JP3722044B2 - Welded joint - Google Patents

Welded joint Download PDF

Info

Publication number
JP3722044B2
JP3722044B2 JP2001334921A JP2001334921A JP3722044B2 JP 3722044 B2 JP3722044 B2 JP 3722044B2 JP 2001334921 A JP2001334921 A JP 2001334921A JP 2001334921 A JP2001334921 A JP 2001334921A JP 3722044 B2 JP3722044 B2 JP 3722044B2
Authority
JP
Japan
Prior art keywords
mass
toughness
less
weld metal
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001334921A
Other languages
Japanese (ja)
Other versions
JP2003138339A (en
Inventor
健次 大井
靖 木谷
俊幸 星野
功一 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001334921A priority Critical patent/JP3722044B2/en
Publication of JP2003138339A publication Critical patent/JP2003138339A/en
Application granted granted Critical
Publication of JP3722044B2 publication Critical patent/JP3722044B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋼板の大入熱溶接継手に関するものである。本継手は溶接構造物に用いられるすべての大入熱溶接部に適用可能である。
【0002】
【従来の技術】
構造物や船舶の大型化が進むにつれて、使用鋼材の高強度・厚肉化が求められ、それらの施工に高能率の溶接が適用されてきた。この施工コスト削減のために、たとえばサブマージアーク溶接、エレクトロガス溶接及びエレクトロスラグ溶接などの大入熱溶接方法の適用があげられる。一般に溶接入熱が大きくなると溶接熱影響部の組織が粗大化し靭性が低下することが知られており、その対策として鋼板中のTiNの微細分散によるオーステナイトの粗大化抑制や、フェライト変態核としての利用技術が実用化されている。また、Tiの酸化物を分散させる技術(特開昭57−51243号公報)やBNのフェライト核生成能を組み合わせる技術(特開昭62−170459号公報)も開発されている。さらにはCa(特開昭60−204863号公報)やREM(特公平4−14180号公報)を添加することによって硫化物の形態を制御し、より高い靭性が得られることが明らかにされている。一方、溶接金属では大入熱による緩冷却速度においても強度・靭性を確保するために合金元素の適正添加によってミクロ組織をアシキュラーフェライトに調整する溶接材料の設計が各溶接方法ごとになされている。
【0003】
【発明が解決しようとする課題】
従来の溶接継手は鋼板と溶接金属が別々に開発されてきた。鋼板と溶接金属の相互関係としては継手の引張強度において硬さのマッチングが検討されたのみである。靭性に関しては鋼板、溶接金属それぞれが高靭性を達成するように検討されてきた。しかし、融点近傍の熱サイクルを受ける鋼板溶接部領域では、溶接金属と組成の異なる金属(鋼板)が高温で溶融金属と接触しており、その相互関係については明らかにされていない。溶接入熱が小さい場合は溶融金属と鋼板との界面における元素の移動を考慮する必要はないが、大入熱になると、溶融金属と鋼板との高温における接触時間が長くなり、溶融金属と鋼板との界面における影響を無視することができなくなり、溶接熱影響部の靭性に大きく影響を与える問題が生じる。よって溶接金属及び鋼板の溶接熱影響部が単独では良好な靭性を示す場合においても、実継手での溶接熱影響部が必ずしも良好な靭性を示さない場合があるという問題があった。
【0004】
大入熱溶接では従来から鋼板中に微細なTiNを分散させてオーステナイト粒のピンニングによる粗大化抑制能を利用して、継手部の高靭性を確保する技術がある。さらに、高温にさらされる部位でのTiNの溶解によって増加する固溶Nによる靭性の低下を抑えるために、Bの添加によってBNとしてNを固定するか、あるいはそれをフェライト生成核として利用する技術もある。しかし、多量のBを鋼板に添加するとTiNが溶解しない領域ではかえって靭性の低下をもたらすことから、余分な量を添加することができないという問題があった。また、固溶Nを固定するためにBを適正量添加した場合でも、溶接金属中に高B添加を行うと溶接熱影響部の靭性が急激に低下したり、溶接金属中のB量を低減すると溶接金属の靭性を確保することができないという問題があった。
【0005】
本発明は上記問題点を解決し、溶接金属及び鋼板の溶接熱影響部が優れた靭性を有する大入熱溶接継手を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
発明者らは種々検討を重ねた結果、入熱が200kJ/cm以上、板厚30mm以上の大入熱溶接部において、溶接金属中に鋼板への添加量以上のBが存在する場合、高温での鉄中の拡散速度が速いBが溶接時に鋼板側の溶接熱影響部へ拡散浸透することを新たに知見した。この知見を利用し、鋼板、溶接金属に添加するB量をコントロールすることによって、溶接継手全体の高靭性を確保できる技術を確立した。すなわち、鋼板中には靭性に悪影響を与えない程度のB添加とし、溶接金属部にはオーステナイト粒界から生成するフェライトサイドプレートの析出を抑えられるだけの十分なB添加を行い、溶接熱影響部にはTiNの固溶によって生成される固溶Nを固定するのに必要最小限のB量を溶接金属部からのBの拡散によってまかなうことによりこの技術が可能となった。また鋼板と溶接金属部のB量を制御することによって大入熱によってBの拡散距離が変化するものの、TiNの溶解する領域とのマッチングによって200〜1100kJ/cmの入熱範囲において良好な靭性が得られることも新たに見出した。すなわち本発明は、溶接人熱200kJ/cm以上の大入熱溶接継手において
C:0.03〜0.15質量%
Si:0.05〜0.70質量%
Mn:0.5〜2.0質量%
P:0.03質量%以下
S:0.0005〜0.0050質量%
Al:0.005〜0.1質量%
Ti:0.004〜0.02質量%
N:0.0020〜0.0070質量%
B:10ppm以下
を含有し、残部鉄及び不可避的不純物よりなり、板厚が30mm以上の大入熱溶接用鋼板と
C:0.03〜0.12質量%
Si:0.10〜0.80質量%
Mn:0.8〜2.5質量%
Al:0.02質量%以下
Ni:0.5〜4.0質量%
Ti:0.005〜0.10質量%
を含有し、選択元素として
Cu:0.8質量%以下
Cr:1.5質量%以下
Mo:1.0質量%以下
V:0.10質量%以下
Nb:0.10質量%以下
から選ばれた1種又は2種以上を含有し、残部鉄及び不可避的不純物よりなる溶接金属とが、次の(1)〜(2)式によって規定されるB量を鋼板及び溶接金属に含有することを特徴とする溶接継手を提供する。
【0007】
15≦BW≦55 ……(1)
20≦BW+3BP≦60 ……(2)
但し、 BW=溶接金属中のB量(ppm)
P=鋼板中のB量(ppm)
である。
【0008】
前記大入熱用鋼板がさらに選択元素として
Nb:0.0510質量%以下
V:0.2質量%以下
Cu:1.0質量%以下
Ni:1.5質量%以下
Cr:0.7質量%以下
Mo:0.7質量%以下
Ca:0.0005〜0.0030質量%
REM:0.0010〜0.00150質量%
から選ばれた1種又は2種以上を含有すると好適である。
【0009】
次に鋼板の各成分の限定理由について説明する。
【0010】
C量は構造用鋼として必要な強度を得るために下限を0.03質量%とし、溶接割れ性の観点から上限を0.15質量%とした。
【0011】
Siは製鋼上0.05質量%以上が必要であり、0.7質量%を超えると母材の靭性を劣化させるとともに大入熱溶接熱影響部における島状マルテンサイトの生成による靭性の劣化が顕著になるので限定した。
【0012】
Mnは母材の強度を確保するために0.5質量%以上は必要であり、2.0質量%を超えると溶接部の靭性を著しく劣化させるのでこれ以下とした。
【0013】
Pは0.03質量%を超えると溶接部の靭性を劣化させるので限定される。
【0014】
Sは0.0005質量%未満では溶接熱影響部においてフェライトの生成核となるMnSの析出量が不足して靭性が低下する。0.0050質量%を超えて添加すると固溶S量の増加によってかえって靭性の低下を招く。
【0015】
Alは鋼の脱酸上0.005質量%以上は必要であり、0.1質量%を超えて添加すると母材の靭性を低下させると同時に溶接金属部への希釈によって溶接金属部の靭性を劣化させるので上限を0.1質量%とした。
【0016】
Tiは凝固時にTiNとなって析出し、溶接熱影響部でのオ〜ステナイトの粗大化抑制やフェライト変態核となって高靭性化に寄与する。0.004質量%未満ではその絶対量が不足し、0.02質量%を超えるとTiN粒子の粗大化によって期待する効果は得られない。従って0.004〜0.02質量%とする。
【0017】
Nは必要TiN量確保にとって重要な元素であり、0.0020質量%未満では十分なTiN量が不足し、0.0070質量%を超えると溶接熱サイクルによってTiNが溶解する領域での固溶N量の増加によって靭性を著しく低下させるので不可である。
【0018】
Bは鋼板の焼入れ性の向上に有効であるが10ppmを越えると靭性が劣化するので10ppmを上限とする。
【0019】
さらに上記の基本成分系の他にフェライト生成核として効果を発揮するB、Vあるいはそれに加えて高張力化・厚肉化ないしはその他の効果を達成するためにNb、Ni、Cr、Mo、Cuのうち少なくとも1種を含有させることが好ましい。
【0020】
Nbは母材の強度・靭性及び継手の強度確保のために添加するが、0、05質量%を超えて添加すると溶接熱影響部の靭性を劣化するので制限する。
【0021】
Vは母材の強度靭性の向上及びVNとしてのフェライト生成核として働くが、0、2質量%を超えるとかえって靭性の低下を招く。
【0022】
Niは母材の高靭性を保ちつつ強度を上昇するが、高価であるため上限を1.5質量%とした。
【0023】
CuはNiと同様の働きがあるが、1、0質量%を超えると熱間脆性を生じ、鋼板の表面性状を劣化させる。
【0024】
Cr、Moは母材の高強度化に有効な元素であるが、多量に添加すると靭性に悪影響を与えるために上限を0.7質量%とした。
【0025】
次に溶接金属組成の限定理由を示す。
【0026】
Cは溶接金属の強度を確保するために0.03質量%以上添加する必要があり、012質量%を超えて添加すると高温割れの発生や焼入れ性過多による靭性の低下を招く恐れがある。
【0027】
Siは脱酸及び強度確保のために添加されるが、0.10質量%未満では溶融金属の湯流れ性が低下し、溶接欠陥が発生しやすくなる、また、0.80質量%を超えると溶接金属の強度が過剰となり割れの発生や靭性の低下を招く恐れがある。
【0028】
Mnは溶接金属の強度を確保するために0.8質量%以上の添加が必要で、2.5質量%を超えると焼入れ性が過多となり靭性の低下を起こす。
【0029】
Alは脱酸のために必要であるが0.02質量%を超えると介在物が多くなり靭性の低下を招くので制限する。
【0030】
Niは溶接金属の強度靭性を確保するために添加が必要で、0.5質量%未満では効果がなく、4.0質量%を超えると湯流れ性を著しく低下させる。
【0031】
Tiは溶接金属中のNをTiNとして固定したり、酸化物を形成してアシキュラーフェライトの生成核として重要な働きをする。0.005質量%未満ではその効果は十分に得られず、0.10質量%を超えると固溶Tiの増加によって著しく靭性を低下させる。
【0032】
また、溶接入熱によって焼入れ性を調整するための選択元素としてCu、Cr、Mo、V、Nbが必要に応じて単独あるいは複合で利用できる。それぞれ過剰に添加すると著しく靭性を低下させる恐れがあるため添加量を
Cu:0.8質量%以下
Cr:1.5質量%以下
Mo:1.0質量%以下
V:0.10質量%以下
Nb:0.10質量%以下
に限定した。
【0033】
Bは本発明で最も重要な添加元素である。溶接金属中に添加したBは溶接金属の冷却中にオーステナイト粒界に偏析する。このことによって粒界のエネルギーを下げ、オーステナイト粒界から生成するフェライトサイドプレートの析出を抑制する。フェライトサイドプレートが析出すると靭性が劣化する。この析出を抑制した結果、分散されたTiの酸化物からアシキュラーフェライトが生成し、高靭性を確保する。これらの働きに必要なB量は15ppm以上であり、55ppmを超えて添加するとFe23(C,B)6のような鉄と炭素との化合物を生成して靭性を著しく低下させる。一方、鋼板には最大で10ppmのBが添加可能である。鋼板へのB添加は焼入れ性の向上には有効であるものの、10ppmを超えると、溶接金属と同様に鉄と炭素との化合物を生成したり、島状マルテンサイトの生成量が増加するなどのため、靭性が極めて劣化する。ただし、溶接熱影響部においては、BはBNを形成し、固溶Nを低減し、また、フェライト変態核として働く。溶接熱影響部の靭性を高めるためには、鋼板への添加量の最大値である10ppm以上のBが必要であり、本発明ではBが溶接金属側から溶接熱影響部に拡散し、靭性向上に有効に寄与する。すなわち、鋼板に10ppm以下のBを添加し、溶接金属と鋼板中に以下に示した下記の(1)、(2)式を満足する組み合わせになるようにBを添加すると、溶接金属、鋼板、溶接熱影響部ともに最適なB量が確保され、継手として高靭性を達成することが可能である。
【0034】
15≦BW≦55 ……(1)
20≦BW+3BP≦60 ……(2)
但し、 BW=溶接金属中のB量(ppm)
P=鋼板中のB量(ppm)
である。
【0035】
ここで、式(2)でBW+3BPを規定した理由は、次の通りである。溶接熱影響部のB量は鋼板中のB量と溶接金属中からの拡散分の加算によって決定され、その拡散分は溶接入熱により変化する。そこで、実験によって靭性に影響を与えるB量を検討した結果、上記(2)式の範囲が好適であることを知見した。溶接熱影響部のB量が不足した場合は固溶Nの十分な固定ができないため、溶接熱影響部は靭性が劣化するとともに、BNの不足によってフェライト生成核が少なく、靭性にすぐれたフェライトパーライト組織に均質化することができない。また、溶接熱影響部でBが過剰になった場合は、焼入れ性が過多となり、組織がフェライトパーライトから上部ベイナイトとなり靭性を劣化させる。
【0036】
以上のように鋼板及び溶接金属の化学組成が限定された範囲において、B量をコントロールして溶接金属中に添加することによって、大入熱溶接継手のすべての部位で高靭性を確保することが可能である。
【0037】
なお、本発明の鋼は銑鉄を転炉で鋼とした後、RHで脱ガスを行い、連続鋳造又は造塊・分塊工程を経て鋼片とする。これを再加熱し熱間圧延、あるいは圧延後に加速冷却、直接焼入れ焼戻し、再加熱焼入れ焼戻し、焼準、焼戻し処理して製造する。
【0038】
【発明の実施の形態】
以下図面を参照して本発明の実施の形態を説明する。図1は溶接継手を示す説明図である。2枚の母材(鋼板)1は溶接金属2によって接続され、溶接継手を形成している。溶接金属に隣接する母材は溶接熱影響部3を形成しており、溶接金属と熱影響部の境界はボンド部4と呼ばれている。図中に記載したシャルピー試験片5は、この溶接継手部から切り出してシャルピー試験に用いるテストピースの切り出し位置を示す例で、図示のシャルピー試験片5はノッチ6がボンド部4の部分に位置しており、ボンド部の衝撃エネルギーを測定する試験片である。図2は通常の溶接金属と大入熱溶接の場合の冷却曲線の説明図である。温度上昇曲線11のように温度上昇し、溶融点12に達した溶接金属は、通常は冷却曲線14のように短時間に急激に温度低下するが、大入熱溶接では、冷却曲線13に示すように冷却時間が長い。図2に示すような800〜500℃における冷却時間が長いと、溶接金属中の拡散しやすい成分が熱影響部に拡散する。本発明はこの拡散を利用して溶接部の靭性を向上させる点に特徴がある。
【0039】
大入熱溶接では、冷却速度が遅いために、制御圧延および制御冷却により微細化したフェライト・パーライト微細のミクロ組織が粗大化する。このため破壊する単位大きさが大きくなり、靭性が低下し、靭性の確保が困難になる。そこで本発明では、大入熱溶接の冷却速度が遅いことによってBが拡散する時間を確保することができることに着目し、これを利用することとした。通常の溶接ではBの拡散は殆ど起こらず、溶接熱影響部にBの影響が生じない。大入熱の場合は、オーステナイト粒の成長を抑制して粒内組織を微細化するためにTiN粒子を分散させて高靭性を図るのが有効な手段の一つであるが、TiNは1400〜1500℃近傍に加熱されると溶け出し、フリーNの増加を来すことが問題である。そこで本発明では、溶接熱影響部で固溶したTiNから生じたフリーNを溶接金属から拡散するBを使って、BNの形で固定し、それによって靭性を向上させる。また、このBNはフェライト変態の核になるので、微細フェライトが析出しやすくなり高靭性を達成する。
【0040】
図3は本発明の範囲を示すグラフで、横軸に鋼板中のB量BP(ppm)を、縦軸に溶接金属中のB量BW(ppm)をとって示したものである。本発明の範囲は15≦BW≦55及びBP≦10の範囲で、かつBW+3BP=60の線より下側、BW+3BP=20の線より上側の領域である。図中に後述の好適な実施例を●印で、比較例を×印で示してある。これらの点の近傍に記載されている数字は、各点のBW及びBPを示すもので、例えば45.3は、BW=45,BP=3である。
【0041】
図3のBW+BP=60の線より上方の領域は熱影響部のBの値が高くなりボンド部の靭性が低くなるので不適である。またBW+BP=20の線より下方の領域では、Bの値が低く靭性改善の効果がない。
【0042】
次に、具体的な例を挙げて本発明をさらに詳細に説明する。表1示す組成の鋼を100kgの高周波溶解炉にて溶製し、熱間圧延により150mmのスラブを作製した。このスラブを用いて1150℃に1時間加熱後、930℃以上で全圧下量の50%を圧延し、その後、900℃から700℃の温度域にて20〜100mm厚の鋼板に仕上げ、3〜20℃/sの冷却速度にて加速冷却し、冷却停止温度を650℃から300℃とした。
【0043】
作製した鋼板を用いて大入熱溶接継手を製作した。入熱量が200〜600kJ/cmの範囲はエレクトロガス溶接、それ以上の入熱量の場合はエレクトロスラグ溶接を用いて、立て向きの突合せ溶接にて溶接を行った。表2に作製した溶接金属の化学組成を示す。
【0044】
溶接金属中に含まれるB量は、溶接材料中から所定量を添加した結果であり、本実施例ではフラックス入り溶接ワイヤのフラックス中にB23を添加することによって、溶接金属中のB量を調整した。Bの添加手段としてはこのほかに溶接ワイヤー中に所定量を含有させてもよく、サブマージアーク溶接の場合にはワイヤあるいはフラックス中にB23を添加することによって溶接金属中のB量を容易に目標値に合致するように調整することができる。
【0045】
作製した継手の溶接金属部、母材部、ボンド部の靭性をマイナス40℃シャルピー吸収エネルギーにて評価した結果を表3に示した。同時に鋼板の強度および継手の引張強度も示した。本発明で最も重要な因子である鋼板中及び溶接金属中のB量が適正な範囲にある発明例No.1〜10では、溶接金属部、母材部、ボンド部のいずれも良好な靭性を示している。一方、B量が本発明の適正範囲を外れた比較例No.11、12、14については低靭性部が認められる。比較例No.11では溶接金属中のB量が過剰であり、溶接金属で低値を示し、ボンド部においても溶接金属と鋼板金属とがそれぞれ50質量%含まれることにより低値となっている。No.12は、溶接金属は良好であるが、鋼板の靭性が発明例に比べて約半分となっており、ボンド部の靭性にも若干影響し、良好な靭性は得られない。No.14では溶接金属、鋼板ともにB添加範囲を逸脱しており、その結果として、継手全体が低値を示している。
【0046】
No.13、15、16、17は鋼板、溶接金属ともに適正B量が添加されており良好な靭性を示しているが、ボンド部ではB量が過剰となりボンド部の靭性は著しく低くなっている。
【0047】
【発明の効果】
以上の説明の通り、本発明によれば、一定の成分範囲の鋼板および溶接金属からなる大入熱溶接継手に、適正なB量を添加し、溶接熱影響部にも拡散させて成分調整することにより、極めて良好な靭性を有する大入熱溶接継手を得ることができ、寄与するところが非常に大である。
【0048】
【表1】

Figure 0003722044
【0049】
【表2】
Figure 0003722044
【0050】
【表3】
Figure 0003722044

【図面の簡単な説明】
【図1】溶接継手を示す断面図である。
【図2】冷却曲線の説明図である。
【図3】本発明の範囲を示すグラフである。
【符号の説明】
1 母材(鋼板)
2 溶接金属
3 熱影響部
4 ボンド部
5 シャルピー試験片
6 ノッチ
11 温度上昇曲線
12 最高温度点
13 冷却曲線
14 冷却曲線[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high heat input welded joint for steel plates. This joint is applicable to all high heat input welds used in welded structures.
[0002]
[Prior art]
As the size of structures and ships has increased, high strength and thicker steel materials have been demanded, and high-efficiency welding has been applied to their construction. In order to reduce the construction cost, for example, application of a high heat input welding method such as submerged arc welding, electrogas welding, and electroslag welding can be mentioned. In general, it is known that the structure of the heat affected zone becomes coarser and the toughness decreases when the welding heat input increases, and as a countermeasure, the austenite coarsening is suppressed by the fine dispersion of TiN in the steel sheet, and the ferrite transformation nucleus Utilization technology has been put into practical use. In addition, a technique for dispersing an oxide of Ti (Japanese Patent Laid-Open No. 57-51243) and a technique for combining ferrite nucleation ability of BN (Japanese Patent Laid-Open No. 62-170459) have been developed. Furthermore, it has been clarified that by adding Ca (Japanese Patent Laid-Open No. 60-204863) or REM (Japanese Patent Publication No. 4-14180), the form of sulfide can be controlled and higher toughness can be obtained. . On the other hand, in welding metals, welding materials are designed for each welding method to adjust the microstructure to acicular ferrite by appropriate addition of alloy elements to ensure strength and toughness even at a slow cooling rate due to large heat input. .
[0003]
[Problems to be solved by the invention]
Conventional welded joints have been developed separately for steel plates and weld metals. As the interrelationship between the steel plate and the weld metal, only matching of hardness in the tensile strength of the joint was examined. Regarding toughness, steel plates and weld metals have been studied to achieve high toughness. However, in a steel plate weld zone that undergoes a thermal cycle near the melting point, a metal (steel plate) having a composition different from that of the weld metal is in contact with the molten metal at a high temperature, and the interrelationship has not been clarified. When the welding heat input is small, it is not necessary to consider the movement of elements at the interface between the molten metal and the steel sheet. However, when the heat input is large, the contact time at a high temperature between the molten metal and the steel sheet becomes long, and the molten metal and the steel sheet The influence at the interface with the heat cannot be ignored, and there is a problem that greatly affects the toughness of the weld heat affected zone. Therefore, even when the weld heat-affected zone of the weld metal and the steel sheet alone exhibits good toughness, there is a problem that the weld heat-affected zone in an actual joint may not necessarily exhibit good toughness.
[0004]
In high heat input welding, there is conventionally a technique for securing high toughness of a joint part by dispersing fine TiN in a steel sheet and utilizing the ability to suppress coarsening by pinning austenite grains. In addition, in order to suppress a decrease in toughness due to solid solution N that increases due to dissolution of TiN at a site exposed to high temperature, there is a technique of fixing N as BN by adding B or using it as a ferrite nuclei. is there. However, when a large amount of B is added to the steel sheet, the toughness is lowered in a region where TiN does not dissolve, so that there is a problem that an excessive amount cannot be added. Also, even when an appropriate amount of B is added to fix solute N, if high B is added to the weld metal, the toughness of the weld heat affected zone is drastically reduced or the amount of B in the weld metal is reduced. Then, there existed a problem that the toughness of a weld metal could not be ensured.
[0005]
The object of the present invention is to solve the above-mentioned problems and to provide a high heat input welded joint in which the weld heat affected zone of the weld metal and steel plate has excellent toughness.
[0006]
[Means for Solving the Problems]
As a result of repeated investigations, the inventors have found that, in a large heat input weld with a heat input of 200 kJ / cm or more and a plate thickness of 30 mm or more, when B is present in the weld metal in an amount greater than the amount added to the steel plate, the temperature is high. It was newly found that B, which has a high diffusion rate in iron, diffuses and penetrates into the weld heat-affected zone on the steel plate side during welding. Using this knowledge, we established a technology that can secure the high toughness of the entire welded joint by controlling the amount of B added to the steel sheet and weld metal. That is, B is added to the steel sheet so as not to adversely affect the toughness, and the weld metal part is subjected to sufficient B addition to suppress precipitation of the ferrite side plate generated from the austenite grain boundary. This technology has become possible by providing the minimum amount of B necessary for fixing solid solution N produced by solid solution of TiN by diffusion of B from the weld metal part. Moreover, although the diffusion distance of B changes by large heat input by controlling the B amount of a steel plate and a weld metal part, good toughness is obtained in a heat input range of 200 to 1100 kJ / cm by matching with a region where TiN dissolves. I also found out that it could be obtained. That is, the present invention relates to a high heat input welded joint having a welder heat of 200 kJ / cm or more. C: 0.03 to 0.15% by mass
Si: 0.05-0.70 mass%
Mn: 0.5 to 2.0% by mass
P: 0.03 mass% or less S: 0.0005 to 0.0050 mass%
Al: 0.005 to 0.1% by mass
Ti: 0.004 to 0.02 mass%
N: 0.0020 to 0.0070 mass%
B: A steel plate for high heat input welding containing 10 ppm or less, the balance being iron and inevitable impurities, and having a plate thickness of 30 mm or more C: 0.03 to 0.12% by mass
Si: 0.10-0.80 mass%
Mn: 0.8 to 2.5% by mass
Al: 0.02 mass% or less Ni: 0.5-4.0 mass%
Ti: 0.005 to 0.10% by mass
Cu: 0.8% by mass or less Cr: 1.5% by mass or less Mo: 1.0% by mass or less V: 0.10% by mass or less Nb: 0.10% by mass or less 1 type or 2 types or more, and the weld metal consisting of the remaining iron and unavoidable impurities contains the amount of B defined by the following formulas (1) to (2) in the steel plate and weld metal. A weld joint is provided.
[0007]
15 ≦ B W ≦ 55 (1)
20 ≦ B W + 3B P ≦ 60 (2)
However, B W = B amount in weld metal (ppm)
B P = B content in steel plate (ppm)
It is.
[0008]
The steel plate for high heat input further has Nb: 0.0510% by mass or less, V: 0.2% by mass or less, Cu: 1.0% by mass or less, Ni: 1.5% by mass or less, Cr: 0.7% by mass as a selective element. Below Mo: 0.7 mass% or less Ca: 0.0005-0.0030 mass%
REM: 0.0010 to 0.00150% by mass
It is preferable to contain one or more selected from
[0009]
Next, the reason for limitation of each component of a steel plate is demonstrated.
[0010]
In order to obtain the strength required for structural steel, the lower limit is 0.03% by mass, and the upper limit is 0.15% by mass from the viewpoint of weld cracking.
[0011]
Si needs to be 0.05% by mass or more on steelmaking, and if it exceeds 0.7% by mass, the toughness of the base metal deteriorates and the toughness deteriorates due to the formation of island-like martensite in the heat-affected zone of high heat input welding. Limited because it becomes prominent.
[0012]
Mn is required to be 0.5% by mass or more in order to ensure the strength of the base material, and if it exceeds 2.0% by mass, the toughness of the welded portion is remarkably deteriorated.
[0013]
If P exceeds 0.03 mass%, the toughness of the weld is deteriorated, so it is limited.
[0014]
If S is less than 0.0005% by mass, the amount of precipitation of MnS that forms ferrite nuclei in the weld heat-affected zone is insufficient and the toughness decreases. If it exceeds 0.0050 mass%, the toughness is reduced by increasing the amount of dissolved S.
[0015]
Al needs to be 0.005% by mass or more in terms of deoxidation of steel, and if added in excess of 0.1% by mass, the toughness of the base metal is lowered and at the same time the toughness of the weld metal part is reduced by dilution into the weld metal part. Since it deteriorates, the upper limit was made 0.1 mass%.
[0016]
Ti precipitates as TiN during solidification, and contributes to high toughness by suppressing the coarsening of austenite in the heat affected zone and becoming a ferrite transformation nucleus. If it is less than 0.004% by mass, the absolute amount is insufficient, and if it exceeds 0.02% by mass, the expected effect due to the coarsening of TiN particles cannot be obtained. Therefore, it is set to 0.004 to 0.02 mass%.
[0017]
N is an important element for securing the necessary amount of TiN. If the amount is less than 0.0020% by mass, a sufficient amount of TiN is insufficient, and if it exceeds 0.0070% by mass, solid solution N in the region where TiN is dissolved by the welding heat cycle. This is not possible because the toughness is significantly reduced by increasing the amount.
[0018]
B is effective in improving the hardenability of the steel sheet, but if it exceeds 10 ppm, the toughness deteriorates, so 10 ppm is the upper limit.
[0019]
Further, in addition to the above basic component system, B, V which exerts an effect as a ferrite formation nucleus, or in addition to Nb, Ni, Cr, Mo, Cu in order to achieve high tension, thickening or other effects Of these, at least one kind is preferably contained.
[0020]
Nb is added to ensure the strength and toughness of the base metal and the strength of the joint, but if added in excess of 0,05 mass%, the toughness of the weld heat-affected zone deteriorates, so this is limited.
[0021]
V acts as an improvement in the strength toughness of the base metal and as a ferrite formation nucleus as VN. However, if it exceeds 0 or 2% by mass, it causes a decrease in toughness.
[0022]
Ni increases the strength while maintaining the high toughness of the base material, but since it is expensive, the upper limit was set to 1.5 mass%.
[0023]
Cu has the same function as Ni, but if it exceeds 1,0% by mass, it becomes hot brittle and deteriorates the surface properties of the steel sheet.
[0024]
Cr and Mo are effective elements for increasing the strength of the base material, but if added in a large amount, the toughness is adversely affected, so the upper limit was made 0.7 mass%.
[0025]
Next, the reasons for limiting the weld metal composition will be described.
[0026]
C needs to be added in an amount of 0.03% by mass or more in order to ensure the strength of the weld metal. If C is added in an amount exceeding 012% by mass, there is a risk of high temperature cracking or a decrease in toughness due to excessive hardenability.
[0027]
Si is added for deoxidation and securing of strength, but if it is less than 0.10% by mass, the molten metal flowability is lowered and welding defects are likely to occur, and if it exceeds 0.80% by mass. There is a possibility that the strength of the weld metal becomes excessive, and cracking and toughness are reduced.
[0028]
Mn needs to be added in an amount of 0.8% by mass or more in order to ensure the strength of the weld metal. If it exceeds 2.5% by mass, the hardenability becomes excessive and the toughness is lowered.
[0029]
Al is necessary for deoxidation, but if it exceeds 0.02% by mass, inclusions increase to cause a reduction in toughness, so that it is limited.
[0030]
Ni needs to be added in order to ensure the strength toughness of the weld metal, and if it is less than 0.5% by mass, there is no effect, and if it exceeds 4.0% by mass, the hot metal flowability is significantly reduced.
[0031]
Ti fixes the N in the weld metal as TiN or forms an oxide to play an important role as a nucleus for the formation of acicular ferrite. If the amount is less than 0.005% by mass, the effect cannot be sufficiently obtained, and if it exceeds 0.10% by mass, the toughness is remarkably lowered due to an increase in solid solution Ti.
[0032]
In addition, Cu, Cr, Mo, V, and Nb can be used alone or in combination as necessary as selective elements for adjusting the hardenability by welding heat input. If added excessively, the toughness may be significantly reduced, so the added amount is Cu: 0.8% by mass or less Cr: 1.5% by mass or less Mo: 1.0% by mass or less V: 0.10% by mass or less Nb : It limited to 0.10 mass% or less.
[0033]
B is the most important additive element in the present invention. B added to the weld metal segregates at the austenite grain boundaries during cooling of the weld metal. This lowers the energy of the grain boundaries and suppresses the precipitation of ferrite side plates generated from the austenite grain boundaries. When the ferrite side plate is deposited, the toughness deteriorates. As a result of suppressing this precipitation, acicular ferrite is generated from the dispersed Ti oxide, and high toughness is ensured. The amount of B necessary for these functions is 15 ppm or more, and if added in excess of 55 ppm, a compound of iron and carbon such as Fe 23 (C, B) 6 is generated and the toughness is remarkably lowered. On the other hand, up to 10 ppm of B can be added to the steel plate. Although addition of B to the steel sheet is effective for improving the hardenability, if it exceeds 10 ppm, a compound of iron and carbon is generated in the same manner as the weld metal, and the amount of island martensite generated is increased. Therefore, the toughness is extremely deteriorated. However, in the heat affected zone, B forms BN, reduces solute N, and acts as a ferrite transformation nucleus. In order to increase the toughness of the weld heat affected zone, 10 ppm or more of B, which is the maximum value added to the steel sheet, is necessary. In the present invention, B diffuses from the weld metal side to the weld heat affected zone, improving the toughness. It contributes effectively. That is, when 10 ppm or less of B is added to the steel plate, and B is added so as to satisfy the following formulas (1) and (2) shown in the weld metal and the steel plate, the weld metal, the steel plate, The optimum amount of B is ensured for both the heat affected zone and high toughness can be achieved as a joint.
[0034]
15 ≦ B W ≦ 55 (1)
20 ≦ B W + 3B P ≦ 60 (2)
However, B W = B amount in weld metal (ppm)
B P = B content in steel plate (ppm)
It is.
[0035]
Here, the reason for defining the B W + 3B P in Equation (2) is as follows. The amount of B in the weld heat affected zone is determined by adding the amount of B in the steel sheet and the amount of diffusion from the weld metal, and the amount of diffusion changes depending on the welding heat input. Therefore, as a result of examining the amount of B that affects toughness by experiment, it was found that the range of the above formula (2) is suitable. When the amount of B in the weld heat affected zone is insufficient, solid solution N cannot be sufficiently fixed. Therefore, the weld heat affected zone is deteriorated in toughness, and the ferrite pearlite has excellent toughness due to a shortage of ferrite formation nuclei due to the lack of BN. It cannot be homogenized into tissue. Further, when B is excessive in the weld heat affected zone, the hardenability becomes excessive, and the structure changes from ferrite pearlite to upper bainite and deteriorates toughness.
[0036]
As described above, in a range where the chemical composition of the steel plate and the weld metal is limited, it is possible to ensure high toughness in all parts of the high heat input weld joint by controlling the B amount and adding it to the weld metal. Is possible.
[0037]
In addition, after making pig iron into steel with a converter, the steel of the present invention is degassed with RH and made into a steel slab through a continuous casting or ingot-making / bundling process. This is reheated and hot-rolled, or subjected to accelerated cooling after rolling, direct quenching / tempering, reheating quenching / tempering, normalizing, and tempering.
[0038]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory view showing a welded joint. Two base materials (steel plates) 1 are connected by a weld metal 2 to form a weld joint. The base material adjacent to the weld metal forms a weld heat affected zone 3, and the boundary between the weld metal and the heat affected zone is called a bond portion 4. The Charpy test piece 5 shown in the figure is an example showing the cutout position of a test piece cut out from this welded joint and used for the Charpy test. The illustrated Charpy test piece 5 has a notch 6 positioned at the bond portion 4. It is a test piece for measuring the impact energy of the bond part. FIG. 2 is an explanatory diagram of a cooling curve in the case of ordinary weld metal and high heat input welding. The weld metal that has risen in temperature as shown by the temperature rise curve 11 and has reached the melting point 12 usually drops rapidly in a short time as shown in the cooling curve 14, but in the case of high heat input welding, it is shown in the cooling curve 13. So cooling time is long. When the cooling time at 800 to 500 ° C. as shown in FIG. 2 is long, easily diffusing components in the weld metal diffuse into the heat affected zone. The present invention is characterized in that the toughness of the welded portion is improved by utilizing this diffusion.
[0039]
In high heat input welding, since the cooling rate is slow, the microstructure of ferrite and pearlite that has been refined by controlled rolling and controlled cooling becomes coarse. For this reason, the unit size which destroys becomes large, toughness falls, and it becomes difficult to ensure toughness. Therefore, in the present invention, attention is paid to the fact that the time for diffusion of B can be ensured by the slow cooling rate of the high heat input welding, and this is utilized. In normal welding, the diffusion of B hardly occurs, and the influence of B does not occur in the weld heat affected zone. In the case of large heat input, it is one effective means to achieve high toughness by dispersing TiN particles in order to suppress the growth of austenite grains and refine the intragranular structure. It is a problem that when heated to around 1500 ° C., it melts and free N increases. Therefore, in the present invention, free N generated from TiN dissolved in the weld heat affected zone is fixed in the form of BN using B that diffuses from the weld metal, thereby improving toughness. Further, since this BN becomes the nucleus of the ferrite transformation, fine ferrite is likely to precipitate and high toughness is achieved.
[0040]
FIG. 3 is a graph showing the scope of the present invention, with the horizontal axis representing the B amount B P (ppm) in the steel sheet and the vertical axis representing the B amount B W (ppm) in the weld metal. The range of the present invention is a range of 15 ≦ B W ≦ 55 and B P ≦ 10, and is a region below the line of B W + 3B P = 60 and above the line of B W + 3B P = 20. In the figure, preferred embodiments described later are indicated by ● and comparative examples are indicated by x. The numbers written in the vicinity of these points indicate B W and B P at each point. For example, 45.3 is B W = 45 and B P = 3.
[0041]
The region above the line of B W + B P = 60 in FIG. 3 is not suitable because the B value of the heat affected zone is high and the toughness of the bond portion is low. Further, in the region below the line of B W + B P = 20, the value of B is low and there is no effect of improving toughness.
[0042]
Next, the present invention will be described in more detail with specific examples. Steel having the composition shown in Table 1 was melted in a 100 kg high-frequency melting furnace, and a 150 mm slab was produced by hot rolling. After heating to 1150 ° C for 1 hour using this slab, 50% of the total reduction amount was rolled at 930 ° C or higher, and then finished into a steel plate having a thickness of 20 to 100 mm in a temperature range of 900 ° C to 700 ° C. Accelerated cooling was performed at a cooling rate of 20 ° C./s, and the cooling stop temperature was changed from 650 ° C. to 300 ° C.
[0043]
A large heat input welded joint was produced using the produced steel plate. Welding was performed by vertical butt welding using electrogas welding when the heat input was in the range of 200 to 600 kJ / cm, and electroslag welding when the heat input was higher. Table 2 shows the chemical composition of the weld metal produced.
[0044]
The amount of B contained in the weld metal is a result of adding a predetermined amount from the welding material, and in this embodiment, B 2 O 3 is added to the flux of the flux-cored welding wire, thereby adding B 2 in the weld metal. The amount was adjusted. In addition to this, as a means for adding B, a predetermined amount may be contained in the welding wire. In the case of submerged arc welding, the amount of B in the weld metal is increased by adding B 2 O 3 to the wire or flux. It can be easily adjusted to meet the target value.
[0045]
Table 3 shows the results of evaluating the toughness of the welded metal part, base metal part, and bond part of the produced joint using minus 40 ° C Charpy absorbed energy. At the same time, the strength of the steel sheet and the tensile strength of the joint were also shown. Invention example No. in which the amount of B in the steel sheet and the weld metal, which is the most important factor in the present invention, is in an appropriate range. In 1-10 , the weld metal part, the base material part, and the bond part all show good toughness . Comparative Example hand, B content is outside the proper range of the present invention No. For 11 , 12 , and 14 , low toughness parts are observed. Comparative Example No. In No. 11 , the amount of B in the weld metal is excessive, a low value is exhibited by the weld metal, and the weld metal and the steel plate metal are also contained at 50% by mass in the bond portion, and thus the value is low. No. No. 12 , the weld metal is good, but the toughness of the steel sheet is about half that of the invention example, and the toughness of the bond part is also slightly affected, and good toughness cannot be obtained. No. In No. 14 , both the weld metal and the steel plate depart from the B addition range, and as a result, the entire joint shows a low value.
[0046]
No. Nos. 13, 15, 16, and 17 show good toughness with the appropriate amount of B added to both the steel plate and the weld metal, but the amount of B is excessive in the bond portion, and the toughness of the bond portion is extremely low.
[0047]
【The invention's effect】
As described above, according to the present invention, an appropriate amount of B is added to a large heat input welded joint made of a steel plate and weld metal in a certain component range, and the component is adjusted by diffusing also in the weld heat affected zone. Therefore, a large heat input welded joint having extremely good toughness can be obtained, and the contribution is very large.
[0048]
[Table 1]
Figure 0003722044
[0049]
[Table 2]
Figure 0003722044
[0050]
[Table 3]
Figure 0003722044

[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a welded joint.
FIG. 2 is an explanatory diagram of a cooling curve.
FIG. 3 is a graph showing the scope of the present invention.
[Explanation of symbols]
1 Base material (steel plate)
2 Weld metal 3 Heat-affected zone 4 Bond zone 5 Charpy specimen 6 Notch 11 Temperature rise curve 12 Maximum temperature point 13 Cooling curve 14 Cooling curve

Claims (2)

溶接入熱200kJ/cm以上の大入熱溶接継手において
C:0.03〜0.15質量%
Si:0.05〜0.70質量%
Mn:0.5〜2.0質量%
P:0.03質量%以下
S:0.0005〜0.0050質量%
Al:0.005〜0.1質量%
Ti:0.004〜0.02質量%
N:0.0020〜0.0070質量%
B:10ppm以下
を含有し、残部鉄及び不可避的不純物よりなり、板厚が30mm以上の大入熱溶接用鋼板と
C:0.03〜0.12質量%
Si:0.10〜0.80質量%
Mn:0.8〜2.5質量%
Al:0.02質量%以下
Ni:0.5〜4.0質量%
Ti:0.005〜0.10質量%
を含有し、選択元素として
Cu:0.8質量%以下
Cr:1.5質量%以下
Mo:1.0質量%以下
V:0.10質量%以下
Nb:0.10質量%以下
から選ばれた1種又は2種以上を含有し、残部鉄及び不可避的不純物よりなる溶接金属とが、下記式によって規定されるB量を鋼板及び溶接金属に含有することを特徴とする溶接継手。
15≦BW≦55 ……(1)
20≦BW+3BP≦60 ……(2)
但し、 BW=溶接金属中のB量(ppm)
P=鋼板中のB量(ppm)
In a high heat input welded joint with a welding heat input of 200 kJ / cm or more C: 0.03 to 0.15% by mass
Si: 0.05-0.70 mass%
Mn: 0.5 to 2.0% by mass
P: 0.03 mass% or less S: 0.0005 to 0.0050 mass%
Al: 0.005 to 0.1% by mass
Ti: 0.004 to 0.02 mass%
N: 0.0020 to 0.0070 mass%
B: A steel plate for high heat input welding containing 10 ppm or less, consisting of the remaining iron and inevitable impurities, and having a plate thickness of 30 mm or more C: 0.03 to 0.12% by mass
Si: 0.10-0.80 mass%
Mn: 0.8 to 2.5% by mass
Al: 0.02% by mass or less Ni: 0.5-4.0% by mass
Ti: 0.005 to 0.10% by mass
Cu: 0.8% by mass or less Cr: 1.5% by mass or less Mo: 1.0% by mass or less V: 0.10% by mass or less Nb: 0.10% by mass or less A welded joint comprising one or more of the above, and a weld metal comprising the balance iron and unavoidable impurities in the steel plate and the weld metal, the amount of B defined by the following formula.
15 ≦ B W ≦ 55 (1)
20 ≦ B W + 3B P ≦ 60 (2)
However, B W = B amount in weld metal (ppm)
B P = B content in steel plate (ppm)
前記大入熱用鋼板がさらに選択元素として
Nb:0.05質量%以下
V:0.2質量%以下
Cu:1.0質量%以下
Ni:1.5質量%以下
Cr:0.7質量%以下
Mo:0.7質量%以下
Ca:0.0005〜0.0030質量%
REM:0.0010〜0.0150質量%
から選ばれた1種又は2種以上を含有することを特徴とする請求項1記載の溶接継手。
The steel plate for high heat input is further selected as an element Nb: 0.05% by mass or less V: 0.2% by mass or less Cu: 1.0% by mass or less Ni: 1.5% by mass or less Cr: 0.7% by mass Below Mo: 0.7 mass% or less Ca: 0.0005-0.0030 mass%
REM: 0.0010 to 0.0150 mass%
The weld joint according to claim 1, comprising one or more selected from the group consisting of:
JP2001334921A 2001-10-31 2001-10-31 Welded joint Expired - Fee Related JP3722044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001334921A JP3722044B2 (en) 2001-10-31 2001-10-31 Welded joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001334921A JP3722044B2 (en) 2001-10-31 2001-10-31 Welded joint

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004226803A Division JP2005002476A (en) 2004-08-03 2004-08-03 Weld joint

Publications (2)

Publication Number Publication Date
JP2003138339A JP2003138339A (en) 2003-05-14
JP3722044B2 true JP3722044B2 (en) 2005-11-30

Family

ID=19149975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001334921A Expired - Fee Related JP3722044B2 (en) 2001-10-31 2001-10-31 Welded joint

Country Status (1)

Country Link
JP (1) JP3722044B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128650A1 (en) 2012-03-01 2013-09-06 Jfeスチール株式会社 Steel material for high-heat-input welding
KR20160119243A (en) 2014-03-31 2016-10-12 제이에프이 스틸 가부시키가이샤 Weld joint

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4486529B2 (en) * 2004-04-22 2010-06-23 新日本製鐵株式会社 Electrogas welding joint with excellent toughness
JP4255453B2 (en) * 2005-03-31 2009-04-15 株式会社神戸製鋼所 Low alloy steel weld metal and flux cored wire
JP4903107B2 (en) * 2007-09-28 2012-03-28 Jfeスチール株式会社 Welded joint
CN105537736B (en) * 2015-12-22 2019-01-04 渤海船舶重工有限责任公司 Nuclear Safety shell primary shielding structure boron cast steel welding method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128650A1 (en) 2012-03-01 2013-09-06 Jfeスチール株式会社 Steel material for high-heat-input welding
KR20160119243A (en) 2014-03-31 2016-10-12 제이에프이 스틸 가부시키가이샤 Weld joint
US10300564B2 (en) 2014-03-31 2019-05-28 Jfe Steel Corporation Weld joint

Also Published As

Publication number Publication date
JP2003138339A (en) 2003-05-14

Similar Documents

Publication Publication Date Title
TWI478785B (en) High heat input welding steel
JP4071906B2 (en) Manufacturing method of steel pipe for high tension line pipe with excellent low temperature toughness
JP5849940B2 (en) Low yield ratio high strength steel plate with excellent weld heat affected zone toughness
TWI589708B (en) Steel material for high heat input welding
JP4891836B2 (en) Steel plate with excellent toughness of weld heat affected zone in high heat input welding
JP2009235548A (en) Low yield ratio high tensile strength thick steel plate having excellent toughness in super-large heat input weld affected zone, and method for producing the same
JP2009235549A (en) Method for producing low yield ratio high tension thick steel plate excellent in toughness at super-high heat input welding affected part
WO2016060141A1 (en) Steel for high-energy-input welding
JP5849892B2 (en) Steel material for large heat input welding
JP3722044B2 (en) Welded joint
JP4433844B2 (en) Method for producing high strength steel with excellent fire resistance and toughness of heat affected zone
JP5493658B2 (en) A method for producing non-tempered thick high-strength steel with high heat input heat-affected zone toughness.
JP6226163B2 (en) High-tensile steel plate with excellent low-temperature toughness in heat affected zone and its manufacturing method
JP7485920B2 (en) Intermediate bending roll steel pipe
JP4220914B2 (en) Steel with excellent toughness of weld heat affected zone and its manufacturing method
JP2005002476A (en) Weld joint
JP5145616B2 (en) High tensile strength steel for low temperature welded structure with excellent weld heat affected zone toughness
WO2013128650A1 (en) Steel material for high-heat-input welding
JP4259374B2 (en) High strength steel sheet with excellent low temperature toughness and weld heat affected zone toughness and method for producing the same
JP4821051B2 (en) High tensile strength steel for low temperature welded structure with excellent weld heat affected zone toughness
JP5659949B2 (en) Thick steel plate excellent in toughness of weld heat affected zone and method for producing the same
JP3449307B2 (en) B-added high-strength steel with excellent toughness in the heat affected zone
JP3733922B2 (en) Manufacturing method of thick high-strength steel sheet with excellent heat-affected zone toughness of super high heat input welding
JP4332064B2 (en) High HAZ toughness steel for high heat input welding with heat input of 20-100 kJ / mm
JP5493557B2 (en) Steel material for large heat input welding

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3722044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees