JP4220914B2 - Steel with excellent toughness of weld heat affected zone and its manufacturing method - Google Patents

Steel with excellent toughness of weld heat affected zone and its manufacturing method Download PDF

Info

Publication number
JP4220914B2
JP4220914B2 JP2004046647A JP2004046647A JP4220914B2 JP 4220914 B2 JP4220914 B2 JP 4220914B2 JP 2004046647 A JP2004046647 A JP 2004046647A JP 2004046647 A JP2004046647 A JP 2004046647A JP 4220914 B2 JP4220914 B2 JP 4220914B2
Authority
JP
Japan
Prior art keywords
cao
sio
less
steel material
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004046647A
Other languages
Japanese (ja)
Other versions
JP2004315963A (en
Inventor
世意 木村
晴弥 川野
等 畑野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004046647A priority Critical patent/JP4220914B2/en
Publication of JP2004315963A publication Critical patent/JP2004315963A/en
Application granted granted Critical
Publication of JP4220914B2 publication Critical patent/JP4220914B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

本発明は、橋梁や高層建造物、船舶などに使用される鋼材を溶接する際に、熱影響を受ける部位(以下、「溶接熱影響部」または「HAZ」と称する)での靭性を改善した鋼材およびその製法に関するものである。   The present invention has improved toughness in a portion affected by heat (hereinafter referred to as “welding heat affected zone” or “HAZ”) when welding steel materials used in bridges, high-rise buildings, ships, and the like. The present invention relates to a steel material and a manufacturing method thereof.

橋梁や高層建造物、船舶などに使用される鋼材に要求される特性は、近年益々厳しくなっており、良好な靭性が求められている。こうした鋼材は、一般的に溶接して接合されるが、特にHAZは溶接時に熱影響を受けて靭性が劣化しやすいという問題がある。この靭性劣化は、溶接時の入熱が大きくなるほどHAZの冷却速度が遅くなり、焼入性が低下して粗大な島状マルテンサイトを生成することが原因であると考えられている。従ってHAZ靭性を改善するには、溶接時の入熱量を抑えればよい。他方、溶接作業効率を高めるには、例えば、エレクトロガスアーク溶接法やフラックス銅バッキング溶接法などの大入熱溶接法の採用が望まれる。   The properties required for steel materials used in bridges, high-rise buildings, ships and the like have become increasingly severe in recent years, and good toughness is required. Such steel materials are generally welded and joined. In particular, HAZ has a problem that the toughness is easily deteriorated due to thermal influence during welding. This deterioration in toughness is thought to be caused by the fact that the larger the heat input during welding, the slower the cooling rate of the HAZ, and the hardenability is lowered to produce coarse island martensite. Therefore, in order to improve the HAZ toughness, the heat input during welding may be suppressed. On the other hand, in order to increase the welding work efficiency, for example, it is desired to employ a high heat input welding method such as an electrogas arc welding method or a flux copper backing welding method.

そこで、大入熱溶接法を採用した場合でもHAZ靭性の劣化を抑制し得る鋼材も既に幾つか提案されている。例えば特許文献1には、鋼材中に微細なTiNを分散再析出させることで、大入熱溶接を行なったときのHAZで生じるオーステナイト粒の粗大化を抑制し、HAZ靭性の劣化を抑えた鋼材が提案されている。しかし本発明者らが検討したところ、溶接金属が1400℃以上の高温になると、HAZのうち特に溶接金属に近接した部位(以下、「ボンド部」と称する場合がある)では、溶接時に受ける熱によってTiNが固溶消失してしまい、母材の靭性を維持できないことが分かった。   Therefore, some steel materials that can suppress the deterioration of the HAZ toughness even when the high heat input welding method is adopted have already been proposed. For example, Patent Document 1 discloses a steel material in which fine TiN is dispersed and reprecipitated in the steel material to suppress coarsening of austenite grains generated in the HAZ when high heat input welding is performed, and deterioration in HAZ toughness is suppressed. Has been proposed. However, as a result of investigations by the present inventors, when the weld metal reaches a high temperature of 1400 ° C. or higher, heat that is received during welding in a portion of the HAZ that is particularly close to the weld metal (hereinafter sometimes referred to as “bond portion”). As a result, TiN disappeared in solid solution, and it was found that the toughness of the base material could not be maintained.

他方、特許文献2には鋼成分を適正化すると共に、結晶粒の微細化によって高靭性化を達成する技術が提案されている。即ち、鋼中に適量のCuを含有させ、Cuの析出硬化を利用することによって焼入性の劣化を抑制すると共に、Ti酸化物を核とする微細なアシキュラーフェライトの生成を促進し、その結果としてHAZ組織を微細化して靭性を高めるものである。しかし鋼材を製造するに際し、Ti酸化物は溶鋼中で凝集し易いため、鋼材中に微細分散させるのが困難であり、そのためHAZ靭性を充分に改善できない場合があった。   On the other hand, Patent Document 2 proposes a technique for achieving high toughness by optimizing steel components and miniaturizing crystal grains. That is, an appropriate amount of Cu is contained in the steel, and by using the precipitation hardening of Cu, the deterioration of the hardenability is suppressed and the generation of fine acicular ferrite having a Ti oxide as a nucleus is promoted. As a result, the HAZ structure is refined to increase toughness. However, when manufacturing a steel material, Ti oxide easily aggregates in the molten steel, so it is difficult to finely disperse in the steel material, and therefore the HAZ toughness may not be sufficiently improved.

また特許文献3には、鋼材中にAl−Mn系の酸化物粒子を分散させ、この酸化物粒子をHAZでの粒内アシキュラーフェライトの核生成サイトとすることによってHAZ組織を微細化し、HAZ靭性を高める技術が提案されている。しかしAl−Mn系酸化物は溶鋼中で凝集しやすいため、大入熱溶接時のHAZ靭性に対しては充分に対応できる技術ではない。   In Patent Document 3, Al-Mn-based oxide particles are dispersed in a steel material, and the oxide particles are used as nucleation sites of intragranular acicular ferrite in HAZ, thereby reducing the HAZ structure. Techniques for increasing toughness have been proposed. However, since Al—Mn-based oxides are likely to agglomerate in molten steel, it is not a technique that can sufficiently cope with HAZ toughness during high heat input welding.

ところで特許文献4には、小入熱溶接および中入熱溶接におけるHAZ靭性を改善する技術として、Ca酸化物やCaオキシサルファイドをアシキュラーフェライトの生成サイトとして利用することでHAZ組織を微細化し、靭性を改善することが開示されている。しかしCa酸化物やCaオキシサルファイドは、上記Ti酸化物と同様に溶鋼中で凝集し易いため、HAZ靭性を充分に向上できない場合があった。   By the way, in Patent Document 4, as a technique for improving the HAZ toughness in small heat input welding and medium heat input welding, the HAZ structure is refined by using Ca oxide or Ca oxysulfide as a site for generating acicular ferrite, It has been disclosed to improve toughness. However, since Ca oxide and Ca oxysulfide are likely to aggregate in the molten steel like the Ti oxide, the HAZ toughness may not be sufficiently improved.

さらに特許文献5には、鋼の材質向上対策として、溶鋼中での凝集性の低いMnO・SiO2複合酸化物を分散させる技術が示されている。同文献によれば、この複合酸化物を核としてMnSを析出させ、このMnSをフェライト変態核としてオーステナイト粒内に微細なフェライトを生成させて組織を微細化し、靭性を高める技術が提案されている。しかしこの技術ではMnやSiは脱酸力が弱いため溶鋼中へ多量添加する必要があり、そのためMnO・SiO2複合酸化物自体が粗大化してしまい、HAZ靭性を却って劣化させる。
特公昭55-26164号公報([特許請求の範囲]、第3頁参照) 特公平7-57886号公報([特許請求の範囲]、第3頁参照) 特開平7-278736号公報([特許請求の範囲]、[0023]〜[0029]参照) 特開平5-287374号公報([特許請求の範囲]、[0004]、[0006]参照) 特開平3-287711号公報([特許請求の範囲]、第2頁参照)
Further, Patent Document 5 discloses a technique for dispersing MnO · SiO 2 composite oxide having low cohesiveness in molten steel as a measure for improving the quality of steel. According to this document, a technique is proposed in which MnS is precipitated using this composite oxide as a nucleus, fine ferrite is generated in austenite grains using this MnS as a ferrite transformation nucleus, the structure is refined, and the toughness is increased. . However, in this technique, since Mn and Si have weak deoxidizing power, it is necessary to add them in the molten steel in large quantities. For this reason, the MnO.SiO 2 composite oxide itself becomes coarse and deteriorates the HAZ toughness.
Japanese Patent Publication No. 55-26164 (see “Claims” on page 3) Japanese Patent Publication No. 7-57886 (see “Claims” on page 3) Japanese Patent Laid-Open No. 7-278736 (see [Claims], [0023] to [0029]) Japanese Patent Laid-Open No. 5-287374 (see [Claims], [0004], [0006]) JP-A-3-287711 (see “Claims” on page 2)

本発明は、このような状況に鑑みてなされたものであり、その目的は、溶接熱影響部の靭性に優れた鋼材およびその製法を提供することにある。   This invention is made | formed in view of such a condition, The objective is to provide the steel material excellent in the toughness of a welding heat affected zone, and its manufacturing method.

上記課題を解決することのできた溶接熱影響部の靭性に優れた鋼材とは、C:0.02〜0.2%、Si:0.02〜0.50%、Mn:0.5〜2%、Ti:0.005〜0.06%、N:0.002〜0.01%、を夫々含有し、且つ、P:0.02%以下(0%を含む)、S:0.008%以下(0%を含む)、Al:0.01%以下(0%を含む)、に夫々抑制した鋼材において、更に、Ca:0.0005〜0.005%を含み、残部がFeおよび不可避不純物からなる鋼材であって、鋼材中に含まれる酸化物系介在物の平均組成に占めるCaOとSiO2が、CaO:10%以上、および、SiO2:10%以上、を夫々満足する点に要旨を有する。 The steel materials excellent in toughness of the weld heat-affected zone capable of solving the above problems are C: 0.02 to 0.2%, Si: 0.02 to 0.50%, Mn: 0.5 to 2 %, Ti: 0.005 to 0.06%, N: 0.002 to 0.01%, and P: 0.02% or less (including 0%), S: 0.008 % Of steel (including 0%) and Al: 0.01% or less (including 0%), respectively, and further Ca: 0.0005 to 0.005%, the balance being Fe and inevitable It is a steel material made of impurities, and CaO and SiO 2 in the average composition of oxide inclusions contained in the steel material satisfy CaO: 10% or more and SiO 2 : 10% or more, respectively. Has a gist.

前記CaOとSiO2の質量比[CaO/SiO2]は、0.1〜3であることが好ましい。さらに、前記平均組成に占めるAl23,MnOまたはTiO2は、Al23:40%以下(0%を含む)、MnO:50%以下(0%を含む)、TiO2:40%以下(0%を含む)、のいずれかを満足することが好ましい。 The mass ratio [CaO / SiO 2 ] between CaO and SiO 2 is preferably 0.1-3. Further, Al 2 O 3 , MnO or TiO 2 in the average composition is Al 2 O 3 : 40% or less (including 0%), MnO: 50% or less (including 0%), TiO 2 : 40% Any of the following (including 0%) is preferably satisfied.

前記鋼材中に、更に他の元素として、Cu:0.05〜2%、Ni:0.05〜3.5%、Cr:0.01〜1%、Mo:0.01〜1%、Nb:0.005〜0.06%、V:0.005〜0.1%、および、B:0.0003〜0.003%、のいずれか1種以上を含むものであれば鋼材の強度を高めることができるので一層好ましい。   In the steel material, Cu: 0.05-2%, Ni: 0.05-3.5%, Cr: 0.01-1%, Mo: 0.01-1%, Nb as other elements : 0.005 to 0.06%, V: 0.005 to 0.1%, and B: 0.0003 to 0.003%. Since it can raise, it is still more preferable.

上記鋼材を確実に製造できる本発明に係る方法とは、溶鋼中の溶存酸素量を20〜100ppmの範囲に調整した後、Caを添加し、次いでSiを添加する点に要旨を有する。   The method according to the present invention capable of reliably producing the steel material has a gist in that, after adjusting the amount of dissolved oxygen in the molten steel to a range of 20 to 100 ppm, Ca is added, and then Si is added.

本発明によれば、溶接熱影響部の靭性に優れた鋼材およびその製法を提供することができる。特に本発明の鋼材は、小〜中入熱溶接に限らず、大入熱溶接する際にも好適に用いることができる。   ADVANTAGE OF THE INVENTION According to this invention, the steel materials excellent in the toughness of a welding heat affected zone and its manufacturing method can be provided. In particular, the steel material of the present invention can be suitably used not only for small to medium heat input welding but also for large heat input welding.

前述した様に、Ti酸化物等は溶鋼中で凝集し易く、そのためHAZ靭性を改善できない場合があった。またTiNを分散再析出させた鋼材では、溶接金属が1400℃以上の高温になるとボンド部に分散しているTiNが固溶消失してしまい、HAZ靭性を改善できないことがあった。   As described above, Ti oxides and the like are likely to aggregate in the molten steel, and therefore HAZ toughness may not be improved. Moreover, in the steel material in which TiN is dispersed and reprecipitated, when the weld metal reaches a high temperature of 1400 ° C. or higher, the TiN dispersed in the bond portion disappears in a solid solution, and the HAZ toughness may not be improved.

そこで本発明者らは、鋼材を製造するに当たり、溶鋼中において凝集し難く、しかも溶接時に熱影響を受けて加熱された場合でも固溶消失しない酸化物系介在物を鋼材中に分散させてやれば、上記問題を解消できるのではないかと考え、様々な角度から検討してきた。その結果、鋼材中に含まれる酸化物系介在物の平均組成に占めるCaOとSiO2が、CaO:10%以上、および、SiO2:10%以上、を夫々満足するものは、上記課題を見事に解決し得ることを見出し、本発明を完成した。以下、本発明の作用効果について説明する。 Therefore, the inventors of the present invention can disperse oxide inclusions in the steel material that are less likely to agglomerate in the molten steel and that do not disappear even when heated under the influence of heat during welding. We thought that the above problem could be solved, and have studied from various angles. As a result, CaO and SiO 2 in the average composition of oxide inclusions contained in the steel material satisfy CaO: 10% or more and SiO 2 : 10% or more, respectively. The present invention has been completed. Hereinafter, the operation effect of the present invention will be described.

本発明者らは、酸化物系介在物の平均組成に占めるCaOとSiO2が、CaO:10%以上、および、SiO2:10%以上、を夫々満足する場合には、これらCaOとSiO2の存在に由来して低融点のCaO−SiO2系酸化物が生成し、これがHAZ靭性の向上に顕著な効果を及ぼしているものと考えている。 When the CaO and SiO 2 occupying the average composition of oxide inclusions satisfy CaO: 10% or more and SiO 2 : 10% or more, these CaO and SiO 2 It is considered that a low melting point CaO—SiO 2 -based oxide is generated due to the presence of this, and this has a remarkable effect on the improvement of HAZ toughness.

即ち、酸化物系介在物の平均組成が好適な範囲を満たすものは、個々の酸化物系介在物の組成も上記好適な平均組成のものに近似したものとなり、溶鋼中では液状で存在する酸化物系介在物が大部分を占め、鋼材中に好適な酸化物系介在物が微細分散することが確認された。   That is, when the average composition of oxide inclusions satisfies the preferred range, the composition of individual oxide inclusions also approximates that of the above preferred average composition, and the oxidation present in liquid form in molten steel. It was confirmed that the physical inclusions accounted for the majority, and suitable oxide inclusions were finely dispersed in the steel material.

つまり、本発明者らは、溶鋼中で凝集し難い酸化物系介在物としてCaO−SiO2系酸化物に注目した。そして、CaO−SiO2系酸化物のなかでも、CaO:10%以上とSiO2:10%以上を夫々含むものは、溶鋼中(溶製温度:約1500〜1600℃)では液状で存在し、凝集し難いことが判明した。一般に溶鋼中で液状の酸化物は、固体状の酸化物に比べて溶鋼と酸化物の間の界面エネルギーが小さいため、溶鋼中で凝集し難く粗大化しにくい。またCaは、酸素との親和力が極めて強いため、少量の添加でしかも添加後はすみやかに溶鋼中の酸素と結合するため、酸化物自体が成長して粗大化することもない。ところが、CaO自体の融点は溶製温度より格段に高く、溶鋼中では固体状で存在するためAl23やTiO2等と同様に溶鋼中で凝集し易い。 That is, the present inventors paid attention to the CaO—SiO 2 oxide as an oxide inclusion that hardly aggregates in molten steel. Among the CaO—SiO 2 -based oxides, those containing CaO: 10% or more and SiO 2 : 10% or more exist in liquid form in molten steel (melting temperature: about 1500 to 1600 ° C.), It turned out to be difficult to aggregate. In general, a liquid oxide in molten steel has less interfacial energy between the molten steel and oxide than a solid oxide, and thus is less likely to agglomerate and coarsen in the molten steel. Further, since Ca has an extremely strong affinity for oxygen, it can be added in a small amount and immediately after bonding with oxygen in the molten steel, so that the oxide itself does not grow and become coarse. However, the melting point of CaO itself is much higher than the melting temperature, and since it exists in the molten steel as a solid, it tends to agglomerate in the molten steel like Al 2 O 3 and TiO 2 .

そこで本発明の鋼材を製造する際には、後述する様に、溶鋼へCaを添加した後、次いでSiを添加することによって、溶鋼中では液状を呈するCaO−SiO2系酸化物を溶鋼中に生成させ、これを冷却することで微細な酸化物系介在物が分散した鋼材を得る。そして前記CaO−SiO2系酸化物を含む溶鋼を冷却すると、この酸化物は凝集することなく鋼材中に微細分散し、また酸化物は溶接時に加熱されても酸化物が鋼材中へ固溶消失することはないので、HAZに加えてボンド部における靭性劣化も防止できる。 Therefore, when manufacturing the steel material of the present invention, as will be described later, after adding Ca to the molten steel, Si is then added, so that the CaO—SiO 2 oxide that exhibits a liquid state in the molten steel is contained in the molten steel. A steel material in which fine oxide inclusions are dispersed is obtained by forming and cooling this. When the molten steel containing the CaO—SiO 2 oxide is cooled, the oxide is finely dispersed in the steel material without agglomeration, and even if the oxide is heated at the time of welding, the oxide dissolves into the steel material. Therefore, it is possible to prevent toughness deterioration at the bond portion in addition to HAZ.

本発明の鋼材では、鋼材中に含まれる酸化物系介在物の平均組成に占めるCaOとSiO2が、CaO:10%以上、および、SiO2:10%以上、を夫々満足することが重要である。CaO−SiO2系酸化物を溶鋼中で液状で存在させるには、CaO:10%以上、および、SiO2:10%以上、を夫々含む必要があるからである。前記平均組成に占めるCaOが10%未満またはSiO2が10%未満では、CaO−SiO2系酸化物が溶鋼中で固体として存在し、酸化物が凝集して粗大化する。その結果、HAZ靭性を改善できない。好ましくは前記平均組成に占める比率を、CaO:15%以上、SiO2:15%以上とするのがよい。 In the steel material of the present invention, it is important that CaO and SiO 2 in the average composition of oxide inclusions contained in the steel material satisfy CaO: 10% or more and SiO 2 : 10% or more, respectively. is there. This is because CaO—SiO 2 -based oxides need to contain CaO: 10% or more and SiO 2 : 10% or more in order to be present in liquid steel in liquid form. When CaO in the average composition is less than 10% or SiO 2 is less than 10%, the CaO—SiO 2 -based oxide exists as a solid in the molten steel, and the oxide aggregates and becomes coarse. As a result, the HAZ toughness cannot be improved. Preferably, the proportion of the average composition is CaO: 15% or more and SiO 2 : 15% or more.

なお、前記平均組成に占めるCaO量とSiO2量の上限は、CaO−SiO2系酸化物が溶鋼中で液状で存在する範囲であれば特に限定されないが、CaO含量が90%を超えるか、またはSiO2含量が90%を超えると、融点が高くなって溶鋼中で固体として存在するので、CaO含量は90%以下(より好ましくは70%以下、さらに好ましくは50%以下)、SiO2含量は90%以下(より好ましくは70%以下、さらに好ましくは50%以下)に夫々抑えるのがよい。 The upper limit of the CaO amount and the SiO 2 amount in the average composition is not particularly limited as long as the CaO-SiO 2 oxide is in a liquid state in the molten steel, but the CaO content exceeds 90%, Or, if the SiO 2 content exceeds 90%, the melting point becomes high and exists as a solid in the molten steel, so the CaO content is 90% or less (more preferably 70% or less, more preferably 50% or less), and the SiO 2 content Is preferably suppressed to 90% or less (more preferably 70% or less, and still more preferably 50% or less).

酸化物系介在物の平均組成におけるCaOとSiO2の質量比[CaO/SiO2]は、0.1〜3であるのが好ましい。CaOとSiO2の質量比が0.1未満では、溶鋼中で凝集しやすいSiO2を生成し易く、一方、3を超えると融点の高いCaO−SiO2系酸化物の生成領域となるからである。CaOとSiO2との比のより好ましい下限値は0.100であり、さらに好ましい下限値は0.7である。一方、CaOとSiO2との比のより好ましい上限値は3.000であり、さらに好ましい上限値は2である。 The mass ratio [CaO / SiO 2 ] between CaO and SiO 2 in the average composition of oxide inclusions is preferably 0.1-3. This is because when the mass ratio of CaO and SiO 2 is less than 0.1, SiO 2 that easily aggregates in the molten steel is likely to be produced, whereas when it exceeds 3, a CaO—SiO 2 oxide production region having a high melting point is formed. A more preferable lower limit value of the ratio of CaO and SiO 2 is 0.100, and a more preferable lower limit value is 0.7. On the other hand, the more preferable upper limit value of the ratio of CaO and SiO 2 is 3.000, and the more preferable upper limit value is 2.

上述した様に本発明の鋼材は、鋼材に含まれる酸化物系介在物の平均組成に占めるCaOとSiO2を、CaO:10%以上で、且つSiO2:10%以上とし、これによってHAZ靭性を向上させているが、酸化物系介在物としては、CaO−SiO2系酸化物の他に、CaO−SiO2−Al23系酸化物やCaO−SiO2−MnO系酸化物、CaO−SiO2−TiO2系酸化物などを鋼材中に含んでも良い。 As described above, in the steel material of the present invention, CaO and SiO 2 occupying the average composition of oxide inclusions contained in the steel material are CaO: 10% or more and SiO 2 : 10% or more, and thereby HAZ toughness. Although improves, as the oxide inclusions, in addition to the CaO-SiO 2 based oxide, CaO-SiO 2 -Al 2 O 3 based oxide or CaO-SiO 2 -MnO-based oxide, CaO The steel material may contain —SiO 2 —TiO 2 oxide.

即ち、本発明で対象とする鋼材の組成としては、MnやTi、必要によりAlなどを含んでいるので、溶鋼中ではCaOやSiO2以外にMnやTi,Alなどの酸化物も生成する。そのため、これらの酸化物もCaOやSiO2と結合する場合がある。このとき、CaOおよびSiO2とAl23が結合するとCaO−SiO2−Al23系酸化物、CaOおよびSiO2とMnOが結合するとCaO−SiO2−MnO系酸化物、CaOおよびSiO2とTiO2が結合するとCaO−SiO2−TiO2系酸化物、が夫々生成する。 That is, as the composition of the steel material targeted by the present invention, Mn, Ti, and if necessary Al are included, so in the molten steel, oxides such as Mn, Ti and Al are generated in addition to CaO and SiO 2 . Therefore, these oxides may also be combined with CaO or SiO 2 . At this time, when CaO and SiO 2 are combined with Al 2 O 3 , CaO—SiO 2 —Al 2 O 3 -based oxide, and when CaO and SiO 2 and MnO are combined are CaO—SiO 2 —MnO-based oxide, CaO and SiO When 2 and TiO 2 are bonded, CaO—SiO 2 —TiO 2 oxides are formed.

そして本発明の鋼材では、前記平均組成に占めるAl23,MnOまたはTiO2が、Al23:40%以下(0%を含む)、MnO:50%以下(0%を含む)、TiO2:40%以下(0%を含む)、のいずれかを満足することが好ましい。 In the steel material of the present invention, Al 2 O 3 , MnO or TiO 2 in the average composition is Al 2 O 3 : 40% or less (including 0%), MnO: 50% or less (including 0%), It is preferable to satisfy any of TiO 2 : 40% or less (including 0%).

即ち、CaO−SiO2−Al23系酸化物に含まれるAl23量を40%以下(0%を含む),CaO−SiO2−MnO系酸化物に含まれるMnO量を50%以下(0%を含む),CaO−SiO2−TiO2系酸化物に含まれるTiO2量を40%以下(0%を含む)とすることによって、酸化物系介在物の融点を低くでき、溶鋼中で液状で存在するからである。Al23含量のより好ましい上限は30%,MnO含量のより好ましい上限は40%,TiO2含量のより好ましい上限は30%である。 That is, the amount of Al 2 O 3 contained in the CaO—SiO 2 —Al 2 O 3 oxide is 40% or less (including 0%), and the amount of MnO contained in the CaO—SiO 2 —MnO oxide is 50%. Below (including 0%), by making the amount of TiO 2 contained in the CaO—SiO 2 —TiO 2 -based oxide 40% or less (including 0%), the melting point of the oxide inclusions can be lowered, This is because it exists in liquid form in liquid form. A more preferred upper limit for the Al 2 O 3 content is 30%, a more preferred upper limit for the MnO content is 40%, and a more preferred upper limit for the TiO 2 content is 30%.

なお、例えば、CaOおよびSiO2とAl23およびMnOが結合すると、CaO−SiO2−Al23−MnO系酸化物となるが、このとき夫々の酸化物含量は、上記各範囲を満足すべきである。 For example, when CaO and SiO 2 are combined with Al 2 O 3 and MnO, a CaO—SiO 2 —Al 2 O 3 —MnO-based oxide is formed. At this time, each oxide content is within the above ranges. Should be satisfied.

鋼材中に含まれる酸化物系介在物の平均組成は、鋼材の断面をEPMAで観察して定量分析すればよい。EPMAとは、電子線マイクロプローブX線分析計(Electron Probe X-ray Micro Analysis)である。EPMAの観察条件は、例えば、加速電圧:20kV,試料電流:0.01μA,観察視野面積:1〜5cm2とし、特性X線の波長分散分光により介在物の中央部での組成を定量分析する。分析対象とする介在物の大きさは、最大径が5μm以上のものとし、分析個数は少なくとも100個とする。最大径が5μm未満の介在物は小さ過ぎ、正確な組成定量ができないため分析対象から除いた。 The average composition of the oxide inclusions contained in the steel material may be quantitatively analyzed by observing the cross section of the steel material with EPMA. EPMA is an Electron Probe X-ray Micro Analysis. The observation conditions of EPMA are, for example, acceleration voltage: 20 kV, sample current: 0.01 μA, observation field area: 1 to 5 cm 2, and quantitative analysis of the composition at the center of the inclusion by wavelength dispersion spectroscopy of characteristic X-rays. The size of inclusions to be analyzed is a maximum diameter of 5 μm or more, and the number of analyzes is at least 100. Inclusions with a maximum diameter of less than 5 μm were too small to be accurately quantified, and were excluded from the analysis.

分析対象元素は、Al,Mn,Si,Mg,Ca,TiおよびOとし、既知物質を用いて各元素のX線強度と元素濃度の関係を予め検量線として求めておく。次いで、分析対象とする介在物から得られたX線強度と前記検量線から介在物に含まれる元素濃度を定量する。   The analysis target elements are Al, Mn, Si, Mg, Ca, Ti, and O, and the relationship between the X-ray intensity and the element concentration of each element is obtained in advance as a calibration curve using a known substance. Next, the element concentration contained in the inclusion is quantified from the X-ray intensity obtained from the inclusion to be analyzed and the calibration curve.

分析対象とする介在物には、CaOやSiO2などの単独酸化物も含まれるが、単独酸化物の生成量は複合酸化物(例えば、CaO−SiO2系酸化物等)の生成量に比べて少なく、これら単独酸化物が多少存在していても本発明の効果は損なわれないと考えている。なお、本発明の鋼材では、酸素含量が15%以上の介在物を酸化物系介在物とする。また鋼材に含まれる窒化物(例えば、TiNなど)や硫化物系介在物(例えば、MnSなど)などの介在物も分析対象となるが、酸素と結合していない介在物は、本発明の作用を発揮しないと考えられるので、平均組成の算出から除外する。 Inclusions to be analyzed include single oxides such as CaO and SiO 2, but the amount of single oxide produced is larger than the amount of complex oxide (eg, CaO—SiO 2 -based oxide) produced. Therefore, even if these single oxides are present in some amount, the effect of the present invention is considered not to be impaired. In the steel material of the present invention, inclusions having an oxygen content of 15% or more are used as oxide inclusions. In addition, inclusions such as nitrides (for example, TiN) and sulfide inclusions (for example, MnS) contained in steel materials are also analyzed, but inclusions that are not bonded to oxygen are effective for the present invention. Is excluded from the calculation of the average composition.

こうして個々の酸化物系介在物について得られた定量結果を平均したものを酸化物系介在物の平均組成として算出する。   The average of the quantitative results obtained for the individual oxide inclusions is calculated as the average composition of the oxide inclusions.

次に、本発明の鋼材における成分組成について説明する。   Next, the component composition in the steel material of the present invention will be described.

本発明の鋼材は、必須成分として、C:0.02〜0.2%、Si:0.02〜0.50%、Mn:0.5〜2%、Ti:0.005〜0.06%、N:0.002〜0.01%およびCa:0.0005〜0.005%、を夫々含有し、且つ、P:0.02%以下(0%を含む)、S:0.008%以下(0%を含む)およびAl:0.01%以下(0%を含む)、に夫々抑制したものである。以下、これらの範囲を定めた理由を説明する。   The steel material of the present invention includes, as essential components, C: 0.02 to 0.2%, Si: 0.02 to 0.50%, Mn: 0.5 to 2%, Ti: 0.005 to 0.06%, N: 0.002 to 0.01%, and Ca: 0.0005 to 0.005. %, And P: 0.02% or less (including 0%), S: 0.008% or less (including 0%) and Al: 0.01% or less (including 0%), respectively. It is. The reason why these ranges are determined will be described below.

C:0.02〜0.2%
Cは、鋼材の強度を確保するために欠くことのできない元素であり、この効果を有効に発揮させるには、0.02%以上含有させる必要があり、好ましくは0.03%以上含有させるのがよい。しかし、C含量が0.2%を超えるとHAZに島状マルテンサイトを多く生成し、HAZ靭性の劣化を招くばかりでなく、溶接性にも悪影響を及ぼすため0.2%以下に抑える必要がある。好ましくは0.15%以下とすることがより推奨される。
C: 0.02-0.2%
C is an element indispensable for ensuring the strength of the steel material, and in order to exhibit this effect effectively, it is necessary to contain 0.02% or more, preferably 0.03% or more. However, if the C content exceeds 0.2%, a lot of island martensite is generated in the HAZ, not only causing deterioration of the HAZ toughness, but also adversely affecting the weldability. It is more recommended that the content be 0.15% or less.

Si:0.02〜0.5%
Siは、脱酸作用を有すると共に鋼材の強度向上に寄与し、さらにHAZ靭性の向上に必須となるCaO−SiO2系酸化物等を生成させるのに不可欠な元素である。これらの効果を発揮させるには、0.02%以上含有させるべきであり、好ましくは0.04%以上とするのがよい。しかし、Si含量が0.5%を超えると、鋼材の溶接性や靭性が劣化するので、0.5%以下に抑える必要があり、好ましくは0.4%以下とするのがよい。
Si: 0.02 to 0.5%
Si is an element indispensable for generating a CaO—SiO 2 -based oxide or the like that has a deoxidizing action and contributes to the improvement of the strength of the steel material and is essential for the improvement of the HAZ toughness. In order to exert these effects, the content should be 0.02% or more, preferably 0.04% or more. However, if the Si content exceeds 0.5%, the weldability and toughness of the steel material deteriorate, so it is necessary to keep it to 0.5% or less, preferably 0.4% or less.

Mn:0.5〜2%
Mnは、鋼材の強度向上に寄与する他、CaO−SiO2−MnO系酸化物を生成させてHAZ靭性を向上させるうえでも重要な元素である。この様な作用を有効に発揮させるには、0.5%以上含有させる必要があり、好ましくは0.7%以上含有させるのがよい。しかし、Mn含量が2%を超えると鋼材の溶接性を劣化させるので、2%以下に抑える必要がある。好ましくは1.8%以下とするのが望ましい。
Mn: 0.5-2%
Mn contributes to improving the strength of the steel material and is an important element for improving the HAZ toughness by generating a CaO—SiO 2 —MnO-based oxide. In order to exhibit such an action effectively, it is necessary to contain 0.5% or more, preferably 0.7% or more. However, if the Mn content exceeds 2%, the weldability of the steel material is deteriorated, so it is necessary to keep it to 2% or less. Preferably it is 1.8% or less.

