element (mass%)
It is necessary to contain and satisfy the relationship. In the above formula, (Ca− (0.18 + 130 × Ca) × O) / (1.25 / S) is a value indicating the ratio of the atomic concentrations of Ca and S effective for sulfide morphology control, and this From the value, the form of sulfide can be estimated (Mochida et al., “Iron and Steel”, Japan Iron and Steel Institute, 66th (1980), No. 3, pages 354 to 362).

すなわち、((Ca−(0.18+130×Ca)×O)/1.25/S)の値が0以下の場合には、CaSが晶出しない。そのため、Sは、MnS単独の形態で析出するので、本発明の主眼である溶接熱影響部でのフェライト生成核の微細分散を実現することができない。また、単独で析出したMnSは、鋼板圧延時に伸長されて、母材の靭性低下を引き起こす。
一方、((Ca−(0.18+130×Ca)×O)/1.25/S)の値が1以上の場合には、Sが完全にCaによって固定され、フェライト生成核として働くMnSがCaS上に析出しなくなるため、複合硫化物が、フェライト生成核として十分に機能することができなくなる。
これに対して、Ca,S,Oが、上記(1)式を満たしている場合には、CaS上にMnSが析出して複合硫化物を形成し、フェライト生成核として有効に機能することができる。なお、((Ca−(0.18+130×Ca)×O)/1.25/S)の値は、好ましくは0.2〜0.8の範囲である。
That is, when the value of ((Ca− (0.18 + 130 × Ca) × O) /1.25/S) is 0 or less, CaS does not crystallize. Therefore, since S precipitates in the form of MnS alone, it is impossible to realize fine dispersion of ferrite-forming nuclei in the weld heat affected zone, which is the main point of the present invention. Further, MnS precipitated alone is elongated during rolling of the steel sheet, causing a reduction in the toughness of the base material.
On the other hand, when the value of ((Ca− (0.18 + 130 × Ca) × O) /1.25/S) is 1 or more, S is completely fixed by Ca, and MnS acting as ferrite nuclei is CaS. Since the composite sulfide does not precipitate on the surface, the composite sulfide cannot sufficiently function as the ferrite nuclei.
On the other hand, when Ca, S, and O satisfy the above formula (1), MnS precipitates on CaS to form a composite sulfide, which effectively functions as a ferrite nuclei. it can. The value of ((Ca− (0.18 + 130 × Ca) × O) /1.25/S) is preferably in the range of 0.2 to 0.8.

本発明の高張力鋼は、上記必須成分に加えてさらに、強度および靭性を高めるために、B,V,Cu,Ni,CrおよびMoのうちから選ばれる1種または2種以上を含有することができる。
B:0.0003〜0.0025mass%
Bは、オーステナイト粒界に偏析し、粒界から起こるフェライト変態を抑制してベイナイト組織の分率を高めることにより、鋼を高強度化する効果がある。その効果は、0.0003mass%以上の添加で得られる。しかし、0.0025mass%を超えて添加すると、逆に靭性が低下する。Bのより好ましい範囲は0.0005〜0.002mass%である。
The high-tensile steel of the present invention contains one or more selected from B, V, Cu, Ni, Cr and Mo in order to further increase the strength and toughness in addition to the above essential components. Can do.
B: 0.0003 to 0.0025 mass%
B segregates at the austenite grain boundaries and has the effect of increasing the strength of the steel by suppressing the ferrite transformation that occurs from the grain boundaries and increasing the fraction of the bainite structure. The effect is acquired by addition of 0.0003 mass% or more. However, if added over 0.0025 mass%, the toughness is conversely reduced. A more preferable range of B is 0.0005 to 0.002 mass%.

V:0.2mass%以下
Vは、母材の強度・靭性の向上に有効な元素であり、また、VNとして析出してフェライト生成核としても働く元素でもある。その効果を得るためには、0.01mass%以上添加するのが好ましい。しかし、添加量が0.2mass%を超えると、却って靭性の低下を招くので0.2mass%以下を添加するのが好ましい。より好ましくは、0.15mass%以下である。
V: 0.2 mass% or less V is an element effective for improving the strength and toughness of the base material, and is also an element that precipitates as VN and also serves as a ferrite formation nucleus. In order to acquire the effect, it is preferable to add 0.01 mass% or more. However, if the added amount exceeds 0.2 mass%, the toughness is reduced instead. Therefore, it is preferable to add 0.2 mass% or less. More preferably, it is 0.15 mass% or less.

Cu:1mass%以下
Cuは、鋼の強度向上効果を有する元素である。その効果を得るためには、0.05mass%以上添加するのが好ましい。しかし、1mass%を超えると、熱間脆性を引き起こして鋼板の表面性状を劣化させるため、1mass%以下の範囲で添加するのが好ましい。より好ましくは、0.8mass%以下である。
Cu: 1 mass% or less Cu is an element having an effect of improving the strength of steel. In order to acquire the effect, it is preferable to add 0.05 mass% or more. However, if it exceeds 1 mass%, it causes hot brittleness and deteriorates the surface properties of the steel sheet. Therefore, it is preferably added in the range of 1 mass% or less. More preferably, it is 0.8 mass% or less.

Ni:2mass%以下
Niは、鋼の強度向上および溶接熱影響部のCTOD特性の向上に有効な元素である。その効果を得るためには、0.05mass%以上添加するのが好ましい。しかし、Niは、高価な元素であるため、上限を2.0mass%とするのが好ましい。本発明のように、Mnを1.6mass%以上添加する場合には、なお、原料コストを低減する観点からは、Niは0.3mass%未満とするのがより好ましい。
Ni: 2 mass% or less Ni is an element effective for improving the strength of steel and the CTOD characteristics of the weld heat affected zone. In order to acquire the effect, it is preferable to add 0.05 mass% or more. However, since Ni is an expensive element, the upper limit is preferably set to 2.0 mass%. When Mn is added in an amount of 1.6 mass% or more as in the present invention, Ni is more preferably less than 0.3 mass% from the viewpoint of reducing raw material costs.

Cr:0.7mass%以下
Crは、母材を高強度化するのに有効な元素である。その効果を得るためには、0.05mass%以上添加するのが好ましい。しかし、多量に添加すると、逆に靭性に悪影響を与えるので、上限を0.7mass%とするのが好ましい。より好ましくは、0.5mass%以下である。
Cr: 0.7 mass% or less Cr is an element effective for increasing the strength of the base material. In order to acquire the effect, it is preferable to add 0.05 mass% or more. However, if added in a large amount, the toughness is adversely affected, so the upper limit is preferably 0.7 mass%. More preferably, it is 0.5 mass% or less.

Mo:0.7mass%以下
Moは、Crと同様、母材を高強度化するのに有効な元素である。その効果を得るためには、0.05mass%以上添加するのが好ましい。しかし、多量に添加すると、逆に靭性に悪影響を与えるので、上限を0.7mass%とするのが好ましい。より好ましくは、0.5mass%以下である。
Mo: 0.7 mass% or less Mo, like Cr, is an element effective for increasing the strength of the base material. In order to acquire the effect, it is preferable to add 0.05 mass% or more. However, if added in a large amount, the toughness is adversely affected, so the upper limit is preferably 0.7 mass%. More preferably, it is 0.5 mass% or less.

次に、本発明の高張力鋼の製造方法について説明する。
本発明の高張力鋼は、上述した本発明に適合する成分組成に調整した溶鋼を、転炉、電気炉、真空溶解炉等を用いた通常の方法で溶製し、次いで、連続鋳造または造塊−分塊圧延などの通常の工程を経てスラブ等の鋼素材としたのち、この鋼素材を熱間圧延して厚肉高張力鋼を製造するのが好ましい。この際、熱間圧延に先立って行う鋼素材の加熱温度は1050〜1200℃の範囲とする必要がある。加熱温度が1050℃以上とする理由は、鋼素材中に存在する鋳造欠陥を、熱間圧延によって確実に圧着させるためである。しかし、1200℃を超える温度に加熱すると、凝固時に析出したTiNが粗大化し、母材や溶接部の靭性が低下するため、加熱温度は1200℃以下に規制する必要がある。
Next, the manufacturing method of the high strength steel of this invention is demonstrated.
The high-strength steel of the present invention is prepared by melting a molten steel adjusted to the above-described component composition by a usual method using a converter, an electric furnace, a vacuum melting furnace, etc. It is preferable that a steel material such as a slab is obtained through a normal process such as lump-slab rolling, and then this steel material is hot-rolled to produce a thick high-strength steel. Under the present circumstances, it is necessary to make the heating temperature of the steel raw material performed prior to hot rolling into the range of 1050-1200 degreeC. The reason why the heating temperature is set to 1050 ° C. or higher is to reliably press-bond casting defects existing in the steel material by hot rolling. However, when heated to a temperature exceeding 1200 ° C., TiN deposited during solidification becomes coarse and the toughness of the base material and the welded portion decreases, so the heating temperature needs to be regulated to 1200 ° C. or lower.

上記温度に加熱した鋼素材は、その後、950℃以上の温度域における累積圧下率を30%以上とし、950℃未満の温度域における累積圧下率を30〜70%とする熱間圧延を施し、所定の板厚を有する高張力鋼とする。950℃以上の温度域で累積圧下率が30%以上の熱間圧延を施す理由は、この温度域での累積圧下率を30%以上とすることにより、オーステナイト粒が再結晶して組織を微細化できるが、累積圧下率が30%未満では、加熱時に生成した異常粗大粒が残存して、母材の靭性に悪影響を及ぼすためである。   The steel material heated to the above temperature is then subjected to hot rolling in which the cumulative reduction rate in the temperature range of 950 ° C. or higher is 30% or more, and the cumulative reduction rate in the temperature range of less than 950 ° C. is 30 to 70%. A high-strength steel having a predetermined thickness is used. The reason for performing hot rolling with a cumulative reduction ratio of 30% or more in a temperature range of 950 ° C. or higher is that the austenite grains are recrystallized and the structure becomes fine by setting the cumulative reduction ratio in this temperature range to 30% or more. However, if the cumulative rolling reduction is less than 30%, abnormal coarse grains generated during heating remain, which adversely affects the toughness of the base material.

また、950℃未満の温度域における累積圧下率を30〜70%とする熱間圧延を施す理由は、この温度域で圧延されたオーステナイト粒は十分に再結晶しないため、圧延後のオーステナイト粒は、扁平に変形したままで、内部に変形帯などの欠陥に多量に含む内部歪の高いものとなる。そして、この蓄積された内部エネルギーが、その後のフェライト変態の駆動力として働き、フェライト変態を促進する。しかし、圧下率が30%未満では、上記の蓄積される内部エネルギーが十分ではないため、フェライト変態が起こりにくく、母材靭性が劣化する。一方、圧下率が70%を超えると、逆にポリゴナルフェライトの生成が促進されて、アシキュラーフェライトの生成が抑制され、高強度と高靭性とが両立しなくなる。   In addition, the reason for performing hot rolling to set the cumulative reduction ratio in the temperature range below 950 ° C. to 30 to 70% is that the austenite grains rolled in this temperature range are not sufficiently recrystallized. It remains deformed flat and has a high internal strain that is contained in a large amount in defects such as deformation bands. The accumulated internal energy works as a driving force for the subsequent ferrite transformation and promotes the ferrite transformation. However, if the rolling reduction is less than 30%, the accumulated internal energy is not sufficient, so that ferrite transformation hardly occurs and the base material toughness deteriorates. On the other hand, when the rolling reduction exceeds 70%, the formation of polygonal ferrite is promoted, the formation of acicular ferrite is suppressed, and high strength and high toughness are not compatible.

続く熱間圧延終了後の冷却は、前段冷却と後段冷却に分け、前者の冷却速度を後者のそれよりも相対的に大きくする、すなわち、前段冷却では、熱間圧延終了温度から600〜450℃間の冷却停止温度まで、好ましくは熱間圧延終了温度から580〜480℃間の冷却停止温度までを、5〜45℃/sec、好ましくは5〜20℃/sec、さらに好ましくは6〜16℃/secの冷却速度で冷却し、その後の後段冷却では、前段冷却の停止温度から450℃以下の後段冷却停止温度まで、好ましくは前段冷却の停止温度から400〜250℃間の冷却停止温度までを、1℃/sec以上5℃/sec未満、好ましくは2〜4.5℃/secの冷却速度で冷却する必要がある。   Cooling after the end of the subsequent hot rolling is divided into pre-stage cooling and post-stage cooling, and the cooling rate of the former is made relatively larger than that of the latter, that is, in the pre-stage cooling, 600 to 450 ° C. from the hot rolling end temperature. Between 5 to 45 ° C / sec, preferably 5 to 20 ° C / sec, more preferably 6 to 16 ° C. Cooling at a cooling rate of / sec, and in the subsequent rear cooling, from the previous cooling stop temperature to the lower cooling stop temperature of 450 ° C. or less, preferably from the previous cooling stop temperature to the cooling stop temperature between 400 to 250 ° C. It is necessary to cool at a cooling rate of 1 ° C./sec or more and less than 5 ° C./sec, preferably 2 to 4.5 ° C./sec.

前段冷却における停止温度が上記温度域よりも高い場合には、強度の増加がほとんどなく、逆に、上記温度域よりも低い場合には靭性が劣化する。また、前段冷却速度が上記範囲の下限未満では、ポリゴナルフェライト主体の組織となって強度の向上が得られず、逆に上記範囲の上限を超えると靭性が低下する。さらに、後段冷却における冷却停止温度が上記温度域の上限よりも高い場合には、強度の上昇が不十分となる。また、後段冷却速度が上記範囲の下限未満では、母材強度が不足し、逆に上記範囲の上限を超えると、母材の靭性が低下する。また、後段の冷却速度が、前段の冷却速度より速過ぎると、島状マルテンサイトを生成し、母材の靭性を劣化させてしまう。   When the stop temperature in the pre-cooling is higher than the above temperature range, there is almost no increase in strength, and conversely, when it is lower than the above temperature range, the toughness deteriorates. Further, if the cooling rate at the front stage is less than the lower limit of the above range, the structure is mainly composed of polygonal ferrite, and the strength cannot be improved. Conversely, if the upper limit of the above range is exceeded, the toughness decreases. Furthermore, when the cooling stop temperature in the latter stage cooling is higher than the upper limit of the temperature range, the increase in strength is insufficient. Moreover, if the latter stage cooling rate is less than the lower limit of the above range, the base material strength is insufficient, and conversely if the upper limit of the above range is exceeded, the toughness of the base material is lowered. On the other hand, if the subsequent cooling rate is too higher than the preceding cooling rate, island martensite is generated and the toughness of the base material is deteriorated.

なお、本発明では、残留する内部応力を低減する目的で、上記冷却後の鋼材に、450〜650℃の温度範囲で焼戻処理を施してもよい。焼戻処理温度が450℃未満では、残留応力の除去効果が小さく、一方、650℃を超えて高くなると、各種炭窒化物が析出して析出強化を起こし、靭性が低下するため好ましくない。   In the present invention, the steel material after cooling may be tempered in a temperature range of 450 to 650 ° C. for the purpose of reducing residual internal stress. When the tempering temperature is less than 450 ° C., the effect of removing residual stress is small. On the other hand, when the temperature exceeds 650 ° C., various carbonitrides precipitate to cause precipitation strengthening and reduce toughness.

以上説明したように、本発明の高張力鋼の製造方法においては、熱間圧延における圧延温度に応じた適正な圧下率制御と、圧延終了後の2段冷却条件の適正な制御が重要であり、とくに前段冷却の冷却速度を後段冷却のそれより大きくすることにより、母材がアシキュラーフェライト主体の組織となり、強度−靭性バランスに優れた鋼材を得ることができる。   As described above, in the method for producing high-strength steel according to the present invention, it is important to appropriately control the rolling reduction according to the rolling temperature in hot rolling and to properly control the two-stage cooling conditions after the end of rolling. In particular, when the cooling rate of the pre-stage cooling is made larger than that of the post-stage cooling, the base material becomes a structure mainly composed of acicular ferrite, and a steel material excellent in strength-toughness balance can be obtained.

また、本発明において、鋼成分のうちのNを0.0030mass%超、熱間圧延後の前段冷却の冷却速度を20℃/sec超45℃/sec以下、前段冷却の停止温度を450℃以上500℃未満とすることにより、母材の降伏応力が550MPa以上の高強度を有すると共に、靭性にも優れ、しかも、溶接後の熱影響部の靭性(CTOD特性)にも優れる高強度鋼を安価に製造することができる。   Further, in the present invention, N of the steel components is more than 0.0030 mass%, the cooling rate of the pre-stage cooling after hot rolling is more than 20 ° C./sec. 45 ° C./sec., And the stop temperature of the pre-stage cooling is 450 ° C. or more. By making the temperature lower than 500 ° C., high-strength steel with high yield strength of the base metal of 550 MPa or more, excellent toughness, and excellent heat-affected zone toughness (CTOD characteristics) after welding is inexpensive. Can be manufactured.

表1−1および表1−2に示した成分組成を有するNo.1〜31の鋼スラブを素材とし、表2−1および表2−2に示した条件で熱間圧延と前段冷却および後段冷却を施し、厚さが50〜80mmの厚鋼板を製造した。なお、表2−1、表2−2中に記載された温度は、放射温度計で測定した鋼板表層温度から計算して求めた板厚1/4部の温度である。かくして得られた厚鋼板からサンプルを採取し、引張試験およびシャルピー衝撃試験に供した。引張試験は、厚鋼板の板厚1/4部から、試験片の長手軸の方向が圧延方向と平行になるようにJIS4号引張試験片を採取し、降伏応力(YS)、引張強さ(TS)を測定した。また、シャルピー衝撃試験は、各厚鋼板の板厚1/4部から、圧延幅方向にJIS4号衝撃試験片を採取し、−40℃の温度における吸収エネルギー(vE−40℃)を測定した。そして、YS≧460MPa、TS≧570MPaおよびvE−40℃≧200Jの全てを満たすものを母材特性が良好と評価した。   No. having the component composition shown in Table 1-1 and Table 1-2. Using steel slabs 1 to 31 as raw materials, hot rolling, pre-cooling and post-cooling were performed under the conditions shown in Table 2-1 and Table 2-2 to produce a thick steel plate having a thickness of 50 to 80 mm. In addition, the temperature described in Table 2-1 and Table 2-2 is the temperature of 1/4 part thickness calculated by calculating from the steel plate surface temperature measured with the radiation thermometer. A sample was taken from the thick steel plate thus obtained and subjected to a tensile test and a Charpy impact test. In the tensile test, a JIS No. 4 tensile test piece was sampled from 1/4 thickness of a thick steel plate so that the direction of the longitudinal axis of the test piece was parallel to the rolling direction, and yield stress (YS), tensile strength ( TS) was measured. In the Charpy impact test, JIS No. 4 impact test specimens were collected in the rolling width direction from 1/4 thickness of each thick steel plate, and the absorbed energy (vE-40 ° C) at a temperature of -40 ° C was measured. And the thing which satisfy | fills all of YS> = 460MPa, TS> = 570MPa, and vE-40 degreeC> = 200J was evaluated that the base material characteristic was favorable.

Figure 0005439887
Figure 0005439887

Figure 0005439887
Figure 0005439887

Figure 0005439887
Figure 0005439887

Figure 0005439887
Figure 0005439887

さらに、原則として、母材特性であるYS,TSおよびvE−40℃の全てが上記基準を満たす厚鋼板から採取した試験板にレ開先(開先角度30°)を加工し、入熱量が25kJ/cmの炭酸ガスアーク溶接を行って溶接継手を作製し、この溶接継手から、レ開先のストレートボンド部にノッチを施したCTOD試験片を採取し、−10℃の温度でCTOD試験を行った。なお、CTOD試験片の作製および試験条件は、英国規格BS7448に準拠して行った。また、切欠位置をボンド部とするJIS4号衝撃試験片を採取し、−40℃の温度でシャルピー衝撃試験を行い、吸収エネルギー(vE−40℃)を測定した。   Furthermore, in principle, the groove (30 ° groove angle) is processed into a test plate taken from a thick steel plate in which all of the base material characteristics YS, TS and vE-40 ° C. satisfy the above criteria, and the heat input is A carbon dioxide arc welding of 25 kJ / cm is performed to produce a welded joint, and a CTOD test piece in which a straight bond portion of a groove is notched is taken from this welded joint, and a CTOD test is performed at a temperature of −10 ° C. It was. In addition, preparation of CTOD test pieces and test conditions were performed in accordance with British Standard BS7448. Moreover, the JIS No. 4 impact test piece which makes a notch position a bond part was extract | collected, the Charpy impact test was done at the temperature of -40 degreeC, and the absorbed energy (vE-40 degreeC) was measured.

上記の試験結果を表2−1および表2−2に併記して示した。これらの結果から、本発明例の鋼板は、母材の降伏応力(YS)が460MPa以上でかつシャルピー吸収エネルギー(vE−40℃)が200J以上を有しており、母材の強度、靭性が共に優れていること、さらに、炭酸ガスアーク溶接継手ボンド部についても、vE−40℃が200J以上で、CTOD値が0.10mm以上であり、溶接熱影響部の靭性にも優れていることがわかる。これに対して、本発明の範囲を外れる比較例の鋼では、上記いずれか1つ以上の特性が劣る鋼板しか得られていない。   The test results are shown together in Table 2-1 and Table 2-2. From these results, the steel sheet of the example of the present invention has a yield stress (YS) of the base material of 460 MPa or more and a Charpy absorbed energy (vE-40 ° C.) of 200 J or more, and the strength and toughness of the base material are high. It is understood that both are excellent, and the carbon dioxide arc welded joint has a vE-40 ° C. of 200 J or more, a CTOD value of 0.10 mm or more, and excellent toughness of the weld heat affected zone. . On the other hand, in the steel of the comparative example which is out of the scope of the present invention, only a steel plate having any one or more of the above characteristics is obtained.

なお、N含有量が0.0030mass%超の鋼板No.11〜17では、TiNのピンニング効果により、溶接部のCTOD特性が優れている。
また、N含有量が0.0030mass%超で、熱間圧延後の前段冷却の冷却速度を20℃/sec超45℃/sec以下および前段冷却の停止温度を450℃以上500℃未満とする条件で製造した鋼板No.15および16は、いずれも、母材の降伏応力が550MPa以上の高強度を有している。
In addition, steel plate No. with N content exceeding 0.0030 mass%. In 11-17, the CTOD characteristic of the weld is excellent due to the pinning effect of TiN.
Also, the N content is over 0.0030 mass%, the cooling rate of the pre-cooling after hot rolling is 20 ° C./sec to 45 ° C./sec or less, and the pre-cooling stop temperature is 450 ° C. or more and less than 500 ° C. Steel plate No. manufactured in 15 and 16 both have high strength in which the yield stress of the base material is 550 MPa or more.

本発明の高張力鋼は、船舶や海洋構造物、ラインパイプ、圧力容器だけでなく、建築・土木等の分野において溶接して組み立てられる鋼構造物にも好適に用いることができる。   The high-tensile steel of the present invention can be suitably used not only for ships and offshore structures, line pipes, pressure vessels, but also for steel structures that are assembled by welding in the fields of construction and civil engineering.

Claims (6)

C:0.03〜0.10mass%、
Si:0.30mass%以下、
Mn:1.66〜2.30mass%、
P:0.012mass%以下、
S:0.005mass%以下、
Al:0.005〜0.06mass%、
Nb:0.004〜0.05mass%、
Ti:0.005〜0.02mass%、
N:0.001〜0.005mass%、
Ca:0.0005〜0.003mass%を含有し、
かつ、Ca,SおよびOが下記(1)式を満たして含有し、残部がFeおよび不可避的不純物からなる成分組成を有することを特徴とする高張力鋼。

0<(Ca−(0.18+130×Ca)×O)/1.25/S<1 ・・・(1)
ここで、Ca,SおよびOは、各元素の含有量(mass%)
C: 0.03-0.10 mass%,
Si: 0.30 mass% or less,
Mn: 1.66 ~2.30mass%,
P: 0.012 mass% or less,
S: 0.005 mass% or less,
Al: 0.005 to 0.06 mass%,
Nb: 0.004 to 0.05 mass%,
Ti: 0.005-0.02 mass%,
N: 0.001 to 0.005 mass%,
Ca: 0.0005 to 0.003 mass%,
And high strength steel characterized by Ca, S, and O satisfying | filling following (1) Formula, and having the component composition which remainder consists of Fe and an unavoidable impurity.
0 <(Ca− (0.18 + 130 × Ca) × O) /1.25/S <1 (1)
Here, Ca, S and O are the contents of each element (mass%).
上記成分組成に加えてさらに、B:0.0003〜0.0025mass%、V:0.2mass%以下、Cu:1mass%以下、Ni:0.75mass%以下、Cr:0.7mass%以下およびMo:0.7mass%以下の中から選ばれる1種または2種以上を含有することを特徴とする請求項1に記載の高張力鋼。 In addition to the above component composition, B: 0.0003 to 0.0025 mass%, V: 0.2 mass% or less, Cu: 1 mass% or less, Ni: 0.75 mass% or less, Cr: 0.7 mass% or less, and The high-tensile steel according to claim 1, comprising one or more selected from Mo: 0.7 mass% or less. C:0.03〜0.10mass%、
Si:0.30mass%以下、
Mn:1.66〜2.30mass%、
P:0.012mass%以下、
S:0.005mass%以下、
Al:0.005〜0.06mass%、
Nb:0.004〜0.05mass%、
Ti:0.005〜0.02mass%、
N:0.001〜0.005mass%、
Ca:0.0005〜0.003mass%を含有し、
かつ、Ca,SおよびOが下記(1)式を満たして含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼スラブを1050〜1200℃に加熱後、950℃以上の温度域における累積圧下率が30%以上、950℃未満の温度域における累積圧下率が30〜70%となる熱間圧延を施し、その後、熱間圧延終了温度から600〜450℃間の冷却停止温度までを5〜45℃/secで冷却する前段冷却と、上記前段冷却停止温度から450℃以下の冷却停止温度までを1℃/sec以上5℃/sec未満で冷却する後段冷却を施すことを特徴とする高張力鋼の製造方法。

0<(Ca−(0.18+130×Ca)×O)/1.25/S<1 ・・・(1)
ここで、Ca,SおよびOは、各元素の含有量(mass%)
C: 0.03-0.10 mass%,
Si: 0.30 mass% or less,
Mn: 1.66 ~2.30mass%,
P: 0.012 mass% or less,
S: 0.005 mass% or less,
Al: 0.005 to 0.06 mass%,
Nb: 0.004 to 0.05 mass%,
Ti: 0.005-0.02 mass%,
N: 0.001 to 0.005 mass%,
Ca: 0.0005 to 0.003 mass%,
And after heating the steel slab which has the component composition which Ca, S, and O satisfy | fill following (1) Formula, and remainder consists of Fe and an unavoidable impurity to 1050-1200 degreeC, in the temperature range of 950 degreeC or more Hot rolling is performed so that the cumulative rolling reduction is 30% or more and the cumulative rolling reduction is 30 to 70% in a temperature range of less than 950 ° C., and then the hot rolling end temperature to the cooling stop temperature between 600 to 450 ° C. Pre-stage cooling is performed at 5 to 45 ° C./sec, and post-stage cooling is performed from 1 ° C./sec to less than 5 ° C./sec from the pre-stage cooling stop temperature to a cooling stop temperature of 450 ° C. or lower. Manufacturing method of high-strength steel.
0 <(Ca− (0.18 + 130 × Ca) × O) /1.25/S <1 (1)
Here, Ca, S and O are the contents of each element (mass%).
上記成分組成に加えてさらに、B:0.0003〜0.0025mass%、V:0.2mass%以下、Cu:1mass%以下、Ni:0.75mass%以下、Cr:0.7mass%以下およびMo:0.7mass%以下、の中から選ばれる1種または2種以上を含有することを特徴とする請求項3に記載の高張力鋼の製造方法。 In addition to the above component composition, B: 0.0003 to 0.0025 mass%, V: 0.2 mass% or less, Cu: 1 mass% or less, Ni: 0.75 mass% or less, Cr: 0.7 mass% or less, and The method for producing a high-strength steel according to claim 3, comprising one or more selected from Mo: 0.7 mass% or less. 上記前段冷却を5〜20℃/secで行うことを特徴とする請求項3または4に記載の高張力鋼の製造方法。 The high-strength steel manufacturing method according to claim 3 or 4, wherein the pre-cooling is performed at 5 to 20 ° C / sec. 後段冷却後の鋼に、450〜650℃の焼戻処理を施すことを特徴とする請求項3〜5のいずれか1項に記載の高張力鋼の製造方法。 The method for producing a high-strength steel according to any one of claims 3 to 5, wherein the steel after post-stage cooling is subjected to a tempering treatment at 450 to 650 ° C.
JP2009073113A 2008-03-31 2009-03-25 High-strength steel and manufacturing method thereof Active JP5439887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009073113A JP5439887B2 (en) 2008-03-31 2009-03-25 High-strength steel and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008089648 2008-03-31
JP2008089648 2008-03-31
JP2009073113A JP5439887B2 (en) 2008-03-31 2009-03-25 High-strength steel and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009263777A JP2009263777A (en) 2009-11-12
JP5439887B2 true JP5439887B2 (en) 2014-03-12

Family

ID=41135659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009073113A Active JP5439887B2 (en) 2008-03-31 2009-03-25 High-strength steel and manufacturing method thereof

Country Status (5)

Country Link
EP (1) EP2272994B1 (en)
JP (1) JP5439887B2 (en)
KR (3) KR20130035277A (en)
CN (2) CN105821313A (en)
WO (1) WO2009123292A1 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5177310B2 (en) * 2011-02-15 2013-04-03 Jfeスチール株式会社 High tensile strength steel sheet with excellent low temperature toughness of weld heat affected zone and method for producing the same
JP5630321B2 (en) * 2011-02-24 2014-11-26 Jfeスチール株式会社 High-tensile steel plate with excellent toughness and manufacturing method thereof
JP5630322B2 (en) * 2011-02-24 2014-11-26 Jfeスチール株式会社 High-tensile steel plate with excellent toughness and manufacturing method thereof
JP5906868B2 (en) * 2011-03-28 2016-04-20 Jfeスチール株式会社 Thick steel plate with excellent fatigue resistance in the thickness direction and method for producing the same
WO2012133872A1 (en) * 2011-03-28 2012-10-04 Jfeスチール株式会社 Thick steel sheet having superior fatigue resistance properties in sheet thickness direction, method for producing same, and fillet welded joint using said thick steel sheet
JP5883257B2 (en) * 2011-09-13 2016-03-09 株式会社神戸製鋼所 Steel material excellent in toughness of base metal and weld heat-affected zone, and manufacturing method thereof
CN103987869B (en) * 2011-12-14 2017-06-27 杰富意钢铁株式会社 High heat-input steel material for welding
JP5867381B2 (en) * 2011-12-22 2016-02-24 Jfeスチール株式会社 High strength steel plate for high heat input welding with excellent material uniformity in steel plate and method for producing the same
WO2013099177A1 (en) * 2011-12-27 2013-07-04 Jfeスチール株式会社 High-strength thick steel plate for construction having excellent characteristics for preventing diffusion of brittle cracks, and production method therefor
JP5910219B2 (en) * 2012-03-23 2016-04-27 Jfeスチール株式会社 High strength steel plate for high heat input welding with excellent material uniformity in steel plate and method for producing the same
JP5833964B2 (en) * 2012-03-29 2015-12-16 株式会社神戸製鋼所 Steel sheet excellent in bending workability, impact property and tensile property, and method for producing the same
WO2013147197A1 (en) * 2012-03-30 2013-10-03 新日鐵住金株式会社 High-strength steel pipe for line pipe having excellent hydrogen-induced cracking resistance, high-strength steel pipe for line pipe using same, and method for manufacturing same
JP5958428B2 (en) * 2012-07-30 2016-08-02 Jfeスチール株式会社 Manufacturing method of steel plates for high heat input welding
JP5846311B2 (en) * 2012-09-06 2016-01-20 Jfeスチール株式会社 Thick high-strength steel excellent in welding heat affected zone CTOD characteristics and method for producing the same
JP5732017B2 (en) * 2012-10-03 2015-06-10 株式会社神戸製鋼所 Thick steel plate with little toughness change before and after strain aging
KR101435319B1 (en) * 2013-02-27 2014-08-29 현대제철 주식회사 Method of manufacturing steel sheet
KR101719943B1 (en) * 2013-03-12 2017-03-24 제이에프이 스틸 가부시키가이샤 Thick steel sheet having excellent ctod properties in multilayer welded joints, and manufacturing method for thick steel sheet
KR101846759B1 (en) * 2013-12-12 2018-04-06 제이에프이 스틸 가부시키가이샤 Steel plate and method for manufacturing same
CN106133165B (en) * 2014-03-31 2019-03-08 杰富意钢铁株式会社 Welding point
KR20160127808A (en) * 2014-03-31 2016-11-04 제이에프이 스틸 가부시키가이샤 High-tensile-strength steel plate and process for producing same
JP6048627B2 (en) * 2014-07-15 2016-12-21 Jfeスチール株式会社 Manufacturing method of steel plates for high heat input welding
KR20170038071A (en) 2014-09-05 2017-04-05 제이에프이 스틸 가부시키가이샤 Thick steel sheet having excellent ctod properties in multi-layer welded joints and method for producing same
KR101676143B1 (en) * 2014-12-25 2016-11-15 주식회사 포스코 High strength structural steel having low yield ratio and good impact toughness and preparing method for the same
CN106048412B (en) * 2016-06-29 2018-04-27 宝山钢铁股份有限公司 A kind of manufacture method of phase transformation strengthening cold working high strength steel, steel pipe and steel pipe
CN113396236B (en) * 2019-01-31 2022-11-29 杰富意钢铁株式会社 H-shaped steel with protrusions and manufacturing method thereof
JP6819831B2 (en) * 2019-01-31 2021-01-27 Jfeスチール株式会社 H-shaped steel with protrusions and its manufacturing method
CN113366138A (en) * 2019-03-19 2021-09-07 杰富意钢铁株式会社 Method for manufacturing high manganese steel cast sheet, high manganese steel sheet, and method for manufacturing high manganese steel sheet
KR102357082B1 (en) * 2019-12-20 2022-02-03 주식회사 포스코 High strength steel sheet having excellent heat affected zone toughness and method for manufacturing the same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601929B2 (en) * 1980-10-30 1985-01-18 新日本製鐵株式会社 Manufacturing method of strong steel
JPS5877529A (en) * 1981-10-31 1983-05-10 Nippon Steel Corp Manufacture of high tensile thick steel
JPS60152626A (en) 1984-01-20 1985-08-10 Kawasaki Steel Corp Method for stabilizing toughness of high tension steel for welded structure
JPS60184663A (en) 1984-02-29 1985-09-20 Kawasaki Steel Corp High-tensile steel for low temperature service for welding with large heat input
JPH0694569B2 (en) * 1987-02-27 1994-11-24 新日本製鐵株式会社 Manufacturing method of steel with excellent low temperature toughness in the heat affected zone
JP3045856B2 (en) 1991-11-13 2000-05-29 川崎製鉄株式会社 Method for producing high toughness Cu-containing high tensile steel
JP3699657B2 (en) * 2000-05-09 2005-09-28 新日本製鐵株式会社 Thick steel plate with yield strength of 460 MPa or more with excellent CTOD characteristics of the heat affected zone
JP2002235114A (en) * 2001-02-05 2002-08-23 Kawasaki Steel Corp Method for producing thick high tensile strength steel excellent in toughness of high heat input weld zone
JP5145616B2 (en) * 2001-04-19 2013-02-20 Jfeスチール株式会社 High tensile strength steel for low temperature welded structure with excellent weld heat affected zone toughness
JP3869747B2 (en) * 2002-04-09 2007-01-17 新日本製鐵株式会社 High-strength steel plate, high-strength steel pipe and manufacturing method excellent in deformation performance
WO2004022807A1 (en) * 2002-09-04 2004-03-18 Jfe Steel Corporation Steel product for high heat input welding and method for production thereof
CN100513611C (en) * 2005-03-31 2009-07-15 杰富意钢铁株式会社 High-strength steel plate and process for production thereof, and high-strength steel pipe
JP4997805B2 (en) * 2005-03-31 2012-08-08 Jfeスチール株式会社 High-strength thick steel plate, method for producing the same, and high-strength steel pipe
AU2006282411B2 (en) * 2005-08-22 2010-02-18 Nippon Steel Corporation Seamless steel pipe for line pipe and method for its manufacture
JP4946092B2 (en) * 2006-02-28 2012-06-06 Jfeスチール株式会社 High-strength steel and manufacturing method thereof
JP4673784B2 (en) * 2006-04-11 2011-04-20 新日本製鐵株式会社 High strength steel sheet having excellent weld heat affected zone toughness and method for producing the same

Also Published As

Publication number Publication date
KR20130035277A (en) 2013-04-08
KR20100116701A (en) 2010-11-01
WO2009123292A1 (en) 2009-10-08
EP2272994A1 (en) 2011-01-12
JP2009263777A (en) 2009-11-12
CN102124133A (en) 2011-07-13
EP2272994B1 (en) 2014-11-12
CN105821313A (en) 2016-08-03
EP2272994A4 (en) 2014-01-08
KR20150094793A (en) 2015-08-19

Similar Documents

Publication Publication Date Title
JP5439887B2 (en) High-strength steel and manufacturing method thereof
JP4946092B2 (en) High-strength steel and manufacturing method thereof
JP5177310B2 (en) High tensile strength steel sheet with excellent low temperature toughness of weld heat affected zone and method for producing the same
JP5950045B2 (en) Steel sheet and manufacturing method thereof
JP5846311B2 (en) Thick high-strength steel excellent in welding heat affected zone CTOD characteristics and method for producing the same
JP5949682B2 (en) Manufacturing method of steel plate for high heat input welding with excellent brittle crack propagation stop properties
JP6245352B2 (en) High-tensile steel plate and manufacturing method thereof
JP2011202214A (en) Thick high tensile strength steel plate having excellent low temperature toughness in multilayer weld zone and method for producing the same
JP6308151B2 (en) Low yield ratio high strength thick steel plate for building structures with excellent toughness of super high heat input welds and its manufacturing method
JP4507669B2 (en) Manufacturing method of low yield ratio steel for low temperature with excellent weld toughness
JP5920542B2 (en) Welded joint
JP4116817B2 (en) Manufacturing method of high strength steel pipes and steel sheets for steel pipes with excellent low temperature toughness and deformability
JP2012188749A (en) Thick steel plate with high toughness in multi-pass welded part and multi-pass welded joint
JP2005015859A (en) High-strength steel sheet having excellent weldability, method for manufacturing the same, and welded steel structure
JP6299676B2 (en) High-tensile steel plate and manufacturing method thereof
JP6226163B2 (en) High-tensile steel plate with excellent low-temperature toughness in heat affected zone and its manufacturing method
JP4066850B2 (en) Method for producing high-tensile steel with excellent CTOD characteristics of welds
JP4433844B2 (en) Method for producing high strength steel with excellent fire resistance and toughness of heat affected zone
JP2012188750A (en) High toughness steel for high heat input welding and manufacturing method thereof
JP5857693B2 (en) Steel plate for large heat input and manufacturing method thereof
JPH11241119A (en) Manufacture of high tensile strength steel excellent in toughness in weld zone
JP2001355037A (en) High strength steel excellent in fracture toughness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131202

R150 Certificate of patent or registration of utility model

Ref document number: 5439887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250