JPH0353367B2 - - Google Patents

Info

Publication number
JPH0353367B2
JPH0353367B2 JP59007271A JP727184A JPH0353367B2 JP H0353367 B2 JPH0353367 B2 JP H0353367B2 JP 59007271 A JP59007271 A JP 59007271A JP 727184 A JP727184 A JP 727184A JP H0353367 B2 JPH0353367 B2 JP H0353367B2
Authority
JP
Japan
Prior art keywords
toughness
steel
temperature
heat input
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59007271A
Other languages
Japanese (ja)
Other versions
JPS60152626A (en
Inventor
Kenichi Amano
Eiji Sugie
Taneo Hatomura
Tomoya Koseki
Chiaki Shiga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP727184A priority Critical patent/JPS60152626A/en
Publication of JPS60152626A publication Critical patent/JPS60152626A/en
Publication of JPH0353367B2 publication Critical patent/JPH0353367B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 50000J/cm以上のいわゆる大入熱溶接が適用さ
れる溶接構造用高張力鋼の圧延母材およびその溶
接部におけるじん性のばらつきの軽減に関してこ
の明細書に述べる技術内容は、大入熱溶接用高抗
張力鋼の製造の最近のすう勢に対応した成分調整
と、熱間圧延のための加熱条件との適合について
の開発成果を提案するものである。 近年溶接構造物の製作にあたり、溶接工数を減
らし、溶接コストの低減をはかるため、片面一層
サブマージアーク溶接(SAW)、エレクトロガス
溶接(EGW)、又はエレクトロスラグ溶接
(ESW)など、大入熱を用いる自動溶接を採用す
る機運が高まつてきている。 しかしながら従来、溶接構造用として用いられ
てきた40Kgf/mm2級以上の鋼は、大入熱溶接を行
うと溶接熱影響部(HAZ)とくに溶接ボンド部
の組織が粗大な上部ベイナイトを主体とする組織
になつてじん性が著しく劣るようになるため、大
入熱溶接の実施が困難であつた。 (従来技術) その後大入熱溶接に適した鋼が種々開発されつ
つあり、その一部は現在実用に供され始めてい
る。 一方最近になつて制御圧延や、圧延後の制御冷
却、又は直接焼入などいわゆる加工熱処理に関連
した技術が発達するに至り、大入熱溶接鋼もこれ
らの手法にて製造可能であつて、このような加工
熱処理技術を採用すると大入熱溶接部のじん性に
悪いとされるCやMnや、その他の合金元素の量
を従来よりも低下させることが可能になるためで
あり、ここに大入熱下の溶接特性に優れる鋼材の
製法として期待されるゆえんである。 これらの新しい製造方法においては、母材のじ
ん性の一層の向上のほか、加熱炉の燃料コスト低
減をも目指し、圧延にあたつては、1150℃程度で
のいわゆる低温加熱を行うことが多く、たとえば
特公昭55−30047号公報にその例をみることがで
きる。 (発明が解決しようとする問題点) 低温加熱と加工熱処理技術とを組合せた大入熱
溶接高張力鋼の母材及び溶接部じん性はたしかに
優れてはいるものの時として異常に低いじん性値
を示す現象が経験された。 すなわち、母材および大入熱溶接部におけるじ
ん性のばらつきであり、このようなじん性不安定
は構造物の安定性の面から重大問題であつて、こ
の種鋼材の使用者の側からの改善要求もさること
ながら材料製造者にとつても安定した品質の鋼材
を安定して製造し、高い信頼性のもとに供給する
という使命に照らして、早急に解決すべき新たな
課題である。 低C当量鋼を低温加熱すると粒径20〜50μmの
細粒オーステナイト中に200μmにもなる粗大粒が
発生し、このような異常な粗大粒は圧延によつて
は細粒化され得ず、それが変態後の組織にもうけ
つがれ母材じん性のばらつきとなる。そしてさら
にそれは大入熱溶接影響部の組織にもうけつがれ
てそのじん性のばらつきを結果するところ、この
異常粒発生を抑制する成分として、TiとREMの
複合添加はとくに効果があり、母材及び大入熱溶
接部におけるじん性のばらつきを有効に軽減し得
ることが以下のべる実験により究明された。 一般に鋼をAc3温度以上に加熱したとき、加熱
温度の上昇につれてオーステナイト粒径は粗大化
していくが、ある温度範囲では、細かいオーステ
ナイト粒の中にきわめて粗大なオーステナイトが
成長する。 第1図にはこの発明が発想されるに至つた実験
に関して、0.09%(wt%以下同じ)C−0.21%Si
−1.36%Mn−0.014%Al鋼の加熱温度とオーステ
ナイト粒径の関係を、Ac3点〜1200℃の各温度に
30分保持後焼入れをしてから測定した例を示す。 920℃以下の加熱では平均粒径20μmの整粒のオ
ーステナイトである。一方1000℃以上でも平均粒
径は大となつているが約65〜130μmの整粒のオー
ステナイトである。 ところが、ほぼ920℃以上1000℃未満の範囲内
では、20〜65μmの整粒のオーステナイト中に
200μmにも達する粗大粒が混入してこの粗大粒の
面積率は、最大30%にも達している。ただし混粒
が生じなくなる上限温度は鋼成分に依存し、この
発明の成分範囲内では1000℃未満にしなければな
らない。 この現象は多かれ少かれ、どのような成分組成
の鋼にもみられるが、とくに鉄中に含まれる合金
元素や、不純物元素が少ないほど、粗大粒の粒径
がその個数すなわち面積率が大となることがあら
たに知見されたのでありこれは、低いC当量化し
た鋼ほど低温加熱した時に異常粒を含む混粒を生
じやすいことを意味する。 そして、このようなオーステナイトの状態から
出発して、圧延を行つて鋼板を作製すると母材の
じん性に、異常に低い値が出るだけでなくさら
に、大入熱溶接を行つた場合継手部のじん性に異
常に低い値がみられる現象も見出された。 このようなじん性のばらつきは低いC当量鋼を
低温加熱で製造したときにおこりやすく、ミクロ
的に詳細に調べたところシヤルピー試験がCOD
試験のノツチ底部に特に粗大な組織が存在してい
ることがわかつた。 ここに母材の場合は粗大なベイナイト組織であ
り、そして溶接後の特に粗大な組織は、溶接前の
鋼板に存在していた粗大なベイナイト組織に起因
し、そしてそのベイナイト組織は圧延前の低温加
熱時に生じ、異常成長した200μmにも達する粗大
オーステナイト粒が、その後の圧延によつても細
粒化が不十分のまま変態したものである。 そこで、発明者らは、低温加熱法によつて得ら
れた低炭素当量鋼の母材及び大入熱溶接部におこ
りやすい上記の不安定じん性を抑制し得る成分系
について研究し、あまた実験と検討を重ねて、
REMとTiの複合添加が低温加熱時のオーステナ
イトの異常粒成長を防止するのに役立つて、低温
加熱時のオーステナイトを整粒化し、ひいては母
材および大入熱溶接部におけるじん性のばらつき
を少くするのに有効に寄与することを見出しこの
発明を完成させた。つまり、かような寄与を適切
に実現することがこの発明の目的であり、Tiと
REM複合添加によりTiNとREMのoxysulfideと
が複合的に有効に作用してとくに(Ac3点−30
℃)〜1000℃未満の低温加熱時のオーステナイト
の異常成長を妨げることの基本認識に立脚してい
る。 (発明の構成) この発明は、 C:0.03〜0.15wt%、Si:0.05〜0.6wt%、
Mn:0.5〜2.0wt%、及びAl:0.01〜0.08wt%を
基本成分として含有するか又はさらに、Nb:
0.005〜0.10wt%、V:0.005〜0.15wt%、Ni:0.1
〜2.0wt%、Cu:0.1〜1.0wt%、Cr:0.1〜1.0wt
%及びMo:0.05〜0.5wt%の1種以上を含有し、
かつ鋼中N:0.001〜0.007wt%に抑制した組成に
なる大入熱溶接用高張力鋼を熱間圧延によつて製
造する際、素材の溶製段階にてTi:0.005〜
0.025wt%とREM:0.002〜0.01wt%とを複合含
有させる成分調整を行い、熱間圧延に当つては
(Ac3点−30℃)の温度から1000℃に達しない温
度までの範囲にスラブの加熱温度を抑制して該加
熱に伴われる異常粒の生成を回避することを特徴
とする溶接構造用高張力鋼のじん性安定化方法で
ある。 まずこの発明において鋼組成の成分範囲を限定
する理由について説明する。 C:0.03〜0.15% Cは含有量が0.03%未満の場合には必要強度が
得られず、また溶接熱影響部の軟化を来し、逆に
0.15%をこえるとき溶接性が害されるので0.03〜
0.15%とした。 Si:0.05〜0.60% Siは鋼の脱酸を促進し、また強度を上昇させる
ので少くとも0.05%以上の添加を要するが0.6%
をこえて多すぎるとじん性が溶接性が著しく損わ
れるため0.05〜0.60%とした。 Mn:0.5〜2.0% Mnは0.5%未満では鋼板の強度およびじん性が
低下し、そしてHAZの軟化が生じ、一方Mnが
2.0%をこえて多すぎるとHAZのじん性が劣化す
るため0.5〜2.0%とした。 Al:0.01〜0.08% Alは鋼の脱酸上、最低0.01%の含有を必要とす
る一方、固溶Alが0.08%をこえると却つてHAZ
のみならず溶接金属のじく性も著しく劣化するた
めAlは0.01〜0.08%とした。 以上がこの発明の方法を有利に適用するために
必要な基本成分であるが、このほかに通常の製鋼
精錬において不可避に随伴するN含有量につい
て、0.001〜0.007%の範囲に抑制することがすで
にのべたREMのoxysulfideとの相乗作用をもた
らすTiNの生成のため不可欠である。 この発明にあつてはTiおよびREMの含有によ
り鋼中に生成するTiNがREMのoxysulfideと共
にオーステナイトの異常粒成長を防止する。しか
しTiとNの含有量が多すぎるとTiNが粗大化し
オーステナイト異常粒成長抑制効果がなくなるば
かりか、かえつて大入熱溶接継手じん性を損なう
のでTiの上限は、0.025%、Nの上限は、0.007%
とした。一方、Ti,N含有量が少すぎてもオー
ステナイト異常粒成長抑制効果がないので、Ti
とNの下限はそれぞれ0.005%、0.001%とした。
REMについてはそのoxysulfideとしてTiN共存
下で、オーステナイト異常粒成長抑制効果を発揮
するが、0.01%を越える過剰のREMは鋼の清浄
度を悪くして内部欠陥の原因となるので上限は
0.01%とし、一方0.002%未満では効果がない。 この発明は上記したところのほかさらに、
Nb:0.005〜0.10wt%、V:0.005〜0.15wt%、
Ni:0.1〜2.0wt%、Cu:0.1〜1.0wt%、Cr:0.1
〜1.0wt%及びMo:0.05〜0.5wt%の1種以上を
含有させることができ、これらの元素を含有させ
る主たる目的はこの発明による特徴を失うことな
く強度、じん性の向上の下に板厚の拡大を可能と
するところにあり、この添加量は次の理由により
制限される。 Nbは、圧延組織の細粒化と析出硬化のため含
有されるもので強度、じん性を共に向上させる重
要な元素であるが、0.10%より多いと溶接性のみ
ならず溶接金属のじん性も劣化させるため上限を
0.10%とした。 VはNbとほぼ同様の効果をあらわすが上限は
0.15%まで許容できる。 NiはHAZの硬化性およびじん性に悪い影響を
与えることなく母材の強度とじん性を向上させる
ので添加するが、高価であるので3.0%を上限と
した。 CuはNiとほぼ同様の効果があるだけでなく、
耐食性も向上させるが1.0%を越えると熱間脆性
を生じやすく、鋼板の表面性状が劣化するので
1.0%を上限とする。 Moは圧延時のオーステナイト粒を微細かつ整
粒化し、なおかつ微細なベイナイトとマルテンサ
イトを生成するので強度とじん性を向上させる
が、高価であるので上限を0.50%とした。 Crは微細なベイナイトやマルテンサイトを生
成し強度とじん性を向上させるが1.0%をこえる
の添加は溶接性を害するので上限を1.0%とした。 なお、これらの元素の添加効果が顕著に生じる
最小必要量としては、Nb,Vにつき0.005%、
Ni,CuおよびCrは0.1%、またMoは0.05wt%で
ある。 以上のように成分限定した鋼は、低温加熱圧延
しても母材及び大入熱溶接部におけるじん性のば
らつきは殆ど生ぜず、この発明で目指した効果を
十分に亨受できる。 この熱間圧延のための加熱温度の上限は1000℃
に達しない温度であり、1000℃越えると平均オー
ステナイト粒径が過大となり好ましくない。また
前述のように混粒が生じる加熱温度は1000℃以上
である。一方鋼をオーステナイト化する意味から
Ac3温度であるが、実用上はAc3−30℃までなら
ば所期の効果がある。 なお、(Ac3−30℃)〜1000℃に達しない温度
まで加熱した後の圧延および冷却の条件について
はとくに規定しないが、この発明の目的に対して
は、制御圧延法、加速冷却法又は直接焼入れ法を
採用するのが最適である。 次に本発明の実施例について述べる。 転炉−連鋳工程で製造した第1表に示す成分の
鋳片を用い、加熱−圧延−冷却条件を変えて板厚
25mm〜75mmの鋼板を製造した。
(Industrial Application Field) The technical content described in this specification regarding the reduction of variations in toughness in rolled base materials and welded parts of high-strength steel for welded structures to which so-called high heat input welding of 50000 J/cm or more is applied. This paper proposes the development results of composition adjustment corresponding to the recent trends in the production of high tensile strength steel for high heat input welding and compatibility with heating conditions for hot rolling. In recent years, when manufacturing welded structures, in order to reduce welding man-hours and reduce welding costs, methods such as single-sided single-layer submerged arc welding (SAW), electrogas welding (EGW), or electroslag welding (ESW), which require high heat input, have been adopted. There is a growing momentum to adopt automated welding. However, when high heat input welding is performed on steels of 40Kgf/mm 2 or higher, which have been conventionally used for welded structures, the structure of the weld heat affected zone (HAZ), especially at the weld bond, is mainly composed of coarse upper bainite. As the structure deteriorates, the toughness becomes extremely poor, making it difficult to carry out high heat input welding. (Prior Art) Since then, various steels suitable for high heat input welding have been developed, and some of them are now being put into practical use. On the other hand, recently, technologies related to so-called processing heat treatment such as controlled rolling, controlled cooling after rolling, and direct quenching have been developed, and high heat input welded steel can also be manufactured using these methods. This is because by adopting such processing heat treatment technology, it is possible to reduce the amount of C, Mn, and other alloying elements that are considered to be bad for the toughness of high heat input welds. This is why it is expected to be a manufacturing method for steel materials with excellent welding properties under large heat input. In addition to further improving the toughness of the base material, these new manufacturing methods aim to reduce fuel costs for the heating furnace, and rolling is often carried out at a low temperature of about 1150°C. An example of this can be seen in, for example, Japanese Patent Publication No. 55-30047. (Problems to be solved by the invention) Although the base metal and weld zone toughness of high-strength steel welded with high heat input by combining low-temperature heating and processing heat treatment technology is certainly excellent, the toughness values are sometimes abnormally low. A phenomenon indicating this was experienced. In other words, it is a variation in toughness between the base metal and the high heat input welded part, and such unstable toughness is a serious problem from the perspective of structural stability, and there is a need for improvement from the side of users of this type of steel. This is a new issue that must be resolved as soon as possible, in light of not only the demands but also the mission of material manufacturers to stably manufacture and reliably supply steel products of stable quality. When low carbon equivalent steel is heated at low temperature, coarse grains as large as 200 μm are generated in the fine austenite grain size of 20 to 50 μm, and such abnormally coarse grains cannot be refined by rolling. is inherited in the structure after metamorphosis, resulting in variations in base material toughness. Furthermore, it is inherited by the structure of the high heat input welding affected zone, resulting in variations in its toughness.The combined addition of Ti and REM is particularly effective as a component to suppress the generation of abnormal grains, and the base metal It was found through the following experiments that variations in toughness in high heat input welds can be effectively reduced. Generally, when steel is heated above the A c3 temperature, the austenite grain size becomes coarser as the heating temperature increases, but in a certain temperature range, extremely coarse austenite grows among the fine austenite grains. Figure 1 shows the results of the experiment that led to the idea of this invention.
The relationship between heating temperature and austenite grain size of −1.36%Mn−0.014%Al steel at each temperature from point A c3 to 1200℃.
An example of measurement after quenching after holding for 30 minutes is shown. When heated below 920°C, it becomes regular austenite with an average grain size of 20 μm. On the other hand, even at temperatures above 1000°C, the average grain size becomes larger, but it is austenite with a regular grain size of about 65 to 130 μm. However, within the range of approximately 920°C or higher and lower than 1000°C, austenite with a grain size of 20 to 65 μm
Coarse particles as large as 200 μm are mixed in, and the area ratio of these coarse particles reaches a maximum of 30%. However, the upper limit temperature at which mixed grains do not occur depends on the steel composition, and must be lower than 1000°C within the composition range of this invention. This phenomenon can be seen to a greater or lesser degree in steel of any composition, but in particular, the fewer alloying elements and impurity elements contained in iron, the larger the number of coarse grains, or the area ratio. This has been newly discovered, and this means that steel with a lower C equivalent is more likely to produce mixed grains containing abnormal grains when heated at a low temperature. If a steel plate is produced by rolling starting from such austenitic state, not only will the base metal have an abnormally low toughness value, but also the toughness of the joint will become worse when high heat input welding is performed. The phenomenon of abnormally low values of toughness was also observed. Such variations in toughness tend to occur when low C-equivalent steel is manufactured by low-temperature heating.
It was found that a particularly coarse structure was present at the bottom of the notch in the test. Here, the base metal has a coarse bainite structure, and the particularly coarse structure after welding is due to the coarse bainite structure that existed in the steel sheet before welding, and that bainite structure is formed at a low temperature before rolling. Coarse austenite grains of up to 200 μm that were generated during heating and grew abnormally were transformed without being sufficiently refined even during subsequent rolling. Therefore, the inventors conducted research on a component system that can suppress the above-mentioned unstable toughness that tends to occur in the base metal of low carbon equivalent steel obtained by low-temperature heating method and in high heat input welded parts, and conducted numerous experiments. After repeated consideration,
The combined addition of REM and Ti helps to prevent abnormal grain growth of austenite during low-temperature heating, regularizes the austenite during low-temperature heating, and reduces variations in toughness in the base metal and high heat input welds. The present invention was completed based on the discovery that it can effectively contribute to the In other words, the purpose of this invention is to appropriately realize such a contribution, and
Due to the combined addition of REM, TiN and REM oxysulfide act together effectively, especially (A c3 point −30
It is based on the basic recognition that abnormal growth of austenite is inhibited during low-temperature heating at temperatures below 1000°C. (Structure of the invention) This invention comprises: C: 0.03 to 0.15wt%, Si: 0.05 to 0.6wt%,
Contains Mn: 0.5 to 2.0 wt% and Al: 0.01 to 0.08 wt% as basic components, or further contains Nb:
0.005-0.10wt%, V: 0.005-0.15wt%, Ni: 0.1
~2.0wt%, Cu: 0.1~1.0wt%, Cr: 0.1~1.0wt
% and Mo: 0.05 to 0.5 wt%,
When producing high-strength steel for high heat input welding by hot rolling, the composition of which is suppressed to N: 0.001 to 0.007wt% in the steel, Ti: 0.005 to 0.005 at the material melting stage.
The composition is adjusted to include a composite of 0.025wt% and REM: 0.002~0.01wt%, and during hot rolling, the slab is rolled at a temperature ranging from (A c3 point - 30℃) to a temperature below 1000℃. This is a method for stabilizing the toughness of high-strength steel for welded structures, which is characterized by suppressing the heating temperature to avoid the generation of abnormal grains accompanying the heating. First, the reason for limiting the range of the steel composition in this invention will be explained. C: 0.03 to 0.15% If the C content is less than 0.03%, the required strength cannot be obtained, and the weld heat affected zone may become softened.
If it exceeds 0.15%, weldability will be impaired, so 0.03~
It was set at 0.15%. Si: 0.05-0.60% Si promotes deoxidation of steel and increases strength, so it must be added at least 0.05%, but 0.6%
If the amount exceeds 0.05 to 0.60%, the toughness and weldability will be significantly impaired. Mn: 0.5~2.0% Mn less than 0.5% reduces the strength and toughness of the steel sheet and causes HAZ softening;
If the amount exceeds 2.0%, the toughness of the HAZ deteriorates, so it was set at 0.5 to 2.0%. Al: 0.01 to 0.08% Al requires a minimum content of 0.01% for deoxidizing steel, but if solid solution Al exceeds 0.08%, it will cause HAZ
Not only this, but also the resiliency of the weld metal is significantly deteriorated, so Al was set at 0.01 to 0.08%. The above are the basic components necessary to advantageously apply the method of this invention, but in addition to these, it is already necessary to suppress the N content, which is unavoidably accompanied in ordinary steelmaking and refining, to a range of 0.001 to 0.007%. The synergy of REM with oxysulfide is essential for the production of TiN. In this invention, TiN generated in the steel due to the inclusion of Ti and REM, together with oxysulfide of REM, prevents abnormal grain growth of austenite. However, if the content of Ti and N is too large, TiN will become coarse and will not only lose its effect of suppressing abnormal austenite grain growth, but will also impair the toughness of high heat input welded joints, so the upper limit for Ti is 0.025%, and the upper limit for N is 0.025%. ,0.007%
And so. On the other hand, even if the Ti and N contents are too small, there is no effect of suppressing abnormal austenite grain growth.
The lower limits of and N were set to 0.005% and 0.001%, respectively.
REM, as an oxysulfide, exhibits the effect of suppressing abnormal austenite grain growth in the coexistence of TiN, but excess REM exceeding 0.01% impairs the cleanliness of the steel and causes internal defects, so the upper limit is
It is set at 0.01%, while less than 0.002% has no effect. In addition to the above, this invention further includes:
Nb: 0.005-0.10wt%, V: 0.005-0.15wt%,
Ni: 0.1-2.0wt%, Cu: 0.1-1.0wt%, Cr: 0.1
~1.0wt% and Mo: 0.05~0.5wt%.The main purpose of including these elements is to improve the strength and toughness of the board without losing the characteristics according to the present invention. This makes it possible to increase the thickness, and the amount added is limited by the following reasons. Nb is included to refine the grains of the rolled structure and harden it by precipitation, and is an important element that improves both strength and toughness, but if it exceeds 0.10%, it will not only affect weldability but also the toughness of the weld metal. The upper limit is set to cause deterioration.
It was set at 0.10%. V has almost the same effect as Nb, but the upper limit is
Acceptable up to 0.15%. Ni is added because it improves the strength and toughness of the base material without adversely affecting the hardenability and toughness of the HAZ, but it is expensive, so the upper limit was set at 3.0%. Cu not only has almost the same effect as Ni, but also
It also improves corrosion resistance, but if it exceeds 1.0%, hot embrittlement tends to occur and the surface quality of the steel sheet deteriorates.
The upper limit is 1.0%. Mo improves strength and toughness by making the austenite grains finer and more regular during rolling and producing fine bainite and martensite, but it is expensive, so the upper limit was set at 0.50%. Cr generates fine bainite and martensite to improve strength and toughness, but addition of more than 1.0% impairs weldability, so the upper limit was set at 1.0%. Note that the minimum required amount for the addition effect of these elements to be significant is 0.005% for Nb and V;
Ni, Cu and Cr are 0.1%, and Mo is 0.05wt%. The steel whose composition is limited as described above has almost no variation in toughness in the base material and the high heat input welded part even if it is heated and rolled at a low temperature, and can fully achieve the effects aimed at by the present invention. The upper limit of heating temperature for this hot rolling is 1000℃
If the temperature exceeds 1000°C, the average austenite grain size becomes too large, which is not preferable. Further, as mentioned above, the heating temperature at which mixed grains occur is 1000°C or higher. On the other hand, from the point of view of austenitizing steel
The temperature is A c3 , but in practical terms, the desired effect can be achieved up to A c3 -30°C. Note that the conditions for rolling and cooling after heating to a temperature below (A c3 -30℃) to 1000℃ are not particularly stipulated, but for the purpose of this invention, controlled rolling method, accelerated cooling method or It is best to use the direct hardening method. Next, embodiments of the present invention will be described. Using slabs manufactured in the converter-continuous casting process with the components shown in Table 1, the plate thickness was determined by changing the heating-rolling-cooling conditions.
We manufactured steel plates from 25mm to 75mm.

【表】 そして母材の強度とじん性値およびじん性のば
らつきをシヤルピー試験およびCOD試験片各10
本づつの結果とともに第2表に示した。なお第2
表の記号たとえば1Aは数字が第1表における鋼
番1の鋼を用いたことを示す。 なお第2表中加熱温度の欄で1000℃と記載した
のは1000℃に極く近いが1000℃には達しない温度
の実測値を丸めて掲げたものである。
[Table] Then, the strength and toughness values of the base material and the variation in toughness were measured for 10 pieces each of Charpey test and COD test pieces.
Table 2 shows the results for each book. Furthermore, the second
For example, the symbol 1A in the table indicates that steel numbered 1 in Table 1 was used. Note that 1000°C in the column of heating temperature in Table 2 is the rounded value of the actual temperature that is very close to 1000°C but does not reach 1000°C.

【表】【table】

【表】 また、第3表に示す溶接条件でいわゆる大入熱
溶接を行い、このボンド部から10本のシヤルピー
試験片を採取して試験した結果を10本の平均値と
最低値で示した。
[Table] In addition, so-called large heat input welding was performed under the welding conditions shown in Table 3, and 10 shear pea test pieces were taken from this bond area and tested, and the results are shown as the average value and minimum value of the 10 pieces. .

【表】 この発明の方法でもつてじん性の安定化を図つ
た鋼板は母材および大入熱の溶接ボンド部におけ
るじん性ともばらつきのないすぐれた特性を有し
ているのに対し、比較鋼はじん性のばらつきが著
しい。 鋼1AはTiとREMが添加されていないため、
母材のじん性にばらつきがあり、また大入熱溶接
による継手のじん性も低い。 鋼2AはTiが添加されているため、母材およ
び大入熱溶接部におけるじん性は鋼1Aより優れ
るが、REMが複合添加されていないため、母材
および継手部におけるじん性ともばらつきを依然
残して不安定である。 鋼3Bの成分はこの発明の成分範囲であるが、
加熱温度がこの範囲をはずれているため母材のじ
ん性自体が劣つている。また鋼5AもREMが添
加されていないため、母材および溶接部における
じん性ともばらつきがある。 これらに対しこの発明に従う3A,3C,4
A,4B,6A,7A,8A,9A,10A,1
1A,12A,13Aおよび14Aは母材のシヤ
ルピー吸収エネルギーおよびCOD値の平均値も
高く、また異常に低い値も示していない。さらに
大入熱溶接継手部の平均値及び最低値とも高い。 (発明の効果) この発明の方法によれば、母材および大入熱溶
接部におけるじん性がすぐれかつそのばらつきの
ない高張力鋼材が確実に得られる。
[Table] The steel sheet whose toughness was stabilized by the method of this invention has excellent properties with no variation in toughness in the base metal and in the weld bond area with large heat input, whereas the comparative steel There is significant variation in toughness. Steel 1A does not have Ti and REM added, so
There is variation in the toughness of the base metal, and the toughness of joints made by high heat input welding is also low. Because Steel 2A has Ti added, its toughness in the base metal and large heat input welds is superior to Steel 1A, but since REM is not added in combination, there is still variation in the toughness in the base metal and joints. It remains unstable. The composition of Steel 3B is within the composition range of this invention, but
Since the heating temperature is outside this range, the toughness of the base material itself is poor. Also, since REM is not added to Steel 5A, there are variations in the toughness of the base metal and the welded part. In contrast to these, 3A, 3C, 4 according to the present invention
A, 4B, 6A, 7A, 8A, 9A, 10A, 1
1A, 12A, 13A, and 14A have high average values of the Charpy absorbed energy and COD value of the base metal, and do not show abnormally low values. Furthermore, both the average value and the minimum value of the high heat input welded joint are high. (Effects of the Invention) According to the method of the present invention, a high-strength steel material with excellent toughness and uniform toughness in the base metal and the high heat input weld zone can be reliably obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、鋼をオーステナイト域に加熱した時
のオーステナイト粒径、粗大粒径、粗大粒面積率
と加熱温度の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between austenite grain size, coarse grain size, coarse grain area ratio, and heating temperature when steel is heated to an austenite region.

Claims (1)

【特許請求の範囲】 1 C:0.03〜0.15wt% Si:0.05〜0.6wt% Mn:0.5〜2.0wt%及び Al:0.01〜0.08wt%を基本成分として含有し、
鋼中 N:0.001〜0.007wt% に抑制した組成になる大入熱溶接用高抗張力鋼を
熱間圧延によつて製造する際、 素材の溶製段階にてTi:0.005〜0.025wt%と
REM:0.002〜0.01wt%とを複合含有させる成分
調整を行い、 熱間圧延に当たつては(Ac3点−30℃)の温度
から1000℃に達しない温度までの範囲にスラブの
加熱温度に抑制して該加熱に伴われる異常粒の生
成を回避することを特徴とする溶接構造用高張力
鋼のじん性安定化方法。 2 C:0.03〜0.15wt% Si:0.05〜0.6wt% Mn:0.5〜2.0wt%及び Al:0.01〜0.08wt%を基本成分として含有し、 さらに、 Nb:0.005〜0.10wt%、 V:0.005〜0.15wt%、 Ni:0.1〜2.0wt%、 Cu:0.1〜1.0wt%、 Cr:0.1〜1.0wt%、及び Mo:0.05〜0.5wt% の1種以上の強化成分を含むほか、鋼中 N:0.001〜0.007wt% に抑制した組成になる大入熱溶接用高抗張力鋼を
熱間圧延によつて製造する際、 素材の溶製段階にてTi:0.005〜0.0025wt%と
REM:0.002〜0.01wt%とを複合含有させる成分
調整を行い、 熱間圧延に当たつては(Ac3点−30℃) の温度から1000℃に達しない温度までの範囲にス
ラブの加熱温度を抑制して該加熱に伴われる異常
粒の生成を回避することを特徴とする溶接構造用
高張力鋼のじん性安定化方法。
[Claims] 1 Contains C: 0.03 to 0.15 wt% Si: 0.05 to 0.6 wt% Mn: 0.5 to 2.0 wt% and Al: 0.01 to 0.08 wt% as basic components,
When manufacturing high tensile strength steel for high heat input welding with a composition suppressed to N: 0.001 to 0.007 wt% in steel by hot rolling, Ti: 0.005 to 0.025 wt% is added at the melting stage of the material.
REM: 0.002 to 0.01wt% is mixed and the components are adjusted, and during hot rolling, the heating temperature of the slab is set in the range from (A c3 point - 30℃) to a temperature that does not reach 1000℃. 1. A method for stabilizing the toughness of high-strength steel for welded structures, characterized by suppressing the occurrence of abnormal grains caused by heating. 2 Contains C: 0.03-0.15wt% Si: 0.05-0.6wt% Mn: 0.5-2.0wt% and Al: 0.01-0.08wt% as basic components, furthermore, Nb: 0.005-0.10wt%, V: 0.005 ~0.15wt%, Ni: 0.1~2.0wt%, Cu: 0.1~1.0wt%, Cr: 0.1~1.0wt%, and Mo: 0.05~0.5wt%. When manufacturing high tensile strength steel for high heat input welding with a composition suppressed to N: 0.001 to 0.007wt% by hot rolling, Ti: 0.005 to 0.0025wt% is suppressed at the material melting stage.
REM: 0.002 to 0.01wt% is mixed and the slab is heated to a temperature range from (A c3 point - 30℃) to a temperature below 1000℃ during hot rolling. A method for stabilizing the toughness of high-strength steel for welded structures, the method comprising suppressing the generation of abnormal grains accompanying the heating.
JP727184A 1984-01-20 1984-01-20 Method for stabilizing toughness of high tension steel for welded structure Granted JPS60152626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP727184A JPS60152626A (en) 1984-01-20 1984-01-20 Method for stabilizing toughness of high tension steel for welded structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP727184A JPS60152626A (en) 1984-01-20 1984-01-20 Method for stabilizing toughness of high tension steel for welded structure

Publications (2)

Publication Number Publication Date
JPS60152626A JPS60152626A (en) 1985-08-10
JPH0353367B2 true JPH0353367B2 (en) 1991-08-14

Family

ID=11661362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP727184A Granted JPS60152626A (en) 1984-01-20 1984-01-20 Method for stabilizing toughness of high tension steel for welded structure

Country Status (1)

Country Link
JP (1) JPS60152626A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123292A1 (en) 2008-03-31 2009-10-08 Jfeスチール株式会社 High-tensile strength steel and manufacturing method thereof
WO2014038200A1 (en) 2012-09-06 2014-03-13 Jfeスチール株式会社 Thick-walled, high tensile strength steel with excellent ctod characteristics of the weld heat-affected zone, and manufacturing method thereof
WO2014141632A1 (en) 2013-03-12 2014-09-18 Jfeスチール株式会社 Thick steel sheet having excellent ctod properties in multilayer welded joints, and manufacturing method for thick steel sheet
WO2015088040A1 (en) 2013-12-12 2015-06-18 Jfeスチール株式会社 Steel sheet and method for manufacturing same
WO2016035110A1 (en) 2014-09-05 2016-03-10 Jfeスチール株式会社 Thick steel sheet having excellent ctod properties in multi-layer welded joints and method for producing same
US9790579B2 (en) 2011-02-15 2017-10-17 Jfe Steel Corporation High tensile strength steel plate having excellent weld heat-affected zone low-temperature toughness and method for producing same
WO2018216665A1 (en) 2017-05-22 2018-11-29 Jfeスチール株式会社 Thick steel plate and method for manufacturing same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0753882B2 (en) * 1986-02-04 1995-06-07 日本鋼管株式会社 Method for producing non-heat treated high strength steel plate with low weld crack susceptibility
JPS6393845A (en) * 1986-10-08 1988-04-25 Nippon Steel Corp High-tensile steel excellent in cod characteristic in weld zone
JP4110652B2 (en) * 1999-01-05 2008-07-02 Jfeスチール株式会社 Manufacturing method of steel material with less material variation and excellent welded portion low temperature toughness
JP5857772B2 (en) * 2012-02-08 2016-02-10 新日鐵住金株式会社 Method of manufacturing liquid phase diffusion joint for steel bar

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834131A (en) * 1981-08-25 1983-02-28 Kawasaki Steel Corp Production of nonrefined high tensile steel plate having excellent toughness and weldability
JPS5877531A (en) * 1981-11-04 1983-05-10 Kawasaki Steel Corp Production of high toughness high tensile steel plate with less separation
JPS58100625A (en) * 1981-12-11 1983-06-15 Kawasaki Steel Corp Production of high toughness high tensile steel plate having excellent weldability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834131A (en) * 1981-08-25 1983-02-28 Kawasaki Steel Corp Production of nonrefined high tensile steel plate having excellent toughness and weldability
JPS5877531A (en) * 1981-11-04 1983-05-10 Kawasaki Steel Corp Production of high toughness high tensile steel plate with less separation
JPS58100625A (en) * 1981-12-11 1983-06-15 Kawasaki Steel Corp Production of high toughness high tensile steel plate having excellent weldability

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123292A1 (en) 2008-03-31 2009-10-08 Jfeスチール株式会社 High-tensile strength steel and manufacturing method thereof
US9790579B2 (en) 2011-02-15 2017-10-17 Jfe Steel Corporation High tensile strength steel plate having excellent weld heat-affected zone low-temperature toughness and method for producing same
WO2014038200A1 (en) 2012-09-06 2014-03-13 Jfeスチール株式会社 Thick-walled, high tensile strength steel with excellent ctod characteristics of the weld heat-affected zone, and manufacturing method thereof
KR20150029758A (en) 2012-09-06 2015-03-18 제이에프이 스틸 가부시키가이샤 Thick-walled, high tensile strength steel with excellent ctod characteristics of the weld heat-affected zone, and manufacturing method thereof
US9777358B2 (en) 2012-09-06 2017-10-03 Jfe Steel Corporation Thick-walled, high tensile strength steel with excellent CTOD characteristics of the weld heat-affected zone, and manufacturing method thereof
WO2014141632A1 (en) 2013-03-12 2014-09-18 Jfeスチール株式会社 Thick steel sheet having excellent ctod properties in multilayer welded joints, and manufacturing method for thick steel sheet
WO2015088040A1 (en) 2013-12-12 2015-06-18 Jfeスチール株式会社 Steel sheet and method for manufacturing same
WO2016035110A1 (en) 2014-09-05 2016-03-10 Jfeスチール株式会社 Thick steel sheet having excellent ctod properties in multi-layer welded joints and method for producing same
US10450627B2 (en) 2014-09-05 2019-10-22 Jfe Steel Corporation Thick steel plate having good multipass weld joint CTOD characteristics and method for manufacturing the same
WO2018216665A1 (en) 2017-05-22 2018-11-29 Jfeスチール株式会社 Thick steel plate and method for manufacturing same
US11299798B2 (en) 2017-05-22 2022-04-12 Jfe Steel Corporation Steel plate and method of producing same

Also Published As

Publication number Publication date
JPS60152626A (en) 1985-08-10

Similar Documents

Publication Publication Date Title
JP5079419B2 (en) Steel for welded structure with excellent toughness of weld heat affected zone, method for producing the same, and method for producing welded structure
JP3898814B2 (en) Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness
JP2009270194A (en) PROCESS FOR PRODUCTION OF 780 MPa-GRADE HIGH-TENSILE-STRENGTH STEEL PLATE EXCELLENT IN LOW-TEMPERATURE TOUGHNESS
KR100622888B1 (en) Steel product for high heat input welding and method for production thereof
JP2006206942A (en) Method for producing high tensile steel material excellent in hydrogen embrittlement resistant characteristics
JPH0353367B2 (en)
JP2000178688A (en) Resistance welded tube for hollow stabilizer, excellent in fatigue endurance
JPH0860292A (en) High tensile strength steel excellent in toughness in weld heat-affected zone
JP5130472B2 (en) Method for producing high-tensile steel material with excellent weld crack resistance
JP5028761B2 (en) Manufacturing method of high strength welded steel pipe
JP3893921B2 (en) Low temperature Ni-containing steel and method for producing the same
JP3733898B2 (en) Manufacturing method of thick high-tensile steel with excellent heat input weld toughness
JP2009127119A (en) Resistance-welded steel plate
JP2002146471A (en) Ultrahigh strength steel plate and ultrahigh strength steel pipe each having excellent toughness at low temperature and toughness in heat-affected zone, and their manufacturing method
JP2005097694A (en) Method for manufacturing non-heat-treated high-strength thick steel plate superior in brittle crack arrestability
JPH0757886B2 (en) Process for producing Cu-added steel with excellent weld heat-affected zone toughness
JP3722044B2 (en) Welded joint
JPH11189840A (en) High strength steel plate for line pipe, excellent in hydrogen induced cracking resistance, and its production
JP2005220379A (en) Method for producing non-heat treated high strength thick steel plate excellent in toughness at extra-large heat input weld heat-affected zone
JP2000096187A (en) High-strength welded steel tube
JPH0525580B2 (en)
JPH09201688A (en) Manufacture of welded steel tube excellent in strength in weld zone
JPH0579728B2 (en)
KR20190076163A (en) High strength steel and method of manufacturing the same
JP5659949B2 (en) Thick steel plate excellent in toughness of weld heat affected zone and method for producing the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term