Ti:0.005〜0.06%
Tiは、鋼材組織中にTiNとして析出することで、溶接時の加熱によって生成するオーステナイト粒の粗大化を防止してフェライト変態を促進し、HAZ靭性を向上させる有用な元素である。また、CaO−SiO2−TiO2系酸化物を生成することによってもHAZ靭性の向上に寄与する。これらの効果を有効に発揮させるには、0.005%以上含有させねばならない。好ましくは0.007%以上含有させるのがよい。しかしTi含量が0.06%を超えるとTiCが析出して鋼材の靭性を劣化させるので、Ti含量は0.06%以下に抑えるべきである。好ましくは0.05%以下とするのがよい。
Ti: 0.005-0.06%
Ti is a useful element that precipitates as TiN in the steel structure, prevents coarsening of austenite grains generated by heating during welding, promotes ferrite transformation, and improves HAZ toughness. Also contributes to the improvement of the HAZ toughness by producing CaO-SiO 2 -TiO 2 based oxide. In order to exhibit these effects effectively, it must be contained 0.005% or more. Preferably it is 0.007% or more. However, if the Ti content exceeds 0.06%, TiC precipitates and deteriorates the toughness of the steel material, so the Ti content should be suppressed to 0.06% or less. Preferably it is 0.05% or less.

N:0.002〜0.01%
Nは、Tiと結合して鋼材中にTiNを析出し、溶接時にHAZに生成するオーステナイト粒の粗大化を防止してフェライト変態を促進し、HAZ靭性を向上させる元素である。この効果を有効に発揮させるには、0.002%以上含有させねばならない。N含量が多いほどオーステナイト粒の微細化は促進され、靭性向上に有効であるが、0.01%を超えると、固溶N量の増大により却って靭性が劣化する。従って、N含量は0.01%以下に抑える必要がある。好ましい下限値は0.003%であり、好ましい上限値は0.008%である。
N: 0.002 to 0.01%
N is an element that combines with Ti to precipitate TiN in the steel material, prevents coarsening of austenite grains generated in the HAZ during welding, promotes ferrite transformation, and improves HAZ toughness. In order to exhibit this effect effectively, it must be contained by 0.002% or more. As the N content increases, the austenite grain refinement is promoted and is effective in improving toughness. However, if the N content exceeds 0.01%, the toughness deteriorates due to an increase in the amount of solid solution N. Therefore, the N content needs to be suppressed to 0.01% or less. A preferred lower limit is 0.003% and a preferred upper limit is 0.008%.

Ca:0.0005〜0.005%
Caは、HAZ靭性の向上に必須となるCaO−SiO2系酸化物等を生成させるのに不可欠な元素である。この効果を有効に発揮させるには、0.0005%以上含有させるべきであり、好ましくは0.0008%以上とするのが望ましい。しかし、Ca含量が0.005%を超えると溶鋼中で固体として存在する酸化物が生成し易くなり。従って、Ca含有量は0.005%以下に抑える必要があり、好ましくは0.004%以下とするのがよい。
Ca: 0.0005 to 0.005%
Ca is an element indispensable for generating a CaO—SiO 2 oxide or the like that is essential for improving the HAZ toughness. In order to exhibit this effect effectively, the content should be 0.0005% or more, preferably 0.0008% or more. However, if the Ca content exceeds 0.005%, an oxide that exists as a solid in the molten steel tends to be generated. Therefore, the Ca content must be suppressed to 0.005% or less, and preferably 0.004% or less.

P:0.02%以下(0%を含む)
Pは、鋼材中の結晶粒界に偏析しやすい元素であり、この偏析により靭性を劣化させる。従って、P含量は0.02%以下に抑制する必要があり、好ましくは0.015%以下とすることが推奨される。
P: 0.02% or less (including 0%)
P is an element that easily segregates at the grain boundaries in the steel, and the segregation deteriorates toughness. Therefore, the P content needs to be suppressed to 0.02% or less, preferably 0.015% or less.

S:0.008%以下(0%を含む)
Sは、Mnと結合してMnS介在物を生成し、鋼材の靭性や延性を劣化させる有害な元素である。またSは、Caと結合してCaSを生成し、所望のCaO−SiO2系酸化物等の生成を阻害する。そのため、S含量は0.008%以下に抑えるべきであり、好ましくは0.006%以下とする。
S: 0.008% or less (including 0%)
S is a harmful element that combines with Mn to generate MnS inclusions and degrades the toughness and ductility of the steel material. The S generates CaS combined with Ca, inhibit the production of such desired CaO-SiO 2 based oxide. Therefore, the S content should be suppressed to 0.008% or less, preferably 0.006% or less.

Al:0.01%以下(0%を含む)
Alは、Siより脱酸力の強い元素であり、過剰に含有させるとCaO−Al23系酸化物量が増大し、CaO−SiO2系酸化物、CaO−SiO2−Al23系酸化物、CaO−SiO2−TiO2系酸化物あるいはCaO−SiO2−MnO系酸化物等の生成が阻害される。従って、Al含量は0.01%以下に抑える必要がある。好ましくは0.007%以下とするのがよい。
Al: 0.01% or less (including 0%)
Al is an element having a stronger deoxidizing power than Si. If it is excessively contained, the amount of CaO—Al 2 O 3 -based oxide increases, and CaO—SiO 2 -based oxide, CaO—SiO 2 —Al 2 O 3 -based Formation of oxides, CaO—SiO 2 —TiO 2 -based oxides, CaO—SiO 2 —MnO-based oxides, or the like is inhibited. Therefore, the Al content needs to be suppressed to 0.01% or less. Preferably it is 0.007% or less.

本発明の鋼材は、上記元素を必須成分として含有するもので、残部はFeおよび不可避不純物(例えば、MgやZr,As,Seなど)であるが、更に他の元素として、鋼材の強度を高めるために、Cu:0.05〜2%、Ni:0.05〜3.5%、Cr:0.01〜1%、Mo:0.01〜1%、Nb:0.005〜0.06%、V:0.005〜0.1%、および、B:0.0003〜0.003%、のいずれか1種以上を含むことも有効であり、これらの範囲を定めた理由は次の通りである。   The steel material of the present invention contains the above-described elements as essential components, and the balance is Fe and inevitable impurities (for example, Mg, Zr, As, Se, etc.), but further increases the strength of the steel material as other elements. Therefore, Cu: 0.05-2%, Ni: 0.05-3.5%, Cr: 0.01-1%, Mo: 0.01-1%, Nb: 0.005-0.06%, V: 0.005-0.1%, and B: 0.0003 It is also effective to include any one or more of -0.003%, and the reason for setting these ranges is as follows.

Cu:0.05〜2%
Cuは、0.05%以上含有させることによって鋼材を固溶強化させることができる。また、0.6%以上含有させると時効析出強化も発揮し、大幅な強度向上が可能となる。しかし、2%を超えて含有させると、靭性を低下させる原因となる。そのためCu含量は2%以下に抑えるのが好ましい。より好ましくは1.50%以下とすることが推奨される。
Cu: 0.05-2%
Cu can be solid solution strengthened by containing 0.05% or more. Moreover, when 0.6% or more is contained, the aging precipitation strengthening is exhibited and the strength can be greatly improved. However, if it exceeds 2%, it causes a reduction in toughness. Therefore, the Cu content is preferably suppressed to 2% or less. More preferably, it is recommended to be 1.50% or less.

Ni:0.05〜3.5%
Niは、鋼材の強度を高めると共に、鋼材の靭性を向上させるのに有効な元素であり、この作用を有効に発揮させるには、0.05%以上含有させるのが好ましい。Ni含量は多いほど好ましいが、高価な元素であるため経済的観点から3.5%以下に抑えることを推奨する。より好ましくは3.0%以下とするのが望ましい。
Ni: 0.05-3.5%
Ni is an element effective for increasing the strength of the steel material and improving the toughness of the steel material, and in order to effectively exhibit this action, it is preferable to contain 0.05% or more. The higher the Ni content, the better. However, since it is an expensive element, it is recommended to suppress it to 3.5% or less from the economical viewpoint. More preferably it is 3.0% or less.

Cr:0.01〜1%
強度を高めるにはCrを0.01%以上含有させるのが好ましい。より好ましくは0.02%以上含有させるのが望ましい。しかし、Cr含量が1%を超えると溶接性が劣化するので、Cr含量は1%以下に抑えるのが好ましい。より好ましくは0.8%以下に抑制するのが望ましい。
Cr: 0.01 to 1%
In order to increase the strength, it is preferable to contain 0.01% or more of Cr. More preferably it is 0.02% or more. However, if the Cr content exceeds 1%, the weldability deteriorates, so the Cr content is preferably suppressed to 1% or less. More preferably, it is desirable to suppress it to 0.8% or less.

Mo:0.01〜1%
強度を高めるにはMoを0.01%以上含有させるのが望ましい。より好ましくは0.02%以上含有させるのが推奨される。但し、含量が1%を超えると溶接性を悪化させるので、Mo含量は1%以下とするのが好ましい。より好ましくは0.8%以下に抑えるのが推奨される。
Mo: 0.01 to 1%
In order to increase the strength, it is desirable to contain 0.01% or more of Mo. More preferably 0.02% or more is recommended. However, if the content exceeds 1%, weldability deteriorates, so the Mo content is preferably 1% or less. More preferably, it is recommended to keep it below 0.8%.

Nb:0.005〜0.06%
強度を高めるにはNbを0.005%以上含有させるのが好ましい。より好ましくは0.006%以上含有させるのが望ましい。しかし、Nb含量が0.06%を超えるとNbCが析出して母材の靭性を劣化させるので、Nb含量は0.06%以下に抑えるのが好ましい。より好ましくは0.05%以下に抑制するのが望ましい。
Nb: 0.005-0.06%
In order to increase the strength, Nb is preferably contained in an amount of 0.005% or more. More preferably, the content is 0.006% or more. However, if the Nb content exceeds 0.06%, NbC precipitates and deteriorates the toughness of the base metal. Therefore, the Nb content is preferably suppressed to 0.06% or less. More preferably, it is desirable to suppress it to 0.05% or less.

V:0.005〜0.1%
強度を高めるにはVを0.005%以上含有させるのが望ましい。より好ましくは0.006%以上含有させるのが推奨される。しかし、V含量が0.1%を超えると溶接性を悪化させると共に、鋼材の靭性を劣化させるので、V含量は0.1%以下とするのが好ましい。より好ましくは0.08%以下に抑えるのが推奨される。
V: 0.005-0.1%
In order to increase the strength, it is desirable to contain V by 0.005% or more. More preferably, it is recommended to contain 0.006% or more. However, if the V content exceeds 0.1%, the weldability is deteriorated and the toughness of the steel material is deteriorated. Therefore, the V content is preferably 0.1% or less. More preferably, it is recommended to keep it to 0.08% or less.

B:0.0003〜0.003%
Bは、鋼材の強度を高めると共に、溶接時に加熱されたHAZが冷却される過程でNと結合してBNを析出し、オーステナイト粒内からのフェライト変態を促進させる。これらの効果を有効に発揮させるには、0.0003%以上含有させるのが好ましい。しかし、含量が0.003%を超えると靭性を劣化させるので、B含量は0.003%以下とするのが好ましい。より好ましくは0.002%以下に抑制するのが望ましい。
B: 0.0003-0.003%
B increases the strength of the steel material and precipitates BN by combining with N in the process of cooling the HAZ heated during welding, thereby promoting ferrite transformation from within the austenite grains. In order to exhibit these effects effectively, it is preferable to contain 0.0003% or more. However, if the content exceeds 0.003%, the toughness deteriorates, so the B content is preferably 0.003% or less. More preferably, it is desirable to suppress it to 0.002% or less.

次に、上記鋼材を確実に製造できる方法について説明する。   Next, a method for reliably manufacturing the steel material will be described.

鋼材に含まれる酸化物系介在物の平均組成に占めるCaOとSiO2が、上記範囲を満足する様に制御するには、溶存酸素量を20〜100ppmの範囲に調整した溶鋼に、Caを添加した後、次いでSiを添加することが重要である。 In order to control CaO and SiO 2 in the average composition of oxide inclusions contained in the steel material so as to satisfy the above range, Ca is added to the molten steel whose dissolved oxygen content is adjusted to the range of 20 to 100 ppm. After that, it is important to add Si.

即ち、Ca添加前の溶鋼中における溶存酸素量が20ppm未満では、所定量のCaO酸化物が生成しないので、溶存酸素量を20ppm以上とした溶鋼へCaを添加すべきである。好ましくは溶存酸素量を25ppm以上に調整した溶鋼へCaを添加するのが望ましい。しかし、Ca添加前の溶存酸素量が100ppmを超えていると、溶鋼とCaの反応が激しくなり、溶製作業上好ましくないばかりか、粗大なCaOが生成するので、Ca添加時の溶存酸素量は100ppm以下に調整する必要がある。好ましくは溶存酸素量を80ppm以下に調整した溶鋼へCaを添加することが推奨される。   That is, when the amount of dissolved oxygen in the molten steel before addition of Ca is less than 20 ppm, a predetermined amount of CaO oxide is not generated. Therefore, Ca should be added to molten steel having a dissolved oxygen amount of 20 ppm or more. Preferably, Ca is added to molten steel whose dissolved oxygen amount is adjusted to 25 ppm or more. However, if the amount of dissolved oxygen before Ca addition exceeds 100 ppm, the reaction between molten steel and Ca becomes violent, which is not preferable for melting work, and coarse CaO is generated. Needs to be adjusted to 100 ppm or less. Preferably, it is recommended to add Ca to molten steel whose dissolved oxygen content is adjusted to 80 ppm or less.

溶存酸素量を上記範囲に調整した溶鋼へCaを添加する理由は、Caの脱酸力が、AlやTiより劣るからである。即ち、上記範囲に溶存酸素量を調整した溶鋼へ、CaよりもAlやTiを先に添加すると、溶鋼中の酸素とAlやTiが結合してAl23やTiO2などを生成する。ところが、これらの酸化物は結合力が強いので、これらの酸化物が生成した溶鋼中へCaを添加しても複合酸化物は形成されない。そこで、本発明の鋼材を製造するに際しては、溶存酸素量を調整した溶鋼へ先ずCaを添加し、CaOを生成させる。 The reason for adding Ca to the molten steel whose dissolved oxygen amount is adjusted to the above range is that the deoxidizing power of Ca is inferior to Al and Ti. In other words, when Al or Ti is added to the molten steel whose amount of dissolved oxygen is adjusted to the above range before Ca, oxygen and Al or Ti in the molten steel are combined to produce Al 2 O 3 or TiO 2 . However, since these oxides have strong bonding strength, composite oxides are not formed even when Ca is added to the molten steel produced by these oxides. Then, when manufacturing the steel material of this invention, Ca is first added to the molten steel which adjusted the amount of dissolved oxygen, and CaO is produced | generated.

次に、CaOを生成させた溶鋼中へSiを添加することでCaO−SiO2酸化物が形成される。そして、CaO−SiO2酸化物が生成した溶鋼へMnやTi,Alなどを添加して成分調整してやれば、CaO−SiO2系酸化物の他に、CaO−SiO2−MnO系酸化物なども形成されるのである。 Next, CaO—SiO 2 oxide is formed by adding Si into the molten steel in which CaO is generated. Then, CaO-SiO 2 oxide Mn and Ti to the resulting molten steel, do it with component adjusted by the addition such as Al, in addition to the CaO-SiO 2 based oxide, CaO-SiO 2 -MnO-based oxides also It is formed.

転炉や電気炉で一次精錬された溶鋼中の溶存酸素量は、通常100ppmを超えている。そこで、本発明の製法では、Caを添加する前に、公知の方法を採用して溶鋼中の溶存酸素量を上記範囲に調整する必要がある。溶存酸素量を調整する方法としては、例えば、RH式脱ガス精錬装置を用いて真空C脱酸する方法や、SiやTi,Alなどの脱酸元素を添加する方法などが挙げられる。勿論これらの方法を組み合わせて溶存酸素量を調整しても良い。   The amount of dissolved oxygen in molten steel primarily refined in converters and electric furnaces usually exceeds 100 ppm. Therefore, in the production method of the present invention, it is necessary to adjust the amount of dissolved oxygen in the molten steel within the above range by employing a known method before adding Ca. Examples of the method for adjusting the dissolved oxygen amount include a method of performing vacuum C deoxidation using an RH type degassing refining device, a method of adding a deoxidizing element such as Si, Ti, and Al. Of course, the dissolved oxygen amount may be adjusted by combining these methods.

また、RH式脱ガス精錬装置の代わりに、取鍋加熱式精錬装置や簡易式溶鋼処理設備などを用いて二次精錬しても良い。この場合、真空C脱酸による溶存酸素量の調整はできないので、溶存酸素量の調整にはSi等の脱酸元素を添加する方法を採用すれば良い。Si等の脱酸元素を添加する方法を採用するときは、転炉から取鍋へ出鋼する際に脱酸元素を添加しても構わない。   Further, instead of the RH type degassing refining apparatus, secondary refining may be performed using a ladle heating type refining apparatus, a simple molten steel processing facility, or the like. In this case, since the amount of dissolved oxygen cannot be adjusted by vacuum C deoxidation, a method of adding a deoxidizing element such as Si may be adopted to adjust the amount of dissolved oxygen. When employing a method of adding a deoxidizing element such as Si, the deoxidizing element may be added when steel is removed from the converter to the ladle.

溶鋼へ添加するCaは特に限定されず、例えば、純CaやFe−Ca合金,Ni−Ca合金などを添加すればよい。一方、溶鋼へ添加するSiも特に限定されず、SiやFe−Si合金やFe−Si−Mn合金など添加すればよい。   Ca to be added to the molten steel is not particularly limited. For example, pure Ca, Fe—Ca alloy, Ni—Ca alloy, or the like may be added. On the other hand, Si added to the molten steel is not particularly limited, and Si, Fe—Si alloy, Fe—Si—Mn alloy or the like may be added.

本発明の鋼材は、橋梁や高層建造物、船舶などの構造物の材料として使用でき、小〜中入熱溶接はもとより、大入熱溶接する際にも好適に用いることができる。   The steel material of the present invention can be used as a material for structures such as bridges, high-rise buildings and ships, and can be suitably used not only for small to medium heat input welding but also for large heat input welding.

以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に適合し得る範囲で適当に変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are not intended to limit the present invention, and may be implemented with appropriate modifications within a range that can meet the purpose described above and below. These are all possible and are within the scope of the present invention.

溶銑を240トン転炉で一次精錬した後、転炉から取鍋へ出鋼し、取鍋にてRH式脱ガス精錬装置を用いて二次精錬した。二次精錬では、次に示すA〜Cのいずれかの手順で成分調整を行なった。   After the hot metal was first refined in a 240-ton converter, the steel was discharged from the converter to a ladle and secondary refined in the ladle using an RH degassing refiner. In the secondary refining, the components were adjusted by any one of the following procedures A to C.

[手順]
A:表1に示す脱酸方法で表1に示す溶存酸素量に調整した溶鋼へ、Caを添加した後、Siを添加し、その後、他の元素を添加して成分調整する
B:表1に示す脱酸方法で脱酸した溶鋼へ、Ca以外の元素を添加して成分調整した後、溶鋼中の溶存酸素量を計測し、最後にCaを添加する
C:取鍋にてRH式脱ガス精錬装置を用いて二次精錬した後、Alを添加し、その後、他の元素を添加して成分調整する。但し、溶存酸素量の調整は行なわない。
[procedure]
A: After adding Ca to the molten steel adjusted to the dissolved oxygen amount shown in Table 1 by the deoxidation method shown in Table 1, Si is added, and then other elements are added to adjust the components. B: Table 1 After adding elements other than Ca to the molten steel deoxidized by the deoxidation method shown in Fig. 2, the amount of dissolved oxygen in the molten steel is measured, and finally Ca is added. After secondary refining using a gas refining apparatus, Al is added, and then other elements are added to adjust the components. However, the amount of dissolved oxygen is not adjusted.

下記表1に成分調整の手順、脱酸方法およびCaを添加する直前の溶存酸素量を夫々示す。また、成分調整した鋼材の成分組成を下記表2に示す。なお、下記表2中「−」は元素を添加していないことを示し、「0.0003質量%未満」は元素を添加したが定量限界以下であったことを夫々示している。   Table 1 below shows the component adjustment procedure, the deoxidation method, and the amount of dissolved oxygen immediately before adding Ca. In addition, Table 2 shows the component composition of the steel material whose components were adjusted. In Table 2 below, “-” indicates that no element was added, and “less than 0.0003 mass%” indicates that the element was added but was below the limit of quantification.

Figure 0004220914
Figure 0004220914

Figure 0004220914
Figure 0004220914

成分調整後の溶鋼を連続鋳造機でスラブに鋳造した後、該スラブからサンプルを切り出した。切り出されたサンプルの断面を島津製作所製EPMA−8705で観察し、最大径が5μm以上の介在物について成分組成を定量分析した。観察条件は、加速電圧:20kV,試料電流:0.01μA,観察視野面積:1〜5cm2,分析個数:100個,とし、特性X線の波長分散分光により介在物中央部での成分組成を定量分析した。分析対象元素は、Al,Mn,Si,Mg,Ca,TiおよびOとし、既知物質を用いて各元素のX線強度と元素濃度の関係を予め検量線として求めておき、次いで、前記介在物から得られたX線強度と前記検量線からその介在物の元素濃度を定量した。得られた定量結果のうち酸素含量が15%以上の介在物を酸化物系介在物とし、定量結果を平均したものを酸化物系介在物の平均組成とする。この平均組成を下記表3に示す。また、酸化物系介在物の平均組成に占めるCaOとSiO2の質量比[CaO/SiO2]を算出して下記表3に併せて示す。 The molten steel after component adjustment was cast into a slab with a continuous casting machine, and then a sample was cut out from the slab. The cross section of the cut sample was observed with EPMA-8705 manufactured by Shimadzu Corporation, and the component composition was quantitatively analyzed for inclusions having a maximum diameter of 5 μm or more. The observation conditions are: acceleration voltage: 20 kV, sample current: 0.01 μA, observation field area: 1 to 5 cm 2 , analysis number: 100, and quantitative determination of component composition at the center of the inclusion by wavelength dispersion spectroscopy of characteristic X-rays analyzed. The elements to be analyzed are Al, Mn, Si, Mg, Ca, Ti and O, and the relationship between the X-ray intensity and element concentration of each element is obtained in advance using a known substance as a calibration curve, and then the inclusion From the X-ray intensity obtained from the above and the calibration curve, the element concentration of the inclusion was quantified. Of the obtained quantitative results, inclusions having an oxygen content of 15% or more are defined as oxide inclusions, and the average of the quantitative results is defined as the average composition of oxide inclusions. The average composition is shown in Table 3 below. Moreover, the mass ratio [CaO / SiO 2 ] of CaO and SiO 2 occupying the average composition of oxide inclusions is calculated and shown in Table 3 below.

なお、平均組成を算出した個々の酸化物系介在物は、CaO−SiO2系酸化物やCaO−SiO2−Al23系酸化物などが大半あったが、CaOやAl23,SiO2などの単独酸化物も若干含まれていた。しかし、上記平均組成を算出する際には、CaO−SiO2系酸化物等と単独酸化物を区別せずに定量結果を平均している。 Incidentally, most of the oxide inclusions whose average composition was calculated were CaO—SiO 2 oxide, CaO—SiO 2 —Al 2 O 3 oxide, etc., but CaO, Al 2 O 3 , Some single oxides such as SiO 2 were also included. However, when the average composition is calculated, the quantitative results are averaged without distinguishing between the CaO—SiO 2 oxide and the like and the single oxide.

次に、溶接時に熱影響を受けるHAZの靭性を評価するために、大入熱溶接を模擬して下記に示す溶接再現試験を行なった。   Next, in order to evaluate the toughness of HAZ which is affected by heat during welding, a welding reproduction test shown below was performed by simulating high heat input welding.

スラブから切り出したサンプル全体が1400℃になるように加熱し、この温度で5秒間保持した後、冷却した。冷却速度は、800℃から500℃への冷却時間が300秒となるように調整した。   The entire sample cut out from the slab was heated to 1400 ° C., kept at this temperature for 5 seconds, and then cooled. The cooling rate was adjusted so that the cooling time from 800 ° C. to 500 ° C. was 300 seconds.

冷却後のサンプルの衝撃特性を、Vノッチシャルピー試験で0℃における吸収エネルギー(vE0)を測定して評価した。vE0が150J以上のものを合格(HAZ靭性良好)とする。測定結果を表3に示す。 The impact characteristics of the sample after cooling were evaluated by measuring the absorbed energy (vE 0 ) at 0 ° C. by the V-notch Charpy test. A sample having a vE 0 of 150 J or more is considered acceptable (haz toughness is good). Table 3 shows the measurement results.

Figure 0004220914
Figure 0004220914

表2〜3から次のように考察できる。即ち、No.1〜9は、本発明の要件を満足する例であり、溶接熱影響部の靭性が良好な鋼材が得られている。一方、No.10〜18は、本発明のいずれかの要件を外れる例であり、溶接熱影響部の靭性が劣っている。   It can be considered as follows from Tables 2-3. That is, Nos. 1 to 9 are examples that satisfy the requirements of the present invention, and a steel material having good toughness of the weld heat affected zone is obtained. On the other hand, Nos. 10 to 18 are examples that deviate from any of the requirements of the present invention, and the toughness of the weld heat affected zone is inferior.

Claims (5)

C :0.02〜0.2%(「質量%」の意味。以下同じ)、
Si:0.02〜0.50%、
Mn:0.5〜2%、
Ti:0.005〜0.06%、
N :0.002〜0.01%、を夫々含有し、且つ、
P :0.02%以下(0%を含む)、
S :0.008%以下(0%を含む)、
Al:0.01%以下(0%を含む)、
に夫々抑制した鋼材において、
更に、Ca:0.0005〜0.005%を含み、残部がFeおよび不可避不純物からなる鋼材であって、
鋼材中に含まれる酸化物系介在物の平均組成に占めるCaOとSiO2が、CaO:10%以上かつ90%以下、および、SiO2:10%以上かつ90%以下、を夫々満足することを特徴とする溶接熱影響部の靭性に優れた鋼材。
C: 0.02 to 0.2% (meaning “mass%”; the same shall apply hereinafter)
Si: 0.02 to 0.50%,
Mn: 0.5-2%
Ti: 0.005 to 0.06%,
N: 0.002 to 0.01%, respectively, and
P: 0.02% or less (including 0%),
S: 0.008% or less (including 0%),
Al: 0.01% or less (including 0%),
In the steel materials that are suppressed respectively,
Furthermore, Ca: 0.0005-0.005% containing, the balance is a steel material consisting of Fe and inevitable impurities,
CaO and SiO 2 in the average composition of oxide inclusions contained in the steel material satisfy CaO: 10% to 90% and SiO 2 : 10% to 90% , respectively. A steel material with excellent toughness of the weld heat affected zone.
前記CaOとSiO2の質量比[CaO/SiO2]が、0.1〜3である請求項1に記載の鋼材。 The CaO and the mass ratio of SiO 2 is [CaO / SiO 2], steel of claim 1 0.1-3. 前記平均組成に占めるAl23,MnOまたはTiO2が、
Al23 :40%以下(0%を含む)、
MnO :50%以下(0%を含む)、
TiO2 :40%以下(0%を含む)、
のいずれかを満足するものである請求項1または2に記載の鋼材。
Al 2 O 3 , MnO or TiO 2 in the average composition is
Al 2 O 3 : 40% or less (including 0%),
MnO: 50% or less (including 0%),
TiO 2 : 40% or less (including 0%),
The steel material according to claim 1 or 2, which satisfies any of the following.
前記鋼材中に、更に他の元素として、
Cu:0.05〜2%、
Ni:0.05〜3.5%、
Cr:0.01〜1%、
Mo:0.01〜1%、
Nb:0.005〜0.06%、
V :0.005〜0.1%、および、
B :0.0003〜0.003%、
のいずれか1種以上を含むものである請求項1〜3のいずれかに記載の鋼材。
In the steel material, as another element,
Cu: 0.05-2%,
Ni: 0.05-3.5%,
Cr: 0.01-1%,
Mo: 0.01 to 1%,
Nb: 0.005 to 0.06%,
V: 0.005 to 0.1%, and
B: 0.0003 to 0.003%,
The steel material according to any one of claims 1 to 3, comprising at least one of the above.
請求項1〜4のいずれかに記載の鋼材を製造する方法であって、溶鋼中の溶存酸素量を20〜100ppmの範囲に調整した後、Caを添加し、次いでSiを添加することを特徴とする溶接熱影響部の靭性に優れた鋼材の製法。   A method for producing the steel material according to any one of claims 1 to 4, wherein the amount of dissolved oxygen in the molten steel is adjusted to a range of 20 to 100 ppm, Ca is added, and then Si is added. The manufacturing method of steel material with excellent toughness of weld heat affected zone.
JP2004046647A 2003-03-31 2004-02-23 Steel with excellent toughness of weld heat affected zone and its manufacturing method Expired - Fee Related JP4220914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004046647A JP4220914B2 (en) 2003-03-31 2004-02-23 Steel with excellent toughness of weld heat affected zone and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003094683 2003-03-31
JP2004046647A JP4220914B2 (en) 2003-03-31 2004-02-23 Steel with excellent toughness of weld heat affected zone and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2004315963A JP2004315963A (en) 2004-11-11
JP4220914B2 true JP4220914B2 (en) 2009-02-04

Family

ID=33478660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004046647A Expired - Fee Related JP4220914B2 (en) 2003-03-31 2004-02-23 Steel with excellent toughness of weld heat affected zone and its manufacturing method

Country Status (1)

Country Link
JP (1) JP4220914B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4790512B2 (en) * 2006-06-29 2011-10-12 日本鋳造株式会社 Structural high-strength cast steel
JP5326203B2 (en) * 2006-11-28 2013-10-30 新日鐵住金株式会社 Method for producing low-carbon free-cutting steel with B added
JP5050692B2 (en) * 2007-07-10 2012-10-17 住友金属工業株式会社 Low Al content steel having high cleanliness and method for producing the same
JP5111037B2 (en) * 2007-09-27 2012-12-26 株式会社神戸製鋼所 Machine structural steel and machine structural parts for machining
JP5262075B2 (en) * 2007-11-14 2013-08-14 新日鐵住金株式会社 Method for producing steel for pipes with excellent sour resistance
JP7260779B2 (en) * 2019-06-17 2023-04-19 日本製鉄株式会社 High strength steel plate for high heat input welding

Also Published As

Publication number Publication date
JP2004315963A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
JP4825057B2 (en) Steel with excellent toughness of weld heat affected zone and its manufacturing method
JP3408385B2 (en) Steel with excellent heat-affected zone toughness
KR100839262B1 (en) Thick high strength steel plate having excellent low temperature toughness in welding heat affected zone caused by high heat input welding
JP5231042B2 (en) Steel material excellent in toughness of weld heat-affected zone and method for producing the same
JP5202031B2 (en) Steel material excellent in toughness of weld heat-affected zone and method for producing the same
WO2012099119A1 (en) Steel material having superior toughness of welded heat-affected zone, and method for manufacturing same
JP5842314B2 (en) High heat input welding steel
JP5493659B2 (en) High strength steel with excellent toughness of heat affected zone
JP2008088488A (en) Steel with excellent toughness in weld heat-affected zone and toughness in base material, and its manufacturing method
JP4950529B2 (en) Steel with excellent toughness and base metal toughness of weld heat affected zone and its manufacturing method
JP2011127220A (en) Method for manufacturing steel member excellent in toughness at weld heat-affected zone
TW201331387A (en) Steel material for high heat input welding
JP3502822B2 (en) Steel material excellent in toughness of welded heat-affected zone and method for producing the same
JP4220914B2 (en) Steel with excellent toughness of weld heat affected zone and its manufacturing method
JP5520105B2 (en) Steel material excellent in toughness of weld heat-affected zone and method for producing the same
JP4299769B2 (en) High HAZ toughness steel for high heat input welding with heat input of 20-100 kJ / mm
JP3722044B2 (en) Welded joint
JP3898842B2 (en) Steel sheet with excellent low temperature toughness in the heat affected zone
JP2000226633A (en) Steel for electron beam welding excellent in toughness
JP5434437B2 (en) High heat input welding steel
JP4515428B2 (en) Steel material excellent in toughness and brittle fracture occurrence characteristics of weld heat affected zone and its manufacturing method
JP5145616B2 (en) High tensile strength steel for low temperature welded structure with excellent weld heat affected zone toughness
JP4332064B2 (en) High HAZ toughness steel for high heat input welding with heat input of 20-100 kJ / mm
JP2005048265A (en) Steel material superior in toughness of weld heat-affected zone, and manufacturing method therefor
JP4821051B2 (en) High tensile strength steel for low temperature welded structure with excellent weld heat affected zone toughness

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040813

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees