JP3898842B2 - Steel sheet with excellent low temperature toughness in the heat affected zone - Google Patents

Steel sheet with excellent low temperature toughness in the heat affected zone Download PDF

Info

Publication number
JP3898842B2
JP3898842B2 JP27075198A JP27075198A JP3898842B2 JP 3898842 B2 JP3898842 B2 JP 3898842B2 JP 27075198 A JP27075198 A JP 27075198A JP 27075198 A JP27075198 A JP 27075198A JP 3898842 B2 JP3898842 B2 JP 3898842B2
Authority
JP
Japan
Prior art keywords
amount
less
toughness
oxide
affected zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27075198A
Other languages
Japanese (ja)
Other versions
JP2000096139A (en
Inventor
嘉秀 長井
明彦 児島
義之 渡部
淳彦 吉江
龍治 植森
力雄 千々岩
譲 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP27075198A priority Critical patent/JP3898842B2/en
Publication of JP2000096139A publication Critical patent/JP2000096139A/en
Application granted granted Critical
Publication of JP3898842B2 publication Critical patent/JP3898842B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
小入熱溶接から中入熱溶接の溶接熱影響部(HAZ)の低温靭性の優れた低コスト鋼板に関するものである。
【0002】
【従来の技術】
鋼板のHAZ靭性を向上させる技術として、粗大なオーステナイト内部にTi酸化物やTiNを微細分散させ、それらを核とした微細な粒内変態フェライトを生成させる技術(例えば特開昭63−210235号公報)が知られている。この鋼では溶接後の冷却過程でオーステナイト粒内のTi酸化物よりフェライトを発生させてミクロ組織を微細化して靭性を向上させている。しかし、この技術ではCTOD特性や伝播停止特性は、−30℃程度が限界とされていた。この対応策として特開平06−075599号公報ではさらにTi量の制御、硬化組織の制御、相当量のNiの添加等により、−40℃以下でも良好なHAZ靭性が得られる鋼が開発されてきた。
【0003】
【発明が解決しようとする課題】
しかし、前記従来の材料では、低温HAZ靭性の向上をはかるにあたり、マトリックス地の高靭化のため、1〜4%の量のNiの添加が必要であった。Niは高価な金属であるため、このように多くのNiを添加することは鋼板の製造コスト高を引き起こしていた。そこで、低Niによる、低コスト化が強く望まれていた。
【0004】
【課題を解決するための手段】
本発明の要旨は以下の通りである。
【0005】
(1) 重量%で、
C:0.04〜0.12%、
Si:0.4%以下、
Mn:0.8〜2.0%以下、
P:0.02%以下、
S:0.003%以下、
Al:0.001〜0.005%、
Ni:1.0%未満、
Ti:0.005〜0.02%、
N:0.002〜0.006%、
O:0.001〜0.004%、
Mg:0.0001〜0.003%
を含有し、残部が鉄および不可避的不純物からなる化学成分を有し、Di*=0.316C1/2(1+0.7Si)(0.35+4.1Mn)(1+0.36Ni)(1+0.37Cu)が0.7〜0.851の範囲で制限され、且つ、有効Ti量=Ti−2(O−0.66Mg−0.89Al)−3.4Nの式で定義される有効Ti量が−0.010%〜+0.005%の範囲とし、MgとAlからなる0.01〜0.1μmの大きさの酸化物を内包する0.01〜0.3μmのTiNが30000個/mm2以上、およびMgとTiの平均含有量の和が15重量%以上である0.5〜5μmの大きさの酸化物が30個/mm2以上存在することを特徴とする低Niで溶接熱影響部の低温靭性の優れた鋼板。
【0006】
(2) 重量%で更に、
Cu:0.05〜0.5%、
Nb:0.05%以下
の1種または2種を含有することを特徴とする上記(1)記載の低Niで溶接熱影響部の低温靭性に優れた鋼板。
【0007】
HAZにおいては溶融線に近づくほど溶接時の加熱温度は高くなり、特に溶融線近傍では加熱オーステナイト粒が著しく粗大化してしまい、冷却後のHAZ組織の結晶粒が粗大化して靭性が劣化する。このようなHAZ靭性は、結晶粒のサイズ、高炭素マルテンサイト(MA)、上部ベイナイト(Bu)などの硬化相の分散状態、析出硬化状態、粒界脆化の有無、元素のミクロ偏析、マトリックス地の靭化、など種々の冶金的要素に支配される。
【0008】
このため、本発明は(a)Mgを添加し、鋼中に微細な酸化物を分散させることによる、加熱オーステナイト粒成長の抑制、(b)TiとMgを主成分とする酸化物を変態核とする粒内変態の促進、(c)焼入れ性の制御(Di*の限定)による硬化相の生成抑制と分散化、(d)適正なTi量の制御、(e)不純物量の制御による粒界脆化やミクロ偏析の回避以上の(a)〜(e)の5項目について適正な成分の調整を行うこと、その中でも特にMgの適正量の添加により低温靭性を向上させることで、高価なNi量の低減を行った。
