JP2003293079A - Sour resistant steel for high energy density welding and steel structure - Google Patents

Sour resistant steel for high energy density welding and steel structure

Info

Publication number
JP2003293079A
JP2003293079A JP2002106611A JP2002106611A JP2003293079A JP 2003293079 A JP2003293079 A JP 2003293079A JP 2002106611 A JP2002106611 A JP 2002106611A JP 2002106611 A JP2002106611 A JP 2002106611A JP 2003293079 A JP2003293079 A JP 2003293079A
Authority
JP
Japan
Prior art keywords
toughness
steel
sour
mass
welded portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002106611A
Other languages
Japanese (ja)
Other versions
JP4116810B2 (en
Inventor
Akihiko Kojima
明彦 児島
Yoshio Terada
好男 寺田
Tetsuji Kadoya
哲治 門矢
Masahiko Murata
正彦 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002106611A priority Critical patent/JP4116810B2/en
Publication of JP2003293079A publication Critical patent/JP2003293079A/en
Application granted granted Critical
Publication of JP4116810B2 publication Critical patent/JP4116810B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide steel which has excellent HIC (hydrogen induced cracking) resistance and strength of 5L-X65 or higher in the API standards, and in which limit CTOD (crack tip opening displacement) at -10°C is ≥0.20 mm in both of WM (weld metal) and FL (fusion lines) in a weld zone with electron beam welding or laser welding applied, and to provide a steel structure. <P>SOLUTION: The sour resistant steel for high energy density welding having excellent toughness at the weld part has chemical components containing specified steel components, and the balance iron with inevitable impurities, and satisfying the following inequalities [1] to [3] calculated by using the mass% of the chemical components, and has a bainitic structure of ≥50% in an area ratio: Si+10Al+Mo≤0.8 [1], Cu+Ni+Cr≤1.0% [2], and C≤-0.175(Si+10Al+ Mo)+0.17 [3]. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は電子ビーム溶接ある
いはレーザー溶接を適用した場合の溶接部の靭性に優れ
た高エネルギー密度溶接用耐サワー鋼材及び鋼構造物に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sour resistant steel material for high energy density welding and a steel structure excellent in toughness of a welded portion when electron beam welding or laser welding is applied.

【0002】本発明による鋼板を用いたサワー環境向け
の溶接鋼構造物は、製作にあたって電子ビーム溶接やレ
ーザー溶接が適用されても良好な溶接部靭性を有する。
例えば、本発明による鋼板を用いた耐サワーラインパイ
プを敷設する際に電子ビーム溶接やレーザー溶接を適用
できる。サワー環境でなくとも、これらの高エネルギー
密度溶接法が適用される場合に本発明は適している。
A welded steel structure for a sour environment using a steel sheet according to the present invention has good weld toughness even if electron beam welding or laser welding is applied in manufacturing.
For example, electron beam welding or laser welding can be applied when laying a sour resistant line pipe using the steel sheet according to the present invention. The invention is suitable when these high energy density welding processes are applied, even in non-sour environments.

【0003】[0003]

【従来の技術】近年、溶接鋼構造物の製作において電子
ビーム溶接やレーザー溶接などの高エネルギー密度溶接
法を適用するニーズが強くなっている。一例として、ラ
インパイプを敷設する際に、現場でパイプ同士を周溶接
する方法として電子ビーム溶接の適用が検討されてい
る。電子ビーム溶接やレーザー溶接は、減圧あるいは大
気圧のもとで特別な溶加材を用いることなく、母材であ
る鋼板そのものを溶融させて接合するのが通常である。
このとき、1パス溶接によって図1に示すような幅の狭
い直線的な溶接ビードが形成されることが特徴である。
このような溶接部に対して図2に示すように溶接金属2
(WM)と溶融線4(FL)に切り欠き(6、7)を施
したシャルピー衝撃特性やCTOD特性などの靭性が要
求される場合がある。
2. Description of the Related Art In recent years, there has been a strong need to apply high energy density welding methods such as electron beam welding and laser welding in the production of welded steel structures. As an example, when laying a line pipe, application of electron beam welding is being studied as a method for circumferentially welding pipes together at the site. In electron beam welding and laser welding, it is usual to melt and join the steel sheet itself, which is the base material, under reduced pressure or atmospheric pressure without using a special filler material.
At this time, a characteristic feature is that a narrow linear weld bead as shown in FIG. 1 is formed by one-pass welding.
As shown in FIG. 2, the weld metal 2
(WM) and fusion line 4 (FL) may be required to have toughness such as Charpy impact characteristics and CTOD characteristics in which notches (6, 7) are formed.

【0004】電子ビーム溶接あるいはレーザー溶接を適
用した鋼の溶接部靭性を高める手段として、大別して下
記の三つが知られている。 (1)開先に溶加材やそれに相当する物質を挿入して溶
接する (2)溶接後に溶接部を熱処理する (3)母材鋼板の化学成分を適正化する (1)については、例えば特開昭60−54287に記
されるように、突き合わせ面にNiを主成分とする溶加
材を挿入したり、特開平03−180282に記される
ように、突き合わせ面を特別な組成の仮付けビードで仮
溶接した後に電子ビーム溶接を行い、溶接部の化学成分
や金属組織を適正化する技術が知られている。(2)に
ついては、例えば特開昭57−104629に記される
ように、電子ビーム溶接部をAc3点以上に再加熱した
後に適正な冷却を行うことで溶接部の金属組織を適正化
する技術が知られている。(3)については、特開昭6
0−162758に記されるように母材鋼板のN含有量
を低めてTi添加したり、特開昭61−246345に
記されるように母材鋼板として炭素鋼に所定割合のT
i、N、Vを含有させたり、特開平01−15321に
記されるように実質的にAlを含有しない母材鋼板のT
i、N、Oの含有量を特定化したり、特開平02−77
557に記されるように母材鋼板のPとSの含有量を低
めたりすることで、電子ビーム溶接部の化学成分や金属
組織を適正化する技術が知られている。以上の(1)〜
(3)の中で最も簡便で工業的に好ましいのは(3)で
ある。つまり、特別な溶加材や溶接後の熱処理を必要と
せずに、母材鋼板を溶接したままの状態で良好な溶接部
靭性を達成できる鋼板が望まれている。
The following three methods are roughly known as means for increasing the toughness of the weld zone of steel to which electron beam welding or laser welding is applied. (1) Inserting a filler metal or a substance equivalent thereto into the groove and welding (2) heat treating the welded portion after welding (3) optimizing the chemical composition of the base steel sheet (1), for example, As described in JP-A-60-54287, a filler material containing Ni as a main component is inserted into the abutting surface, or as described in JP-A-03-180282, the abutting surface is made of a special composition. A technique is known in which electron beam welding is performed after temporary welding with an attachment bead to optimize the chemical composition and metal structure of the welded portion. With regard to (2), for example, as described in JP-A-57-104629, a technique for optimizing the metallographic structure of the welded portion by reheating the electron beam welded portion to Ac3 point or higher and then performing appropriate cooling. It has been known. Regarding (3), JP-A-6
No. 0-162758, the N content of the base material steel plate is lowered to add Ti, or as described in JP-A-61-246345, carbon steel is used as a base material steel plate in a predetermined ratio of T.
T of a base material steel sheet containing i, N, V or containing substantially no Al as described in JP-A-01-15321.
The contents of i, N, and O are specified, and JP-A-02-77
As described in 557, there is known a technique of optimizing the chemical composition and the metal structure of the electron beam welded portion by lowering the P and S contents of the base steel sheet. Above (1) ~
Among (3), the most simple and industrially preferable is (3). In other words, there is a demand for a steel sheet that can achieve good weld zone toughness in the as-welded state of the base steel sheet without requiring any special filler material or heat treatment after welding.

