JP2007247005A - Steel having excellent toughness of weld heat-affected zone and excellent base metal toughness and method for manufacturing the same - Google Patents

Steel having excellent toughness of weld heat-affected zone and excellent base metal toughness and method for manufacturing the same Download PDF

Info

Publication number
JP2007247005A
JP2007247005A JP2006073304A JP2006073304A JP2007247005A JP 2007247005 A JP2007247005 A JP 2007247005A JP 2006073304 A JP2006073304 A JP 2006073304A JP 2006073304 A JP2006073304 A JP 2006073304A JP 2007247005 A JP2007247005 A JP 2007247005A
Authority
JP
Japan
Prior art keywords
less
toughness
steel material
steel
rem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006073304A
Other languages
Japanese (ja)
Other versions
JP4950529B2 (en
Inventor
Manabu Izumi
学 泉
Tetsushi Deura
哲史 出浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006073304A priority Critical patent/JP4950529B2/en
Priority to CN200710084708XA priority patent/CN101037757B/en
Priority to KR1020070025616A priority patent/KR100899053B1/en
Publication of JP2007247005A publication Critical patent/JP2007247005A/en
Application granted granted Critical
Publication of JP4950529B2 publication Critical patent/JP4950529B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide steel having excellent toughness of a weld heat-affected zone and excellent base metal toughness and a method for manufacturing the same. <P>SOLUTION: The steel having the excellent toughness of the weld heat-affected zone and the excellent base metal toughness is the steel containing 0.03 to 0.12% C (signifying mass% and hereinafter the same), ≤0.5% (not inclusive of 0%) Si, 1.4 to 1.8% Mn, and 0.003% to 0.01% N, and satisfies ≤0.02% (not inclusive of 0%) P, ≤0.015% (not inclusive of 0%) S, and ≤0.01% (not inclusive of 0%) Al, contains 0.001 to 0.1% REM and/or 0.003 to 0.02% Ca, and 0.001 to 0.05% Zr, respectively, and the balance iron and inevitable impurities. When the composition of the entire oxide included in the steel is measured, the steel contains the oxide of the REM and/or CaO and ZrO<SB>2</SB>, and the molar fraction of the island-shaped martensite occupying in the entire structure is ≤1.1% and the balance bainite structure. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、橋梁や高層建造物、船舶などに使用される鋼材を溶接するにあたり、熱影響を受ける部位(以下、「溶接熱影響部」または「HAZ」ということがある)の靭性と、母材の靭性を改善した鋼材およびその製法に関するものである。   The present invention relates to the toughness of a part affected by heat (hereinafter, sometimes referred to as “welding heat affected zone” or “HAZ”) when welding steel materials used for bridges, high-rise buildings, ships, and the like, The present invention relates to a steel material with improved toughness of the material and a manufacturing method thereof.

橋梁や高層建造物、船舶などに使用される鋼材に要求される特性は、近年益々厳しくなっており、とりわけ良好な靭性が求められている。これらの鋼材は、一般的に溶接にて接合されることが多いが、特にHAZは溶接時に熱影響を受けて靭性が劣化しやすいという問題がある。この靭性劣化は溶接時の入熱量が大きくなるほど顕著に現れ、その原因は溶接時の入熱量が大きくなるとHAZの冷却速度が遅くなり、焼入性が低下して粗大な島状マルテンサイトが生成することにあると考えられている。従ってHAZの靭性を改善するには、溶接時の入熱量を極力抑えればよいと考えられるが、溶接作業効率を高める上では、例えばエレクトロガス溶接、エレクトロスラグ溶接、サブマージ溶接などの溶接入熱量が40kJ/mm以上の大入熱溶接法の採用が望まれる。   The properties required for steel materials used in bridges, high-rise buildings, ships and the like have become increasingly severe in recent years, and particularly good toughness is required. In general, these steel materials are often joined by welding. In particular, HAZ has a problem that the toughness is easily deteriorated due to thermal influence during welding. This deterioration in toughness becomes more noticeable as the heat input during welding increases, and the cause is that the larger the heat input during welding, the slower the cooling rate of the HAZ, the lower the hardenability and the formation of coarse island martensite. It is thought that there is to do. Therefore, in order to improve the toughness of HAZ, it is considered that the heat input during welding should be suppressed as much as possible. However, in order to increase the welding work efficiency, for example, the heat input of welding such as electrogas welding, electroslag welding, submerged welding, etc. It is desired to adopt a high heat input welding method of 40 kJ / mm or more.

大入熱溶接法を採用した場合のHAZ靭性劣化を抑制する鋼材は、既にいくつか提案されている。例えば特許文献1には、鋼材中に微細なTiNを分散再析出させることで、大入熱溶接を行なったときのHAZで生じるオーステナイト粒の粗大化を抑制し、HAZ靭性の劣化を抑えた鋼材が提案されている。しかし本発明者らが検討したところ、溶接金属が1400℃以上の高温になると、HAZのうち特に溶接金属に近接した部位(ボンド部)において、溶接時に受ける熱により上記TiNが固溶消失してしまい、HAZ靭性の劣化を十分に抑えることができないことが分かった。   Several steel materials that suppress the HAZ toughness deterioration when the high heat input welding method is adopted have already been proposed. For example, Patent Document 1 discloses a steel material in which fine TiN is dispersed and reprecipitated in the steel material to suppress coarsening of austenite grains generated in the HAZ when high heat input welding is performed, and deterioration in HAZ toughness is suppressed. Has been proposed. However, as a result of investigations by the present inventors, when the weld metal becomes a high temperature of 1400 ° C. or higher, the TiN is dissolved in the HAZ by the heat received during welding, particularly in a portion (bond portion) close to the weld metal. Therefore, it has been found that the deterioration of the HAZ toughness cannot be sufficiently suppressed.

また特許文献2には、母材とHAZの靭性を向上させる技術として、鋼材に含まれる酸化物と窒化物の存在形態を制御することが開示されている。この文献には、TiとZrを組み合わせて使用することにより、微細な酸化物と窒化物を生成させて母材とHAZの靭性を向上させること、また、こうした微細な酸化物と窒化物を生成させるには、製造工程においてTi、Zrの順に添加すればよいことが開示されている。しかし本発明者らが検討したところ、HAZの靭性を更に高めるには酸化物量を増やせばよいが、上記特許文献2の技術において、酸化物量を増加させるためにTiやZrを多量に添加すると、TiやZrなどの炭化物が形成され、鋼材(母材)の靭性が却って低下することが分かった。   Patent Document 2 discloses controlling the form of oxides and nitrides contained in steel as a technique for improving the toughness of the base material and the HAZ. In this document, Ti and Zr are used in combination to produce fine oxides and nitrides to improve the toughness of the matrix and HAZ, and to produce such fine oxides and nitrides. It is disclosed that Ti and Zr may be added in this order in the manufacturing process. However, as a result of investigations by the present inventors, it is only necessary to increase the amount of oxide in order to further increase the toughness of HAZ. However, in the technique of Patent Document 2 described above, if a large amount of Ti or Zr is added to increase the amount of oxide, It turned out that carbide | carbonized_materials, such as Ti and Zr, are formed and the toughness of steel materials (base material) falls on the contrary.

ところで本発明者らは、溶接時に高温の熱影響を受けた場合でもHAZの靭性が劣化しない鋼材を特許文献3に先に提案している。この鋼材は、La23−SiO2系酸化物やCe23−SiO2系酸化物、La23−Ce23−SiO2系酸化物などの複合酸化物を鋼材中に分散させたものであり、この複合酸化物は、溶鋼中では液状で存在するため鋼中に微細分散し、しかも溶接時には熱影響を受けても固溶消失しないため、HAZの靭性向上に寄与する。上記特許文献3には、上記複合酸化物を生成させるため、溶存酸素量を調整した溶鋼へLaやCeを添加し、次いでSiを添加すればよいことも開示している。また特許文献3には、鋼材にTiを含有させて鋼材組織中にTiNを析出させることにより、HAZの靭性が更に高められること、またこうしたTiNを生成させるには、上記複合酸化物が生成した溶鋼へTiを添加すればよいことも開示している。 By the way, the present inventors have previously proposed a steel material in which the HAZ toughness does not deteriorate even when subjected to high-temperature heat effects during welding. This steel material is composed of complex oxides such as La 2 O 3 —SiO 2 oxide, Ce 2 O 3 —SiO 2 oxide, and La 2 O 3 —Ce 2 O 3 —SiO 2 oxide in the steel material. This composite oxide is in a liquid state in molten steel, so it is finely dispersed in the steel, and it does not disappear in solid solution even if it is affected by heat at the time of welding. This contributes to improving the toughness of HAZ. . Patent Document 3 discloses that in order to generate the composite oxide, La and Ce are added to the molten steel whose dissolved oxygen content is adjusted, and then Si is added. Further, Patent Document 3 describes that the toughness of HAZ can be further enhanced by adding Ti to the steel material and precipitating TiN in the steel material structure, and in order to generate such TiN, the composite oxide is generated. It is also disclosed that Ti may be added to the molten steel.

ところで、鋼板自体の靭性として、特に低温(−40℃)靭性により優れていることも要求されるが、上記技術では、HAZ靭性の改善については取り組まれているものの、優れた母材靭性も併せて具備させることについては検討されていない。従って、溶接熱影響部の靭性と母材靭性に優れた鋼材の実現が切望されている。
特公昭55−26164号公報(特許請求の範囲、第3頁等参照) 特開2003−213366号公報(特許請求の範囲、段落0007、段落0008、段落0018、段落0023等参照) 特開2005−48265号公報(特許請求の範囲、段落0013、段落0052、段落0056等参照)
By the way, as the toughness of the steel sheet itself, it is required to be particularly excellent in low temperature (−40 ° C.) toughness. However, although the above technique has been addressed to improve the HAZ toughness, the excellent base metal toughness is also included. It has not been studied to make it available. Therefore, realization of a steel material excellent in the toughness of the heat affected zone and the base material toughness is desired.
Japanese Patent Publication No. 55-26164 (refer to claims, page 3, etc.) JP 2003-213366 A (refer to claims, paragraph 0007, paragraph 0008, paragraph 0018, paragraph 0023, etc.) JP 2005-48265 A (see claims, paragraph 0013, paragraph 0052, paragraph 0056, etc.)

本発明は上記事情に鑑みてなされたものであって、その目的は、特に入熱量が40kJ/mm以上の溶接を行った場合のHAZ靭性に優れると共に、母材靭性にも優れた鋼材、およびその製法を提供することにある。   The present invention has been made in view of the above circumstances, and the purpose thereof is a steel material that is excellent in HAZ toughness especially when welding with a heat input of 40 kJ / mm or more, and excellent in base material toughness, and It is to provide the manufacturing method.

即ち、上記課題を解決することのできた本発明に係る鋼材とは、
C:0.03〜0.12%(「質量%」の意味。以下同じ)、
Si:0.5%以下(0%を含まない)、
Mn:1.4〜1.8%、および
N :0.003〜0.01%を含み、
P :0.02%以下(0%を含まない)、
S :0.015%以下(0%を含まない)、および
Al:0.01%以下(0%を含まない)を満足し、
REM:0.001〜0.1%および/またはCa:0.0003〜0.02%と、
Zr:0.001〜0.05%を夫々含有し、
残部が鉄および不可避的不純物からなる鋼材であって、
該鋼材に含まれる全酸化物の組成を測定したときに、REMの酸化物および/またはCaOと、ZrO2を含有し、且つ
全組織に占める島状マルテンサイトの分率が1.1%以下で残部がベイナイト組織である点に要旨を有する。
That is, the steel material according to the present invention that has solved the above problems is
C: 0.03 to 0.12% (meaning “mass%”; the same shall apply hereinafter)
Si: 0.5% or less (excluding 0%),
Mn: 1.4-1.8%, and N: 0.003-0.01%,
P: 0.02% or less (excluding 0%),
S: 0.015% or less (not including 0%) and Al: 0.01% or less (not including 0%),
REM: 0.001-0.1% and / or Ca: 0.0003-0.02%,
Zr: 0.001 to 0.05% each contained,
The balance is steel consisting of iron and inevitable impurities,
When the composition of all oxides contained in the steel material was measured, the fraction of island-like martensite containing REM oxide and / or CaO and ZrO 2 and occupying the entire structure was 1.1% or less. And the gist is that the balance is a bainite structure.

前記鋼材は、該鋼材に含まれる全酸化物の組成を測定したときに、REMの酸化物および/またはCaOの合計が5%以上で、且つZrO2が5%以上を満足することが好ましい。 The steel material preferably satisfies a total of REM oxide and / or CaO of 5% or more and ZrO 2 of 5% or more when the composition of all oxides contained in the steel material is measured.

前記鋼材は、更に他の元素として、Ti:0.08%以下(0%を含まない)を含むと共に、前記鋼材に含まれる全酸化物の組成を測定したときに、Tiを含有することが好ましい。Tiを含むことによって溶接熱影響部の靭性を一層向上させることができるからである。上記の通り鋼材がTiを含む場合には、全酸化物の組成を測定したときに、Tiが0.3%以上であることが好ましい。 The steel material further contains Ti: 0.08% or less (not including 0%) as another element, and contains Ti 2 O 3 when the composition of all oxides contained in the steel material is measured. It is preferable to do. It is because the toughness of the weld heat affected zone can be further improved by including Ti. As described above, when the steel material contains Ti, it is preferable that Ti 2 O 3 is 0.3% or more when the composition of all oxides is measured.

前記鋼材は、更に他の元素として、
Cu:2%以下(0%を含まない)、
Ni:3.5%以下(0%を含まない)、
Cr:3%以下(0%を含まない)、
Mo:1%以下(0%を含まない)、
Nb:0.25%以下(0%を含まない)、
V :0.1%以下(0%を含まない)、および
B :0.005%以下(0%を含まない)
よりなる群から選ばれる1種以上の元素を含むものが好ましく、こうした元素を含有することで母材の強度を高めることができる。
The steel material, as another element,
Cu: 2% or less (excluding 0%),
Ni: 3.5% or less (excluding 0%),
Cr: 3% or less (excluding 0%),
Mo: 1% or less (excluding 0%),
Nb: 0.25% or less (excluding 0%),
V: 0.1% or less (not including 0%), and B: 0.005% or less (not including 0%)
Those containing one or more elements selected from the group consisting of these elements are preferred, and the strength of the base material can be increased by containing these elements.

本発明に係る鋼材は、例えば溶存酸素量を0.0020〜0.010%の範囲に調整した溶鋼へ、REMおよびCaよりなる群から選ばれる少なくとも1種の元素とZrを添加すれば製造できる。上記鋼材が特にTiを含む場合には、溶存酸素量を0.0020〜0.010%の範囲に調整した溶鋼へ、REMおよびCaよりなる群から選ばれる少なくとも1種の元素と、TiとZrを添加することが好ましい。この場合には、上記溶存酸素量を調整した溶鋼へ、REMおよびCaよりなる群から選ばれる少なくとも1種の元素とZrを添加するに先立って、Tiを添加することが好ましい。   The steel material according to the present invention can be manufactured, for example, by adding at least one element selected from the group consisting of REM and Ca and Zr to molten steel whose dissolved oxygen content is adjusted to a range of 0.0020 to 0.010%. . When the steel material contains Ti in particular, at least one element selected from the group consisting of REM and Ca, Ti, and Zr to a molten steel whose dissolved oxygen content is adjusted to a range of 0.0020 to 0.010%. Is preferably added. In this case, it is preferable to add Ti prior to adding at least one element selected from the group consisting of REM and Ca and Zr to the molten steel in which the amount of dissolved oxygen is adjusted.

本発明によれば、大入熱溶接において1400℃レベルの高温に達しても鋼材中に固溶消失しない組成の酸化物を、鋼材中に分散させるため、小〜中入熱溶接に限らず大入熱溶接においても、溶接熱影響部(HAZ)の靭性劣化を防止することができる。また、島状マルテンサイトの分率が制御された組織とすることで、上記HAZ靭性を損ねることなく、母財靭性にも優れた鋼材が得られる。   According to the present invention, in order to disperse, in the steel material, an oxide having a composition that does not dissolve in the steel material even when reaching a high temperature of 1400 ° C. in the high heat input welding, it is not limited to small to medium heat input welding. Even in heat input welding, it is possible to prevent toughness deterioration of the weld heat affected zone (HAZ). Moreover, by setting it as the structure | tissue where the fraction of the island-like martensite was controlled, the steel material excellent also in the mother property toughness is obtained, without impairing the said HAZ toughness.

本発明者らは、まず、HAZの靭性を高めるべく、上記特許文献3とは異なる組成の酸化物を鋼材中に分散させることによってHAZ靭性の向上を達成できないかについて検討を重ねた。その結果、REMおよび/またはCaと、Zrを鋼材に複合添加し、該鋼材に含まれる全酸化物の組成を測定したときに、REMの酸化物および/またはCaOと、ZrO2が含有するように調整すれば、溶接熱影響部の靭性を高めることができること、またこうした成分系に更にTiを複合添加することによって、前記鋼材に含まれる全酸化物の組成を測定したときに、Tiを含有するように調整すれば、溶接熱影響部の靭性が一層向上することを見出した。更に、上記酸化物によるHAZ靭性の向上を阻害させることなく母材靭性を高めるには、島状マルテンサイトの分率を制御した組織とすればよいことを見出し、本発明を完成した。以下、上記本発明について詳述する。 The present inventors first studied whether or not improvement in HAZ toughness could be achieved by dispersing an oxide having a composition different from that of Patent Document 3 in the steel material in order to increase the toughness of HAZ. As a result, when REM and / or Ca and Zr are combined and added to the steel material and the composition of all oxides contained in the steel material is measured, the REM oxide and / or CaO and ZrO 2 may be contained. If adjusted to, the toughness of the weld heat affected zone can be increased, and when the composition of all oxides contained in the steel material is measured by further adding Ti to such a component system, Ti 2 O It has been found that the toughness of the weld heat-affected zone can be further improved by adjusting to contain 3 . Furthermore, the present inventors have found that in order to increase the base metal toughness without hindering the improvement of the HAZ toughness due to the oxide, it is sufficient to use a structure in which the fraction of island martensite is controlled. Hereinafter, the present invention will be described in detail.

まず、本発明の鋼材は、該鋼材に含まれる全酸化物の組成を測定したときに、REMの酸化物および/またはCaOと、ZrO2を含有するものである。この様に、REMの酸化物および/またはCaOと、ZrO2が含まれるようにすれば、溶接時に熱影響を受けて1400℃レベルの高温になっても上記酸化物は固溶消失しないため、溶接時のHAZにおいてオーステナイト粒の粗大化を防止することができ、その結果として、REMやCa、Zrを夫々単独添加して酸化物を形成する場合よりもHAZの靭性をより改善することができる。 First, the steel material of the present invention contains REM oxide and / or CaO and ZrO 2 when the composition of all oxides contained in the steel material is measured. As described above, if the oxide of REM and / or CaO and ZrO 2 are included, the oxide does not disappear in a solid solution even at a high temperature of 1400 ° C. due to the thermal influence during welding. It is possible to prevent coarsening of austenite grains in the HAZ at the time of welding, and as a result, it is possible to further improve the toughness of the HAZ as compared with the case where an oxide is formed by adding REM, Ca, or Zr individually. .

しかも上記酸化物あるいは複合酸化物を組み合わせて鋼材中に含有させれば、鋼材中に含まれる全酸化物の絶対量を増大させることができ、鋼材(母材)の靭性劣化の原因となるREMの硫化物やCaの硫化物、或いはZr炭化物の生成を防止でき、結果として母材の靭性劣化を抑えつつHAZの靭性を向上させることができる。   Moreover, if the oxides or composite oxides are combined and contained in the steel material, the absolute amount of all oxides contained in the steel material can be increased, and REM that causes toughness deterioration of the steel material (base material). As a result, the HAZ toughness can be improved while suppressing the deterioration of the toughness of the base metal.

本発明の鋼材は、(a)REMの酸化物および/またはCaOと、ZrO2を含有するか、あるいは(b)REMおよび/またはCaと、Zrを含む複合酸化物を含有するか、(c)REMの酸化物および/またはCaOと、ZrO2を含有すると共に、REMおよび/またはCaと、Zrを含む複合酸化物を含有するものであればよい。REMおよび/またはCaと、Zrを含む複合酸化物とは、例えばREMとZrを含む複合酸化物、CaとZrを含む複合酸化物、REMとCaとZrを含む複合酸化物などが挙げられる。 The steel material of the present invention contains (a) an oxide of REM and / or CaO and ZrO 2 , or (b) a composite oxide containing REM and / or Ca and Zr, or (c ) Any oxide containing REM and / or CaO and ZrO 2 and any composite oxide containing REM and / or Ca and Zr may be used. Examples of the composite oxide containing REM and / or Ca and Zr include a composite oxide containing REM and Zr, a composite oxide containing Ca and Zr, and a composite oxide containing REM, Ca, and Zr.

本発明の鋼材は、上述した酸化物の他に、更にTi酸化物を含有することが好ましい。即ち、前記鋼材に含まれる全酸化物の組成を測定したときに、Tiを含有するものであればよい。Ti酸化物を含有することで、鋼材中に分散する酸化物量を更に増大させることができるため、HAZの靭性を一層向上させることができる。 The steel material of the present invention preferably further contains a Ti oxide in addition to the oxides described above. That is, when measuring the composition of the total oxides contained in the steel, as long as it contains the Ti 2 O 3. By containing the Ti oxide, the amount of oxide dispersed in the steel material can be further increased, so that the toughness of the HAZ can be further improved.

上記Ti酸化物は、鋼材中に単独酸化物(Ti)として含有していてもよいし、例えば上記複合酸化物(即ち、REMとZrを含む複合酸化物、CaとZrを含む複合酸化物、REMとCaとZrを含む複合酸化物)に包含されて複合酸化物として含有していてもよい。 The Ti oxide may be contained in the steel material as a single oxide (Ti 2 O 3 ), for example, the composite oxide (that is, a composite oxide containing REM and Zr, a composite containing Ca and Zr). Oxides, composite oxides containing REM, Ca, and Zr) may be included as composite oxides.

上記鋼材は、該鋼材に含まれる全酸化物の組成を測定したときに、全酸化物に占めるREMの酸化物および/またはCaOの合計が5%以上で、且つ全酸化物に占めるZrO2が5%以上を満足することが好ましい。その理由は、HAZの靭性向上に寄与する酸化物量を確保するためである。REMの酸化物および/またはCaOの合計は10%以上であることが好ましく、より好ましくは15%以上、更に好ましくは20%以上である。一方、ZrO2は10%以上であることが好ましく、より好ましくは15%以上、更に好ましくは20%以上である。 When the composition of the total oxide contained in the steel material is measured, the total amount of REM oxide and / or CaO in the total oxide is 5% or more, and ZrO 2 in the total oxide is ZrO 2 in the total oxide. It is preferable to satisfy 5% or more. The reason is to ensure the amount of oxide that contributes to the improvement of HAZ toughness. The total of REM oxides and / or CaO is preferably 10% or more, more preferably 15% or more, and still more preferably 20% or more. On the other hand, ZrO 2 is preferably 10% or more, more preferably 15% or more, and further preferably 20% or more.

上記鋼材がTi酸化物を含有する場合は、該鋼材に含まれる全酸化物の組成を測定したときにTiが0.3%以上を満足することが好ましい。より好ましくは1%以上、更に好ましくは3%以上、特に好ましくは5%以上、最も好ましくは10%以上である。 When the steel material contains Ti oxide, it is preferable that Ti 2 O 3 satisfies 0.3% or more when the composition of all oxides contained in the steel material is measured. More preferably, it is 1% or more, more preferably 3% or more, particularly preferably 5% or more, and most preferably 10% or more.

本発明の鋼材は、該鋼材に含まれる全酸化物の組成を測定したときに、REMの酸化物および/またはCaOと、ZrO2およびTiの合計が55%以上であることが好ましい。これらの酸化物の合計が55%未満では、HAZの靭性向上に寄与する酸化物量が不足し、HAZの靭性を充分に改善できないからである。より好ましくは60%以上、更に好ましくは65%以上である。 The steel material of the present invention preferably has a total of 55% or more of the oxide of REM and / or CaO, and ZrO 2 and Ti 2 O 3 when the composition of all oxides contained in the steel material is measured. . This is because if the total of these oxides is less than 55%, the amount of oxide that contributes to improving the toughness of the HAZ is insufficient, and the toughness of the HAZ cannot be sufficiently improved. More preferably, it is 60% or more, More preferably, it is 65% or more.

なお、全酸化物の組成の残りの成分は特に限定されないが、例えばSiO2やAl23、MnOであればよい。SiO2やAl23、MnO以外の「その他」の成分は5%未満に抑えることが好ましい。 The remaining components of the total oxide composition are not particularly limited, but may be, for example, SiO 2 , Al 2 O 3 , or MnO. It is preferable to keep the “other” components other than SiO 2 , Al 2 O 3 and MnO to less than 5%.

鋼材に含まれる酸化物の組成は、鋼材の断面を例えばEPMA(Electron Probe X-ray Micro Analyzer;電子線マイクロプローブX線分析計)で観察し、観察視野内に認められる介在物を定量分析すれば測定できる。EPMAの観察は、例えば加速電圧を20kV,試料電流を0.01μA,観察視野面積を1〜5cm2とし、介在物の中央部での組成を特性X線の波長分散分光により定量分析する。 The composition of the oxide contained in the steel material is determined by observing the cross section of the steel material with, for example, EPMA (Electron Probe X-ray Micro Analyzer) and quantitatively analyzing the inclusions observed in the observation field. Can be measured. In the observation of EPMA, for example, the acceleration voltage is 20 kV, the sample current is 0.01 μA, the observation visual field area is 1 to 5 cm 2, and the composition at the center of the inclusion is quantitatively analyzed by wavelength dispersion spectroscopy of characteristic X-rays.

分析対象とする介在物の大きさは、最大径が0.2μm以上のものとし、分析個数は少なくとも100個とする。   The size of inclusions to be analyzed is a maximum diameter of 0.2 μm or more, and the number of analyzes is at least 100.

分析対象元素は、Al,Mn,Si,Ti,Zr,Ca,La,CeおよびOとし、既知物質を用いて各元素のX線強度と元素濃度の関係を予め検量線として求めておき、分析対象とする介在物から得られたX線強度と前記検量線から分析対象とする介在物に含まれる元素濃度を定量し、酸素含量が5%以上の介在物を酸化物とする。但し、一つの介在物から複数の元素が観測された場合には、それらの元素の存在を示すX線強度の比から各元素の単独酸化物に換算して酸化物の組成を算出する。本発明の鋼材では、こうして個々の酸化物について得られた定量結果を平均したものを酸化物の平均組成とする。   The analysis target elements are Al, Mn, Si, Ti, Zr, Ca, La, Ce, and O. Using a known substance, the relationship between the X-ray intensity and the element concentration of each element is obtained in advance as a calibration curve. From the X-ray intensity obtained from the inclusions to be measured and the calibration curve, the element concentration contained in the inclusions to be analyzed is quantified, and inclusions having an oxygen content of 5% or more are defined as oxides. However, when a plurality of elements are observed from one inclusion, the composition of the oxide is calculated in terms of a single oxide of each element from the ratio of X-ray intensity indicating the presence of these elements. In the steel material of the present invention, the average of the quantitative results thus obtained for the individual oxides is taken as the average composition of the oxides.

次に、本発明の鋼材(母材)における成分組成について説明する。本発明の鋼材は、REM:0.001〜0.1%および/またはCa:0.0003〜0.02%と、Zr:0.001〜0.05%を含有するところに特徴がある。こうした範囲を定めた理由は以下の通りである。   Next, the component composition in the steel material (base material) of the present invention will be described. The steel material of the present invention is characterized in that it contains REM: 0.001 to 0.1% and / or Ca: 0.0003 to 0.02% and Zr: 0.001 to 0.05%. The reasons for setting these ranges are as follows.

REM、CaおよびZrは、鋼材中にREMの酸化物やCaO、ZrO2、或いは複合酸化物を形成してHAZの靭性向上に寄与する元素である。本発明の鋼材では、REMとCaは夫々単独で用いても併用してもよい。 REM, Ca, and Zr are elements that contribute to improving the toughness of HAZ by forming REM oxide, CaO, ZrO 2 , or a composite oxide in the steel material. In the steel material of the present invention, REM and Ca may be used alone or in combination.

REMを含有させる場合は、0.001%以上とすべきであり、好ましくは0.006%以上、より好ましくは0.010%以上である。しかし過剰に添加すると、REMの硫化物が生成して母材の靭性が劣化するため、0.1%以下に抑えるべきである。好ましくは0.09%以下であり、より好ましくは0.08%以下とする。なお、本発明において、REMとは、ランタノイド元素(LaからLnまでの15元素)およびSc(スカンジウム)とY(イットリウム)を含む意味であり、これらの元素のなかでも、La、CeおよびYよりなる群から選ばれる少なくとも1種の元素を含有することが好ましく、より好ましくはLaおよび/またはCeを含有させるのがよい。   When REM is contained, it should be 0.001% or more, preferably 0.006% or more, more preferably 0.010% or more. However, if added excessively, sulfide of REM is generated and the toughness of the base material deteriorates, so it should be suppressed to 0.1% or less. Preferably it is 0.09% or less, More preferably, it is 0.08% or less. In the present invention, REM means a lanthanoid element (15 elements from La to Ln) and Sc (scandium) and Y (yttrium). Among these elements, La, Ce and Y It is preferable to contain at least one element selected from the group consisting of, and more preferably La and / or Ce.

Caを含有させる場合は、0.0003%以上とすべきであり、好ましくは0.0005%以上、より好ましくは0.0008%以上である。しかし過剰に添加すると、粗大なCaの硫化物が生成して母材の靭性が劣化するため、0.02%以下に抑えるべきである。好ましくは0.015%以下であり、より好ましくは0.01%以下とする。   When Ca is contained, it should be 0.0003% or more, preferably 0.0005% or more, more preferably 0.0008% or more. However, if excessively added, coarse Ca sulfide is generated and the toughness of the base material deteriorates, so it should be suppressed to 0.02% or less. Preferably it is 0.015% or less, More preferably, you may be 0.01% or less.

Zrは、0.001%以上含有させるべきであり、好ましくは0.003%以上、より好ましくは0.005%以上である。しかし過剰に添加すると、粗大なZrの炭化物が生成して母材の靭性が劣化するため、0.05%以下に抑えるべきである。好ましくは0.04%以下であり、より好ましくは0.03%以下とする。   Zr should be contained in an amount of 0.001% or more, preferably 0.003% or more, and more preferably 0.005% or more. However, if added excessively, coarse Zr carbide is generated and the toughness of the base material deteriorates, so it should be suppressed to 0.05% or less. Preferably it is 0.04% or less, More preferably, it is 0.03% or less.

本発明の鋼材は、REMおよび/またはCaと、Zrを含むほか、基本元素として、C:0.03〜0.12%、Si:0.5%以下(0%を含まない)、Mn:1.4〜1.8%、およびN:0.003〜0.01%を含むものである。このような範囲を定めた理由は以下の通りである。   In addition to containing REM and / or Ca and Zr, the steel material of the present invention includes C: 0.03 to 0.12%, Si: 0.5% or less (not including 0%), Mn: It includes 1.4 to 1.8% and N: 0.003 to 0.01%. The reason for setting such a range is as follows.

Cは、鋼材(母材)の強度を確保するために欠くことのできない元素であり、こうした効果を発揮させるには、0.03%以上含有させる必要がある。好ましくは0.04%以上であり、より好ましくは0.05%以上である。しかし0.2%を超えると、溶接時にHAZに島状マルテンサイトが多く生成してHAZの靭性劣化を招くばかりでなく、溶接性にも悪影響を及ぼす。従ってCは0.12%以下、好ましくは0.11%以下、より好ましくは0.10%以下に抑える必要がある。   C is an element indispensable for securing the strength of a steel material (base material), and in order to exert such effects, it is necessary to contain 0.03% or more. Preferably it is 0.04% or more, More preferably, it is 0.05% or more. However, if it exceeds 0.2%, a lot of island martensite is generated in the HAZ at the time of welding and not only causes deterioration of the toughness of the HAZ, but also adversely affects the weldability. Therefore, C must be suppressed to 0.12% or less, preferably 0.11% or less, more preferably 0.10% or less.

Siは、脱酸作用を有すると共に鋼材(母材)の強度向上に寄与する元素である。こうした効果を有効に発揮させるには、0.02%以上含有させることが好ましく、より好ましくは0.05%以上、更に好ましくは0.1%以上含有させるのがよい。しかし0.5%を超えると、鋼材(母材)の溶接性や母材靭性が劣化するため、0.5%以下に抑える必要がある。好ましくは0.45%以下であり、より好ましくは0.4%以下に抑える。なお、HAZの更なる高靭性が求められる場合、Siは0.3%以下に抑えるのがよい。より好ましくは0.05%以下であり、更に好ましくは0.01%以下である。但し、このようにSi含有量を抑えるとHAZの靭性は向上するが、強度は低下する傾向にある。   Si is an element that has a deoxidizing action and contributes to improving the strength of the steel (base material). In order to exhibit such an effect effectively, it is preferable to contain 0.02% or more, more preferably 0.05% or more, and still more preferably 0.1% or more. However, if it exceeds 0.5%, the weldability and base material toughness of the steel (base material) deteriorate, so it is necessary to keep it to 0.5% or less. Preferably it is 0.45% or less, More preferably, it restrains to 0.4% or less. In addition, when the further high toughness of HAZ is calculated | required, it is good to suppress Si to 0.3% or less. More preferably, it is 0.05% or less, More preferably, it is 0.01% or less. However, if the Si content is suppressed in this way, the toughness of the HAZ is improved, but the strength tends to decrease.

Mnは、鋼材(母材)の強度向上に寄与する元素であり、こうした効果を有効に発揮させるには、1.4%以上含有させる必要がある。好ましくは1.45%以上、より好ましくは1.50%以である。しかし、1.8%を超えて過剰に含有させるとHAZ靭性が劣化するので、Mn量は1.8%以下とする。好ましくは1.75%以下であり、より好ましくは1.70%以下である。   Mn is an element that contributes to improving the strength of the steel material (base material), and in order to exert such effects effectively, it is necessary to contain 1.4% or more. Preferably it is 1.45% or more, more preferably 1.50% or less. However, if the content exceeds 1.8%, the HAZ toughness deteriorates, so the Mn content is 1.8% or less. Preferably it is 1.75% or less, More preferably, it is 1.70% or less.

Nは、窒化物(例えば、ZrNやTiNなど)を析出する元素であり、該窒化物は溶接時にHAZに生成するオーステナイト粒の粗大化を防止してフェライト変態を促進するため、HAZの靭性を向上させるのに寄与する。こうした効果を有効に発揮させるため、0.003%以上含有させる。好ましくは0.004%以上である。Nは多いほどオーステナイト粒の微細化が促進されるため、HAZの靭性向上に有効に作用する。しかし0.01%を超えると、固溶N量が増大して母材の靭性が劣化する。従ってNは0.01%以下に抑える必要があり、好ましくは0.009%以下、より好ましくは0.008%以下とする。   N is an element that precipitates nitrides (for example, ZrN and TiN), and the nitrides prevent austenite grains formed in the HAZ during welding and promote ferrite transformation, so that the toughness of the HAZ is increased. Contributes to improvement. In order to exhibit such an effect effectively, it is contained 0.003% or more. Preferably it is 0.004% or more. The more N, the more refined austenite grains are promoted, which effectively works to improve the toughness of HAZ. However, if it exceeds 0.01%, the amount of solute N increases and the toughness of the base material deteriorates. Therefore, N must be suppressed to 0.01% or less, preferably 0.009% or less, more preferably 0.008% or less.