【0009】
【発明の実施の形態】
まず、(a)の加熱オーステナイト粒成長の抑制について説明する。溶融線近傍のHAZは1400℃以上に加熱され、炭化物や窒化物は溶解・粗大化することで、オーステナイト粒界の移動をピンニングする力が著しく低下する。そのため、従来鋼ではオーステナイト粒の成長は避けることができなかった。そこで、1400℃以上の高温でも安定に存在する酸化物によってピンニングすることによりオーステナイト粒成長を抑制することを検討した。その結果、微量のMgとAlを添加することにより0.01〜0.1μmの大きさの極めて微細な(Mg,Al)酸化物が多量に生成することを見いだした。さらに、0.01〜0.3μmの大きさの微細なTiNがこの(Mg,Al)酸化物上に複合析出し、〜1400℃の高温でも強力なピンニング効果を発揮し、オーステナイト粒成長を抑制することを発見した。この(Mg,Al)酸化物はTiNとの格子整合性が良いため、TiNの析出核サイトとして有効に作用する。また、(Mg,Al)酸化物が非常に微細に分散しているため、複合析出するTiNも微細なサイズで析出し、より強力なピンニング効果を発現させている。ここで、ピンニングに有効な0.01〜0.3μmの大きさのTiNが30000個/mm2以下であると、十分なピンニング効果が得られず、オーステナイト粒の粗大化が起こるため、0.01〜0.3μmの大きさのTiNの個数を30000個/mm2とした。
【0010】
次に(b)の粒内変態の促進について説明する。オーステナイト粒内でのフェライト変態を促進させると、微細な変態フェライトで覆われたHAZ組織を生成させる事ができる。粒内変態フェライトの生成を促進させるには、粒内変態の核サイトとなる酸化物の個数を増加させることが有効である。鋭意検討した結果、微量のAl量のもとでTiと微量のMgを含有させることにより、TiとMgを主成分とする酸化物が微細に分散し、これを核としてHAZでの粒内変態が顕著に促進され、HAZ靭性が向上することを見いだした。その際、粒内変態の核として有効なものは、TiとMgの平均含有量の和が15重量%以上の物であり、組織全体に微細な変態フェライトを出すには、上記の酸化物が最低30個/mm2必要である。
【0011】
(c)の焼入れ性の制御による硬化相の生成抑制と分散化について説明する。HAZでは溶接後急激に冷却されるため、島状マルテンサイトと呼ばれる、硬化組織を形成しやすい。このような硬化組織は焼入れ性が高いほど生じやすく、この焼入れ性は粒径、添加元素によって変化し、一般に添加元素量が多いほど高くなる。しかしながら、強度確保の上である程度の添加元素は不可欠であり、そこで、焼入れ性の指標である、Di*=0.316C1/2(1+0.7Si)(0.35+4.1Mn)(1+0.36Ni)(1+0.37Cu)が0.7〜0.851を満たすように成分を制御することにより、強度を確保しつつ、硬化相の析出を回避し、HAZ靭性を向上させる。
【0012】
(d)の適正なTi量の制御について説明する。本願では、さらにTi量について他の合金元素との関係から制限を設けている。これは、TiとO、N量とのバランスから導かれるものであるが、AlやMgはTiよりOとの結合力が強いため、Al、Mgとの酸化物を生成して残存したOがTiと結合して酸化物を生成する。酸素と結合して余ったTiはNと結合し、オーステナイト粒の粒成長抑制に効果的なTiNを形成し、鋼板の靭性を向上させる。この際、Ti、Nともに少なすぎると十分なTiNが発生せず、オーステナイト粒が粗大化して靭性の低下が発生する。逆にTiが過剰に存在すると、TiCを形成し、靭性は著しく劣化する。また、有効Ti量の範囲を超えてNが過剰に存在すると、固溶Nが増加して、やはり靭性は劣化する。このため、有効Ti量を−0.010〜+0.005%の範囲で制御することで、TiC脆化を回避しつつ、オーステナイト粒成長を抑制することが可能となり、優れた靭性が得られることをつきとめた。
【0013】
次に各化学成分の限定理由について説明する。
【0014】
Cは、母材および溶接部の強度確保のために最低0.04%は必要である。しかし、Cが多すぎると、母材の低温靭性や溶接性、HAZ靭性も低下させるので上限を0.12%とした。
【0015】
Siは脱酸を行うために、添加される元素であるが、多量に添加すると、やはり溶接性、HAZ靭性が劣化するため、上限を0.4%とした。HAZ靭性を改善するという観点からは0.15%以下が望ましい。
【0016】
Mnは母材、および溶接部の強度、靭性の確保に不可欠な元素であり、また、Sと結合してTiとMgを主成分とする酸化物上にMnSとして析出することで粒内変態の生成を促進するため、下限を0.8%とする。しかし、Mnが多すぎるとスラブの中心偏析を助長し、HAZ靭性、溶接性を劣化させるので上限を2.0%とする。
【0017】
Pは多量に存在すると、中心偏析を助長し、さらに結晶粒界に粒界偏析する事により粒界脆化を引き起こし、著しい靭性の低下を引き起こす。このため、Pは0.02%以下とする。
【0018】
Sについても多量に存在すると、中心偏析を助長し、また伸長したMnSが多量に生成し、母材およびHAZの靭性を劣化させるため、その上限を0.003%とする。
【0019】
Alはオーステナイト粒成長抑制のピンニング粒子であるTiNの析出核である(Mg,Al)酸化物を形成するため、下限として0.001%が必要である。しかしながら、Alが過剰に存在すると、粒内変態核サイトとなる酸化物のAlの含有量が増加し、TiとMgの含有率が低下し、酸化物からの粒内変態能が低下する。従って、上限を0.005%とする。
【0020】
従来、マトリックスの靭性を上げる目的でNiが1.0〜4.0%添加されていたがNi鋼は高価であるため多量のNi添加はコスト高へとつながる。本願ではMgの微少量添加をはじめ、合金元素の成分を適正量に規制することにより、高価なNiに頼らなくとも、低温でのHAZの高靭化を達成できる。本願の規定するNi含有量を1.0%未満に低減することにより、大きな合金コストの削減が図れる。
【0021】
Tiは適正な有効Ti量によって狭い濃度範囲で制御されるべき元素である。また、Tiはピンニング粒子であるTiNや粒内変態の核となる酸化物の形成に不可欠な元素であり、これらを十分量析出させるため、下限を0.005%とする。一方、Tiが0.02%を超える場合、適正有効Ti量の範囲内であっても実質的にTiCが多量に生成しHAZ靭性が低下する。
【0022】
Nはピンニング粒子である複合析出TiNの個数を確保する上で必要であり、有効Ti量の適正範囲と相俟って狭い範囲に限定されなければならない。Nが0.002%未満の場合、TiNの個数が確保できない。一方、Nが0.006%を超えると、有効Ti量が適正範囲内にあっても実質的に固溶Nが過剰となりHAZ靭性は低下する。
【0023】
Oは、適正な有効Ti量の領域であっても、Oが多過ぎると、酸化物のサイズが大きくなり、破壊の起点となる≧5μmの大きさの酸化物数が増加する。また、逆に少ない場合には粒内フェライトの変態核となる0.5〜5μmの酸化物の個数が不足するため、十分な靭性の向上は得られない。そのため、Oは0.001〜0.004%とする。
【0024】
Mgは本願における高靭化でもっとも重要な元素であり、TiNの析出核サイトである0.01〜0.1μmの(Mg,Al)酸化物を形成する。また、0.5〜5μmの酸化物が、TiとMgを平均で15重量%以上、且つMgを3重量%以上含有することで、Ti系酸化物と同等もしくはそれ以上に粒内変態の生成を促進させる。これらの2種類の大きさの酸化物を十分に生成させるため、Mgは0.0001%以上添加する必要がある。一方、酸化物として消費されるMgは0.003%あれば十分であり、これ以上のMgは冶金学的に効果を持たず、コスト高につながり、本願の趣旨に反する。
【0025】
CuはNiとほぼ同様の効果を持ち0.05%以上で、耐食性、耐水素誘起割れ性などにも効果があるが、0.5%を超えると熱間圧延時にCuクラックが発生し、製造困難となる。このため、上限を0.5%とした。
【0026】
Nbはオーステナイト粒界に生成するフェライトを抑制し、母材組織の微細化に有効な元素であり、母材の機械的性質を向上させる。しかしながら、多すぎるとHAZ靭性が劣化するため0.05%以下とした。
【0027】
本発明で規定した介在物の分散状態は、たとえば以下のような方法で定量的に測定される。(Mg,Al)酸化物(MgとAlとからなる酸化物以下同様)とTiNが複合する0.01〜0.5μmの介在物の分散状態は、母材鋼板の任意の場所から抽出レプリカ試料を作成し、これを透過電子顕微鏡(TEM)を用いて10000〜50000倍の倍率で少なくとも1000μm2以上の面積にわたって観察し、対象となる大きさの複合介在物の個数を測定し、単位面積あたりの個数に換算する。このとき、(Mg,Al)酸化物とTiNの同定は、TEMに付属のエネルギー分散型X線分光法(EDS)による組成分析と、TEMによる電子線回折像の結晶構造解析によって行われる。このような同定を測定するすべての複合介在物に対して行うことが煩雑な場合、簡易的に次の手段をもちいる。まず、四角い形状の介在物をTiNとみなし、対象となる大きさのTiN中に介在物が複合しているものの個数を少なくとも10個以上について上記の要領で同定を行い、(Mg,Al)酸化物とTiNが複合的に存在している割合を算出する。そして、はじめに測定された複合介在物の個数にこの割合を掛け合わせる。鋼中の炭化物が以上のTEM観察を邪魔する場合、500℃以下の熱処理によって炭化物を凝集・粗大化させ、対象となる複合介在物の観察を容易にすることができる。
【0028】
TiとMgを主成分とする0.5〜5μm酸化物の個数の測定例を次に示す。母材鋼鈑の任意の場所から小片試料を切りだし、これを1400〜1450℃で10分間以上保持することで酸化物以外の0.5〜5μmの介在物を溶体化させ、その後水冷する。これを鏡面研磨し、光学顕微鏡を用いて1000倍の倍率で少なくとも1mm2以上の面積にわたって観察し、対象となる大きさの酸化物のうち少なくとも10個以上についてX線マイクロアナライザー(EPMA)に付属の波長分散型分光法(WDS)を用いて組成を分析し、酸化物の平均組成におけるTiとMgの含有量の和を重量%で求め、またそれらの和を求める。このとき、酸化物組成の分析値に地鉄のFeが検出される場合には、分析値からFeを除外して酸化物の平均組成を求める。
【0029】
【実施例】
表1に化学成分と成分制御の指標となる有効Ti量およびDi*の値、及び表2に鋼板の製造条件と靭化に有効な介在物の分散状態及び機械的性質を示す。また、図1に本発明鋼と従来鋼についてHAZ部でのシャルピー試験の結果を添加Ni量に対してプロットした図を示す。
【0030】
図1を見ても分かるように、本願で得られた鋼はNi量が1.0%以下と少ないにもかかわらず、Ni量が1.0〜4.0%の従来鋼と同等の良好なHAZ靭性を示しているのが分かる。鋼19,20はMgを添加しないでNi量を減少させた物であるがシャルピーの吸収エネルギーは100kJ/cm以下であり、十分なHAZ靭性は得られていない。鋼21ではDi*が小さくYSにして377MPaと十分な強度が得られていない。逆に鋼22ではDi*が高すぎるため、硬化相が出現し、良好なHAZ靭性が得られていない。鋼23では、添加アルミニウム量が多すぎるため、Tiと結びつくOが減少し有効Ti量が大きくなり過ぎてしまったためTiCが生成し、良好なHAZ靭性が得られていない。鋼24では十分な量のピンニング粒子が得られなかったため、オーステナイト粒の粗大化を引き起こし、HAZ靭性の低下を招いている。鋼25では粒内変態を促進させるTiとMgを主成分とする酸化物が組成、数量ともに適正量に存在せず、十分な粒内変態フェライトが得られておらず、良好なHAZ靭性が得られていない。
【0031】
【表1】

Figure 0003898842
【0032】
【表2】
Figure 0003898842
【0033】
【発明の効果】
本発明により溶接熱影響部の低温靭性の優れた鋼がより安価に作成することが可能となった。
【図面の簡単な説明】
【図1】HAZ部でのシャルピー試験の結果を添加Ni量に対してプロットした図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a low-cost steel sheet excellent in low-temperature toughness of a weld heat affected zone (HAZ) from small heat input welding to medium heat input welding.
[0002]
[Prior art]
As a technique for improving the HAZ toughness of a steel sheet, a technique in which Ti oxide or TiN is finely dispersed in coarse austenite and fine intragranular transformed ferrite having these as nuclei is generated (for example, JP-A-63-210235). )It has been known. In this steel, ferrite is generated from the Ti oxide in the austenite grains in the cooling process after welding to refine the microstructure and improve toughness. However, in this technique, the CTOD characteristic and the propagation stop characteristic are limited to about −30 ° C. As a countermeasure, Japanese Patent Laid-Open No. 06-075599 has further developed a steel capable of obtaining good HAZ toughness even at -40 ° C. or lower by controlling the Ti amount, controlling the hardened structure, adding a considerable amount of Ni, and the like. .
[0003]
[Problems to be solved by the invention]
However, in the conventional material, in order to improve the low temperature HAZ toughness, it is necessary to add 1 to 4% of Ni in order to increase the toughness of the matrix. Since Ni is an expensive metal, adding such a large amount of Ni causes an increase in the manufacturing cost of the steel sheet. Therefore, cost reduction by low Ni has been strongly desired.
[0004]
[Means for Solving the Problems]
The gist of the present invention is as follows.
[0005]
(1) By weight%
C: 0.04 to 0.12%,
Si: 0.4% or less,
Mn: 0.8 to 2.0% or less,
P: 0.02% or less,
S: 0.003% or less,
Al: 0.001 to 0.005%,
Ni: less than 1.0%,
Ti: 0.005 to 0.02%,
N: 0.002 to 0.006%,
O: 0.001 to 0.004%,
Mg: 0.0001 to 0.003%
Di * = 0.316C 1/2 (1 + 0.7Si) (0.35 + 4.1Mn) (1 + 0.36Ni) (1 + 0.37Cu), with the chemical component consisting of iron and inevitable impurities Is limited in the range of 0.7 to 0.851 , and the effective Ti amount defined by the formula: Ti-2 = O-2 (O-0.66Mg-0.89Al) -3.4N is -0 0.10% to + 0.005%, and 0.01 to 0.3 μm of TiN containing 0.01 to 0.1 μm of an oxide composed of Mg and Al is 30000 pieces / mm 2 or more, In addition, a low Ni and a welding heat-affected zone characterized in that there are 30 / mm 2 or more oxides having a size of 0.5 to 5 μm, with the sum of the average contents of Mg and Ti being 15% by weight or more. Steel sheet with excellent low temperature toughness.
[0006]
(2) By weight%,
Cu: 0.05 to 0.5%,
Nb: 0.05% or less of 1 type or 2 types, steel plate excellent in low temperature toughness of weld heat affected zone as described in (1) above.
[0007]
In HAZ, the closer to the melting line, the higher the heating temperature during welding. In particular, the heated austenite grains become extremely coarse in the vicinity of the melting line, and the crystal grains of the HAZ structure after cooling become coarse and the toughness deteriorates. Such HAZ toughness includes crystal grain size, high carbon martensite (MA), dispersed state of hardened phase such as upper bainite (Bu), precipitation hardened state, presence or absence of grain boundary embrittlement, elemental microsegregation, matrix Dominated by various metallurgical factors such as toughening of the ground.
[0008]
For this reason, the present invention (a) suppresses the growth of heated austenite grains by adding Mg and dispersing fine oxides in the steel, and (b) transforms oxides mainly composed of Ti and Mg into transformation nuclei. (C) Suppression and dispersion of hardened phase by controlling hardenability (Di * limitation) , (d) Controlling proper Ti amount , (e) Grain by controlling impurity amount avoidance of the field embrittlement and microscopic segregation, possible to adjust the proper ingredients for the five items or more (a) ~ (e), to improve the low temperature toughness by the addition of appropriate amounts of particular Mg among them, expensive The amount of Ni was reduced.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
First, suppression of heated austenite grain growth (a) will be described. The HAZ in the vicinity of the melting line is heated to 1400 ° C. or higher, and carbides and nitrides are dissolved and coarsened, so that the force for pinning the movement of the austenite grain boundaries is remarkably reduced. Therefore, the growth of austenite grains cannot be avoided in the conventional steel. Therefore, it was studied to suppress austenite grain growth by pinning with an oxide that exists stably even at a high temperature of 1400 ° C. or higher. As a result, it was found that a very large amount of very fine (Mg, Al) oxide having a size of 0.01 to 0.1 μm was formed by adding a small amount of Mg and Al. Furthermore, fine TiN of 0.01 to 0.3 μm in size is deposited on this (Mg, Al) oxide and exhibits a strong pinning effect even at high temperatures of ˜1400 ° C., suppressing austenite grain growth. I found it to be. Since this (Mg, Al) oxide has good lattice matching with TiN, it effectively acts as a TiN precipitation nucleus site. In addition, since the (Mg, Al) oxide is very finely dispersed, TiN that is compositely precipitated also precipitates in a fine size, and exhibits a stronger pinning effect. Here, when TiN having a size of 0.01 to 0.3 μm effective for pinning is 30000 pieces / mm 2 or less, a sufficient pinning effect cannot be obtained, and austenite grains become coarse. The number of TiN having a size of 01 to 0.3 μm was set to 30000 / mm 2 .
[0010]
Next, the promotion of the intragranular transformation of (b) will be described. When the ferrite transformation in the austenite grains is promoted, a HAZ structure covered with fine transformation ferrite can be generated. In order to promote the formation of intragranular transformation ferrite, it is effective to increase the number of oxides that become the core sites of intragranular transformation. As a result of intensive studies, the inclusion of Ti and a very small amount of Mg under a very small amount of Al results in fine dispersion of oxides mainly composed of Ti and Mg, and the intragranular transformation in HAZ using this as a nucleus. Has been found to be remarkably promoted and to improve the HAZ toughness. At that time, what is effective as a nucleus of intragranular transformation is a material having a sum of average contents of Ti and Mg of 15% by weight or more. A minimum of 30 pieces / mm 2 is required.
[0011]
Described below is the suppression and dispersion of the cured phase by controlling the hardenability of (c) . In HAZ, since it is cooled rapidly after welding, it is easy to form a hardened structure called island martensite. Such a hardened structure is more likely to occur as the hardenability is higher, and this hardenability changes depending on the particle diameter and additive elements, and generally increases as the additive element amount increases. However, a certain amount of additive elements are indispensable for securing the strength, and therefore Di * = 0.316C 1/2 (1 + 0.7Si) (0.35 + 4.1Mn) (1 + 0.36Ni) which is an index of hardenability. ) By controlling the components so that (1 + 0.37Cu) satisfies 0.7 to 0.851 , the strength is ensured and the precipitation of the hardened phase is avoided and the HAZ toughness is improved.
[0012]
The control of the appropriate Ti amount in (d) will be described. In the present application, the Ti amount is further limited from the relationship with other alloy elements. This is derived from the balance between Ti, O, and N content, but Al and Mg have stronger bonding strength with O than Ti. Combines with Ti to form an oxide. The excess Ti combined with oxygen combines with N to form TiN effective in suppressing the growth of austenite grains and improves the toughness of the steel sheet. At this time, if both Ti and N are too small, sufficient TiN is not generated, and austenite grains are coarsened, resulting in a decrease in toughness. On the other hand, if Ti is present excessively, TiC is formed and the toughness is significantly deteriorated. Moreover, when N exists excessively beyond the range of the effective Ti amount, the solute N increases, and the toughness deteriorates. For this reason, by controlling the effective Ti amount within a range of -0.010 to + 0.005%, it becomes possible to suppress austenite grain growth while avoiding TiC embrittlement and to obtain excellent toughness. I found out.
[0013]
Next, the reasons for limiting each chemical component will be described.
[0014]
C needs to be at least 0.04% in order to ensure the strength of the base material and the weld. However, if there is too much C, the low temperature toughness, weldability, and HAZ toughness of the base material are also lowered, so the upper limit was made 0.12%.
[0015]
Si is an element added for deoxidation, but if added in a large amount, the weldability and HAZ toughness deteriorate, so the upper limit was made 0.4%. From the viewpoint of improving the HAZ toughness, 0.15% or less is desirable.
[0016]
Mn is an element indispensable for ensuring the strength and toughness of the base material and the welded part. Also, Mn is bonded to S and precipitated as MnS on an oxide mainly composed of Ti and Mg, thereby causing intragranular transformation. In order to promote the production, the lower limit is made 0.8%. However, too much Mn promotes center segregation of the slab and degrades the HAZ toughness and weldability, so the upper limit is made 2.0%.
[0017]
When P is present in a large amount, it promotes center segregation, and further causes grain boundary embrittlement by segregating at the grain boundaries, leading to a significant decrease in toughness. For this reason, P is made 0.02% or less.
[0018]
If S is also present in a large amount, the center segregation is promoted, and a large amount of elongated MnS is generated to deteriorate the toughness of the base material and the HAZ, so the upper limit is made 0.003%.
[0019]
Since Al forms (Mg, Al) oxide which is a precipitation nucleus of TiN which is a pinning particle for suppressing austenite grain growth, 0.001% is necessary as a lower limit. However, if Al is present in excess, the content of Al in the oxide serving as an intragranular transformation nucleus site increases, the content of Ti and Mg decreases, and the intragranular transformation ability from the oxide decreases. Therefore, the upper limit is made 0.005%.
[0020]
Conventionally, Ni was added in an amount of 1.0 to 4.0% for the purpose of increasing the toughness of the matrix. However, since Ni steel is expensive, adding a large amount of Ni leads to high costs. In the present application, by adding a small amount of Mg and regulating the amount of alloying elements to appropriate amounts, it is possible to achieve high toughness of HAZ at low temperatures without relying on expensive Ni. By reducing the Ni content defined in the present application to less than 1.0%, a large alloy cost can be reduced.
[0021]
Ti is an element to be controlled in a narrow concentration range by an appropriate effective Ti amount. Further, Ti is an element indispensable for the formation of TiN as pinning particles and an oxide serving as a nucleus of intragranular transformation, and in order to precipitate a sufficient amount thereof, the lower limit is made 0.005%. On the other hand, when Ti exceeds 0.02%, even if it is within the range of the appropriate effective Ti amount, a substantial amount of TiC is generated and the HAZ toughness is lowered.
[0022]
N is necessary for securing the number of composite precipitated TiN as pinning particles, and must be limited to a narrow range in combination with an appropriate range of effective Ti amount. When N is less than 0.002%, the number of TiN cannot be secured. On the other hand, if N exceeds 0.006%, even if the effective Ti amount is within an appropriate range, the solid solution N is substantially excessive and the HAZ toughness is lowered.
[0023]
Even if O is in an appropriate effective Ti amount region, if there is too much O, the size of the oxide becomes large, and the number of oxides having a size of ≧ 5 μm that becomes the starting point of destruction increases. On the other hand, if the amount is small, the number of oxides of 0.5 to 5 μm that become the transformation nuclei of intragranular ferrite is insufficient, so that sufficient toughness cannot be improved. Therefore, O is 0.001 to 0.004%.
[0024]
Mg is the most important element for toughening in the present application, and forms a 0.01 to 0.1 μm (Mg, Al) oxide which is a precipitation nucleus site of TiN. In addition, an oxide of 0.5 to 5 μm contains Ti and Mg on average 15% by weight or more, and Mg contains 3% by weight or more, so that intragranular transformation is generated to be equal to or higher than Ti-based oxides. To promote. In order to sufficiently generate these two kinds of oxides, Mg needs to be added in an amount of 0.0001% or more. On the other hand, 0.003% of Mg consumed as an oxide is sufficient, and Mg beyond this has no metallurgical effect, leading to high costs, which is contrary to the spirit of the present application.
[0025]
Cu has substantially the same effect as Ni and is 0.05% or more, and is also effective in corrosion resistance, hydrogen-induced cracking resistance, etc., but if it exceeds 0.5%, Cu cracking occurs during hot rolling, and production It becomes difficult. For this reason, the upper limit was made 0.5%.
[0026]
Nb suppresses ferrite generated at the austenite grain boundaries, is an element effective for refining the base material structure, and improves the mechanical properties of the base material. However, if the amount is too large, the HAZ toughness deteriorates, so the content was made 0.05% or less.
[0027]
The dispersion state of inclusions defined in the present invention is quantitatively measured by, for example, the following method. The dispersion state of 0.01 to 0.5 μm inclusions in which (Ng, Al) oxide (an oxide composed of Mg and Al) and TiN are combined is extracted from an arbitrary place on the base steel plate. Are observed over an area of at least 1000 μm 2 at a magnification of 10,000 to 50,000 times using a transmission electron microscope (TEM), and the number of composite inclusions of a target size is measured per unit area. Convert to the number of items. At this time, the (Mg, Al) oxide and TiN are identified by composition analysis by energy dispersive X-ray spectroscopy (EDS) attached to TEM and crystal structure analysis of electron diffraction image by TEM. When it is complicated to perform such identification on all the complex inclusions to be measured, the following means are simply used. First, square inclusions are regarded as TiN, and at least 10 or more inclusions are identified in the target size of TiN and identified in the manner described above, and (Mg, Al) oxidation is performed. The ratio in which the product and TiN exist in a complex manner is calculated. Then, this ratio is multiplied by the number of composite inclusions measured first. When carbides in the steel interfere with the above TEM observation, the carbides can be aggregated and coarsened by a heat treatment at 500 ° C. or less to facilitate observation of the target composite inclusions.
[0028]
An example of measuring the number of oxides of 0.5 to 5 μm mainly composed of Ti and Mg is shown below. A small piece sample is cut out from an arbitrary place on the base metal steel plate, and this is held at 1400 to 1450 ° C. for 10 minutes or more to solubilize 0.5 to 5 μm inclusions other than oxides, and then cooled with water. This is mirror-polished and observed over an area of at least 1 mm 2 with an optical microscope at a magnification of 1000 times, and at least 10 oxides of the target size are attached to an X-ray microanalyzer (EPMA). The wavelength dispersion type spectroscopy (WDS) is used to analyze the composition, and the sum of the Ti and Mg contents in the average composition of the oxide is determined by weight%, and the sum thereof is determined. At this time, in the case where Fe of the iron is detected in the analysis value of the oxide composition, the average composition of the oxide is obtained by excluding Fe from the analysis value.
[0029]
【Example】
Table 1 shows the chemical composition and the effective Ti amount and Di * values used as component control indices, and Table 2 shows the manufacturing conditions of the steel sheet and the dispersion state and mechanical properties of inclusions effective for toughening. Moreover, the figure which plotted the result of the Charpy test in HAZ part with respect to this invention steel and conventional steel with respect to the amount of addition Ni is shown in FIG.
[0030]
As can be seen from FIG. 1, the steel obtained in the present application is as good as the conventional steel having a Ni content of 1.0 to 4.0% although the Ni content is less than 1.0%. It can be seen that it exhibits excellent HAZ toughness. Steels 19 and 20 were obtained by reducing the amount of Ni without adding Mg, but Charpy absorbed energy was 100 kJ / cm or less, and sufficient HAZ toughness was not obtained. In Steel 21, Di * is small and sufficient strength of 377 MPa is not obtained in YS. On the other hand, in Steel 22, since Di * is too high, a hardened phase appears and good HAZ toughness is not obtained. In Steel 23, since the amount of added aluminum is too large, O associated with Ti decreases and the effective Ti amount increases too much, so TiC is generated and good HAZ toughness is not obtained. Since a sufficient amount of pinning particles could not be obtained in steel 24, austenite grains were coarsened, leading to a reduction in HAZ toughness. In Steel 25, oxides mainly composed of Ti and Mg that promote intragranular transformation are not present in proper amounts in both composition and quantity, and sufficient intragranular ferrite is not obtained, and good HAZ toughness is obtained. It is not done.
[0031]
[Table 1]
Figure 0003898842
[0032]
[Table 2]
Figure 0003898842
[0033]
【The invention's effect】
According to the present invention, steel having excellent low temperature toughness of the heat affected zone can be produced at a lower cost.
[Brief description of the drawings]
FIG. 1 is a diagram in which the result of a Charpy test in a HAZ part is plotted against the amount of added Ni.

Claims (2)

重量%で、
C:0.04〜0.12%、
Si:0.4%以下、
Mn:0.8〜2.0%以下、
P:0.02%以下、
S:0.003%以下、
Al:0.001〜0.005%、
Ni:1.0%未満、
Ti:0.005〜0.02%、
N:0.002〜0.006%、
O:0.001〜0.004%、
Mg:0.0001〜0.003%
を含有し、残部が鉄および不可避的不純物からなる化学成分を有し、Di*=0.316C1/2(1+0.7Si)(0.35+4.1Mn)(1+0.36Ni)(1+0.37Cu)が0.7〜0.851の範囲で制限され、且つ、有効Ti量=Ti−2(O−0.66Mg−0.89Al)−3.4Nの式で定義される有効Ti量が−0.010%〜+0.005%の範囲とし、MgとAlからなる0.01〜0.1μmの大きさの酸化物を内包する0.01〜0.3μmのTiNが30000個/mm2以上、およびMgとTiの平均含有量の和が15重量%以上である0.5〜5μmの大きさの酸化物が30個/mm2以上存在することを特徴とする低Niで溶接熱影響部の低温靭性の優れた鋼板。
% By weight
C: 0.04 to 0.12%,
Si: 0.4% or less,
Mn: 0.8 to 2.0% or less,
P: 0.02% or less,
S: 0.003% or less,
Al: 0.001 to 0.005%,
Ni: less than 1.0%,
Ti: 0.005 to 0.02%,
N: 0.002 to 0.006%,
O: 0.001 to 0.004%,
Mg: 0.0001 to 0.003%
Di * = 0.316C 1/2 (1 + 0.7Si) (0.35 + 4.1Mn) (1 + 0.36Ni) (1 + 0.37Cu), with the chemical component consisting of iron and inevitable impurities Is limited in the range of 0.7 to 0.851 , and the effective Ti amount defined by the formula: Ti-2 = O-2 (O-0.66Mg-0.89Al) -3.4N is -0 0.10% to + 0.005%, and 0.01 to 0.3 μm of TiN containing 0.01 to 0.1 μm of an oxide composed of Mg and Al is 30000 pieces / mm 2 or more, In addition, a low Ni and a welding heat-affected zone characterized in that there are 30 / mm 2 or more oxides having a size of 0.5 to 5 μm, with the sum of the average contents of Mg and Ti being 15% by weight or more. Steel sheet with excellent low temperature toughness.
重量%で更に、
Cu:0.05〜0.5%、
Nb:0.05%以下
の1種または2種を含有することを特徴とする請求項1記載の低Niで溶接熱影響部の低温靭性に優れた鋼板。
In addition by weight%
Cu: 0.05 to 0.5%,
Nb: 0.05% or less of 1 type or 2 types, The steel plate excellent in the low-temperature toughness of the low Ni and welding heat affected zone of Claim 1 characterized by the above-mentioned.
JP27075198A 1998-09-25 1998-09-25 Steel sheet with excellent low temperature toughness in the heat affected zone Expired - Lifetime JP3898842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27075198A JP3898842B2 (en) 1998-09-25 1998-09-25 Steel sheet with excellent low temperature toughness in the heat affected zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27075198A JP3898842B2 (en) 1998-09-25 1998-09-25 Steel sheet with excellent low temperature toughness in the heat affected zone

Publications (2)

Publication Number Publication Date
JP2000096139A JP2000096139A (en) 2000-04-04
JP3898842B2 true JP3898842B2 (en) 2007-03-28

Family

ID=17490480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27075198A Expired - Lifetime JP3898842B2 (en) 1998-09-25 1998-09-25 Steel sheet with excellent low temperature toughness in the heat affected zone

Country Status (1)

Country Link
JP (1) JP3898842B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100470054B1 (en) * 2000-11-24 2005-02-04 주식회사 포스코 High strength Steel plate to be precipitating TiN and complex oxide of Mg-Ti for welded structure, method for manufacturing the same
KR100482212B1 (en) * 2000-11-25 2005-04-21 주식회사 포스코 Method for manufacturing high strength steel plate to be precipitating TiN and complex oxide of Mg-Ti by nitriding treatment for welded structure
KR101142185B1 (en) 2007-12-07 2012-05-04 신닛뽄세이테쯔 카부시키카이샤 Steel being excellent in ctod characteristic in welding heat affected zone and a method of producing the same
BR122017016259B1 (en) 2009-05-19 2020-11-10 Nippon Steel Corporation steel for welded structure
TWI365915B (en) * 2009-05-21 2012-06-11 Nippon Steel Corp Steel for welded structure and producing method thereof
US9403242B2 (en) 2011-03-24 2016-08-02 Nippon Steel & Sumitomo Metal Corporation Steel for welding

Also Published As

Publication number Publication date
JP2000096139A (en) 2000-04-04

Similar Documents

Publication Publication Date Title
KR101846759B1 (en) Steel plate and method for manufacturing same
JP5846311B2 (en) Thick high-strength steel excellent in welding heat affected zone CTOD characteristics and method for producing the same
JP4976905B2 (en) Thick steel plate with excellent HAZ toughness and base metal toughness
KR20080018285A (en) Low yield ratio, high strength, high toughness, thick steel plate and welded steel pipe
JPWO2018185851A1 (en) Vertical seam welded steel pipe
JP3699077B2 (en) Base material for clad steel plate excellent in low temperature toughness of weld heat affected zone and method for producing the clad steel plate
JP5493659B2 (en) High strength steel with excellent toughness of heat affected zone
TWI589708B (en) Steel material for high heat input welding
JP4041447B2 (en) Thick steel plate with high heat input welded joint toughness
JP4507745B2 (en) Low yield ratio high strength high toughness steel pipe excellent in strain aging resistance and manufacturing method thereof
JP3898842B2 (en) Steel sheet with excellent low temperature toughness in the heat affected zone
JPH0860292A (en) High tensile strength steel excellent in toughness in weld heat-affected zone
JP2003342675A (en) Steel material having excellent toughness at base material and heat affected zone
JP4276576B2 (en) Thick high-strength steel sheet with excellent heat input and heat-affected zone toughness
JP4768526B2 (en) Thick steel plate with excellent high heat input HAZ toughness and low temperature base metal toughness
JP2003293079A (en) Sour resistant steel for high energy density welding and steel structure
JP3722044B2 (en) Welded joint
JP3817216B2 (en) Steel materials and steel welded parts with excellent toughness in weld heat affected zone
JP3728130B2 (en) Steel sheet with excellent toughness of weld heat affected zone
JP4586080B2 (en) High-strength steel sheet with excellent stress-relieving annealing characteristics and low-temperature toughness
JP4964007B2 (en) Thick steel plate with little material anisotropy and excellent HAZ toughness and low temperature base metal toughness
JP5434437B2 (en) High heat input welding steel
JP3502805B2 (en) Method for producing steel with excellent toughness in weld joint
JP4355866B2 (en) Steel material excellent in welding heat-affected zone characteristics and method for producing the same
JP4332064B2 (en) High HAZ toughness steel for high heat input welding with heat input of 20-100 kJ / mm

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

EXPY Cancellation because of completion of term