【0005】(3)を意図した例として例えば以下の報
告がある。新日鉄技報、348(1993)、32に記
載された「電子ビーム溶接性の優れた極厚鋼板の開発」
では、電子ビーム溶接部をアシキュラーフェライト(A
F)主体の組織に制御することが靭性の向上に有効であ
り、これを意図した鋼としてAlの低減をはかったTi
オキサイド鋼(低Al−Ti oxide鋼)が開発さ
れ、−50℃においてWMとFLの両方で100J以上
の優れたシャルピー衝撃特性が達成されている。また、
TWI Ref.7221.02/95/886.3に
記載された「Effects of Al,Ti&V on microstructural
development in laser and electron beam steel weld
metal」では、好ましいAl/Oと40%程度のAF組
織を有する低O系0.1重量%V添加鋼のレーザー溶接
部のWMで、−70℃において良好なCTOD特性が得
られる可能性が示されている。以上二つの報告は、母材
鋼板の化学成分を適正化することで、WMとFLの金属
組織をAF主体に制御して組織を微細化することが靭性
の向上に有効であることを示している。しかしながら、
これらのAF生成技術を駆使しても、電子ビーム溶接あ
るいはレーザー溶接を適用した溶接部のFLにおいてC
TOD特性を向上させた例はない。これら溶接部のWM
のみならずFLでも優れたCTOD特性を有する鋼板の
開発が望まれている。
For example, the following report is given as an example intended for (3). "Development of extra-thick steel plate with excellent electron beam weldability" described in Nippon Steel Technical Report 348 (1993), 32.
Then, the electron beam welded part is made acicular ferrite (A
F) It is effective to control toughness to improve the toughness, and as a steel intended for this purpose, the Ti content was reduced.
Oxide steel (low Al-Ti oxide steel) has been developed, and excellent Charpy impact properties of 100 J or more have been achieved in both WM and FL at -50 ° C. Also,
TWI Ref. 7221.02 / 95 / 886.3, “Effects of Al, Ti & V on microstructural
development in laser and electron beam steel weld
"metal" is a WM of a laser welded portion of a low O-based 0.1 wt% V-added steel having preferable Al / O and an AF structure of about 40%, and there is a possibility that good CTOD characteristics can be obtained at -70 ° C. It is shown. The above two reports show that it is effective to improve the toughness by optimizing the chemical composition of the base steel sheet and controlling the metal structure of WM and FL mainly to AF to refine the structure. There is. However,
Even by making full use of these AF generation techniques, C is generated in the FL of the welded portion to which electron beam welding or laser welding is applied.
There is no example of improving TOD characteristics. WM of these welds
In addition to FL, development of a steel sheet having excellent CTOD characteristics is desired.

【0006】以上説明した電子ビーム溶接あるいはレー
ザー溶接を適用した溶接部のCTOD特性に優れた鋼板
は、ラインパイプ用素材としての用途が有望である。こ
の場合、溶接部の靭性に加えて、API−X65以上の
強度と、耐水素誘起割れ性(耐HIC性)を併せ持つ必
要がある。従って、以上の複合特性を高次元で具備した
鋼板及び鋼構造物の提供が強く望まれている。
The steel sheet having excellent CTOD characteristics at the welded portion to which the electron beam welding or laser welding described above is applied is promising for use as a raw material for line pipes. In this case, in addition to the toughness of the welded portion, it is necessary to have strength of API-X65 or more and hydrogen-induced crack resistance (HIC resistance). Therefore, it is strongly desired to provide a steel plate and a steel structure having the above-described composite characteristics in a high dimension.

【0007】[0007]

【発明が解決しようとする課題】本発明は、耐水素誘起
割れ(耐HIC)性に優れ、API規格5L−X65以
上の強度を有し、電子ビーム溶接あるいはレーザー溶接
を適用した溶接部の溶接金属(WM)と溶融線(FL)
の両方において、−10℃での限界CTODが0.20
mm以上である鋼板及び鋼構造物を提供する。
The present invention is excellent in hydrogen-induced cracking (HIC resistance) resistance, has strength of API standard 5L-X65 or more, and welds a welded portion to which electron beam welding or laser welding is applied. Metal (WM) and fusion line (FL)
In both cases, the limit CTOD at −10 ° C. is 0.20.
A steel plate and a steel structure having a size of not less than mm are provided.

【0008】[0008]

【課題を解決するための手段】本願発明の趣旨は、質量
%で C :0.01〜0.08% Si:0.5%以下 Mn:1.0〜1.6% P :0.015%以下 S :0.001%以下 Al:0.001〜0.05% Ti:0.005〜0.03% Ca:0.0005〜0.005% N :0.001〜0.008% O :0.001〜0.004% を含有し、必要に応じて質量%で Nb:0.005〜0.10% V :0.005〜0.10% REM:0.0005〜0.01% Zr:0.0005〜0.01% Cu:0.05〜1.0% Ni:0.05〜1.0% Cr:0.05〜1.0% Mo:0.05〜0.5% B :0.0003〜0.003% Mg:0.0001〜0.005% の1種類以上を含有し、残部が鉄および可避的不純物か
らなる化学成分を有し、化学成分の質量%を用いて計算
される下式[1]〜[3]を満たし、また、さらに面積
率で50%以上のベイナイト組織から構成されることを
特徴とする溶接部の靭性に優れた高エネルギー密度溶接
用耐サワー鋼材である。鋼材とは鋼板及び鋼管を含む概
念である。
Means for Solving the Problems The gist of the present invention is, in mass%, C: 0.01 to 0.08% Si: 0.5% or less Mn: 1.0 to 1.6% P: 0.015 % Or less S: 0.001% or less Al: 0.001 to 0.05% Ti: 0.005 to 0.03% Ca: 0.0005 to 0.005% N: 0.001 to 0.008% O : 0.001 to 0.004%, and if necessary, in mass% Nb: 0.005 to 0.10% V: 0.005 to 0.10% REM: 0.0005 to 0.01% Zr: 0.0005-0.01% Cu: 0.05-1.0% Ni: 0.05-1.0% Cr: 0.05-1.0% Mo: 0.05-0.5% B: 0.0003 to 0.003% Mg: 0.0001 to 0.005% One or more kinds are contained, and the balance is iron and inevitable impurities. It has a chemical component composed of a substance, satisfies the following formulas [1] to [3] calculated using the mass% of the chemical component, and is composed of a bainite structure having an area ratio of 50% or more. It is a sour-resistant steel material for high energy density welding with excellent toughness in the welded part. The steel material is a concept including a steel plate and a steel pipe.

【0009】 Si+10Al+Mo≦0.8・・・[1] Cu+Ni+Cr≦1.0%・・・[2] C≦−0.175(Si+10Al+Mo)+0.17・・・[3] あるいは、母材が前記鋼成分で、電子ビーム溶接あるい
はレーザー溶接を適用した溶接部におけるマルテンサイ
ト−オーステナイト混合相(MA:Martensite-Austeni
te constituent)の面積率が2%以下であり、また、こ
れらの溶接部における0.5〜10μmの介在物粒子が
その平均組成において5質量%以上のREMあるいは/
およびZrを含有し、さらには、面積率で50%以上の
ベイナイト組織から構成されることを特徴とする、電子
ビーム溶接あるいはレーザー溶接を適用した溶接部の靭
性に優れた耐サワー鋼構造物である。
Si + 10Al + Mo ≦ 0.8 ... [1] Cu + Ni + Cr ≦ 1.0% ... [2] C ≦ −0.175 (Si + 10Al + Mo) +0.17 ... [3] Alternatively, the base material is Martensite-austenite mixed phase (MA: Martensite-Austeni) in the welded portion of steel components to which electron beam welding or laser welding is applied
te constituent) has an area ratio of 2% or less, and the inclusion particles of 0.5 to 10 μm in these welds have an average composition of 5% by mass or more of REM or /
A sour-resistant steel structure containing Zr and Zr and having a bainite structure with an area ratio of 50% or more and having excellent toughness in a welded portion to which electron beam welding or laser welding is applied. is there.

【0010】[0010]

【発明の実施の形態】本発明は、特別な溶加材や溶接後
の熱処理を必要とせずに溶接部靭性を高めることを志向
する。耐サワー鋼板の電子ビーム溶接あるいはレーザー
溶接を適用した溶接部においてCTOD特性の確保が難
しい理由として下記が挙げられる。 ・ WM成分は鋼板の化学成分でほぼ決まるためその設
計が困難である。まず、WMのOが非常に少なくなるこ
とでAF組織の変態核である酸化物の個数が減少し、A
F組織を活かしたWMの組織微細化が困難である。さら
に、耐サワー鋼の特徴である極低S化やCa添加によっ
て鋼板中にMnSが析出し難くなり、FL近傍の溶接熱
影響部(HAZ)でAF組織の生成が阻害されて金属組
織の微細化が困難となる。このように、WMとFLの両
方でAF組織に依る組織の微細化が難しい。 ・ FLに切り欠きを施す場合、FLが直線的であるた
めに切り欠きの大部分がFLと一致する。このような場
合、FLに沿ったHAZ脆化域が切り欠き底の大部分を
占めるから、非常に厳しい靭性評価方法となる。 ・ 1パス溶接であるために、多パス溶接のような後パ
スによる再熱効果(組織微細化、焼き戻し)を期待する
ことができない。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to increasing weld toughness without the need for special filler materials or post-weld heat treatments. The reasons why it is difficult to secure the CTOD characteristics in the welded part of the sour-resistant steel plate to which electron beam welding or laser welding is applied are as follows.・ It is difficult to design the WM component because it is almost determined by the chemical composition of the steel sheet. First, since the O content of WM is extremely small, the number of oxides, which are transformation nuclei of the AF structure, is reduced.
It is difficult to reduce the structure of WM by utilizing the F structure. In addition, MnS is less likely to precipitate in the steel sheet due to the extremely low S content and the addition of Ca, which are the characteristics of sour-resistant steel, and the formation of the AF structure is impeded in the weld heat affected zone (HAZ) near FL, and the fine metal structure Becomes difficult. As described above, it is difficult to make the structure finer depending on the AF structure in both WM and FL. -When making a notch in the FL, most of the notch coincides with the FL because the FL is linear. In such a case, the HAZ embrittlement region along the FL occupies most of the notch bottom, so that the toughness evaluation method is very strict. -Because it is one-pass welding, it is not possible to expect a reheating effect (structural refinement, tempering) by a post-pass like multi-pass welding.

【0011】上記の問題点を解決するため、発明者らは
API5L−X65〜X80級耐サワーラインパイプ用
鋼を用いて電子ビーム溶接部のCTOD抑制を支配する
因子を詳細に検討した。その結果、図3に示すようにW
MとFLにおいてMA面積率と限界CTODの間に相関
があることを発見した。WMで2%以下、FLで4%以
下のMA面積率のときに、WMとFLの両方において−
10℃で0.20mmを上回る限界CTODが得られる
ことが判明した。図3は同条件で電子ビーム溶接された
10個の溶接部について、WMとFLに切り欠きを入れ
たCTOD試験を各3本実施し、最低の限界CTOD値
を採用して図示した。溶接部符号が同じであるWMとF
LのCTOD値は、同じ溶接部から採取されたことを示
している。この溶接部符号から、WMのMA面積率が2
%以下であればFLのMA面積率も4%以下になる関係
が読みとれる。このように、溶接部のCTOD特性とM
A面積率の関連つけは従来の溶接法では既に試みられて
いるが、従来の溶接法と熱履歴が大きく異なる電子ビー
ム溶接やレーザー溶接では系統的に検討されていなかっ
た。MAはマトリックスに比べて局所的に硬い相であ
り、その周囲に多くの格子欠陥を伴うため、CTOD試
験時に脆性破壊の発生起点として作用して悪影響を及ぼ
すと考えられる。以上の検討から、電子ビーム溶接ある
いはレーザー溶接を適用した耐サワー鋼の溶接部で目標
とするCTOD特性をWMとFLの両方で達成するため
には、WMのMA面積率を2%以下に抑えることが基本
的な指針となる。
In order to solve the above-mentioned problems, the inventors have studied in detail the factors controlling the CTOD suppression of electron beam welds using API5L-X65 to X80 grade sour line pipe steel. As a result, as shown in FIG.
We found that there is a correlation between MA area ratio and critical CTOD in M and FL. When the MA area ratio is 2% or less in WM and 4% or less in FL, both in WM and FL-
It has been found that a marginal CTOD of greater than 0.20 mm is obtained at 10 ° C. FIG. 3 is a graph showing the minimum limit CTOD value obtained by performing three CTOD tests each having a notch in the WM and the FL with respect to 10 welded portions that were electron beam welded under the same conditions. WM and F with the same weld code
The CTOD value for L indicates that it was taken from the same weld. From this weld code, the WM MA area ratio is 2
It can be read that the MA area ratio of FL is 4% or less if the percentage is less than%. Thus, the CTOD characteristics of the weld and M
Although the A area ratio has already been tried in the conventional welding method, it has not been systematically examined in the electron beam welding or the laser welding, which has a thermal history greatly different from that of the conventional welding method. MA is a locally harder phase than the matrix, and since many MAs are associated with its surroundings, it is considered that the MA acts as a starting point of brittle fracture during a CTOD test and adversely affects it. From the above examination, in order to achieve the target CTOD characteristics in both WM and FL in the welded part of sour-resistant steel to which electron beam welding or laser welding is applied, the MA area ratio of WM should be 2% or less. That is the basic guideline.

【0012】次ぎに、電子ビーム溶接部のMA生成に及
ぼす鋼板の化学成分の影響を検討した。その結果、MA
生成量には下記の三つの成分因子(単位は質量%)が影
響することが明らかになった。 ・ C ・ Si+10Al+Mo ・ Cu+Ni+Cr これらの成分因子が増加するとMAは増加するので、M
A面積率が2%を超える限界の成分範囲を明確にする必
要がある。図4はAPI5L−X65〜X80級耐サワ
ーラインパイプ用鋼の電子ビーム溶接部のWMについ
て、CとSi+10Al+Moを用いてMA面積率が2
%を超える境界線を示している。境界線aはSi+10
Al+Moに関係なくCの上限を表している。MA面積
率を2%以下にするために次式を満たす必要がある。単
位は質量%である。 C≦0.08 境界線bはCとSi+10Al+Moの両方が線形で関
与しており、MA面積率を2%以下にするために次式
[3]を満たす必要がある。単位は質量%である。 C≦−0.175(Si+10Al+Mo)+0.17…[3] 境界線cはCに関係なくSi+10Al+Moの上限を
表している。MA面積率を2%以下にするために次式
[1]を満たす必要がある。単位は質量%である。 Si+10Al+Mo≦0.8…[1] さらに、たとえ図4でMA面積率が2%以下になる場合
でも、残る成分因子であるCu+Ni+Crが1.0%
を超えるとMA面積率が2%を超えてしまう危険性があ
る。従って、安定的にMA面積率を2%以下に抑えるた
めには、図4の適正範囲を満たすことに加えて次式
[2]を満たす必要がある。単位は質量%である。 Cu+Ni+Cr≦1.0…[2]
Next, the influence of the chemical composition of the steel sheet on the formation of MA in the electron beam weld was examined. As a result, MA
It was clarified that the following three component factors (unit is mass%) influence the production amount.・ C ・ Si + 10Al + Mo ・ Cu + Ni + Cr Since MA increases as these component factors increase, M
It is necessary to clarify the limit component range in which the A area ratio exceeds 2%. FIG. 4 shows that the WM of the electron beam welded portion of the steel for API 5L-X65 to X80 grade sour resistant line pipe has a MA area ratio of 2 using C and Si + 10Al + Mo.
It shows a border line exceeding%. Boundary line a is Si + 10
The upper limit of C is shown regardless of Al + Mo. The following formula must be satisfied in order to reduce the MA area ratio to 2% or less. The unit is% by mass. C ≦ 0.08 In the boundary line b, both C and Si + 10Al + Mo are linearly involved, and it is necessary to satisfy the following expression [3] in order to reduce the MA area ratio to 2% or less. The unit is% by mass. C ≦ −0.175 (Si + 10Al + Mo) +0.17 ... [3] The boundary line c represents the upper limit of Si + 10Al + Mo regardless of C. The following expression [1] needs to be satisfied in order to reduce the MA area ratio to 2% or less. The unit is% by mass. Si + 10Al + Mo ≦ 0.8 ... [1] Further, even if the MA area ratio is 2% or less in FIG. 4, the remaining component factor Cu + Ni + Cr is 1.0%.
If it exceeds, there is a risk that the MA area ratio will exceed 2%. Therefore, in order to stably suppress the MA area ratio to 2% or less, it is necessary to satisfy the following expression [2] in addition to satisfying the appropriate range of FIG. The unit is% by mass. Cu + Ni + Cr ≦ 1.0 ... [2]

【0013】次ぎに、発明者らは電子ビーム溶接あるい
はレーザー溶接を適用した溶接部の組織細化を検討した
結果、鋼板の化学成分にMgを添加することで、FL近
傍のHAZのオーステナイト結晶粒が細粒化することを
見いだした。これは、超微細なMg系酸化物が数多く生
成して、FL近傍においても結晶粒の成長が強力にピン
止めされ、結晶粒の粗大化が抑制されるためである。こ
のことによって、AF組織を使えない耐サワー鋼におい
ても、FLにおけるCTOD特性をより安定的に高める
ことが可能であることを発見した。
Next, as a result of studying the structure refinement of a welded portion to which electron beam welding or laser welding is applied, the present inventors have found that by adding Mg to the chemical composition of the steel sheet, the austenite crystal grains of HAZ near FL are added. Found that the particles became finer. This is because a large number of ultrafine Mg-based oxides are generated, the growth of crystal grains is strongly pinned even in the vicinity of FL, and coarsening of crystal grains is suppressed. As a result, it was discovered that even in sour-resistant steel that cannot use the AF structure, it is possible to more stably improve the CTOD characteristics in FL.

【0014】さらなるCTOD特性の安定的な向上を目
指して、CTOD値が目標である0.20mmを下回っ
た試験片について、その脆化要因を詳細に調査した。そ
の結果、酸化物を主体とする0.5〜10μmの介在物
粒子が脆性破壊の発生起点として作用していることが確
認された。そこで、CTOD特性に悪影響を与えるこの
ような大きさの介在物粒子を無害化することを試みた。
溶接部における0.5〜10μmの介在物粒子は、その
平均組成において5質量%以上のREMあるいはZrを
含有すると、粒子自身の破壊特性が改善して脆性破壊に
対する悪影響が軽減され、CTOD特性が向上すること
を見いだした。
With the aim of further improving the CTOD characteristics in a stable manner, the embrittlement factors of the test pieces having a CTOD value below the target of 0.20 mm were investigated in detail. As a result, it was confirmed that the inclusion particles of 0.5 to 10 μm mainly composed of oxide acted as a starting point of occurrence of brittle fracture. Therefore, an attempt was made to render the inclusion particles of such a size that adversely affect the CTOD characteristics harmless.
When inclusion particles of 0.5 to 10 μm in the welded portion contain 5% by mass or more of REM or Zr in the average composition, the fracture characteristics of the particles themselves are improved and the adverse effect on brittle fracture is reduced, and the CTOD characteristics are improved. I found that it improved.

【0015】以上が電子ビーム溶接あるいはレーザー溶
接を適用した溶接部の靭性を高めるための新しい技術で
ある。
The above is a new technique for improving the toughness of a welded portion to which electron beam welding or laser welding is applied.

【0016】次ぎに化学成分の限定理由を説明する。以
下で説明する溶接部とは、特にことわらない限り電子ビ
ーム溶接あるいはレーザー溶接を適用した溶接部を示
す。
Next, the reasons for limiting the chemical components will be explained. Unless otherwise specified, the welded portion described below is a welded portion to which electron beam welding or laser welding is applied.

【0017】Cは母材と溶接部の強度、靭性を確保する
ために0.01%以上必要である。しかし、0.08%
を超えると溶接部のMA面積率が2%を超えてCTOD
特性が劣化する。その上に、母材の耐HIC性が劣化す
る。従って、0.08%が上限である。Cが0.08%
以下でも、MA生成を助長するSi、Al、Moの量に
応じて、[3]式を満たす低いCに制御する必要であ
る。
C is required to be 0.01% or more in order to secure the strength and toughness of the base material and the welded portion. However, 0.08%
MA area ratio of the welded portion exceeds 2% and CTOD
The characteristics deteriorate. In addition, the HIC resistance of the base material deteriorates. Therefore, 0.08% is the upper limit. C is 0.08%
Even below, it is necessary to control to a low C satisfying the formula [3] depending on the amounts of Si, Al, and Mo that promote the formation of MA.

【0018】Siは主に脱酸のために添加できるが、本
発明ではCa、Al、Tiなどによっても脱酸できるか
ら必須ではない。図4と[1]式に示されるように、S
iは溶接部のMA生成を助長するので好ましくない元素
である。Siが0.5%を超えると溶接部のMAが激増
してCTOD特性が不安定になるので、これが上限であ
る。
Si can be added mainly for deoxidation, but it is not essential in the present invention because it can be deoxidized by Ca, Al, Ti and the like. As shown in FIG. 4 and the equation [1], S
i is an unfavorable element because it promotes the formation of MA in the welded portion. If the Si content exceeds 0.5%, the MA of the welded portion will increase drastically and the CTOD characteristics will become unstable, so this is the upper limit.

【0019】Mnは母材と溶接部の強度、靭性を確保す
るために1.0%以上必要である。しかし、Mnが1.
6%を超えると連続鋳造時の中心偏析を助長し、鋼板の
板厚中心部において母材の靭性と耐HIC性を劣化させ
る。従って、これが上限である。
Mn is required to be 1.0% or more in order to secure the strength and toughness of the base material and the welded portion. However, when Mn is 1.
If it exceeds 6%, center segregation during continuous casting is promoted, and toughness and HIC resistance of the base material are deteriorated at the center portion of the plate thickness of the steel sheet. Therefore, this is the upper limit.

【0020】Pは本発明において不純物元素であり、良
好な母材と溶接部の材質を確保するために0.015%
以下に低減する必要がある。とりわけ、母材の耐サワー
性の点から、中心偏析を助長するPは極力低減すること
が好ましい。
P is an impurity element in the present invention, and is 0.015% in order to secure good base metal and weld material.
It needs to be reduced to: Particularly, from the viewpoint of sour resistance of the base material, it is preferable to reduce P that promotes center segregation as much as possible.

【0021】Sは本発明において不純物元素であり、良
好な母材と溶接部の材質を確保するために0.001%
以下に低減する必要がある。とりわけ、母材の耐HIC
性の観点から、MnSをつくらないようにSを厳しく制
限する必要がある。MnSは熱間圧延によって延伸化
し、HICの発生起点として有害である。Sは0.00
05%以下まで低減することが好ましい。
S is an impurity element in the present invention, and is 0.001% in order to secure good base metal and weld material.
It needs to be reduced to: Especially, HIC resistance of the base material
From the viewpoint of properties, it is necessary to strictly limit S so as not to form MnS. MnS is stretched by hot rolling and is harmful as a starting point of HIC. S is 0.00
It is preferable to reduce it to 05% or less.

【0022】Alは脱酸元素として機能し、Mgが添加
されたときにはMgと一緒に超微細酸化物を構成してH
AZの組織微細化に貢献し、FLの靭性を高める。その
ために0.001%以上のAlが必要である。一方、図
4と[1]式に示されるように、Alは溶接部のMA生
成を助長する。Alが0.05%を超えるとSiと同様
に溶接部のMAが激増して靭性が不安定となるので、こ
れが上限である。
Al functions as a deoxidizing element, and when Mg is added, it forms an ultrafine oxide together with Mg, and H
Contributes to the refinement of the AZ structure and enhances the FL toughness. Therefore, 0.001% or more of Al is required. On the other hand, as shown in FIG. 4 and the formula [1], Al promotes MA generation in the welded portion. If the Al content exceeds 0.05%, the MA of the welded portion will increase sharply and the toughness will become unstable like Si, so this is the upper limit.

【0023】TiはTiNを形成し、鋳片加熱における
組織粗大化を抑制して熱間圧延後の鋼板の組織微細化に
貢献し、母材の強度、靭性を高める。同様に、溶接部の
HAZで組織微細化に貢献してFLの靭性劣化を防ぐ。
特にMgが添加されたときには、Mg系超微細酸化物の
上にTiNが析出し、複合形態の微細粒子を形成してM
gの効果(ピン止め効果)を効率的に高める。また、C
a、Al、Siが少ない場合にはTiは脱酸にも寄与す
る。これらの役割を果たすためには0.005%以上の
Tiが必要である。しかし、Tiが0.03%を超える
と、母材やHAZで過剰なTiCが析出したり、TiN
の一部が数μmにまで粗大化することで母材やHAZが
脆化する。この理由からTiの上限は0.03%であ
る。
Ti forms TiN, suppresses the coarsening of the structure during slab heating, contributes to the refinement of the structure of the steel sheet after hot rolling, and enhances the strength and toughness of the base material. Similarly, the HAZ of the weld contributes to the refinement of the structure and prevents the deterioration of the toughness of the FL.
In particular, when Mg is added, TiN is deposited on the Mg-based ultrafine oxide, forming fine particles of a composite form and M
Efficiently enhance the effect of g (pinning effect). Also, C
When a, Al and Si are small, Ti also contributes to deoxidation. In order to fulfill these roles, 0.005% or more of Ti is required. However, if the content of Ti exceeds 0.03%, excessive TiC is precipitated in the base metal or HAZ, or TiN
A part of the particles is coarsened to several μm, so that the base material and HAZ become brittle. For this reason, the upper limit of Ti is 0.03%.

【0024】CaはMnSの生成を抑制する目的で添加
される。CaSは延伸化しにくいためにMnSに比べて
HICが向上する。そのために0.0005%以上のC
aが必要である。添加されたCaの一部は脱酸にも寄与
する場合がある。しかし、Caが0.005%を超える
とCa系酸化物が増加し、これらが凝集・合体した巨大
な状態のまま鋼中に残存し、母材やHAZを脆化させる
恐れがある。従って、0.005%のCaが上限であ
る。
Ca is added for the purpose of suppressing the formation of MnS. Since CaS is difficult to be stretched, HIC is improved as compared with MnS. Therefore, 0.0005% or more of C
a is required. Some of the added Ca may also contribute to deoxidation. However, when Ca exceeds 0.005%, Ca-based oxides increase, and these remain in the steel in a huge state where they are aggregated and united, which may cause embrittlement of the base material and HAZ. Therefore, 0.005% Ca is the upper limit.

【0025】NはTiNを生成して母材やHAZの組織
微細化を通じて靭性に寄与する。Mgの効果を高めるこ
とにも有効である。そのためには0.001%以上のN
が必要である。しかし、Nが0.008%を超えると固
溶Nが増えて母材やHAZが脆化したり、鋳片の表面性
状が劣化したりするので、これを上限とする。
N forms TiN and contributes to the toughness by refining the microstructure of the base material and HAZ. It is also effective to enhance the effect of Mg. Therefore, 0.001% or more of N
is necessary. However, if N exceeds 0.008%, the amount of solid solution N increases, the base material and HAZ become brittle, and the surface properties of the slab deteriorate, so this is the upper limit.

【0026】OはMgが添加されたときに超微細な酸化
物を形成し、HAZでの結晶粒成長をピン止めしてFL
靭性に貢献するため、0.001%以上必要である。し
かし、Oが0.004%を超えると数μmの酸化物が数
多く生成し、これが母材や溶接部で脆性破壊を発生させ
る恐れがあるため、これを上限とする。
O forms an ultra-fine oxide when Mg is added to pin the crystal grain growth in the HAZ, and FL
In order to contribute to toughness, 0.001% or more is necessary. However, when O exceeds 0.004%, many oxides of several μm are generated, which may cause brittle fracture in the base material and the welded portion, so this is made the upper limit.

【0027】続いて選択元素の限定理由を説明する。N
bとVは母材と溶接部の強度を高めることに利用でき
る。Nbは母材の組織微細化を通じて靭性を高めること
にも有効である。これらの効果を得るためには、Nb、
Vともに0.005%以上必要である。一方、NbやV
が0.10%を超えると溶接部が脆化するうえ、母材の
耐HIC性や溶接性が劣化する恐れがあるので、これが
上限である。
Next, the reasons for limiting the selection elements will be described. N
b and V can be used to increase the strength of the base material and the weld. Nb is also effective in increasing the toughness by refining the structure of the base material. To obtain these effects, Nb,
V is required to be 0.005% or more. On the other hand, Nb and V
Is more than 0.10%, the welded portion becomes brittle and the HIC resistance and weldability of the base material may deteriorate, so this is the upper limit.

【0028】REM、Zrは脱酸や脱硫に寄与し、母材
や溶接部の材質を改善することに有効である。溶接部に
おける0.5〜10μmの介在物は酸化物を主体に硫化
物や窒化物が複合する場合が多い。これらの介在物にR
EMやZrが5%以上含まれと溶接部のCTOD特性が
改善する。そのためには、REM、あるいは/およびZ
rが総計で0.0005%以上必要である。しかし、こ
れらの元素は0.01%を超えると効果が飽和するた
め、これが上限である。ここでのREMとは、La、C
eなどのランタノイド系の元素をさし、これらの元素が
混在したミッシュメタルを添加してもよい。
REM and Zr contribute to deoxidation and desulfurization, and are effective in improving the materials of the base material and the welded portion. Inclusions of 0.5 to 10 μm in the welded portion are often composed mainly of oxide and compounded with sulfide and nitride. R in these inclusions
When EM and Zr are contained in an amount of 5% or more, the CTOD characteristics of the welded portion are improved. To do so, REM and / or Z
r is required to be 0.0005% or more in total. However, if the content of these elements exceeds 0.01%, the effect is saturated, so this is the upper limit. REM here means La, C
It is also possible to point to a lanthanoid-based element such as e and add a misch metal in which these elements are mixed.

【0029】Cu、Ni、Crは母材や溶接部の強度、
母材の靭性や耐食性、溶接性、の向上に利用できる。そ
のためにはいずれの元素も0.05%以上必要である。
しかしながら、溶接部のCTOD特性の観点からこれら
の元素は少ない方が好ましい。溶接部のMA生成を抑制
するために、いずれの元素も1.0%を上限とした上
で、これらの元素の和を[2]式のごとく1.0%以下
に調整する必要がある。
Cu, Ni, and Cr are strengths of the base material and the welded portion,
It can be used to improve the toughness, corrosion resistance and weldability of the base material. For that purpose, 0.05% or more of each element is required.
However, it is preferable that the amount of these elements is small from the viewpoint of the CTOD characteristics of the welded portion. In order to suppress the generation of MA in the welded portion, it is necessary to adjust the sum of these elements to 1.0% or less as shown in the formula [2], with each element having an upper limit of 1.0%.

【0030】Moは母材や溶接部の強度、母材の靭性、
の向上に利用できる。そのためには0.05%以上必要
である。一方、図4と[1]式に示されるように、Mo
はSiと同じくらいに溶接部のMA生成を助長する。M
oが0.5%を超えるとSiと同様に溶接部のMAが激
増して靭性が不安定となるので、これが上限である。
Mo is the strength of the base metal and welded portion, the toughness of the base metal,
Can be used to improve. For that purpose, 0.05% or more is necessary. On the other hand, as shown in FIG. 4 and the equation [1], Mo
Promotes MA generation in the weld as much as Si. M
If o exceeds 0.5%, the MA of the welded portion is drastically increased and the toughness becomes unstable like Si, so this is the upper limit.

【0031】Bは母材や溶接部の強度、靭性の向上に利
用できる。そのためには0.0003%以上必要であ
る。しかし、Bが0.003%を超えると溶接部のMA
生成が著しく促進されて靭性が大きく劣化するため、こ
れを上限とする。
B can be used to improve the strength and toughness of the base material and the welded portion. For that purpose, 0.0003% or more is necessary. However, when B exceeds 0.003%, MA of the welded part
Since the generation is remarkably promoted and the toughness is greatly deteriorated, this is the upper limit.

【0032】MgはAlと共に超微細な酸化物を数多く
形成し、それら多くがTiNの複合析出を伴ってHAZ
でピン止め効果を担い、FLの靭性に貢献する。そのた
めには0.0001%以上必要である。0.005%を
超えるとMgの効果が飽和して経済的に不利益をもたら
すので、これが上限である。
Mg forms a large number of ultrafine oxides with Al, and most of them form HAZ with complex precipitation of TiN.
Plays a pinning effect and contributes to FL toughness. For that purpose, 0.0001% or more is necessary. If it exceeds 0.005%, the effect of Mg saturates and brings an economical disadvantage, so this is the upper limit.

【0033】以上の選択元素がその下限よりも少なく含
まれる場合は不可避的不純物とみなせる。
When the above selection elements are contained below the lower limit, they can be regarded as unavoidable impurities.

【0034】本発明の耐サワー性を安定的に達成するた
めに、化学成分を上記に限定したうえで、鋼板の金属組
織の適正化を検討した。その結果、鋼板の金属組織が面
積率で50%以上のベイナイト組織から構成されるとき
に、耐HIC性が安定化することが見いだされた。さら
に、母材がベイナイト主体の微細な組織になると、電子
ビーム溶接やレーザー溶接を適用した溶接部のHAZ組
織が微細化を受け継ぐ傾向が発見され、この現象がFL
のCTOD特性に有利に働くことがわかった。母材のベ
イナイト組織の面積率が50%未満では上述した効果は
小さい。以上から、化学成分における焼入性を適正化し
たり、熱間圧延後に加速冷却を適用したり、各種の熱処
理を施すなどして、鋼板の金属組織をベイナイト主体に
制御することが効果的である。
In order to stably achieve the sour resistance of the present invention, the chemical composition was limited to the above and the optimization of the metal structure of the steel sheet was examined. As a result, it was found that the HIC resistance is stabilized when the metal structure of the steel sheet is composed of a bainite structure having an area ratio of 50% or more. Furthermore, when the base metal has a fine structure mainly composed of bainite, it has been discovered that the HAZ structure of the welded portion to which electron beam welding or laser welding is applied has a tendency to inherit the refinement.
It was found that the CTOD characteristics of C. If the area ratio of the bainite structure of the base material is less than 50%, the above effect is small. From the above, it is effective to control the metallographic structure of the steel sheet mainly to bainite by optimizing the hardenability in the chemical composition, applying accelerated cooling after hot rolling, or performing various heat treatments. .

【0035】本発明の鋼板は、鉄鋼業の製鋼工程におい
て化学成分を調整し、連続鋳造した鋳片を再加熱して圧
延、冷却、熱処理の各工程を様々に制御して製造され
る。本発明は鋼板の製造方法に特別な規定を必要としな
いが、耐サワー性の観点から、連続鋳造における軽圧下
処理や加熱温度の高温化など、中心偏析の軽減対策を施
すことが好ましい。また、ベイナイト主体の母材組織を
得るために、圧延後にAr3点以上の温度から加速冷却
を適用することが効果的である。鋳片を一旦冷やすこと
なくホットチャージ圧延することも可能である。
The steel sheet of the present invention is manufactured by adjusting the chemical composition in the steelmaking process of the steel industry and reheating the continuously cast slab to variously control each process of rolling, cooling and heat treatment. Although the present invention does not require any special regulation in the method for producing a steel sheet, from the viewpoint of sour resistance, it is preferable to take measures to reduce center segregation, such as a light reduction treatment in continuous casting and an increase in heating temperature. Further, in order to obtain a base material structure mainly composed of bainite, it is effective to apply accelerated cooling from a temperature of Ar 3 point or higher after rolling. It is also possible to perform hot charge rolling without temporarily cooling the slab.

【0036】本発明で規定したMA面積率は、たとえば
以下のような方法で定量的に測定される。電子ビーム溶
接あるいはレーザー溶接を適用した溶接部の中央付近
を、鏡面研磨後にレペラー液を用いてエッチングを行
い、島状に散在するMAを白色に現出させ、白色の部分
の面積率を画像解析装置によって測定する。このときの
溶接条件は特に規定するものでない。
The MA area ratio specified in the present invention is quantitatively measured by the following method, for example. The vicinity of the center of the welded area to which electron beam welding or laser welding is applied is mirror-polished and then etched using a repeller liquid to expose island-shaped MA in white, and the area ratio of the white area is analyzed by image analysis. Measured by the device. The welding conditions at this time are not particularly specified.

【0037】本発明で規定した0.5〜10μmの介在
物の平均組成は、たとえば以下のような方法で定量的に
測定される。電子ビーム溶接あるいはレーザー溶接を適
用した溶接部の中央付近、あるいはFL近傍のHAZ
を、鏡面研磨した後、X線マイクロアナライザー(EP
MA)を用いて0.5〜10μmの介在物を対象にラン
ダムに10個以上を組成分析する。検出されたFeは地
鉄とみなし、Feを差し引いて介在物を構成する元素の
重量割合を算出する。このようにして求めた10個以上
の介在物組成から平均組成を求める。
The average composition of inclusions of 0.5 to 10 μm specified in the present invention is quantitatively measured by the following method, for example. HAZ near the center of the welded part where electron beam welding or laser welding is applied, or near FL
Mirror-polished, and then X-ray micro analyzer (EP
(MA) is used to randomly analyze the composition of 10 or more inclusions of 0.5 to 10 μm. The detected Fe is regarded as base iron, and Fe is subtracted to calculate the weight ratio of the elements forming the inclusions. An average composition is obtained from the composition of 10 or more inclusions thus obtained.

【0038】[0038]

【実施例】【Example】

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】表1に示す化学成分を有する鋼1〜鋼23
の鋼片を、加熱して圧延した後に加速冷却を適用してベ
イナイト組織の生成を促し、鋼1〜鋼23の鋼板を作製
した。表2に鋼板の母材と溶接部の材質を示す。
Steel 1 to Steel 23 having the chemical composition shown in Table 1
The steel slab of No. 2 was heated and rolled, and then accelerated cooling was applied to promote generation of a bainite structure, and steel plates of Steel 1 to Steel 23 were produced. Table 2 shows the base material of the steel plate and the material of the welded part.

【0042】鋼1〜鋼13は本発明鋼であり、本発明に
従って化学成分、母材組織、溶接部組織、溶接部介在
物、が適正に制御されている。その結果、API5L−
X65以上の強度、良好な耐HIC特性、良好な溶接部
靭性、が全て同時に満足できている。鋼8と鋼9はRE
MやZrが添加されているので、溶接部の介在物粒子が
これらの元素を5質量%以上含有している。その結果、
鋼8と鋼9の溶接部は良好なCTOD特性を有する。鋼
8は高いCに起因して溶接部のMA面積率が1.9%と
多いにも関わらず高い限界CTODを有するのは、介在
物粒子に10%のREMが含まれるためである。鋼14
〜鋼23は比較鋼であり、化学成分が適正でないために
耐HIC性や溶接部靭性が劣っている。鋼14はCが高
すぎるため、鋼15はSiが高すぎるため、鋼19はA
lや[1]式が高すぎて[3]式がCに対して低すぎる
ため、鋼21は[1]式が高すぎるため、鋼22は
[2]式が高すぎるため、鋼23は[3]式がCに対し
て低すぎるため、溶接部のMA面積率が2%を超えて、
WMおよびFLのCTOD特性ならびにシャルピー特性
が著しく劣化している。また、鋼14はCが高すぎるた
めに、鋼16はMnが高すぎるために、鋼17はPが高
すぎるために、鋼18はSが高すぎるために、鋼20は
Caが低すぎるために、耐HIC性が十分でない。鋼1
7はPが高いことで耐HIC性のみならず、溶接部の靭
性も低い。
Steels 1 to 13 are steels of the present invention, and the chemical composition, base metal structure, weld structure and weld inclusions are properly controlled according to the present invention. As a result, API5L-
The strength of X65 or more, good HIC resistance, and good weld toughness are all satisfied at the same time. Steel 8 and Steel 9 are RE
Since M and Zr are added, the inclusion particles in the welded portion contain these elements in an amount of 5 mass% or more. as a result,
The welds of Steel 8 and Steel 9 have good CTOD properties. Steel 8 has a high limit CTOD despite a large MA area ratio of 1.9% in the welded portion due to high C, because inclusion particles contain 10% REM. Steel 14
-Steel 23 is a comparative steel and is inferior in HIC resistance and weld toughness because the chemical composition is not appropriate. Steel 14 has A too high C, Steel 15 has too high Si, Steel 19 has A
Since 1 and the formula [1] are too high and the formula [3] is too low relative to C, the steel 21 has the formula [1] too high, and the steel 22 has the formula [2] too high. Since the expression [3] is too low for C, the MA area ratio of the welded portion exceeds 2%,
The CTOD characteristics and Charpy characteristics of WM and FL are significantly deteriorated. Further, steel 14 has too high C, steel 16 has too high Mn, steel 17 has too high P, steel 18 has too high S, and steel 20 has too low Ca. In addition, the HIC resistance is not sufficient. Steel 1
In No. 7, since P is high, not only the HIC resistance but also the toughness of the welded portion is low.

【0043】[0043]

【発明の効果】本発明により、サワー環境向けの溶接鋼
構造物を電子ビーム溶接やレーザー溶接を適用して作製
しても溶接部の安全性が確保される。例えば、本発明に
よる鋼板を用いたAPI5L−X65以上の強度を有す
る耐サワーラインパイプを敷設する際に、高能率な電子
ビーム溶接を適用しつつ、−10℃における良好な溶接
部CTOD特性が得られる。
According to the present invention, even if a welded steel structure for sour environment is manufactured by applying electron beam welding or laser welding, the safety of the welded portion is secured. For example, when laying a sour resistant line pipe having a strength of API 5L-X65 or more using the steel sheet according to the present invention, while applying high-efficiency electron beam welding, a good weld part CTOD characteristic at −10 ° C. is obtained. To be

【図面の簡単な説明】[Brief description of drawings]

【図1】電子ビーム溶接あるいはレーザー溶接を適用し
た溶接部の外観を模式的に示す。
FIG. 1 schematically shows the appearance of a welded portion to which electron beam welding or laser welding is applied.

【図2】溶接部の溶接金属(WM)と溶融線(FL)の
切り欠き位置を模式的に示す。
FIG. 2 schematically shows the cutout positions of the weld metal (WM) and the fusion line (FL) of the welded portion.

【図3】溶接部のWMとFLのCTOD特性に及ぼすM
A面積率の影響を示す。
FIG. 3 shows the effect of M on the WM and FL CTOD characteristics of the welded part.
A shows the influence of the area ratio.

【図4】溶接部のWMのMA面積率に及ぼすCとSi+
10Al+Moの影響を示す。
FIG. 4 shows C and Si + that affect the WM MA area ratio of the welded portion.
The effect of 10Al + Mo is shown.

【符号の説明】[Explanation of symbols]

1 母材 2 溶接金属(WM) 3 溶接熱影響部(HAZ) 4 溶接線(FL) 5 板厚 6 WM切り欠き 7 FL切り欠き 1 base material 2 Weld metal (WM) 3 Heat affected zone (HAZ) 4 Weld line (FL) 5 Plate thickness 6 WM cutout 7 FL cutout

───────────────────────────────────────────────────── フロントページの続き (72)発明者 門矢 哲治 君津市君津1番地 新日本製鐵株式会社君 津製鐵所内 (72)発明者 村田 正彦 君津市君津1番地 新日本製鐵株式会社君 津製鐵所内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Tetsuji Kadoya             1 Kimitsu, Kimitsu-shi Mr. Nippon Steel Corporation             Tsu Steel Works (72) Inventor Masahiko Murata             1 Kimitsu, Kimitsu-shi Mr. Nippon Steel Corporation             Tsu Steel Works

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 質量%で C :0.01〜0.08% Si:0.5%以下 Mn:1.0〜1.6% P :0.015%以下 S :0.001%以下 Al:0.001〜0.05% Ti:0.005〜0.03% Ca:0.0005〜0.005% N :0.001〜0.008% O :0.001〜0.004% を含有し、残部が鉄および可避的不純物からなる化学成
分を有し、さらに化学成分の質量%を用いて計算される
下式[1]〜[3]を満たすことを特徴とする、溶接部
の靭性に優れた高エネルギー密度溶接用耐サワー鋼材。 Si+10Al+Mo≦0.8・・・[1] Cu+Ni+Cr≦1.0%・・・[2] C≦−0.175(Si+10Al+Mo)+0.17・・・[3]
1. C .: 0.01 to 0.08% Si: 0.5% or less Mn: 1.0 to 1.6% P: 0.015% or less S: 0.001% or less Al in mass% : 0.001 to 0.05% Ti: 0.005 to 0.03% Ca: 0.0005 to 0.005% N: 0.001 to 0.008% O: 0.001 to 0.004% A welded portion containing, the balance having a chemical component consisting of iron and inevitable impurities, and further satisfying the following formulas [1] to [3] calculated using the mass% of the chemical component. Sour resistant steel for high energy density welding with excellent toughness. Si + 10Al + Mo ≦ 0.8 ... [1] Cu + Ni + Cr ≦ 1.0% ... [2] C ≦ −0.175 (Si + 10Al + Mo) +0.17 ... [3]
【請求項2】 更に、質量%で Nb:0.005〜0.10% V :0.005〜0.10% の1種類以上を含有することを特徴とする、請求項1記
載の溶接部の靭性に優れた高エネルギー密度溶接用耐サ
ワー鋼材。
2. The welded part according to claim 1, further comprising one or more of Nb: 0.005 to 0.10% V: 0.005 to 0.10% in mass%. Sour resistant steel for high energy density welding with excellent toughness.
【請求項3】 更に、質量%で REM:0.0005〜0.01% Zr:0.0005〜0.01% の1種類以上を含有することを特徴とする、請求項1又
は2記載の溶接部の靭性に優れた高エネルギー密度溶接
用耐サワー鋼材。
3. The composition according to claim 1, further comprising at least one of REM: 0.0005 to 0.01% and Zr: 0.0005 to 0.01% in mass%. Sour-resistant steel for high energy density welding with excellent toughness at the weld.
【請求項4】 更に、質量%で Cu:0.05〜1.0% Ni:0.05〜1.0% Cr:0.05〜1.0% Mo:0.05〜0.5% B :0.0003〜0.003% の1種類以上を含有することを特徴とする、請求項1乃
至3のいずれかに記載の溶接部の靭性に優れた高エネル
ギー密度溶接用耐サワー鋼材。
4. Further, in mass%, Cu: 0.05 to 1.0%, Ni: 0.05 to 1.0%, Cr: 0.05 to 1.0%, Mo: 0.05 to 0.5%. B: 0.0003 to 0.003% of one or more kinds are contained, The sour resistance steel material for high energy density welding excellent in toughness of the welded part according to any one of claims 1 to 3.
【請求項5】 更に、質量%で Mg:0.0001〜0.005% を含有することを特徴とする、請求項1乃至4のいずれ
かに記載の溶接部の靭性に優れた高エネルギー密度溶接
用耐サワー鋼材。
5. A high energy density excellent in toughness of a welded portion according to claim 1, further containing Mg: 0.0001 to 0.005% by mass%. Sour resistant steel for welding.
【請求項6】 面積率で50%以上のベイナイト組織か
ら構成されることを特徴とする、請求項1乃至5のいず
れかに記載の溶接部の靭性に優れた高エネルギー密度溶
接用耐サワー鋼材。
6. A sour-resistant steel material for high energy density welding having excellent toughness of a welded portion according to claim 1, characterized in that it is composed of a bainite structure having an area ratio of 50% or more. .
【請求項7】 質量%で C :0.01〜0.08% Si:0.5%以下 Mn:1.0〜1.6% P :0.015%以下 S :0.001%以下 Al:0.001〜0.05% Ti:0.005〜0.03% Ca:0.0005〜0.005% N :0.001〜0.008% O :0.001〜0.004% を含有し、残部が鉄および可避的不純物からなる化学成
分を有した母材であり、高エネルギー密度溶接を施した
溶接部におけるマルテンサイト−オーステナイト混合相
(MA:Martensite- Austenite constituent)の面積
率が2%以下であることを特徴とする、溶接部の靭性に
優れた耐サワー鋼構造物。
7. Mass% C: 0.01 to 0.08% Si: 0.5% or less Mn: 1.0 to 1.6% P: 0.015% or less S: 0.001% or less Al : 0.001 to 0.05% Ti: 0.005 to 0.03% Ca: 0.0005 to 0.005% N: 0.001 to 0.008% O: 0.001 to 0.004% Area ratio of martensite-austenite mixed phase (MA: Martensite-Austenite constituent) in a welded part that contains a chemical component consisting of iron and unavoidable impurities and the balance is high energy density welding. Is 2% or less, a sour resistant steel structure excellent in toughness of a welded portion.
【請求項8】 母材の化学成分が更に、質量%で Nb:0.005〜0.10% V :0.005〜0.10% の1種類以上を含有することを特徴とする、請求項7記
載の溶接部の靭性に優れた耐サワー鋼構造物。
8. The chemical composition of the base material is characterized by further containing, in mass%, one or more of Nb: 0.005 to 0.10% V: 0.005 to 0.10%. Item 7. A sour-resistant steel structure excellent in toughness of the welded part.
【請求項9】 母材の化学成分が更に、質量%で REM:0.0005〜0.01% Zr:0.0005〜0.01% の1種類以上を含有することを特徴とする、請求項7又
は8記載の溶接部の靭性に優れた耐サワー鋼構造物。
9. The chemical composition of the base material further contains one or more kinds of REM: 0.0005 to 0.01% and Zr: 0.0005 to 0.01% in mass%. Item 7. A sour-resistant steel structure excellent in toughness of a welded part according to item 7 or 8.
【請求項10】 母材の化学成分が更に、質量%で Cu:0.05〜1.0% Ni:0.05〜1.0% Cr:0.05〜1.0% Mo:0.05〜0.5% B :0.0003〜0.003% の1種類以上を含有することを特徴とする、請求項7乃
至9のいずれかに記載の溶接部の靭性に優れた耐サワー
鋼構造物。
10. The chemical composition of the base material further comprises, in mass%, Cu: 0.05 to 1.0% Ni: 0.05 to 1.0% Cr: 0.05 to 1.0% Mo: 0. 05-0.5% B: 0.0003-0.003% of one or more kinds are contained, The sour resistance steel excellent in toughness of the welded part according to any one of claims 7 to 9. Structure.
【請求項11】 母材の化学成分が更に、質量%で Mg:0.0001〜0.005% を含有することを特徴とする、請求項7乃至10のいず
れかに記載の溶接部の靭性に優れた耐サワー鋼構造物。
11. The toughness of the welded portion according to claim 7, wherein the chemical composition of the base material further contains Mg: 0.0001 to 0.005% by mass%. Excellent sour resistance steel structure.
【請求項12】 溶接部における0.5〜10μmの介
在物の平均組成が5質量%以上のREMあるいは/及び
Zrを含有することを特徴とする、請求項7乃至11の
いずれかに記載の溶接部の靭性に優れた耐サワー鋼構造
物。
12. The welded portion according to claim 7, wherein the average composition of inclusions of 0.5 to 10 μm contains 5% by mass or more of REM and / or Zr. Sour-resistant steel structure with excellent toughness at the weld.
【請求項13】 母材が面積率で50%以上のベイナイ
ト組織から構成されることを特徴とする、請求項7乃至
12のいずれかに記載の溶接部の靭性に優れた耐サワー
鋼構造物。
13. A sour-resistant steel structure excellent in toughness of a welded portion according to claim 7, wherein the base material is composed of a bainite structure having an area ratio of 50% or more. .
JP2002106611A 2002-04-09 2002-04-09 Sour-resistant steel and steel structures for high energy density welding Expired - Fee Related JP4116810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002106611A JP4116810B2 (en) 2002-04-09 2002-04-09 Sour-resistant steel and steel structures for high energy density welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002106611A JP4116810B2 (en) 2002-04-09 2002-04-09 Sour-resistant steel and steel structures for high energy density welding

Publications (2)

Publication Number Publication Date
JP2003293079A true JP2003293079A (en) 2003-10-15
JP4116810B2 JP4116810B2 (en) 2008-07-09

Family

ID=29243198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002106611A Expired - Fee Related JP4116810B2 (en) 2002-04-09 2002-04-09 Sour-resistant steel and steel structures for high energy density welding

Country Status (1)

Country Link
JP (1) JP4116810B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247005A (en) * 2006-03-16 2007-09-27 Kobe Steel Ltd Steel having excellent toughness of weld heat-affected zone and excellent base metal toughness and method for manufacturing the same
JP2012036462A (en) * 2010-08-09 2012-02-23 Nippon Steel Corp Steel material excelling in hydrogen-induced cracking resistance
WO2012070358A1 (en) * 2010-11-22 2012-05-31 新日本製鐵株式会社 Electron beam welded joint, steel material for electron beam welding, and manufacturing method thereof
EP2594657A1 (en) * 2010-11-22 2013-05-22 Nippon Steel & Sumitomo Metal Corporation Electron beam welded joint, steel material for use in electron beam welded joint, and manufacturing method thereof
EP2644731A1 (en) * 2010-11-22 2013-10-02 Nippon Steel & Sumitomo Metal Corporation Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
EP2644735A1 (en) * 2010-11-22 2013-10-02 Nippon Steel & Sumitomo Metal Corporation Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
EP2644733A1 (en) * 2010-11-22 2013-10-02 Nippon Steel & Sumitomo Metal Corporation Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
EP2644732A1 (en) * 2010-11-22 2013-10-02 Nippon Steel & Sumitomo Metal Corporation Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
US10500817B2 (en) 2010-04-30 2019-12-10 Nippon Steel Corporation Electron-beam welded joint, steel for electron-beam welding, and method of manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270333A (en) * 1985-05-23 1986-11-29 Sumitomo Metal Ind Ltd Production of high tensile steel having excellent cod characteristic in weld zone
JPH0885841A (en) * 1994-09-20 1996-04-02 Nippon Steel Corp Steel plate for line pipe, having high strength and sour resistance and excellent in toughness at low temperature
JPH0941083A (en) * 1995-07-28 1997-02-10 Nkk Corp Resistance welded tube excellent in hic resistance and sscc resistance and its production
JP2000060894A (en) * 1998-08-25 2000-02-29 Nidek Co Ltd Laser therapy instrument
JP2000226633A (en) * 1999-02-04 2000-08-15 Nkk Corp Steel for electron beam welding excellent in toughness
JP2001207242A (en) * 2000-01-27 2001-07-31 Nippon Steel Corp Thick-walled sour-resisting steel tube excellent in toughness at low temperature in circumferential weld zone, and pipeline

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61270333A (en) * 1985-05-23 1986-11-29 Sumitomo Metal Ind Ltd Production of high tensile steel having excellent cod characteristic in weld zone
JPH0885841A (en) * 1994-09-20 1996-04-02 Nippon Steel Corp Steel plate for line pipe, having high strength and sour resistance and excellent in toughness at low temperature
JPH0941083A (en) * 1995-07-28 1997-02-10 Nkk Corp Resistance welded tube excellent in hic resistance and sscc resistance and its production
JP2000060894A (en) * 1998-08-25 2000-02-29 Nidek Co Ltd Laser therapy instrument
JP2000226633A (en) * 1999-02-04 2000-08-15 Nkk Corp Steel for electron beam welding excellent in toughness
JP2001207242A (en) * 2000-01-27 2001-07-31 Nippon Steel Corp Thick-walled sour-resisting steel tube excellent in toughness at low temperature in circumferential weld zone, and pipeline

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247005A (en) * 2006-03-16 2007-09-27 Kobe Steel Ltd Steel having excellent toughness of weld heat-affected zone and excellent base metal toughness and method for manufacturing the same
US10500817B2 (en) 2010-04-30 2019-12-10 Nippon Steel Corporation Electron-beam welded joint, steel for electron-beam welding, and method of manufacturing the same
JP2012036462A (en) * 2010-08-09 2012-02-23 Nippon Steel Corp Steel material excelling in hydrogen-induced cracking resistance
EP2644732A1 (en) * 2010-11-22 2013-10-02 Nippon Steel & Sumitomo Metal Corporation Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
EP2644732A4 (en) * 2010-11-22 2014-04-30 Nippon Steel & Sumitomo Metal Corp Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
CN103221564A (en) * 2010-11-22 2013-07-24 新日铁住金株式会社 Electron beam welded joint, steel material for electron beam welding, and manufacturing method thereof
EP2644730A1 (en) * 2010-11-22 2013-10-02 Nippon Steel & Sumitomo Metal Corporation Electron beam welded joint, steel material for electron beam welding, and manufacturing method thereof
EP2644731A1 (en) * 2010-11-22 2013-10-02 Nippon Steel & Sumitomo Metal Corporation Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
EP2644735A1 (en) * 2010-11-22 2013-10-02 Nippon Steel & Sumitomo Metal Corporation Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
EP2644733A1 (en) * 2010-11-22 2013-10-02 Nippon Steel & Sumitomo Metal Corporation Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
JP5135560B2 (en) * 2010-11-22 2013-02-06 新日鐵住金株式会社 Electron beam welding joint, steel for electron beam welding, and manufacturing method thereof
EP2594657A4 (en) * 2010-11-22 2014-04-23 Nippon Steel & Sumitomo Metal Corp Electron beam welded joint, steel material for use in electron beam welded joint, and manufacturing method thereof
EP2594657A1 (en) * 2010-11-22 2013-05-22 Nippon Steel & Sumitomo Metal Corporation Electron beam welded joint, steel material for use in electron beam welded joint, and manufacturing method thereof
EP2644733A4 (en) * 2010-11-22 2014-04-30 Nippon Steel & Sumitomo Metal Corp Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
EP2644730A4 (en) * 2010-11-22 2014-05-07 Nippon Steel & Sumitomo Metal Corp Electron beam welded joint, steel material for electron beam welding, and manufacturing method thereof
EP2644731A4 (en) * 2010-11-22 2014-05-07 Nippon Steel & Sumitomo Metal Corp Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
EP2644735A4 (en) * 2010-11-22 2014-05-07 Nippon Steel & Sumitomo Metal Corp Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
KR101423445B1 (en) * 2010-11-22 2014-07-24 신닛테츠스미킨 카부시키카이샤 Electron beam welded joint, steel material for electron beam welding, and manufacturing method thereof
KR101867111B1 (en) * 2010-11-22 2018-06-12 신닛테츠스미킨 카부시키카이샤 Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
WO2012070358A1 (en) * 2010-11-22 2012-05-31 新日本製鐵株式会社 Electron beam welded joint, steel material for electron beam welding, and manufacturing method thereof

Also Published As

Publication number Publication date
JP4116810B2 (en) 2008-07-09

Similar Documents

Publication Publication Date Title
KR101668546B1 (en) High strength steel plate having low yield ratio excellent in terms of strain ageing resistance, method for manufacturing the same and high strength welded steel pipe made of the same
KR101044161B1 (en) Low yield ratio, high strength, high toughness, thick steel plate and welded steel pipe
KR101846759B1 (en) Steel plate and method for manufacturing same
JP4976905B2 (en) Thick steel plate with excellent HAZ toughness and base metal toughness
JP2011094231A (en) Steel sheet having low yield ratio, high strength and high toughness, and method for manufacturing the same
KR20210091755A (en) Hot rolled steel strip and manufacturing method thereof
JP4976906B2 (en) Thick steel plate with excellent HAZ toughness, base material toughness, elongation, and strength-elongation balance
JP2008163446A (en) Steel member for high heat input welding
JP5842314B2 (en) High heat input welding steel
KR20170130484A (en) Steel plate for structural pipe, method for producing steel plate for structural pipe, and structural pipe
JP5796636B2 (en) Steel material for large heat input welding
JP2003293079A (en) Sour resistant steel for high energy density welding and steel structure
JP4412098B2 (en) Low yield ratio high strength steel sheet with excellent weld heat affected zone toughness and method for producing the same
JP4276576B2 (en) Thick high-strength steel sheet with excellent heat input and heat-affected zone toughness
JP3854543B2 (en) Steel and structures with excellent weld toughness
JP2013095999A (en) Steel material having excellent toughness in weld heat-affected zone, welded joint, and method for producing the welded joint
JP2004068055A (en) High strength welded steel pipe having excellent weld zone toughness and method for producing the same
JP3898842B2 (en) Steel sheet with excellent low temperature toughness in the heat affected zone
JP7200588B2 (en) ERW steel pipe for oil well and manufacturing method thereof
JP2005336602A (en) STEEL MATERIAL USED FOR HIGH HEAT INPUT WELDING BY HEAT INPUT OF 20 TO 100 kJ/mm AND HAVING HIGH TOUGHNESS AT HAZ
JP2005272854A (en) Method for producing high-tensile steel excellent in refractoriness and toughness in welded heat affected part
JP2003301236A (en) High-strength steel material showing excellent resistance to hydrogen-induced cracking (hic)
WO2013128650A1 (en) Steel material for high-heat-input welding
JP6447253B2 (en) High strength steel for welding
JP4332064B2 (en) High HAZ toughness steel for high heat input welding with heat input of 20-100 kJ / mm

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees