JPS60152626A - Method for stabilizing toughness of high tension steel for welded structure - Google Patents

Method for stabilizing toughness of high tension steel for welded structure

Info

Publication number
JPS60152626A
JPS60152626A JP727184A JP727184A JPS60152626A JP S60152626 A JPS60152626 A JP S60152626A JP 727184 A JP727184 A JP 727184A JP 727184 A JP727184 A JP 727184A JP S60152626 A JPS60152626 A JP S60152626A
Authority
JP
Japan
Prior art keywords
toughness
steel
heat input
strength
rem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP727184A
Other languages
Japanese (ja)
Other versions
JPH0353367B2 (en
Inventor
Kenichi Amano
虔一 天野
Eiji Sugie
杉江 英司
Taneo Hatomura
波戸村 太根生
Tomoya Koseki
小関 智也
Chiaki Shiga
千晃 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP727184A priority Critical patent/JPS60152626A/en
Publication of JPS60152626A publication Critical patent/JPS60152626A/en
Publication of JPH0353367B2 publication Critical patent/JPH0353367B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To inhibit the formation of abnormal grains by heating by hot rolling a steel with high tensile strength for high heat input welding contg. specified amounts of C, Si, Mn, Al and a component for increasing the strength and toughness, and a restricted amount of N after adjusting the composition with REM and Ti. CONSTITUTION:A slab of a steel with high tensile strength for high heat input welding having a composition contg., by weight, 0.01-0.15% C, 0.05-0.6% Si, 0.5-2% Mn and 0.01-0.8% A as essential components, one or more among 0.005-0.1% Nb, 0.005-0.15% V, 0.1-2% Ni, 0.1-1% Cu, 0.1-1% Cr, 0.05- 0.5% Mo and 0.0005-0.002% B, and 0.001-0.007% N is hot rolled at (the Ac3 point -30 deg.C)-1,150 deg.C after adjusting the composition by adding 0.005-0.025% Ti and 0.002-0.01% REM. One or more among said Nb, V, Ni, Cu, Cr, Mo and B are contained in accordance with the required strength and toughness.

Description

【発明の詳細な説明】 (技術分野) 5000GJ / C111以上のいわゆる大入熱溶接
が適用される溶接構造用高張力鋼の圧延母材およびその
溶接部におけるしん性のばらつきの軽減に関してこの明
細書に述べる技術内容は、大入熱溶接用高張力鋼の製造
の最近のすう勢に対応した成分調整についての開発成果
を提案するものである。
Detailed Description of the Invention (Technical Field) This specification relates to the reduction of variations in toughness in rolled base materials and welded parts of high-strength steel for welded structures to which so-called large heat input welding of 5000 GJ / C111 or more is applied. The technical content described in 2 proposes the development results regarding component adjustment in response to recent trends in the production of high-strength steel for high heat input welding.

(背景技術) 近年溶接構造物の製作にあたり、溶接工数を減らし、溶
接コストの低減をはかるため、片面一層サブマージアー
ク溶接(SAW) 、エレクトロガス溶接(EGW) 
、又はエレクトロスラグ溶接(ESW)など、大入熱を
用いる自動溶接を採用する機運が高まつ′Cきている。
(Background technology) In recent years, in the production of welded structures, single-sided single-layer submerged arc welding (SAW) and electrogas welding (EGW) have been used to reduce welding man-hours and reduce welding costs.
There is a growing momentum to adopt automatic welding that uses large heat input, such as welding or electroslag welding (ESW).

しかしながら従来、溶接構造用として用いられてきた4
0kgf/−級以上の鋼は、大入熱溶接を行うと溶接熱
影響部(1−(AZ)とくに溶接ボンド部の組織が粗大
な上部ベイナイトを主体とする組織になってじん性が著
しく劣るようになるため、大入熱溶接の実施が困難であ
った。
However, 4 has traditionally been used for welded structures.
When steel of 0 kgf/- grade or higher is subjected to large heat input welding, the structure of the weld heat affected zone (1-(AZ)), especially at the weld bond, becomes a structure consisting mainly of coarse upper bainite, resulting in significantly inferior toughness. Therefore, it was difficult to perform high heat input welding.

その後大入熱溶接に適した鋼が種々開発されつつあり、
その一部は現在実用に供され始めている。
Since then, various steels suitable for high heat input welding have been developed.
Some of them are currently being put into practical use.

一方最近になって制御圧延や、圧延後の制御冷却、又は
直接焼入などいわゆる加工熱処理に関連した技術が発達
するに至り、大入熱溶接鋼もこれらの手法にて製造可能
であって、このような加工熱処理技術を採用すると大入
熱溶接部のしん性に悪いとされるCやMnや、その他の
合金元素の量を従来よりも低下させることが可能になる
ためであり、ここに大入熱下の溶接特性に優れる鋼材の
製法として期待されるゆえんである。
On the other hand, recently, technologies related to so-called processing heat treatments such as controlled rolling, controlled cooling after rolling, and direct quenching have been developed, and high heat input welded steel can also be manufactured using these methods. This is because by adopting such processing heat treatment technology, it is possible to reduce the amount of C, Mn, and other alloying elements that are considered to be bad for the toughness of high heat input welds. This is why it is expected to be a manufacturing method for steel materials with excellent welding properties under large heat input.

(問題点) これらの新しい製造方法においては、母材のじん性の一
層の向上のほか、加熱炉の燃料コスト低減をも目指し、
圧延にあたっては、1150℃以下のいわゆる低温加熱
を行うことが多く、たとえば特公昭55− 30047
号公報にその例をみることができる。
(Problem) In addition to further improving the toughness of the base material, these new manufacturing methods aim to reduce the fuel cost of the heating furnace.
During rolling, so-called low-temperature heating of 1,150°C or less is often performed, for example, as described in Japanese Patent Publication No. 55-30047
An example can be seen in the publication.

ところが、このような低温加熱ど加工熱処理技術とを組
合せた大入熱溶接高張力鋼の母材及び溶接部じん性は、
たしかに優れてはいるものの時として異常に低いじん性
値を示す現象が経験された。
However, the base metal and welded part toughness of high-strength steel that is subjected to high heat input welding by combining low-temperature heating and processing heat treatment techniques is
Although certainly excellent, we have occasionally experienced the phenomenon of abnormally low toughness values.

すなわち、母材および大入熱溶接部におけるしん性のば
らつきであり、このようなしん性不安定は構造物の安定
性の面から重大問題であって、この種鋼材の使用者の側
からの改善要求もさることながら材料製造者にとっても
安定した品質の鋼材を安定して製造し、高い信頼性のも
とに供給するという使命に照らして、早急に解決すべき
新たな課題である。
In other words, it is a variation in toughness between the base metal and the high heat input welded part, and such unstable toughness is a serious problem from the perspective of structural stability, and is a serious problem for users of this type of steel. In addition to requests for improvement, this is a new issue that must be resolved as soon as possible for material manufacturers, in light of their mission to reliably manufacture and reliably supply steel products of stable quality.

(発明の動機) 低C当量鋼を低温加熱すると粒径20〜50μmの細粒
オーステナイト中に200μmにもなる粗大粒が発生し
、このような異常な粗大粒は圧延によっては細粒化され
得ず、それが変態後の組織にもうけつがれ母材じん性の
ばらつきとなる。そしてさらにそれは大入熱溶接影響部
の組織にもうけつがれてそのじん性のばらつきを結果す
るところ、この異常粒発生を抑制する成分として、Ti
 とREMの複合添加はとくに効果があり、母材及び大
入熱溶接部におけるしん性のばらつきを有効に軽減し得
ることが以下のべる実験により究明された。
(Motivation for the Invention) When low C equivalent steel is heated at a low temperature, coarse grains as large as 200 μm are generated in fine-grained austenite with a grain size of 20 to 50 μm, and such abnormal coarse grains cannot be refined by rolling. This is inherited by the structure after metamorphosis, resulting in variations in base material toughness. Furthermore, it is transferred to the structure of the affected zone of high heat input welding, resulting in variations in its toughness, and Ti is used as a component to suppress the generation of abnormal grains.
It has been found through the following experiments that the combined addition of REM and REM is particularly effective and can effectively reduce variations in toughness in the base metal and in high heat input welds.

(実験の経緯) 一般に鋼をA。8渇度以上に加熱したとき、加熱温度の
上昇につれてオーステナイト粒径は粗大化していくが、
ある温度範囲では、細かいオーステナイト粒の中にきわ
めて粗大なオーステナイトが成長する。
(Background of the experiment) Generally, steel is A. When heated above 8 degrees, the austenite grain size becomes coarser as the heating temperature increases, but
Over a certain temperature range, very coarse austenite grows within the fine austenite grains.

第1図には0.09%(wt%以下同じ)C−0,21
%Si −1,36%Mn −0,014% AJ2鋼
の加熱温度どオーステナイト粒径の関係を、Ac8点〜
1200℃の各温度に30分保持後焼入れで測定しl〔
例を示す。
Figure 1 shows 0.09% (same below wt%) C-0,21
%Si -1,36%Mn -0,014% The relationship between heating temperature and austenite grain size of AJ2 steel is calculated from Ac8 points
Measured by quenching after holding at each temperature of 1200℃ for 30 minutes.
Give an example.

920℃以下の加熱では平均粒径20μmの整粒のオー
ステナイトである。一方1000℃以上でも平均粒径は
大どなっているが約65〜130μmの整粒のオーステ
ナイトである。
When heated at 920° C. or lower, it becomes regular austenite with an average grain size of 20 μm. On the other hand, even at temperatures above 1,000°C, the average grain size increases, but it is still austenite with a regular grain size of about 65 to 130 μm.

ところが、はぼ920〜1000℃の範囲内では20〜
65μmの整粒のオーステナイト中に200μmにも達
する粗大粒が混入し、この粗大粒の面積率は最大30%
にも達している。ただし混粒が生じなくなる上限温度は
鋼成分に依存し、本発明の成分範囲では1150℃が上
限である。
However, within the range of 920 to 1000℃, the temperature is 20 to 1000℃.
Coarse grains up to 200 μm are mixed into the 65 μm regular austenite, and the area ratio of these coarse grains is up to 30%.
It has also reached However, the upper limit temperature at which mixed grains do not occur depends on the steel composition, and in the composition range of the present invention, the upper limit is 1150°C.

この現象は多かれ少かれ、どのような成分組成の鋼にも
みられるが、とくに鉄中に含まれる合金元素や、不純物
元素が少ないほど、粗大粒の粒径やその個数すなわち面
積率が大となることがあらたに知見されたのでありこれ
は、低いC当量化した鋼はど低温加熱した時に異常粒を
含む混粒を生じやすいことを意味する。
This phenomenon can be seen to a greater or lesser degree in steel of any composition, but in particular, the smaller the alloying elements and impurity elements contained in iron, the larger the grain size and number of coarse grains, that is, the area ratio. This has been newly discovered, and this means that steel with a low C equivalent is likely to produce mixed grains containing abnormal grains when heated at low temperatures.

そして、このようなオーステナイトの状態から出発して
圧延を行って鋼板を作製すると母材のじん性に、異常に
低い値が出るだけでなくさらに、大入熱溶接を行った場
合継手部のしん性に異常に低い値がみられる川縁も見出
された。
If a steel plate is produced by rolling starting from such an austenitic state, not only will the base metal have an abnormally low toughness value, but also the joint will suffer from stiffness when high heat input welding is performed. Some river edges were also found to have abnormally low values for sex.

このようなしん性のばらつきは低いC当量鋼を低温加熱
で製造したときにおこりやすく、ミクロ的に詳細に調べ
たところシャルピー試験やCOD試験のノツチ底部に特
に粗大な組織が存在していることがわかった。
Such variations in toughness tend to occur when low C-equivalent steel is manufactured by low-temperature heating, and detailed microscopic examination reveals that a particularly coarse structure exists at the bottom of the notch in Charpy and COD tests. I understand.

ここに母材の場合は粗大なベイナイト組織であり、そし
て溶接後の特に粗大な組織は、溶接前の鋼板に存在して
いた粗大なベイナイト組織に起因し、そしてそのベイナ
イト組織は圧延前の低温加熱時に生じ、異常成長した2
00μmにも達する粗大オーステナイト粒が、その後の
圧延によっても細粒化が不十分のまま変態したものであ
る。
Here, the base metal has a coarse bainite structure, and the particularly coarse structure after welding is due to the coarse bainite structure that existed in the steel sheet before welding, and that bainite structure is formed at a low temperature before rolling. Abnormal growth caused during heating 2
Coarse austenite grains reaching 00 μm were transformed without being sufficiently refined even by subsequent rolling.

(発明の目的) そこで、発明者らは、低温加熱法によって得られた低炭
素当量鋼の母材及び大入熱溶接部におこりやすい上記の
不安定しん性を抑制し得る成分系について研究し、あま
た実験と検討を重ねて、REMとTiの複合添加が低温
加熱時のオーステナイトの異常粒成長を防止するのに役
立って、低温加熱時のオーステナイトを整粒化し、ひい
ては母材および大入熱溶接部におけるしん性のばらつき
を少くするのに有効に寄与することを見出しこの発明を
完成させた。つまり、かような寄与を適切に実現するこ
とがこの発明の目的であり、T1とREM複合添加によ
りTiNとREVのoxysu l f i daどが
複合的に有効に作用して低温加熱時のオーステナイトの
異常成長を妨げることの基本認識に立脚している。
(Purpose of the Invention) Therefore, the inventors conducted research on a component system that can suppress the above-mentioned unstable brittleness that tends to occur in the base metal and high heat input welded parts of low carbon equivalent steel obtained by low-temperature heating method. After numerous experiments and studies, we found that the combined addition of REM and Ti helps to prevent abnormal grain growth of austenite during low-temperature heating, makes the austenite grain regular during low-temperature heating, and ultimately improves the base material and large heat input. The present invention was completed based on the discovery that this method effectively contributes to reducing variations in toughness in welded parts. In other words, the purpose of the present invention is to appropriately realize such a contribution, and by the combined addition of T1 and REM, the oxysulphida of TiN and REV effectively act in a composite manner, thereby forming austenite during low-temperature heating. It is based on the basic understanding that it prevents the abnormal growth of

(発明の構成) この発明は、 C: 0,01〜0.15wt%、Si : 0.05
〜o、ewt%、Mn : 0,5〜2.Owt%およ
びA℃:0.01〜0.08wt%を基本成分として含
有し、強さとじん性の要請に応じてさらに、Nb + 
0.005〜0.10wt%、V : 0.005〜0
.15wt%、N1 ニ0,1〜 2.0wt%、Cu
 : 0.1〜1,0wt%、Cr :o、i 〜1.
0wt%、MO: 0.05〜0.5wt%およびB 
: 0.0005〜0.002wt%の1種以上の強化
成分を含むほか鋼中N : 0.001〜0.007w
t%に抑制した組成になる大入熱溶接用高張力鋼を、そ
の(A2B点−30℃)の温度から1100℃を越えな
い温度範囲におけるスラブ加熱下の熱間圧延にて製造す
るに当り、上記スラブが、Ti : 0.005〜0.
025wt%どREM : 0.002〜0.01wt
%とを複合含有する成分調整を行い、該加熱の際に伴わ
れる異常粒の生成を抑制することを特徴とする溶接構造
用高張力鋼のしん性安定化方法である。
(Structure of the Invention) This invention includes: C: 0.01 to 0.15 wt%, Si: 0.05
~o, ewt%, Mn: 0.5-2. Nb +
0.005-0.10wt%, V: 0.005-0
.. 15wt%, N1 0.1~2.0wt%, Cu
: 0.1 to 1.0 wt%, Cr: o, i to 1.
0wt%, MO: 0.05-0.5wt% and B
: Contains 0.0005 to 0.002wt% of one or more reinforcing components and N in steel: 0.001 to 0.007w
In manufacturing high tensile strength steel for high heat input welding with a composition suppressed to t% by hot rolling under slab heating in a temperature range from the temperature (A2B point - 30 ° C) to not exceeding 1100 ° C. , the slab has Ti: 0.005 to 0.
025wt% REM: 0.002~0.01wt
This is a method for stabilizing the toughness of high-strength steel for welded structures, which is characterized by controlling the formation of abnormal grains accompanying the heating by adjusting the composition containing a composite of % and %.

まずこの発明において鋼組成の成分範囲を限定する理由
について説明する。
First, the reason for limiting the range of the steel composition in this invention will be explained.

C:0.01〜0.15% Cは含有量が0,01%未満の場合には必要強度が得ら
れず、また溶接熱影響部の軟化を来し、逆に0.15%
をこえるとき溶接性が害されるので0.01〜0.15
%とした。
C: 0.01 to 0.15% If the C content is less than 0.01%, the required strength will not be obtained, and the weld heat affected zone will soften;
If it exceeds 0.01 to 0.15, weldability will be impaired.
%.

3i : 0,05〜0.60% 8iは鋼の脱酸を促進し、また強度を上昇させるので少
くとも0.05%以上の添加を要するが0.6%をこえ
て多すぎるとじん性や溶接性が著しく損われるため0.
05〜0.60%とした。
3i: 0.05-0.60% 8i promotes deoxidation of steel and increases strength, so it must be added in an amount of at least 0.05%, but if it exceeds 0.6%, the toughness will increase. and weldability is significantly impaired.
05 to 0.60%.

Mn : 0.5〜2.0% MOは0.5%未満では鋼板の強度およびじん性が低下
し、そしてHAZの軟化が生じ、−万Mnが2.0%を
こえて多すぎると)(AZのしん性が劣化するため0.
5〜2.0%とした。
Mn: 0.5 to 2.0% If MO is less than 0.5%, the strength and toughness of the steel sheet will decrease and the HAZ will soften, and if Mn is too high (more than 2.0%) (0.0 because the toughness of AZ deteriorates.
It was set at 5 to 2.0%.

AJ2:0.01〜0.08% Aβは鋼の脱酸上、最低o、oi%の含有を必要とする
一方、固溶A℃が0.08%をこえると却って1−IA
Zのみならず溶接金属のしく性も著しく劣化するためA
j2は0.01〜0.08%とした。
AJ2: 0.01 to 0.08% Aβ requires a minimum content of o and oi% for deoxidizing steel, but if solid solution A℃ exceeds 0.08%, 1-IA
A: Not only Z but also the mechanical properties of the weld metal will deteriorate significantly.
j2 was set to 0.01 to 0.08%.

以上がこの発明の方法を有利に適用するために必要な基
本成分であるが、このほかに通常の製鋼精錬において不
可避に随伴するN含有量について、0.001〜0.0
07%の範囲がすでにのべたREMのoxysu l 
f ideとの相乗作用をもたらすTiNの生成のため
不可欠である。
The above are the basic components necessary to advantageously apply the method of the present invention.
07% of the REM oxysu l already mentioned
It is essential for the production of TiN, which has a synergistic effect with f ide.

この発明にあってはTiおよびREMの含有により、T
iNとしてREMのoxysu l f i deと共
にオーステナイトの異常粒成長を防止する。しかしTi
 とNの含有量が多すぎるとTiNが粗大化しオーステ
ナイト異常粒成長抑制効果がなくなるばかりか、かえっ
て大入熱溶接継手じん性を損なうのでT1の上限は0.
025%、Nの上限は0.007%とした。一方、Ti
、N含有量が少すぎてもオーステナイト異常粒成長抑制
効果がないので、TiとNの下限はそれぞれ0.005
%、0.001%とした。
In this invention, by containing Ti and REM, T
Together with REM's oxysulphide, iN prevents abnormal grain growth of austenite. However, Ti
If the content of N and N is too large, TiN will become coarse and the effect of suppressing abnormal austenite grain growth will be lost, and on the contrary, the toughness of high heat input welded joints will be impaired, so the upper limit of T1 is 0.
025%, and the upper limit of N was 0.007%. On the other hand, Ti
, even if the N content is too small, there is no effect of suppressing abnormal austenite grain growth, so the lower limits of Ti and N are each 0.005.
%, 0.001%.

REMについi”Ltそのoxysu If ideと
してTiN共存下で、オーステナイト異常粒成長抑制効
果を発揮するが0.01%を越える過剰のREMは鋼の
清浄度を悪くして内部欠陥の原因となるので上限は0.
01%とし、一方0.002%未満では効果がない。
Regarding REM, in the coexistence of TiN as its oxysu if ide, REM exhibits the effect of suppressing abnormal austenite grain growth, but excess REM exceeding 0.01% impairs the cleanliness of the steel and causes internal defects. The upper limit is 0.
0.01%, while less than 0.002% has no effect.

この発明は上記したところのほかさらに、Nb:0.1
0%以下、V:0.15%以下、Ni : 2.0%以
下、Cu : 1.0%以下、Cr : 1.0%以下
、MO: 0.5%以下、およびB : 0.002%
以下のうち1!または2種以上を含有させることができ
、これらの元素を含有させる主たる目的は、この発明に
よる特徴を失うことなく強度、じん性の向上の下に板厚
の拡大を可能とするところにあり、この添加量は次の理
由により制限される。
In addition to the above, this invention further provides Nb: 0.1
0% or less, V: 0.15% or less, Ni: 2.0% or less, Cu: 1.0% or less, Cr: 1.0% or less, MO: 0.5% or less, and B: 0.002 %
1 of the following! Alternatively, two or more of these elements can be contained, and the main purpose of containing these elements is to enable an increase in plate thickness while improving strength and toughness without losing the characteristics of the present invention. The amount added is limited by the following reasons.

Nbは、圧延組織の細粒化と析出硬化のため含有される
もので強度、じん性を共に向上させる重要な元素である
が、0.10%より多いと溶接性のみならず溶接金属の
しん性も劣化させるため上限を0.10%とした。
Nb is included to refine the grains of the rolled structure and harden it by precipitation, and is an important element that improves both strength and toughness, but if it exceeds 0.10%, it not only affects weldability but also the weld metal. The upper limit was set at 0.10% because it also deteriorates the properties.

VはNbとほぼ同様の効果をあられすが上限は0.15
%まで許容できる。
V has almost the same effect as Nb, but the upper limit is 0.15
% is acceptable.

N1はHAZの硬化性およびじん性に悪い影響を与える
ことなく母材の強度とじん性を向上させるので添加する
が、高価であるので3.0%を上限とした。
N1 is added because it improves the strength and toughness of the base material without adversely affecting the hardenability and toughness of HAZ, but since it is expensive, the upper limit was set at 3.0%.

C1はN1とほぼ同様の効果があるだけでなく、耐食性
も向上させるが1.0%を越えると熱間脆性を生じやす
く、鋼板の表面性状が劣化するので1.0%を上限とす
る。
C1 not only has almost the same effect as N1, but also improves corrosion resistance, but if it exceeds 1.0%, it tends to cause hot embrittlement and the surface quality of the steel sheet deteriorates, so the upper limit is set at 1.0%.

MOは圧延時のオーステナイト粒を微細かつ整粒化し、
なおかつ微細なベイナイトとマルテンサイ1−を生成す
るので強度とじん性を向上させるが、高価であるので上
限を0.50%とした。
MO makes the austenite grains fine and regular during rolling,
Furthermore, since fine bainite and martensite 1- are produced, strength and toughness are improved, but since it is expensive, the upper limit was set at 0.50%.

Orは微細なベイナイトやマルテンサイトを生成し強度
とじん性を向上さゼるが1.0%以上の添加は溶接性を
害するので上限を1,0%とした。
Or produces fine bainite and martensite and improves strength and toughness, but addition of 1.0% or more impairs weldability, so the upper limit was set at 1.0%.

Bは微細なベイナイトやマルテンサイトを生成するので
強度とじん性を向上させるが0.002%を越えて添加
しても効果がなく、またHAZの硬化が著しいので0.
002%を上限とした。
B improves strength and toughness because it generates fine bainite and martensite, but it has no effect if added in excess of 0.002%, and hardening of the HAZ is significant.
The upper limit was set at 0.002%.

なお、これらの元素の添加効果が顕著に生じる最小必要
但としては、Nb、Vにつき0.005%、Ni、Cu
およびCrは0.1%、またMOは0.05%そしてB
は0 、0005%である。
Note that the minimum necessary conditions for the significant addition effect of these elements are 0.005% for Nb and V, and 0.005% for Ni and Cu.
and Cr 0.1%, MO 0.05% and B
is 0,0005%.

以上のように成分限定した鋼は、低温加熱圧延しても母
材及び大入熱溶接部におけるしん性のばらつきは殆ど生
ぜず、この発明で目指した効果を十分に享受できる。
The steel whose composition is limited as described above has almost no variation in toughness in the base material and the high heat input welded part even if it is heated and rolled at a low temperature, and can fully enjoy the effects aimed at by the present invention.

この熱間圧延のための加熱温度の上限は1150℃であ
りそれを越えると平均オーステナイト粒径が過大となり
好ましくない。また前述のように混粒が生じる加熱温度
の上限も1150℃である。一方下限は鋼をオーステナ
イト化する意味からA。8温度であるが、実用上はAc
a −30℃まで許容できる。
The upper limit of the heating temperature for this hot rolling is 1150° C., and if it exceeds it, the average austenite grain size becomes excessive, which is not preferable. Further, as mentioned above, the upper limit of the heating temperature at which mixed grains occur is also 1150°C. On the other hand, the lower limit is A for the purpose of turning the steel into austenite. 8 temperature, but in practical terms Ac
a Can be tolerated up to -30°C.

なお、(A3B−30℃)〜1150℃に加熱した後の
圧延および冷却の条件についてはとくに規定しないが、
この発明の目的に対しては、制御圧延法、加速冷却法又
は直接焼入れ法を採用するのが最適である。
Note that the conditions for rolling and cooling after heating to (A3B-30°C) to 1150°C are not particularly specified, but
For the purpose of this invention, it is optimal to employ a controlled rolling method, an accelerated cooling method, or a direct quenching method.

次に本発明の実施例について述べる。Next, embodiments of the present invention will be described.

転炉一連鋳工程で製造した第1表に示す成分の鋳片を用
い、加熱−圧延−冷却条件を変えて板厚25關〜751
11の鋼板を製造した。
Using slabs with the components shown in Table 1 produced in a continuous converter casting process, by changing the heating-rolling-cooling conditions, the plate thickness was 25 mm to 75 mm.
11 steel plates were manufactured.

そして母材の強度とじん性値およびじん性のばらつきを
シャルピー試験およびCOD試験試験片各基0本の結果
どともに第2表に示した。なお第2表の記号たとえばI
Aは数字が第1表における調香1の鋼を用いたことを示
す。
Table 2 shows the strength and toughness values of the base material, and the variations in toughness for each Charpy test and COD test. Note that the symbols in Table 2, for example, I
A indicates that the steel of Perfume 1 in Table 1 was used.

また、第3表に示す溶接条件でいわゆる大入熱溶接を行
い、このボンド部から10本のシャルピー試験片を採取
して試験した結果を10本の平均値と最低値で示した。
In addition, so-called large heat input welding was performed under the welding conditions shown in Table 3, and 10 Charpy test pieces were taken from the bonded portion and tested. The results are shown as the average value and the lowest value of the 10 pieces.

この発明の方法で製造した鋼板は母材および大入熱の溶
接ボンド部におけるしん性ともばらつきのないすぐれた
特性を有しているのに対し、比較鋼はじん性のばらつき
が著しい。
The steel sheet manufactured by the method of the present invention has excellent properties with no variation in toughness in the base metal and in the weld bond part with large heat input, whereas the comparative steel has significant variation in toughness.

111AはT1とREMが添加されていないため、母材
のじん性にばらつきがあり、また大入熱溶接による継手
のしん性も低い。
Since 111A does not contain T1 and REM, the toughness of the base metal varies, and the toughness of joints made by high heat input welding is low.

鋼2AはTiが添加されているため、母材および大入熱
溶接部におけるしん性は鋼1Aより優れるが、REVが
複合添加されCいないため、母材および継手部における
しん性どもばらつきを依然残し不安定である。
Because Steel 2A has Ti added, its toughness in the base metal and large heat input welds is superior to Steel 1A, but since REV is added in combination and C is not present, variations in the toughness in the base metal and joints are still affected. The rest is unstable.

鋼3Bの成分はこの発明の成分範囲であるが、加熱温度
がこの発明の範囲をはずれているため母材のじん性自体
が劣っている。また鋼5AもREMが添加されていない
ため、母材および溶接部におけるしん性ともばらつきが
ある。
Although the components of Steel 3B are within the range of the present invention, the heating temperature is outside the range of the present invention, so the toughness of the base material itself is poor. Also, since REM is not added to Steel 5A, there are variations in toughness between the base metal and the welded part.

これらに対しこの発明に従う3A、3C,4A。3A, 3C, and 4A according to the present invention.

48.6A、7A、8A、9A、IOA、IIA、12
A 、 13A 、 14A 、 15Aおよび16A
は母材のシャルピー吸収エネルギーおよびCOD値の平
均値も高く、また異常に低い値も示していない。さらに
大入熱溶接継手部の平均値及び最低値とも高い。
48.6A, 7A, 8A, 9A, IOA, IIA, 12
A, 13A, 14A, 15A and 16A
The average values of the Charpy absorbed energy and COD value of the base material were also high, and the values were not abnormally low. Furthermore, both the average value and the minimum value of the high heat input welded joint are high.

(発明の効果) この発明の方法によれば、母材および大入熱溶接部にお
けるしん性がすぐれかつそのばらつきのない高張力鋼材
が確実に得られる。
(Effects of the Invention) According to the method of the present invention, a high-strength steel material with excellent toughness and uniformity in the base metal and the high heat input weld zone can be reliably obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、鋼をオーステナイト域に加熱した時のオース
テナイト粒径、粗大粒径、粗大粒面積率と加熱温度の関
係を示すグラフである。
FIG. 1 is a graph showing the relationship between austenite grain size, coarse grain size, coarse grain area ratio, and heating temperature when steel is heated to an austenite region.

Claims (1)

【特許請求の範囲】 1、 0 : 0.01〜0.15 wt%、Si :
 0,05〜0,6 wt%、Mn : 0,5 〜2
.0 wt%、およびAJ2:0.01〜0.08wt
% を基本成分として含有し、強さとじん性の要請に応じて
さらに、 Nb : 0,005〜o、io wt%、V:0.0
05〜0,15 wt%、 Ni : 0.1 〜2.Owt%、 Cu : 0,1 〜1.Owt%、 Cr : 0,1 〜1.0 wt%、1ylo : 
0,05〜0.5 wt%および3 : 0.0005
〜0.002 wt%の1種以上の強化成分を含むほか
、鋼中N : 0,001〜0.007 wt%に抑制
した組成になる大入熱溶接用高抗張力鋼を、その(Ao
8点−30℃)の温度から1150℃を越えない温度範
囲におけるスラブ加熱下の熱間圧延にて製造するに当り
、 上記スラブが、Ti : 0.005〜0,025wt
%とREM: 0.002へ−0,01wt%とを複合
含有する成分調整を行い、該加熱の際に伴われる異常粒
の生成を抑制する ことを特徴とする溶接構造用高張力鋼のしん性安定化方
法。
[Claims] 1.0: 0.01 to 0.15 wt%, Si:
0.05-0.6 wt%, Mn: 0.5-2
.. 0 wt%, and AJ2: 0.01-0.08 wt
% as a basic component, and further contains Nb: 0,005-0, io wt%, V: 0.0 according to requirements for strength and toughness.
05-0.15 wt%, Ni: 0.1-2. Owt%, Cu: 0.1 to 1. Owt%, Cr: 0.1 to 1.0 wt%, 1ylo:
0.05-0.5 wt% and 3: 0.0005
A high tensile strength steel for high heat input welding that contains at least 0.002 wt% of one or more reinforcing components and suppresses N in the steel to 0.001 to 0.007 wt%.
In manufacturing by hot rolling under slab heating in a temperature range from 8 points - 30 ° C) to 1150 ° C., the above slab contains Ti: 0.005 to 0,025 wt.
% and REM: 0.002 to -0.01 wt%, and the composition is adjusted to contain a composite of 0.002 to 0.01 wt% to suppress the generation of abnormal grains accompanying the heating. Sexual stabilization method.
JP727184A 1984-01-20 1984-01-20 Method for stabilizing toughness of high tension steel for welded structure Granted JPS60152626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP727184A JPS60152626A (en) 1984-01-20 1984-01-20 Method for stabilizing toughness of high tension steel for welded structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP727184A JPS60152626A (en) 1984-01-20 1984-01-20 Method for stabilizing toughness of high tension steel for welded structure

Publications (2)

Publication Number Publication Date
JPS60152626A true JPS60152626A (en) 1985-08-10
JPH0353367B2 JPH0353367B2 (en) 1991-08-14

Family

ID=11661362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP727184A Granted JPS60152626A (en) 1984-01-20 1984-01-20 Method for stabilizing toughness of high tension steel for welded structure

Country Status (1)

Country Link
JP (1) JPS60152626A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180013A (en) * 1986-02-04 1987-08-07 Nippon Kokan Kk <Nkk> Manufacture of nontemper high tension steel plate having low welding crack susceptibility
JPS6393845A (en) * 1986-10-08 1988-04-25 Nippon Steel Corp High-tensile steel excellent in cod characteristic in weld zone
JP2000199011A (en) * 1999-01-05 2000-07-18 Kawasaki Steel Corp Production of steel small in variation of material and excellent in low temperature toughness of weld zone
JP2013158829A (en) * 2012-02-08 2013-08-19 Nippon Steel & Sumitomo Metal Corp Liquid phase diffusion welding joint of steel bar and method of manufacturing the same
CN110651059A (en) * 2017-05-22 2020-01-03 杰富意钢铁株式会社 Thick steel plate and method for producing same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5439887B2 (en) 2008-03-31 2014-03-12 Jfeスチール株式会社 High-strength steel and manufacturing method thereof
JP5177310B2 (en) 2011-02-15 2013-04-03 Jfeスチール株式会社 High tensile strength steel sheet with excellent low temperature toughness of weld heat affected zone and method for producing the same
US9777358B2 (en) 2012-09-06 2017-10-03 Jfe Steel Corporation Thick-walled, high tensile strength steel with excellent CTOD characteristics of the weld heat-affected zone, and manufacturing method thereof
JP5618036B1 (en) 2013-03-12 2014-11-05 Jfeスチール株式会社 Thick steel plate excellent in multi-layer welded joint CTOD characteristics and method for producing the same
JP5950045B2 (en) 2013-12-12 2016-07-13 Jfeスチール株式会社 Steel sheet and manufacturing method thereof
KR20170038071A (en) 2014-09-05 2017-04-05 제이에프이 스틸 가부시키가이샤 Thick steel sheet having excellent ctod properties in multi-layer welded joints and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834131A (en) * 1981-08-25 1983-02-28 Kawasaki Steel Corp Production of nonrefined high tensile steel plate having excellent toughness and weldability
JPS5877531A (en) * 1981-11-04 1983-05-10 Kawasaki Steel Corp Production of high toughness high tensile steel plate with less separation
JPS58100625A (en) * 1981-12-11 1983-06-15 Kawasaki Steel Corp Production of high toughness high tensile steel plate having excellent weldability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834131A (en) * 1981-08-25 1983-02-28 Kawasaki Steel Corp Production of nonrefined high tensile steel plate having excellent toughness and weldability
JPS5877531A (en) * 1981-11-04 1983-05-10 Kawasaki Steel Corp Production of high toughness high tensile steel plate with less separation
JPS58100625A (en) * 1981-12-11 1983-06-15 Kawasaki Steel Corp Production of high toughness high tensile steel plate having excellent weldability

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180013A (en) * 1986-02-04 1987-08-07 Nippon Kokan Kk <Nkk> Manufacture of nontemper high tension steel plate having low welding crack susceptibility
JPS6393845A (en) * 1986-10-08 1988-04-25 Nippon Steel Corp High-tensile steel excellent in cod characteristic in weld zone
JPH0470386B2 (en) * 1986-10-08 1992-11-10 Nippon Steel Corp
JP2000199011A (en) * 1999-01-05 2000-07-18 Kawasaki Steel Corp Production of steel small in variation of material and excellent in low temperature toughness of weld zone
JP2013158829A (en) * 2012-02-08 2013-08-19 Nippon Steel & Sumitomo Metal Corp Liquid phase diffusion welding joint of steel bar and method of manufacturing the same
CN110651059A (en) * 2017-05-22 2020-01-03 杰富意钢铁株式会社 Thick steel plate and method for producing same
US11299798B2 (en) 2017-05-22 2022-04-12 Jfe Steel Corporation Steel plate and method of producing same

Also Published As

Publication number Publication date
JPH0353367B2 (en) 1991-08-14

Similar Documents

Publication Publication Date Title
JP4332554B2 (en) Manufacturing method of welded structural steel with excellent low temperature toughness of weld heat affected zone
JP4071906B2 (en) Manufacturing method of steel pipe for high tension line pipe with excellent low temperature toughness
KR20100027221A (en) Process for production of 780?-grade high-tensile-strength steel plates excellent in low-temperature toughness
JP4926447B2 (en) Manufacturing method of high strength steel with excellent weld crack resistance
JPS60152626A (en) Method for stabilizing toughness of high tension steel for welded structure
JP4878219B2 (en) Steel sheet with excellent HAZ toughness and small reduction in strength due to heat treatment after welding
JP3893921B2 (en) Low temperature Ni-containing steel and method for producing the same
JPH0860292A (en) High tensile strength steel excellent in toughness in weld heat-affected zone
JP5130472B2 (en) Method for producing high-tensile steel material with excellent weld crack resistance
JP5028761B2 (en) Manufacturing method of high strength welded steel pipe
JP4396303B2 (en) High strength welded steel pipe with excellent low temperature toughness
JP4433844B2 (en) Method for producing high strength steel with excellent fire resistance and toughness of heat affected zone
JPH11189840A (en) High strength steel plate for line pipe, excellent in hydrogen induced cracking resistance, and its production
JPH05245657A (en) Production of high ni alloy clad steel sheet excellent in brittleness propagation stoppage property of base metal
JP6455533B2 (en) Low yield ratio high strength thick steel plate with excellent high heat input weld heat affected zone toughness and method for producing the same
JP4002389B2 (en) Rotating welded joint of mild steel or 490 MPa class steel excellent in fatigue strength and method for producing the same
JP4742597B2 (en) Production method of non-tempered high strength steel
JPS61139648A (en) Low carbon extremely thick steel plate superior in strength and weldability
KR20190076163A (en) High strength steel and method of manufacturing the same
KR100431610B1 (en) Shipbuilding steel for ultra high heat input welding and manufacturing therefor
JPH0579728B2 (en)
JPS6293312A (en) Manufacture of high tensile steel stock for stress relief annealing
JPS5953653A (en) Very thick steel for low temperature use with superior toughness at weld zone
KR102250324B1 (en) Steel material and method of manufacturing the same
JPH01150453A (en) Production of large diameter steel pipe having excellent ductility at low temperature

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term