本発明の鋼材は、上記元素を含むほか、P:0.02%以下(0%を含まない)、S:0.015%以下(0%を含まない)およびAl:0.01%以下(0%を含まない)を満たすものである。このような範囲を定めた理由は以下の通りである。   The steel material of the present invention contains the above elements, P: 0.02% or less (not including 0%), S: 0.015% or less (not including 0%), and Al: 0.01% or less ( 0% is not included). The reason for setting such a range is as follows.

Pは、偏析し易い元素であり、特に鋼材中の結晶粒界に偏析して靭性を劣化させる。従ってPは0.02%以下に抑制する必要があり、好ましくは0.018%以下、より好ましくは0.015%以下とする。   P is an element that easily segregates, and particularly segregates at a grain boundary in the steel material to deteriorate toughness. Therefore, P must be suppressed to 0.02% or less, preferably 0.018% or less, more preferably 0.015% or less.

Sは、Mnと結合して硫化物(MnS)を生成し、母材の靭性や板厚方向の延性を劣化させる有害な元素である。またSは、LaやCeと結合してLaSやCeSを生成し、酸化物の生成を阻害する。従ってSは0.015%以下に抑えるべきであり、好ましくは0.012%以下、より好ましくは0.008%以下、特に0.006%以下とする。   S is a harmful element that combines with Mn to produce sulfide (MnS) and degrades the toughness of the base material and the ductility in the thickness direction. S combines with La and Ce to form LaS and CeS and inhibits the formation of oxides. Therefore, S should be suppressed to 0.015% or less, preferably 0.012% or less, more preferably 0.008% or less, and particularly 0.006% or less.

Alは、脱酸力の強い元素であり、過剰に添加すると酸化物を還元して所望の酸化物を生成し難くなる。従ってAlは0.01%以下に抑える必要があり、好ましくは0.0090%以下、より好ましくは0.0080%以下とする。   Al is an element having a strong deoxidizing power, and when added in excess, the oxide is reduced and it becomes difficult to produce a desired oxide. Therefore, Al must be suppressed to 0.01% or less, preferably 0.0090% or less, more preferably 0.0080% or less.

本発明で規定する含有元素は上記の通りであって、残部は鉄および不可避的不純物であり、該不可避的不純物として、原料、資材、製造設備等の状況によって持ち込まれる元素(例えば、MgやAs,Seなど)の混入が許容され得る。また、更に下記元素を積極的に含有させることも可能である。   The contained elements defined in the present invention are as described above, and the balance is iron and unavoidable impurities, and as the unavoidable impurities, elements brought in depending on the situation of raw materials, materials, production facilities, etc. (for example, Mg and As , Se, etc.) can be permitted. Further, it is possible to further contain the following elements.

〈Ti:0.08%以下(0%を含まない)〉
Tiは、鋼材中にTi酸化物を生成してHAZの靭性向上に寄与する元素である。こうした効果を有効に発揮させるには、Tiは0.005%以上含有させることが好ましく、より好ましくは0.007%以上、更に好ましくは0.01%以上とする。しかし過剰に添加すると、酸化物が多量に生成し過ぎて鋼材(母材)の靭性を劣化させるため、0.08%以下に抑えるべきである。好ましくは0.07%以下であり、より好ましくは0.06%以下とする。
<Ti: 0.08% or less (excluding 0%)>
Ti is an element that contributes to improving the toughness of HAZ by generating Ti oxide in the steel material. In order to exert such an effect effectively, Ti is preferably contained in an amount of 0.005% or more, more preferably 0.007% or more, and further preferably 0.01% or more. However, if added excessively, a large amount of oxide is generated and the toughness of the steel (base material) is deteriorated, so it should be suppressed to 0.08% or less. Preferably it is 0.07% or less, More preferably, it is 0.06% or less.

本発明の鋼材には、強度を高めるために、Cu:2%以下(0%を含まない)、Ni:3.5%以下(0%を含まない)、Cr:3%以下(0%を含まない)、Mo:1%以下(0%を含まない)、Nb:0.25%以下(0%を含まない)、V:0.1%以下(0%を含まない)およびB:0.005%以下(0%を含まない)よりなる群から選ばれる1種以上の元素を含有させることも有効である。こうした範囲を定めた理由は以下の通りである。   In order to increase the strength of the steel material of the present invention, Cu: 2% or less (excluding 0%), Ni: 3.5% or less (not including 0%), Cr: 3% or less (0% Mo: 1% or less (not including 0%), Nb: 0.25% or less (not including 0%), V: 0.1% or less (not including 0%), and B: 0 It is also effective to contain one or more elements selected from the group consisting of 0.005% or less (not including 0%). The reasons for setting these ranges are as follows.

〈Cu:2%以下(0%を含まない)〉
Cuは、鋼材を固溶強化させる元素であり、こうした効果を有効に発揮させるには、0.05%以上含有させることが好ましい。より好ましくは0.1%以上であり、更に好ましくは0.2%以上である。特に0.6%以上含有させると、固溶強化のほか、時効析出強化も発揮し、大幅な強度向上が可能となる。しかし2%を超えて含有させると、鋼材(母材)の靭性が低下するため、Cuは2%以下に抑えるのがよい。好ましくは1.8%以下であり、より好ましくは1.6%以下とする。
<Cu: 2% or less (excluding 0%)>
Cu is an element for solid solution strengthening of the steel material, and in order to exhibit such an effect effectively, it is preferable to contain 0.05% or more. More preferably, it is 0.1% or more, More preferably, it is 0.2% or more. In particular, when 0.6% or more is contained, in addition to solid solution strengthening, aging precipitation strengthening is also exhibited, and a significant improvement in strength becomes possible. However, if the content exceeds 2%, the toughness of the steel material (base material) decreases, so Cu should be suppressed to 2% or less. Preferably it is 1.8% or less, More preferably, you may be 1.6% or less.

〈Ni:3.5%以下(0%を含まない)〉
Niは、鋼材の強度を高めると共に、鋼材の靭性を向上させるのに有効に作用する元素であり、こうした作用を発揮させるには、0.05%以上含有させることが好ましい。より好ましくは0.1%以上であり、更に好ましくは0.2%以上とする。Niは多いほど好ましいが、高価な元素であるため経済的観点から3.5%以下に抑えることが好ましい。より好ましくは3.3%以下であり、更に好ましくは3%以下とする。
<Ni: 3.5% or less (excluding 0%)>
Ni is an element that effectively acts to increase the strength of the steel material and improve the toughness of the steel material. In order to exert such an effect, Ni is preferably contained in an amount of 0.05% or more. More preferably, it is 0.1% or more, More preferably, it is 0.2% or more. The more Ni, the better. However, since it is an expensive element, it is preferable to suppress it to 3.5% or less from an economical viewpoint. More preferably, it is 3.3% or less, More preferably, it is 3% or less.

〈Cr:3%以下(0%を含まない)〉
Crを添加して強度を高めるには、0.01%以上含有させることが好ましい。より好ましくは0.02%以上、更に好ましくは0.03%以上である。しかし3%を超えると溶接性が劣化するため、Crは3%以下に抑えることが好ましい。より好ましくは1.5%以下であり、更に好ましくは1%以下である。
<Cr: 3% or less (excluding 0%)>
In order to increase the strength by adding Cr, the content is preferably 0.01% or more. More preferably it is 0.02% or more, and still more preferably 0.03% or more. However, if it exceeds 3%, weldability deteriorates, so Cr is preferably suppressed to 3% or less. More preferably, it is 1.5% or less, More preferably, it is 1% or less.

〈Mo:1%以下(0%を含まない)〉
Moを添加して強度を高めるには、0.01%以上含有させるのが望ましい。より好ましくは0.02%以上であり、更に好ましくは0.03%以上含有させるのがよい。但し、1%を超えると溶接性を悪化させるためMoは1%以下とするのが好ましい。より好ましくは0.9%以下であり、更に好ましくは0.8%以下に抑えることが推奨される。
<Mo: 1% or less (excluding 0%)>
In order to increase the strength by adding Mo, it is desirable to contain 0.01% or more. More preferably it is 0.02% or more, and still more preferably 0.03% or more. However, if it exceeds 1%, the weldability deteriorates, so Mo is preferably 1% or less. More preferably, it is 0.9% or less, and more preferably 0.8% or less.

〈Nb:0.25%以下(0%を含まない)〉
Nbを添加して強度を高めるには、0.005%以上含有させるのが好ましい。より好ましくは0.01%以上であり、更に好ましくは0.03%以上である。しかし0.25%を超えると炭化物(NbC)が析出して母材靭性が劣化するので、Nbは0.25%以下に抑えるのが好ましい。より好ましくは0.23%以下であり、更に好ましくは0.20%以下とする。
<Nb: 0.25% or less (excluding 0%)>
In order to increase the strength by adding Nb, it is preferable to contain 0.005% or more. More preferably, it is 0.01% or more, More preferably, it is 0.03% or more. However, if it exceeds 0.25%, carbide (NbC) precipitates and the base material toughness deteriorates, so Nb is preferably suppressed to 0.25% or less. More preferably, it is 0.23% or less, and still more preferably 0.20% or less.

〈V:0.1%以下(0%を含まない)〉
Vを添加して強度を高めるには、0.005%以上含有させるのが望ましい。より好ましくは0.01%以上、更に好ましくは0.03%以上含有させるのがよい。しかし0.1%を超えると、溶接性が悪化する共に母材の靭性が劣化するため、Vは0.1%以下とするのが好ましい。より好ましくは0.08%以下、更に好ましくは0.06%以下に抑えるのがよい。
<V: 0.1% or less (excluding 0%)>
In order to increase the strength by adding V, it is desirable to contain 0.005% or more. More preferably 0.01% or more, still more preferably 0.03% or more. However, if it exceeds 0.1%, the weldability deteriorates and the toughness of the base material deteriorates. Therefore, V is preferably 0.1% or less. More preferably, it is 0.08% or less, and more preferably 0.06% or less.

〈B:0.005%以下(0%を含まない)〉
Bは、鋼材の強度を高めると共に、溶接時に加熱されたHAZが冷却される過程において鋼中のNと結合してBNを析出し、オーステナイト粒内からのフェライト変態を促進させる。こうした効果を有効に発揮させるには、0.0003%以上含有させるのが好ましい。より好ましくは0.0005%以上であり、更に好ましくは0.0008%以上である。しかし0.005%を超えると、鋼材(母材)の靭性が劣化するため、Bは0.005%以下とするのが好ましい。より好ましくは0.004%以下であり、更に好ましくは0.003%以下とするのがよい。
<B: 0.005% or less (excluding 0%)>
B increases the strength of the steel material and, in the process of cooling the HAZ heated during welding, combines with N in the steel to precipitate BN and promote ferrite transformation from within the austenite grains. In order to exhibit such an effect effectively, it is preferable to contain 0.0003% or more. More preferably, it is 0.0005% or more, More preferably, it is 0.0008% or more. However, if it exceeds 0.005%, the toughness of the steel (base material) deteriorates, so B is preferably 0.005% or less. More preferably, it is 0.004% or less, and further preferably 0.003% or less.

本発明において、優れた母材靭性を確保するには、金属組織を、全組織に占める島状マルテンサイトの分率が1.1%以下で且つ残部がベイナイト組織のものとする必要がある。一般に、厚みのある高強度鋼材を製造する場合、理論的限界冷却速度が得られる焼入れ方法(例えば直接焼入れ)によりベイナイト組織を生成させることで高強度化を図る。
しかしこの場合、上記ベイナイト組織と同時に硬質相の島状マルテンサイト(Martensite-Austenite constituent,以下「MA」ということがある)が生成し易く、これが破壊の起点となり、母材靭性に悪影響を及ぼす。図1は、島状マルテンサイトの分率(MA分率)とvTrs(破面遷移温度)の関係を示すグラフであり、後述する実施例の実験結果を整理したものであるが、この図1より、vTrs:−40℃以下と優れた母材靭性を示す鋼材を得るには、MA分率を1.1%以下に抑える必要があることがわかる。より好ましくは、上記MA分率を1.0%以下とするのがよい。
In the present invention, in order to ensure excellent base metal toughness, the metal structure needs to have an island-like martensite fraction in the entire structure of 1.1% or less and the balance being a bainite structure. Generally, when producing a high strength steel material having a thickness, the strength is increased by generating a bainite structure by a quenching method (for example, direct quenching) that can obtain a theoretical critical cooling rate.
However, in this case, the martensite-Austenite constituent (hereinafter sometimes referred to as “MA”) is easily generated simultaneously with the bainite structure, which becomes a starting point of fracture and adversely affects the base material toughness. FIG. 1 is a graph showing the relationship between the fraction of island-like martensite (MA fraction) and vTrs (fracture surface transition temperature), and is a summary of the experimental results of Examples described later. From this, it can be seen that in order to obtain a steel material exhibiting excellent base material toughness of vTrs: −40 ° C. or lower, the MA fraction must be suppressed to 1.1% or lower. More preferably, the MA fraction is 1.0% or less.

尚、本発明でいう「残部がベイナイト組織」とは、全組織に占めるベイナイト組織が90%以上であって、ベイナイト組織以外に、製造工程で不可避的に形成され得るその他の組織(フェライト、パーライト、MA)を含む意図である。   The “remaining bainite structure” as used in the present invention means that the bainite structure occupies 90% or more of the entire structure, and besides the bainite structure, other structures that can be inevitably formed in the manufacturing process (ferrite, pearlite). , MA).

次に、本発明の鋼材を製造するに当たり、好適に採用できる製法について説明する。上述の通り、鋼材中に、REMの酸化物および/またはCaOと、ZrO2を適量含有させるには、後記の実施例から明らかなように、REMおよびCaよりなる群から選ばれる少なくとも1種の元素と、Zrを添加する直前の溶存酸素量を適切に制御する、即ち、溶存酸素量を適切に制御した溶鋼へ、REMおよびCaよりなる群から選ばれる少なくとも1種の元素と、Zrを複合添加することが大変有効である。該方法で製造すれば、REMやCa、Zrの添加量をある程度多くしても上記酸化物を確実に形成させることができ、結果としてREMの硫化物やCaの硫化物、或いはZrの炭化物の生成を防止することができるからである。 Next, a production method that can be suitably employed in producing the steel material of the present invention will be described. As described above, in order to contain an appropriate amount of REM oxide and / or CaO and ZrO 2 in the steel material, as is apparent from the examples described later, at least one selected from the group consisting of REM and Ca is used. The element and the amount of dissolved oxygen immediately before adding Zr are appropriately controlled, that is, the molten steel in which the amount of dissolved oxygen is appropriately controlled is combined with at least one element selected from the group consisting of REM and Ca, and Zr. It is very effective to add them. If manufactured by this method, the oxide can be formed reliably even if the amount of REM, Ca, or Zr added is increased to some extent. As a result, REM sulfide, Ca sulfide, or Zr carbide can be formed. This is because generation can be prevented.

このとき上記溶存酸素量が0.0020%未満では、REMおよびCaよりなる群から選ばれる少なくとも1種の元素と、Zrを複合添加しても、酸素量不足になるため、HAZの靭性向上に寄与する酸化物量を確保することができず、しかも酸化物を形成できなかったREMやCaが硫化物を形成したり、Zrが炭化物を形成して母材の靭性を劣化する。上記元素を複合添加する前の溶存酸素量は、0.0025%以上に調整することが好ましく、より好ましくは0.0030%以上である。しかし溶存酸素量が0.010%を超えていると、溶鋼中の酸素量が多すぎるため、溶鋼中の酸素と上記元素の反応が激しくなり溶製作業上好ましくないばかりか、粗大なREMの酸化物、Caの酸化物やZrO2が生成する。従って溶存酸素量は0.010%以下に抑えるべきであり、好ましくは0.008%以下、より好ましくは0.007%以下とする。 At this time, if the amount of dissolved oxygen is less than 0.0020%, even if Zr is added in combination with at least one element selected from the group consisting of REM and Ca, the amount of oxygen becomes insufficient, so the HAZ toughness is improved. REM or Ca, which could not secure the amount of contributing oxides and could not form oxides, formed sulfides, or Zr formed carbides, deteriorating the toughness of the base material. The amount of dissolved oxygen before adding the above elements is preferably adjusted to 0.0025% or more, and more preferably 0.0030% or more. However, if the amount of dissolved oxygen exceeds 0.010%, the amount of oxygen in the molten steel is too large, and the reaction between the oxygen in the molten steel and the above elements becomes violent, which is not preferable for melting work. Oxides, Ca oxides, and ZrO 2 are formed. Therefore, the amount of dissolved oxygen should be suppressed to 0.010% or less, preferably 0.008% or less, more preferably 0.007% or less.

上記REMおよびCaよりなる群から選ばれる少なくとも1種の元素と、Zrを複合添加した後は、合金元素を添加して鋼材の成分を調整すればよい。   After at least one element selected from the group consisting of REM and Ca and Zr are added in combination, an alloy element may be added to adjust the components of the steel material.

なお、上記溶存酸素量を調整した溶鋼へ上記元素を添加するに当たっては、REMおよびCaよりなる群から選ばれる少なくとも1種の元素と、Zrを複合添加すればよく、例えばREMとCaを複合添加する場合には、(a)溶存酸素量を調整した溶鋼へREMとCaとZrを添加した後、合金元素を添加して鋼材の成分を調整してもよいし、(b)溶存酸素量を調整した溶鋼へREM(あるいはCa)とZrを添加した後、Ca(あるいはREM)以外の合金元素を添加して鋼材の成分を調整し、次いでCa(あるいはREM)を添加してもよい。   In addition, when adding the said element to the molten steel which adjusted the amount of dissolved oxygen, what is necessary is just to compound-add at least 1 sort (s) of elements selected from the group which consists of REM and Ca, for example, REM and Ca are compounded. In order to do this, (a) after adding REM, Ca, and Zr to the molten steel in which the amount of dissolved oxygen is adjusted, the alloy elements may be added to adjust the components of the steel material, and (b) the amount of dissolved oxygen is adjusted. After adding REM (or Ca) and Zr to the adjusted molten steel, an alloy element other than Ca (or REM) may be added to adjust the components of the steel material, and then Ca (or REM) may be added.

上記溶存酸素量を調整した溶鋼へ、REMおよびCaよりなる群から選ばれる少なくとも1種の元素と、Zrを複合添加する手順は特に限定されず、例えば(a)REMおよびCaよりなる群から選ばれる少なくとも1種の元素を添加した後に、Zrを添加してもよいし、(b)Zrを添加した後に、REMおよびCaよりなる群から選ばれる少なくとも1種の元素を添加してもよいし、(c)REMおよびCaよりなる群から選ばれる少なくとも1種の元素と、Zrを同時に複合添加してもよい。REMとCaを複合添加する場合には、(d)REM(あるいはCa)を添加した後に、Zrを添加し、次いでCa(あるいはREM)を添加してもよいし、(e)REMとCaとZrを同時に複合添加してもよい。   The procedure for adding at least one element selected from the group consisting of REM and Ca and Zr to the molten steel with the dissolved oxygen content adjusted is not particularly limited. For example, (a) selected from the group consisting of REM and Ca Zr may be added after at least one element is added, or (b) at least one element selected from the group consisting of REM and Ca may be added after adding Zr. (C) At least one element selected from the group consisting of REM and Ca and Zr may be simultaneously added in combination. When REM and Ca are added in combination, (d) REM (or Ca) may be added, then Zr may be added, and then Ca (or REM) may be added. (E) REM and Ca Zr may be combined and added simultaneously.

本発明の鋼材がTiを含む場合、溶存酸素量を調整した溶鋼へ、REMおよびCaよりなる群から選ばれる少なくとも1種の元素と、Zrを複合添加した後に、(a)鋼材の成分調整する際に併せてTiを添加してもよいし、(b)鋼材の成分調整した後に、Tiを添加してもよい。好ましくは溶存酸素量を調整した溶鋼へ、REMおよびCaよりなる群から選ばれる少なくとも1種の元素と、TiとZrを添加するのが好ましい。   When the steel material of the present invention contains Ti, after adding Zr in combination with at least one element selected from the group consisting of REM and Ca to the molten steel in which the amount of dissolved oxygen is adjusted, (a) adjusting the components of the steel material At the same time, Ti may be added, or (b) Ti may be added after adjusting the components of the steel material. Preferably, at least one element selected from the group consisting of REM and Ca, and Ti and Zr are added to the molten steel in which the amount of dissolved oxygen is adjusted.

この場合、溶存酸素量を調整した溶鋼へ、REMおよびCaよりなる群から選ばれる少なくとも1種の元素とZrを添加するに先立って、Tiを添加することが推奨される。溶存酸素量を調整した溶鋼へ、Tiを添加すれば、まずTiが形成されるが、Tiは溶鋼との界面エネルギーが小さいため、形成されたTiのサイズは微細になる。次いでREMおよびCaよりなる群から選ばれる少なくとも1種の元素と、Zrを複合添加することによってREMの酸化物やCaO、ZrO2が、上記Tiを生成核として成長するため、結果的に粒子の個数が増大し、オーステナイト粒の粗大化抑制効果が大きくなる。 In this case, it is recommended to add Ti prior to adding at least one element selected from the group consisting of REM and Ca and Zr to the molten steel in which the amount of dissolved oxygen is adjusted. If Ti is added to the molten steel whose amount of dissolved oxygen is adjusted, Ti 2 O 3 is first formed, but since Ti 2 O 3 has a small interfacial energy with the molten steel, the size of the formed Ti 2 O 3 is It becomes fine. Then, by adding Zr in combination with at least one element selected from the group consisting of REM and Ca, the REM oxide, CaO, and ZrO 2 grow using the Ti 2 O 3 as a production nucleus. In addition, the number of particles increases, and the effect of suppressing austenite grain coarsening increases.

ところで、転炉や電気炉で一次精錬された溶鋼中の溶存酸素量は、通常0.010%を超えている。そこで本発明の製法では、REMおよびCaよりなる群から選ばれる少なくとも1種の元素と、Zrを複合添加する前、或いはTiを添加する前に、溶鋼中の溶存酸素量を上記範囲に調整する必要がある。溶存酸素量を調整する方法としては、例えばRH式脱ガス精錬装置を用いて真空C脱酸する方法や、SiやMn,Ti,Alなどの脱酸性元素を添加する方法などが挙げられ、勿論これらの方法を適宜組み合わせて溶存酸素量を調整しても良い。また、RH式脱ガス精錬装置の代わりに、取鍋加熱式精錬装置や簡易式溶鋼処理設備などを用いて溶存酸素量を調整しても良い。この場合、真空C脱酸による溶存酸素量の調整はできないため、溶存酸素量の調整にはSi等の脱酸性元素を添加する方法を採用すれば良い。Si等の脱酸性元素を添加する方法を採用するときは、転炉から取鍋へ出鋼する際に脱酸性元素を添加しても構わない。   By the way, the amount of dissolved oxygen in molten steel primarily refined in a converter or electric furnace usually exceeds 0.010%. Therefore, in the manufacturing method of the present invention, the amount of dissolved oxygen in the molten steel is adjusted to the above range before adding Zr in combination with at least one element selected from the group consisting of REM and Ca, or before adding Ti. There is a need. Examples of the method for adjusting the amount of dissolved oxygen include a method of vacuum C deoxidation using an RH type degassing refining device, a method of adding a deacidifying element such as Si, Mn, Ti, Al, etc. The amount of dissolved oxygen may be adjusted by appropriately combining these methods. Moreover, you may adjust the amount of dissolved oxygen using a ladle heating type refining apparatus, a simple molten steel processing facility, etc. instead of the RH type degassing refining apparatus. In this case, since the amount of dissolved oxygen cannot be adjusted by vacuum C deoxidation, a method of adding a deacidifying element such as Si may be employed to adjust the amount of dissolved oxygen. When employing a method of adding a deoxidizing element such as Si, the deoxidizing element may be added when steel is removed from the converter to the ladle.

溶鋼へ添加するREMやCa,Zr,Tiの形態は特に限定されず、例えば、REMとして、純Laや純Ce,純Yなど、或いは純Ca,純Zr,純Ti、更にはFe−Si−La合金,Fe−Si−Ce合金,Fe−Si−Ca合金,Fe−Si−La−Ce合金,Fe−Ca合金,Ni−Ca合金などを添加すればよい。また、溶鋼へミッシュメタルを添加してもよい。ミッシュメタルとは、セリウム族希土類元素の混合物であり、具体的には、Ceを40〜50%程度,Laを20〜40%程度含有している。但し、ミッシュメタルには不純物としてCaを含むことが多いので、ミッシュメタルがCaを含む場合は本発明で規定する範囲を満足する必要がある。   The form of REM, Ca, Zr, Ti added to the molten steel is not particularly limited. For example, as REM, pure La, pure Ce, pure Y, or pure Ca, pure Zr, pure Ti, and further Fe-Si- A La alloy, Fe—Si—Ce alloy, Fe—Si—Ca alloy, Fe—Si—La—Ce alloy, Fe—Ca alloy, Ni—Ca alloy, or the like may be added. Moreover, you may add misch metal to molten steel. Misch metal is a mixture of cerium group rare earth elements, and specifically contains about 40 to 50% of Ce and about 20 to 40% of La. However, since misch metal often contains Ca as an impurity, when the misch metal contains Ca, the range specified in the present invention must be satisfied.

上記組織を得るには、上記成分組成を満たす鋼材を用い、製造過程における熱間圧延終了温度(仕上圧延終了温度)から、ベイナイト変態終了温度(Bf)以下でマルテンサイト変態開始温度(Ms)以上の温度域までを、6℃/s以上で冷却することが推奨される。この様に、冷却速度の制御をBf以下まで行うことによって、組織をベイナイト主体とすることができ、一方、冷却速度の制御をMs以上までとすることで、未変態オーステナイトが硬質相であるMAになることを十分抑制することができる。尚、上記熱間圧延終了温度(仕上圧延終了温度)とは、後述する実施例に示す要領で求める圧延終了時のt(板厚)/4部位の温度をいうものとする。   In order to obtain the above structure, a steel material satisfying the above component composition is used, and from the hot rolling end temperature (finish rolling end temperature) in the production process to the bainite transformation end temperature (Bf) or lower and the martensite transformation start temperature (Ms) or higher. It is recommended to cool to a temperature range of 6 ° C./s or more. Thus, by controlling the cooling rate to Bf or less, the structure can be mainly composed of bainite. On the other hand, by controlling the cooling rate to Ms or more, MA in which untransformed austenite is a hard phase. Can be sufficiently suppressed. The hot rolling end temperature (finish rolling end temperature) refers to the temperature at the t (sheet thickness) / 4 portion at the end of rolling, which is determined in the manner shown in the examples described later.

前記速度での冷却を行う方法としては、直接焼入れ、加速冷却等の方法が挙げられるが、理論的限界冷却速度を実現できる直接焼入れ法を採用することが推奨される。   Examples of the method for cooling at the speed include direct quenching and accelerated cooling, but it is recommended to adopt a direct quenching method capable of realizing a theoretical limit cooling rate.

また、熱間圧延時の仕上圧延終了温度(後述する実施例に示す要領で求めるt/4部位の温度)は、800〜900℃の範囲に制御すれば、高強度と高靭性を両立できるので好ましい。   Moreover, if the finish rolling finish temperature at the time of hot rolling (temperature of the t / 4 part calculated | required in the way shown in the Example mentioned later) is controlled in the range of 800-900 degreeC, since high intensity | strength and high toughness can be compatible, preferable.

こうして得られる本発明の鋼材は、例えば橋梁や高層建造物、船舶などの構造物の材料として使用でき、小〜中入熱溶接はもとより大入熱溶接においても、溶接熱影響部の靭性劣化を防ぐことができると共に、優れた母材靭性を確保することができる。   The steel material of the present invention thus obtained can be used, for example, as a material for structures such as bridges, high-rise buildings, ships, etc., and toughness degradation of the weld heat-affected zone not only in small to medium heat input welding but also in large heat input welding. While being able to prevent, the outstanding base material toughness can be ensured.

以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に適合し得る範囲で適当に変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are not intended to limit the present invention, and may be implemented with appropriate modifications within a range that can meet the purpose described above and below. These are all possible and are within the scope of the present invention.

溶銑を240トン転炉で一次精錬した後、該転炉から取鍋へ出鋼し、成分調整および温度調整しながら二次精錬を行った。ここで、取鍋では、下記表1に示す脱酸方法で、下記表1に示す溶存酸素量に調整した。その後、下記表1に示す順序で元素を添加した。次いで必要に応じて残りの合金元素を添加して最終的に下記表2に示す組成に調整した。なお、二次精錬にはRH式脱ガス精錬装置等を用いて脱Hや脱Sなどを行なった。また、表1における鋼種No.16の溶存酸素量「−」は、定量限界未満であることを示す。   After the hot metal was first refined in a 240-ton converter, the steel was removed from the converter into a ladle and subjected to secondary refining while adjusting the components and adjusting the temperature. Here, in the ladle, the amount of dissolved oxygen shown in Table 1 below was adjusted by the deoxidation method shown in Table 1 below. Thereafter, the elements were added in the order shown in Table 1 below. Subsequently, the remaining alloying elements were added as necessary to finally adjust the compositions shown in Table 2 below. In the secondary refining, dehydrogenation and desulfurization were performed using an RH type degassing refining apparatus. In Table 1, the steel type No. A dissolved oxygen amount “−” of 16 indicates that it is less than the limit of quantification.

なお、表1において、LaはFe−La合金の形態で、CeはFe−Ce合金の形態で、REMはLaを50%程度とCeを25%程度含有するミッシュメタルの形態で、CaはNi−Ca合金、またはCa−Si合金、またはFe−Ca圧粉体の形態で、ZrはZr単体で、TiはFe−Ti合金の形態で、夫々添加した。   In Table 1, La is in the form of an Fe-La alloy, Ce is in the form of an Fe-Ce alloy, REM is in the form of a misch metal containing about 50% La and about 25% Ce, and Ca is Ni. Zr was added in the form of Zr alone, and Ti was added in the form of an Fe-Ti alloy in the form of -Ca alloy, Ca-Si alloy, or Fe-Ca compact.

表2中「−」は元素を添加していないことを示しており、「未満」は元素を添加していないが不可避的に含まれていたため、定量限界未満の範囲で検出されたことを意味している。また、表2に示すBf(ベイナイト変態終了温度)およびMs(マルテンサイト変態開始温度)は、加工フォーマスター試験によりCCT曲線を作成してそれぞれ求めたものである。具体的には、加工フォーマスター試験片を1100℃に加熱して10秒間保持後、1000℃で累積圧下率25%の加工、更に800℃で累積圧下率25%の加工を施し、その後、700℃からの冷却速度を1〜100℃/sの間で7段階変化させ、冷却中の体積変化が生じる温度を測定して変態温度を求めた。更に、冷却後の組織を観察すると共にビッカース硬さを測定して最終組織を同定した。これらの結果から、CCT曲線を作成し、Bf、Msを求めた。   In Table 2, “-” indicates that no element was added, and “less than” means that no element was added, but it was inevitably contained, so that it was detected within the range below the limit of quantification. is doing. Further, Bf (bainite transformation end temperature) and Ms (martensitic transformation start temperature) shown in Table 2 are obtained by preparing a CCT curve by a processing for master test. Specifically, the processed formaster specimen is heated to 1100 ° C. and held for 10 seconds, then processed at 1000 ° C. with a cumulative rolling reduction of 25%, further processed at 800 ° C. with a cumulative rolling reduction of 25%, and then 700 The cooling rate from 0 ° C. was changed in 7 steps between 1 to 100 ° C./s, and the temperature at which the volume change during cooling was measured to determine the transformation temperature. Further, the final structure was identified by observing the cooled structure and measuring the Vickers hardness. From these results, a CCT curve was created to obtain Bf and Ms.

Figure 2007247005
Figure 2007247005

Figure 2007247005
Figure 2007247005

成分調整後の溶鋼を、連続鋳造機でスラブに鋳造し、その後熱間圧延を施して、表3に示す板厚の鋼板を製作した。   The molten steel after component adjustment was cast into a slab with a continuous casting machine, and then hot-rolled to produce a steel plate having a thickness shown in Table 3.

熱間圧延の圧延終了温度(圧延終了時のt/4部位の温度)、圧延終了後の冷却速度、該冷却速度での冷却停止温度を表3に示す。   Table 3 shows the rolling end temperature of hot rolling (temperature at the t / 4 portion at the end of rolling), the cooling rate after the end of rolling, and the cooling stop temperature at the cooling rate.

上記仕上圧延終了時のt/4部位の温度は、下記(1)〜(6)の要領で求めたものである。
(1)プロセスコンピュータにおいて、加熱開始から加熱終了までの雰囲気温度、在炉時間に基づき、鋼片の表面から裏面までの板厚方向の任意の位置の加熱温度を算出する。
(2)上記算出した加熱温度を用い、圧延中の圧延パススケジュールやパス間の冷却方法(水冷あるいは空冷)のデータに基づいて、板厚方向の任意の位置の圧延温度を差分法など計算に適した方法を用いて算出しつつ、圧延を実施する。
(3)鋼板表面温度は、圧延ライン上に設置された放射型温度計を用いて実測する(ただし、プロセスコンピュータ上においても計算を実施する)。
(4)粗圧延開始時、粗圧延終了時および仕上圧延開始時にそれぞれ実測した鋼板表面温度を、プロセスコンピュータ上の計算温度と照合する。
(5)粗圧延開始時、粗圧延終了時および仕上圧延開始時の計算温度と上記実測温度の差が±30℃以上の場合は、実測表面温度と計算表面温度が一致する様に再計算し、プロセスコンピュータ上の計算温度とする。
(6)上記計算温度の補正を行って、t/4部位の仕上圧延終了温度を求める。
The temperature at the t / 4 portion at the end of the finish rolling is determined in the following manner (1) to (6).
(1) In the process computer, based on the atmospheric temperature from the start of heating to the end of heating and the in-furnace time, the heating temperature at an arbitrary position in the thickness direction from the front surface to the back surface of the steel slab is calculated.
(2) Using the calculated heating temperature, calculate the rolling temperature at any position in the plate thickness direction based on the rolling pass schedule during rolling and the cooling method between the passes (water cooling or air cooling). Rolling while calculating using a suitable method.
(3) The steel sheet surface temperature is measured using a radiation type thermometer installed on the rolling line (however, calculation is also performed on a process computer).
(4) The steel plate surface temperature measured at the start of rough rolling, at the end of rough rolling and at the start of finish rolling is collated with the calculated temperature on the process computer.
(5) When the difference between the calculated temperature at the start of rough rolling, at the end of rough rolling and at the start of finish rolling and the above measured temperature is ± 30 ° C or more, recalculate so that the measured surface temperature matches the calculated surface temperature. The calculated temperature on the process computer.
(6) The above calculated temperature is corrected to determine the finish rolling finish temperature at the t / 4 part.

上記の様にして得られた鋼板を用いて、引張試験、金属組織の観察、EPMAによる介在物組成の調査、HAZ靭性および母材靭性の評価を、それぞれ下記の要領で実施した。   Using the steel sheet obtained as described above, a tensile test, observation of the metal structure, investigation of inclusion composition by EPMA, evaluation of HAZ toughness and base metal toughness were carried out in the following manner.

〈引張試験〉
各鋼板のt(板厚)/4部位から、圧延方向に対して直角の方向にJISZ 2201の4号試験片を採取して、JISZ 2241の要領で引張試験を行ない、引張強度(TS)を測定した。そして、TSが510MPa以上でYPが390MPa以上のものを、引張特性に優れていると評価した。
<Tensile test>
Sample No. 4 of JISZ 2201 was sampled in the direction perpendicular to the rolling direction from the t (plate thickness) / 4 part of each steel plate, and a tensile test was conducted in accordance with the procedure of JISZ 2241 to determine the tensile strength (TS). It was measured. And those having TS of 510 MPa or more and YP of 390 MPa or more were evaluated as having excellent tensile properties.

〈金属組織の観察〉
島状マルテンサイトの分率は下記の様にして測定した。即ち、圧延方向に平行で且つ鋼板表面に対して垂直な、鋼板表裏面を含む板厚断面を観察できるよう上記鋼板からサンプルを採取し、観察面を鏡面研磨した後、レペラー腐食液で腐食した。そして、t(板厚)/4部位を、光学顕微鏡にて400倍の倍率で撮影し(1視野サイズ:60μm×80μm)、主体の組織がベイナイト(B)、またはフェライト(F)+パーライト(P)であるかを判断した上で、主体の組織がベイナイトの場合には、上記撮影した写真を画像解析装置に取り込み、白黒に画像処理してから白い部分(MA)の面積率を求めた。該測定を任意の12視野以上について行い、その平均値をMA分率とした。
<Observation of metal structure>
The fraction of island martensite was measured as follows. That is, a sample was taken from the steel sheet so that the cross section including the front and back surfaces of the steel sheet, which was parallel to the rolling direction and perpendicular to the steel sheet surface, could be observed, and the observation surface was mirror-polished and then corroded with a repeller corrosion solution . Then, t (plate thickness) / 4 part was photographed with an optical microscope at a magnification of 400 times (1 visual field size: 60 μm × 80 μm), and the main structure was bainite (B) or ferrite (F) + pearlite ( P), if the main organization is bainite, the photograph taken is taken into an image analysis device, processed in black and white, and then the area ratio of the white portion (MA) was obtained. . The measurement was performed for any 12 or more fields of view, and the average value was defined as the MA fraction.

〈介在物組成の調査〉
各鋼板のt(板厚)/4位置における横断面からサンプルを切り出した。切り出されたサンプル表面を島津製作所製「EPMA−8705(装置名)」を用いて600倍で観察し、最大径が0.2μm以上の析出物について成分組成を定量分析した。観察条件は、加速電圧を20kV,試料電流を0.01μA,観察視野面積を1〜5cm2,分析個数を100個とし、特性X線の波長分散分光により析出物中央部での成分組成を定量分析した。分析対象元素は、Al,Mn,Si,Ti,Zr,Ca,La,CeおよびOとし、既知物質を用いて各元素の電子線強度と元素濃度の関係を予め検量線として求めておき、次いで、前記析出物から得られた電子線強度と前記検量線からその析出物の元素濃度を定量した。
<Investigation of inclusion composition>
A sample was cut out from the cross section at the t (plate thickness) / 4 position of each steel plate. The cut sample surface was observed 600 times using “EPMA-8705 (device name)” manufactured by Shimadzu Corporation, and the component composition of the precipitate having a maximum diameter of 0.2 μm or more was quantitatively analyzed. The observation conditions are an acceleration voltage of 20 kV, a sample current of 0.01 μA, an observation visual field area of 1 to 5 cm 2 , and an analysis number of 100, and the component composition at the center of the precipitate is determined by wavelength dispersion spectroscopy of characteristic X-rays. analyzed. The analysis target elements are Al, Mn, Si, Ti, Zr, Ca, La, Ce, and O, and a relationship between the electron beam intensity and the element concentration of each element is obtained in advance using a known substance as a calibration curve. The element concentration of the precipitate was determined from the electron beam intensity obtained from the precipitate and the calibration curve.

得られた定量結果のうち酸素含量が5%以上の析出物を酸化物とし、平均したものを酸化物の平均組成とした。全酸化物の平均組成を下記表4に示す。なお、一つの介在物から複数の元素が観測された場合には、それらの元素の存在を示すX線強度の比から各元素の単独酸化物に換算して酸化物の組成を算出した。   Of the obtained quantitative results, a precipitate having an oxygen content of 5% or more was defined as an oxide, and the average was defined as the average composition of the oxide. The average composition of all oxides is shown in Table 4 below. When a plurality of elements were observed from one inclusion, the composition of the oxide was calculated in terms of the X-ray intensity ratio indicating the presence of these elements, converted to a single oxide of each element.

上記サンプル表面をEPMAで観察した結果、観察された酸化物は、REMおよび/またはCaとZrを含む複合酸化物、或いは更にTiを含む複合酸化物が大半であったが、単独酸化物としてREMの酸化物、CaO、ZrO2、Tiも生成していた。 As a result of observing the sample surface with EPMA, most of the observed oxides were REM and / or a composite oxide containing Ca and Zr, or a composite oxide containing Ti. The oxides of CaO, ZrO 2 and Ti 2 O 3 were also produced.

〈HAZ靭性の評価〉
次に、HAZの靭性を評価するため、入熱量40〜60kJ/mmのエレクトロガス溶接またはサブマージ溶接を実施し、板厚方向の裏面7mmを中心とした板厚位置から、JISZ2242(2006)で規定のVノッチシャルピー試験片3本を採取した。次に、該試験片を用いて−40℃でシャルピー衝撃試験を行い、吸収エネルギー(vE−40)を測定し、上記3本の試験片の平均値を求めた。そして、vE−40が150J以上のものをHAZ靭性に優れると評価した。
<Evaluation of HAZ toughness>
Next, in order to evaluate the toughness of the HAZ, electrogas welding or submerged welding with a heat input of 40 to 60 kJ / mm is performed, and from JISZ2242 (2006), the plate thickness position centered on the back surface 7 mm in the plate thickness direction. Three V-notch Charpy specimens were collected. Next, a Charpy impact test was performed at −40 ° C. using the test piece, the absorbed energy (vE −40 ) was measured, and the average value of the three test pieces was obtained. And it evaluated that the thing whose vE- 40 is 150J or more is excellent in HAZ toughness.

〈母材靭性の評価〉
各鋼板のt/4部位からJIS Z 2202(2006)で規定のVノッチ試験片を採取して、JISZ 2242(2006)に規定の方法でシャルピー衝撃試験を行い、破面遷移温度(vTrs)を測定した。そして、vTrsが−40℃以下のものを、母材靭性に優れる[船級Eグレード鋼材規格値(−20℃で55J以上)を安定して確保できる]と評価した。
<Evaluation of base metal toughness>
Specified V-notch test specimens are collected from the t / 4 part of each steel plate according to JIS Z 2202 (2006), and Charpy impact tests are performed according to the method specified in JISZ 2242 (2006) to determine the fracture surface transition temperature (vTrs). It was measured. And the thing whose vTrs is -40 degrees C or less was evaluated as being excellent in base-material toughness [The ship E grade steel material specification value (55J or more at -20 degrees C can be ensured stably)].

これらの測定結果を表3に示す。   These measurement results are shown in Table 3.

Figure 2007247005
Figure 2007247005

Figure 2007247005
Figure 2007247005

表1〜4から次のように考察できる(尚、下記No.は、表3、4の鋼板No.を示す)。No.1〜3、5〜9、13〜19は、本発明で規定する要件を満足する例であり、鋼材にREMの酸化物および/またはCaOと、ZrO2を含有しているため、溶接熱影響部の靭性が良好な鋼材が得られている。また、MA分率も本発明で規定する要件を満足しており、母材靭性にも優れている。 It can consider as follows from Tables 1-4 (in addition, the following No. shows the steel plate No. of Table 3, 4). No. 1 to 3, 5 to 9, and 13 to 19 are examples that satisfy the requirements defined in the present invention. Since the steel material contains REM oxide and / or CaO and ZrO 2 , the influence of welding heat Steel material with good toughness of the part is obtained. Further, the MA fraction also satisfies the requirements specified in the present invention, and is excellent in base material toughness.

一方、No.4、10〜12、20〜28は、本発明で規定するいずれかの要件を外れる例である。特に、No.20〜27は、鋼材にREMの酸化物および/またはCaOと、ZrO2の何れか一方を含有していないため、溶接熱影響部の靭性が劣っている。 On the other hand, no. 4, 10-12, 20-28 are examples that do not meet any of the requirements defined in the present invention. In particular, no. Since Nos. 20 to 27 do not contain any one of REM oxide and / or CaO and ZrO 2 in the steel material, the toughness of the weld heat affected zone is inferior.

No.4は、推奨される冷却速度で冷却せず、ベイナイト主体の組織が得られなかったため、引張特性が劣っている。   No. No. 4 was not cooled at the recommended cooling rate, and a bainite-based structure was not obtained, so the tensile properties were inferior.

No.10、11は、推奨される冷却速度での冷却をMsよりも低温域まで行ったため、MAが過剰に生成し、母材靭性に劣る結果となった。   No. In Nos. 10 and 11, since cooling at a recommended cooling rate was performed to a lower temperature range than Ms, MA was generated excessively, resulting in poor base material toughness.

No.12は、推奨される冷却速度で冷却せず、また冷却速度の制御もBfより高温域で終了したため、ベイナイト主体の組織が得られず、引張特性に劣っている。   No. No. 12 was not cooled at the recommended cooling rate, and the control of the cooling rate was finished in a higher temperature range than Bf, so that a bainite-based structure was not obtained and the tensile properties were inferior.

No.28は、MnおよびAlが過剰であり、溶存酸素量も少ないため、規定の酸化物を十分確保できず、HAZ靭性に劣っている。   No. In No. 28, Mn and Al are excessive and the amount of dissolved oxygen is small, so that a prescribed oxide cannot be secured sufficiently, and the HAZ toughness is inferior.

島状マルテンサイトの分率(MA分率)とvTrs(破面遷移温度)の関係を示すグラフである。It is a graph which shows the relationship between the fraction (MA fraction) of island-like martensite, and vTrs (fracture surface transition temperature).

Claims (8)

C:0.03〜0.12%(「質量%」の意味。以下同じ)、
Si:0.5%以下(0%を含まない)、
Mn:1.4〜1.8%、および
N :0.003〜0.01%を含み、
P :0.02%以下(0%を含まない)、
S :0.015%以下(0%を含まない)、および
Al:0.01%以下(0%を含まない)を満足し、
REM:0.001〜0.1%および/またはCa:0.0003〜0.02%と、
Zr:0.001〜0.05%を夫々含有し、
残部が鉄および不可避的不純物からなる鋼材であって、
該鋼材に含まれる全酸化物の組成を測定したときに、REMの酸化物および/またはCaOと、ZrO2を含有し、且つ
全組織に占める島状マルテンサイトの分率が1.1%以下で残部がベイナイト組織であることを特徴とする溶接熱影響部の靭性および母材靭性に優れた鋼材。
C: 0.03 to 0.12% (meaning “mass%”; the same shall apply hereinafter)
Si: 0.5% or less (excluding 0%),
Mn: 1.4-1.8%, and N: 0.003-0.01%,
P: 0.02% or less (excluding 0%),
S: 0.015% or less (not including 0%) and Al: 0.01% or less (not including 0%),
REM: 0.001-0.1% and / or Ca: 0.0003-0.02%,
Zr: 0.001 to 0.05% each contained,
The balance is steel consisting of iron and inevitable impurities,
When the composition of all oxides contained in the steel material was measured, the fraction of island-like martensite containing REM oxide and / or CaO and ZrO 2 and occupying the entire structure was 1.1% or less. And the balance is a bainite structure, and has excellent toughness and base metal toughness in the weld heat-affected zone.
前記REMの酸化物および/またはCaOの合計が5%以上で、且つ前記ZrO2が5%以上を満足するものである請求項1に記載の鋼材。 The steel material according to claim 1, wherein the total of the REM oxide and / or CaO satisfies 5% or more and the ZrO 2 satisfies 5% or more. 前記鋼材が、更に他の元素として、Ti:0.08%以下(0%を含まない)を含むと共に、前記鋼材に含まれる全酸化物の組成を測定したときに、Tiを含有するものである請求項1または2に記載の鋼材。 The steel material further contains Ti: 0.08% or less (not including 0%) as another element, and also contains Ti 2 O 3 when the composition of all oxides contained in the steel material is measured. The steel material according to claim 1 or 2. 前記Tiが0.3%以上を満足するものである請求項3に記載の鋼材。 The steel material according to claim 3, wherein the Ti 2 O 3 satisfies 0.3% or more. 前記鋼材が、更に他の元素として、
Cu:2%以下(0%を含まない)、
Ni:3.5%以下(0%を含まない)、
Cr:3%以下(0%を含まない)、
Mo:1%以下(0%を含まない)、
Nb:0.25%以下(0%を含まない)、
V :0.1%以下(0%を含まない)、および
B :0.005%以下(0%を含まない)
よりなる群から選ばれる1種以上の元素を含むものである請求項1〜4のいずれかに記載の鋼材。
The steel material is still another element,
Cu: 2% or less (excluding 0%),
Ni: 3.5% or less (excluding 0%),
Cr: 3% or less (excluding 0%),
Mo: 1% or less (excluding 0%),
Nb: 0.25% or less (excluding 0%),
V: 0.1% or less (not including 0%), and B: 0.005% or less (not including 0%)
The steel material according to any one of claims 1 to 4, comprising at least one element selected from the group consisting of:
請求項1〜5のいずれかに記載の鋼材を製造する方法であって、
溶存酸素量を0.0020〜0.010%の範囲に調整した溶鋼へ、
REMおよびCaよりなる群から選ばれる少なくとも1種の元素と、Zrを添加することを特徴とする溶接熱影響部の靭性および母材靭性に優れた鋼材の製法。
A method for producing the steel material according to any one of claims 1 to 5,
To the molten steel with the dissolved oxygen content adjusted to the range of 0.0020-0.010%,
A method for producing a steel material excellent in toughness and base metal toughness of a weld heat-affected zone, comprising adding at least one element selected from the group consisting of REM and Ca and Zr.
請求項3〜5のいずれかに記載の鋼材を製造する方法であって、
溶存酸素量を0.0020〜0.010%の範囲に調整した溶鋼へ、
REMおよびCaよりなる群から選ばれる少なくとも1種の元素と、TiとZrを添加することを特徴とする溶接熱影響部の靭性および母材靭性に優れた鋼材の製法。
A method for producing the steel material according to any one of claims 3 to 5,
To the molten steel with the dissolved oxygen content adjusted to the range of 0.0020-0.010%,
A method for producing a steel material excellent in toughness and base metal toughness of a weld heat affected zone, comprising adding at least one element selected from the group consisting of REM and Ca, and Ti and Zr.
上記溶存酸素量を調整した溶鋼へ、REMおよびCaよりなる群から選ばれる少なくとも1種の元素とZrを添加するに先立って、Tiを添加する請求項7に記載の製法。   The process according to claim 7, wherein Ti is added to the molten steel with the dissolved oxygen content adjusted before adding at least one element selected from the group consisting of REM and Ca and Zr.
JP2006073304A 2006-03-16 2006-03-16 Steel with excellent toughness and base metal toughness of weld heat affected zone and its manufacturing method Expired - Fee Related JP4950529B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006073304A JP4950529B2 (en) 2006-03-16 2006-03-16 Steel with excellent toughness and base metal toughness of weld heat affected zone and its manufacturing method
CN200710084708XA CN101037757B (en) 2006-03-16 2007-02-26 Low yield ratio and high tension steel material excellent in toughness of weld heat-affected zone, and process for producing the same
KR1020070025616A KR100899053B1 (en) 2006-03-16 2007-03-15 Low yield ratio and high tension steel material excellent in toughness of weld heat-affected zone, and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006073304A JP4950529B2 (en) 2006-03-16 2006-03-16 Steel with excellent toughness and base metal toughness of weld heat affected zone and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2007247005A true JP2007247005A (en) 2007-09-27
JP4950529B2 JP4950529B2 (en) 2012-06-13

Family

ID=38591622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006073304A Expired - Fee Related JP4950529B2 (en) 2006-03-16 2006-03-16 Steel with excellent toughness and base metal toughness of weld heat affected zone and its manufacturing method

Country Status (1)

Country Link
JP (1) JP4950529B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009138255A (en) * 2007-11-13 2009-06-25 Kobe Steel Ltd High tensile strength thick steel plate for welding, having excellent toughness in heat-affected zone at large heat-input welding
JP2009197267A (en) * 2008-02-20 2009-09-03 Kobe Steel Ltd Steel member having excellent toughness in weld heat affected zone, and method for producing the same
JP2010209433A (en) * 2009-03-11 2010-09-24 Kobe Steel Ltd Steel material superior in toughness of weld heat-affected zone and fatigue characteristics of base metal, and method for manufacturing the same
JP2012046815A (en) * 2010-08-30 2012-03-08 Kobe Steel Ltd METHOD FOR PRODUCING Zr-CONTAINING STEEL
CN103328672A (en) * 2011-01-18 2013-09-25 株式会社神户制钢所 Steel material having superior toughness of welded heat-affected zone, and method for manufacturing same
WO2013190975A1 (en) 2012-06-19 2013-12-27 株式会社神戸製鋼所 Steel material having excellent toughness in weld-heat-affected zone
WO2014045829A1 (en) 2012-09-19 2014-03-27 株式会社神戸製鋼所 Thick steel sheet having excellent welding heat-affected part toughness
CN114196881A (en) * 2021-12-08 2022-03-18 东北大学 High-strength steel with low-temperature welding performance and high-heat input welding performance and production method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03236419A (en) * 1990-02-13 1991-10-22 Nippon Steel Corp Production of thick steel plate excellent in toughness in weld heat-affected zone and lamellar tear resistance
JPH042713A (en) * 1990-04-19 1992-01-07 Nippon Steel Corp Deoxidizing method in steelmaking process
JP2003293079A (en) * 2002-04-09 2003-10-15 Nippon Steel Corp Sour resistant steel for high energy density welding and steel structure
JP2004292844A (en) * 2003-03-25 2004-10-21 Kobe Steel Ltd High toughness steel plate with excellent low-temperature toughness
JP2005232515A (en) * 2004-02-18 2005-09-02 Kobe Steel Ltd Thick steel plate having excellent high heat input welded join toughness

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03236419A (en) * 1990-02-13 1991-10-22 Nippon Steel Corp Production of thick steel plate excellent in toughness in weld heat-affected zone and lamellar tear resistance
JPH042713A (en) * 1990-04-19 1992-01-07 Nippon Steel Corp Deoxidizing method in steelmaking process
JP2003293079A (en) * 2002-04-09 2003-10-15 Nippon Steel Corp Sour resistant steel for high energy density welding and steel structure
JP2004292844A (en) * 2003-03-25 2004-10-21 Kobe Steel Ltd High toughness steel plate with excellent low-temperature toughness
JP2005232515A (en) * 2004-02-18 2005-09-02 Kobe Steel Ltd Thick steel plate having excellent high heat input welded join toughness

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009138255A (en) * 2007-11-13 2009-06-25 Kobe Steel Ltd High tensile strength thick steel plate for welding, having excellent toughness in heat-affected zone at large heat-input welding
JP2009197267A (en) * 2008-02-20 2009-09-03 Kobe Steel Ltd Steel member having excellent toughness in weld heat affected zone, and method for producing the same
JP2010209433A (en) * 2009-03-11 2010-09-24 Kobe Steel Ltd Steel material superior in toughness of weld heat-affected zone and fatigue characteristics of base metal, and method for manufacturing the same
JP2012046815A (en) * 2010-08-30 2012-03-08 Kobe Steel Ltd METHOD FOR PRODUCING Zr-CONTAINING STEEL
CN103328672A (en) * 2011-01-18 2013-09-25 株式会社神户制钢所 Steel material having superior toughness of welded heat-affected zone, and method for manufacturing same
CN103328672B (en) * 2011-01-18 2015-06-03 株式会社神户制钢所 Steel material having superior toughness of welded heat-affected zone, and method for manufacturing same
WO2013190975A1 (en) 2012-06-19 2013-12-27 株式会社神戸製鋼所 Steel material having excellent toughness in weld-heat-affected zone
KR20150015506A (en) 2012-06-19 2015-02-10 가부시키가이샤 고베 세이코쇼 Steel material having excellent toughness in weld-heat-affected zone
WO2014045829A1 (en) 2012-09-19 2014-03-27 株式会社神戸製鋼所 Thick steel sheet having excellent welding heat-affected part toughness
KR20150038664A (en) 2012-09-19 2015-04-08 가부시키가이샤 고베 세이코쇼 Thick steel sheet having excellent welding heat-affected part toughness
CN114196881A (en) * 2021-12-08 2022-03-18 东北大学 High-strength steel with low-temperature welding performance and high-heat input welding performance and production method thereof

Also Published As

Publication number Publication date
JP4950529B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
JP4825057B2 (en) Steel with excellent toughness of weld heat affected zone and its manufacturing method
JP4950528B2 (en) Low yield ratio high strength steel with excellent toughness of heat affected zone and its manufacturing method
JP4515430B2 (en) Steel with excellent toughness and base metal toughness of weld heat affected zone and its manufacturing method
JP5162382B2 (en) Low yield ratio high toughness steel plate
JP4515427B2 (en) Steel with excellent toughness and fatigue crack growth resistance in weld heat affected zone and its manufacturing method
JP5231042B2 (en) Steel material excellent in toughness of weld heat-affected zone and method for producing the same
JP4950529B2 (en) Steel with excellent toughness and base metal toughness of weld heat affected zone and its manufacturing method
JP2019023322A (en) Steel plate and method for manufacturing steel plate
WO2012099119A1 (en) Steel material having superior toughness of welded heat-affected zone, and method for manufacturing same
JP2008291347A (en) Steel material with excellent toughness in weld heat-affected zone, and its manufacturing method
JP2014185364A (en) Steel material excellent in toughness of welded heat affected zone
JP2010095781A (en) Thick steel plate excellent in toughness at basic material and weld heat-affected zone
JP2019023324A (en) Steel plate and method for manufacturing steel plate
JP2011219797A (en) Thick steel plate excellent in toughness of weld heat-affected zone
JP2019023323A (en) Steel plate and method for manufacturing steel plate
JP2003213366A (en) Steel having excellent toughness in base metal and large -small heat input weld heat-affected zone
JP2011127220A (en) Method for manufacturing steel member excellent in toughness at weld heat-affected zone
JP2010121199A (en) Steel having excellent weld heat-affected zone toughness and base metal low temperature toughness, and method for producing the same
JP2013127108A (en) Thick steel plate excellent in toughness of weld heat-affected zone
JP2010168644A (en) Thick steel plate excellent in toughness of welding heat-affected zone
JP5234952B2 (en) Low yield ratio steel material excellent in toughness of weld heat affected zone, and method for producing the same
JP2012092422A (en) Thick steel plate excellent in toughness of weld heat-affected zone
JP2016079461A (en) Thick steel plate for tank excellent in the toughness of weld heat affected zone
JP5520105B2 (en) Steel material excellent in toughness of weld heat-affected zone and method for producing the same
JP5103037B2 (en) Thick steel plate with excellent toughness of base metal and weld heat affected zone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120309

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4950529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees