JP2010121199A - Steel having excellent weld heat-affected zone toughness and base metal low temperature toughness, and method for producing the same - Google Patents

Steel having excellent weld heat-affected zone toughness and base metal low temperature toughness, and method for producing the same Download PDF

Info

Publication number
JP2010121199A
JP2010121199A JP2008298555A JP2008298555A JP2010121199A JP 2010121199 A JP2010121199 A JP 2010121199A JP 2008298555 A JP2008298555 A JP 2008298555A JP 2008298555 A JP2008298555 A JP 2008298555A JP 2010121199 A JP2010121199 A JP 2010121199A
Authority
JP
Japan
Prior art keywords
less
rem
steel
toughness
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008298555A
Other languages
Japanese (ja)
Other versions
JP5234951B2 (en
Inventor
Masahito Kaneko
雅人 金子
Tetsushi Deura
哲史 出浦
Tomoko Sugimura
朋子 杉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008298555A priority Critical patent/JP5234951B2/en
Priority to KR1020090112025A priority patent/KR101169866B1/en
Priority to CN2009102228558A priority patent/CN101736197B/en
Publication of JP2010121199A publication Critical patent/JP2010121199A/en
Application granted granted Critical
Publication of JP5234951B2 publication Critical patent/JP5234951B2/en
Priority to KR1020160019663A priority patent/KR20160025545A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel in which variation in HAZ toughness is reduced, and further, the low temperature toughness of the base metal itself is increased as well, and to provide a method for producing the same. <P>SOLUTION: The invention is characterized in that: (A) the steel comprises inclusions including REM and Zr; (B) solid solution REM and solid solution Zr in the steel satisfy solid solution REM: ≤0.0010% (including 0%) and solid solution Zr: ≤0.0010% (including 0%); and (C), when the metallic structure of the steel is observed by an EBSP (Electron Diffraction Image) method, the steel satisfies inequality; D≤30 (wherein, D denotes the average equivalent circle diameter (μm) of the crystal grains surrounded by large angle boundaries with a crystal orientation difference of ≥15° upon measurement of the orientation difference of the adjoining two crystals by an EBSP method), and inequality; 50≤M (wherein, M denotes the ratio (area%) of the crystal grains surrounded by large angle boundaries with a crystal orientation difference of ≥55° occupied in the whole of the steel). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、橋梁や高層建造物、船舶などの構造物に使用される鋼材に関するものであり、詳細には、溶接した際に熱影響を受ける部位(以下、「溶接熱影響部」または「HAZ」ということがある)の靭性を改善した鋼材、およびその製法に関するものである。   The present invention relates to a steel material used for structures such as bridges, high-rise buildings, and ships, and more specifically, a part that is affected by heat when welding (hereinafter referred to as “welding heat affected zone” or “HAZ”). It is related with the steel material which improved the toughness of, and its manufacturing method.

橋梁や高層建造物、船舶などに使用される鋼材に要求される特性は、近年益々厳しくなっており、とりわけ良好な靭性が求められている。これらの鋼材は、一般的に溶接にて接合されることが多いが、溶接継手部のうち特にHAZは溶接時に熱影響を受けて靭性が劣化しやすいという問題がある。この靭性劣化は溶接時の入熱量が大きくなるほど顕著に現れ、その原因は溶接時の入熱量が大きくなるとHAZの冷却速度が遅くなり、焼入性が低下して粗大な島状マルテンサイトを生成することにあると考えられている。従ってHAZの靭性を改善するには、溶接時の入熱量を極力抑えればよいと考えられる。しかしその一方で、溶接作業効率を高めるうえでは、例えばエレクトロガス溶接、エレクトロスラグ溶接、サブマージ溶接などの溶接入熱量が50kJ/mm以上の大入熱溶接法の採用が望まれる。   The properties required for steel materials used in bridges, high-rise buildings, ships and the like have become increasingly severe in recent years, and particularly good toughness is required. In general, these steel materials are often joined by welding. However, among the welded joint portions, particularly HAZ has a problem that the toughness is easily deteriorated due to thermal influence during welding. This toughness deterioration becomes more prominent as the heat input during welding increases, and the cause is that the larger the heat input during welding, the lower the cooling rate of the HAZ and the lower the hardenability, producing coarse island martensite. It is thought that there is to do. Therefore, in order to improve the toughness of the HAZ, it is considered that the heat input during welding should be suppressed as much as possible. However, on the other hand, in order to increase the welding work efficiency, it is desired to employ a high heat input welding method in which the heat input of welding is 50 kJ / mm or more, such as electrogas welding, electroslag welding, submerged welding, and the like.

そこで本出願人は、大入熱溶接法を採用した場合のHAZ靭性劣化を抑制する鋼材を特許文献1に提案している。この鋼材は、酸化物としてREMの酸化物および/またはCaOと、ZrO2を含有しているところに特徴があり、こうした酸化物は、溶鋼中では液状で存在するため鋼中に微細分散し、しかも溶接時には熱影響を受けても固溶消失しないため、HAZの靭性向上に寄与する。 Therefore, the present applicant has proposed a steel material that suppresses HAZ toughness deterioration in the case of employing a high heat input welding method in Patent Document 1. This steel material is characterized in that it contains REM oxide and / or CaO and ZrO 2 as oxides, and since these oxides exist in liquid form in the molten steel, they are finely dispersed in the steel. In addition, the solid solution does not disappear even if it is affected by heat during welding, which contributes to improved HAZ toughness.

なお、HAZ靭性の向上を狙った技術ではないが、特許文献2には、鋼材中にREMとZr等の元素を含有させるとともに、固溶REMと固溶Zrを積極的に含有させることによって、水素性の超音波探傷欠陥を防止して厚鋼板の内部品質を向上させるとともに、内部品質の健全性を保つ技術が提案されている。この技術では、安定した固溶量を確保するために、Al,Ca,Ti等を複合添加している。   Although it is not a technique aimed at improving the HAZ toughness, Patent Document 2 contains elements such as REM and Zr in the steel material, and by positively containing solid solution REM and solid solution Zr, There has been proposed a technique for preventing the hydrogen-based ultrasonic flaw detection defect to improve the internal quality of the thick steel plate and maintaining the soundness of the internal quality. In this technique, Al, Ca, Ti and the like are added in combination in order to secure a stable solid solution amount.

一方、船舶などに使用される鋼材には高い強度も要求されるが、鋼材を高強度化すると、降伏強度が脆性破壊強度を上回り、弾性変形中に脆性破壊を起こしやすくなる。そのため国際船級協会連合(IACS)の統一規則では、脆性破壊を防止するために破壊力学的手法(K概念)から構造部材ごとに靭性グレードを設定しており、強度クラスの上昇に応じて要求する母材靭性を向上させることで対応している。従って厳しい使用環境下で構造物の安全性を確保するには、上述したように、溶接継手部におけるHAZ靭性が良好であることの他、母材靭性(特に、低温域の母材靭性)が良好であることが重要である。
特開2007−100213号公報 特開平8−120401号公報
On the other hand, steel materials used in ships and the like are also required to have high strength. However, if the strength of the steel materials is increased, the yield strength exceeds the brittle fracture strength, and brittle fracture is likely to occur during elastic deformation. Therefore, according to the unified rules of the International Classification Society (IACS), the toughness grade is set for each structural member from the fracture mechanics method (K concept) in order to prevent brittle fracture, which is required as the strength class increases. This is achieved by improving the base material toughness. Therefore, in order to ensure the safety of the structure under severe use environment, as described above, the HAZ toughness in the welded joint portion is good, and the base material toughness (particularly, the base material toughness in the low temperature region) is It is important to be good.
Japanese Patent Laid-Open No. 2007-1001000 JP-A-8-120401

本発明の目的は、HAZ靭性のバラツキを低減し、しかも母材自体の低温靭性も高められた鋼材を提供することにある。また、本発明の他の目的は、上記鋼材の製造方法を提供することにある。   An object of the present invention is to provide a steel material in which variation in HAZ toughness is reduced and the low-temperature toughness of the base material itself is enhanced. Moreover, the other objective of this invention is to provide the manufacturing method of the said steel material.

上記課題を解決することのできた本発明に係る溶接熱影響部の靭性および母材低温靭性に優れた鋼材は、C:0.04〜0.13%(「質量%」の意味。以下同じ)、Si:0.5%以下(0%を含まない)、Mn:2%以下(0%を含まない)、Ti:0.02%以下(0%を含まない)、およびN:0.01%以下(0%を含まない)を含み、更に、Cu:0.3%以下(0%を含まない)、Ni:0.4%以下(0%を含まない)、およびNb:0.25%以下(0%を含まない)よりなる群から選ばれる少なくとも1種を含み、P:0.02%以下(0%を含まない)、S:0.015%以下(0%を含まない)、およびAl:0.01%以下(0%を含む)を満足すると共に、更に、REM:0.0010〜0.1%と、Zr:0.0010〜0.05%を夫々含有し、残部が鉄および不可避不純物からなる鋼材であり、
(A)前記鋼材は、REMとZrを含有する介在物を含む他、
(B)鋼材中の固溶REMと固溶Zrが、
固溶REM:0.0010%以下(0%を含む)、
固溶Zr :0.0010%以下(0%を含む)を満足し、
(C)鋼材の金属組織を後方散乱電子回折像法(EBSP法)で観察したときに、下記(1)式と(2)式を満足する点に要旨を有する。但し、下記(1)式中、Dは、EBSP法で隣接する2つの結晶の方位差を測定し、結晶方位差が15°以上の大角粒界で囲まれた結晶粒の平均円相当径(μm)を意味する。また、下記(2)式中、Mは、結晶方位差が55°以上の大角粒界で囲まれた結晶粒が鋼材全体に占める割合(面積%)を意味する。
D≦30 ・・・(1)
50≦M ・・・(2)
The steel material excellent in the toughness of the weld heat affected zone and the base material low temperature toughness according to the present invention, which has solved the above-mentioned problems, is C: 0.04 to 0.13% (meaning “mass%”; the same applies hereinafter). Si: 0.5% or less (not including 0%), Mn: 2% or less (not including 0%), Ti: 0.02% or less (not including 0%), and N: 0.01 %: Not more than 0% (not including 0%), Cu: not more than 0.3% (not including 0%), Ni: not more than 0.4% (not including 0%), and Nb: 0.25 %: At least one selected from the group consisting of 0% or less (not including 0%), P: 0.02% or less (not including 0%), S: 0.015% or less (not including 0%) And Al: 0.01% or less (including 0%), REM: 0.0010-0.1%, and Zr: 0 The 0,010 to 0.05% respectively contain a steel balance of iron and inevitable impurities,
(A) The steel material includes inclusions containing REM and Zr,
(B) Solid solution REM and solid solution Zr in steel
Solid solution REM: 0.0010% or less (including 0%),
Solid solution Zr: 0.0010% or less (including 0%) is satisfied,
(C) When the metal structure of a steel material is observed by a backscattered electron diffraction image method (EBSP method), it has a gist in that the following formulas (1) and (2) are satisfied. However, in the following formula (1), D is an EBSP method for measuring an orientation difference between two adjacent crystals, and an average equivalent circle diameter of a crystal grain surrounded by a large-angle grain boundary having a crystal orientation difference of 15 ° or more ( μm). In the following formula (2), M means the ratio (area%) of the crystal grains surrounded by the large-angle grain boundaries having a crystal orientation difference of 55 ° or more to the entire steel material.
D ≦ 30 (1)
50 ≦ M (2)

前記鋼材に含まれる介在物の組成を測定し、該介在物に含まれる元素のうち、O,C,N,S以外の元素の存在比をモル換算し、換算後の元素量全体を1モルとしたときに、REMのモル分率が0.05以上で、Zrのモル分率が0.04以上を満足することが推奨される。   The composition of inclusions contained in the steel material is measured, and the abundance ratio of elements other than O, C, N, and S among the elements contained in the inclusions is converted into moles, and the total amount of elements after conversion is 1 mole. It is recommended that the molar fraction of REM be 0.05 or more and the molar fraction of Zr be 0.04 or more.

前記鋼材は、更に他の元素として、(i)Ca:0.01%以下(0%を含まない)、(ii)B:0.005%以下(0%を含まない)、等を含んでもよい。   The steel material may further contain (i) Ca: 0.01% or less (not including 0%), (ii) B: 0.005% or less (not including 0%), etc. as other elements. Good.

本発明の鋼材は、トータル酸素量[O]1を0.0020〜0.015%の範囲に調整した溶鋼へ、REMとZrを添加して溶存酸素量[O]2を0.0010〜0.0035%の範囲に調整した後、鋳造し、得られた鋼片をAc3点以上、1200℃以下の温度域に加熱後、鋼片の平均温度がAr3点+10℃以上、900℃以下の温度域においては、1パスあたりの最大圧下率を12%以下、累積圧下率を40%以上に制御して熱間圧延し、得られた熱間圧延材の平均温度がAr3点以上の温度域から、熱間圧延材の表面温度が500℃以下の温度域まで平均冷却速度5℃/秒以上で冷却することによって製造することができる。 In the steel material of the present invention, REM and Zr are added to a molten steel in which the total oxygen amount [O] 1 is adjusted in the range of 0.0020 to 0.015%, and the dissolved oxygen amount [O] 2 is 0.0010 to 0. After adjusting to a range of .0035%, casting, and heating the obtained steel slab to a temperature range of Ac 3 point or more and 1200 ° C. or less, the average temperature of the steel slab is Ar 3 point + 10 ° C. or more and 900 ° C. or less. In the temperature range, hot rolling is performed by controlling the maximum rolling reduction per pass to 12% or less and the cumulative rolling reduction to 40% or more, and the average temperature of the obtained hot rolled material is Ar 3 or more. It can be produced by cooling from the temperature range to a temperature range where the surface temperature of the hot-rolled material is 500 ° C. or less at an average cooling rate of 5 ° C./second or more.

前記トータル酸素量[O]1を測定し、このトータル酸素量[O]1に応じて下記(3)式を満足するようにREMとZrを添加して前記溶存酸素量[O]2を調整することが推奨される。但し、下記(3)式中、[REM]と[Zr]は、夫々REMまたはZrの添加量(質量%)であり、[O]1は、REMとZrを添加する前の溶鋼のトータル酸素量(質量%)である。
[REM]+[Zr]≦15×[O]1 ・・・(3)
前記鋼材は、鋼材の表面温度が500℃以下の温度域まで冷却速度5℃/秒以上で冷却した後、500℃以上、Ac1点未満の温度域に加熱して焼き戻しを行なってもよい。
The total oxygen content [O] 1 was measured, the total oxygen content [O] the amount of dissolved oxygen by the addition of REM and Zr so as to satisfy the following formula (3) in response to 1 [O] 2 adjusted It is recommended to do. However, in the following formula (3), [REM] and [Zr] are the addition amount (mass%) of REM or Zr, respectively, [O] 1 is the total oxygen of the molten steel before adding REM and Zr. Amount (% by mass).
[REM] + [Zr] ≦ 15 × [O] 1 (3)
The steel material may be tempered by cooling to a temperature range where the surface temperature of the steel material is 500 ° C. or less at a cooling rate of 5 ° C./second or more and then heating to a temperature range of 500 ° C. or more and less than Ac 1 point. .

本発明によれば、鋼材に含まれる固溶REM量と固溶Zr量を極力低減することで、HAZ靭性のバラツキを抑えることができる。また、本発明によれば、金属組織を観察したときに、結晶方位差が15°以上の大角粒界で囲まれた結晶粒の平均円相当径を30μm以下にすると共に、特に結晶方位差が55°以上の大角粒界で囲まれた結晶粒が鋼材全体に占める割合を50面積%以上とすることで、母材自体の低温靭性を改善できる。   According to the present invention, variation in the HAZ toughness can be suppressed by reducing the amount of the solid solution REM and the amount of the solid solution Zr contained in the steel as much as possible. In addition, according to the present invention, when the metal structure is observed, the average equivalent circle diameter of the crystal grains surrounded by the large-angle grain boundaries having a crystal orientation difference of 15 ° or more is set to 30 μm or less. The low temperature toughness of the base material itself can be improved by setting the ratio of the crystal grains surrounded by the large-angle boundaries of 55 ° or more to the entire steel material to 50 area% or more.

本発明者らは、REMとZrを鋼材に複合添加して溶接継手部のHAZ靭性を向上させた鋼材について、HAZ靭性のバラツキを抑えると共に、母材自体の靭性を高めるために検討を重ねた。その結果、(A)REMとZrを鋼材に複合添加し、介在物中にREMとZrを含有するように調整してHAZ靭性を高めることを前提とし、更に、(B)鋼材に含まれる固溶REM量と固溶Zr量をできるだけ低減すれば、局所的に靭性が劣化する現象を防止でき、HAZ靭性のバラツキを抑えることができること、また、(C)鋼材の金属組織のうち、結晶方位差が15°以上の大角粒界で囲まれた結晶粒の大きさと、結晶方位差が55°以上の大角粒界で囲まれた結晶粒の分率を適切に制御すれば、母材自体の低温靭性を改善できることを見出し、本発明を完成した。以下、(A)〜(C)について詳細に説明する。   The present inventors have repeatedly studied in order to suppress the HAZ toughness variation and increase the toughness of the base metal itself, with respect to the steel material in which HAZ toughness of the welded joint portion is improved by adding REM and Zr to the steel material. . As a result, it is assumed that (A) REM and Zr are combined and added to the steel, and the inclusions are adjusted to contain REM and Zr to increase the HAZ toughness. Furthermore, (B) the solids contained in the steel If the amount of dissolved REM and the amount of solid solution Zr are reduced as much as possible, the phenomenon of local deterioration of toughness can be prevented and variation in HAZ toughness can be suppressed, and (C) the crystal orientation of the metal structure of the steel material. By appropriately controlling the size of the crystal grains surrounded by the large-angle grain boundaries having a difference of 15 ° or more and the fraction of crystal grains surrounded by the large-angle grain boundaries having a crystal orientation difference of 55 ° or more, The present inventors have found that low temperature toughness can be improved and completed the present invention. Hereinafter, (A) to (C) will be described in detail.

[(A)溶接継手部のHAZ靭性について]
本発明の鋼材は、REMとZrを含有する介在物を含んでいる。「介在物中にREMとZrを含有する」とは、(a)REMの単独介在物とZrの単独介在物を含有するか、あるいは(b)REMとZrを含む複合介在物を含有するか、(c)REMの単独介在物とZrの単独介在物を含有すると共に、REMとZrを含む複合介在物を含有することを意味する。
[(A) HAZ toughness of welded joint]
The steel material of the present invention includes inclusions containing REM and Zr. "Contains REM and Zr in the inclusion" means (a) contains a single inclusion of REM and a single inclusion of Zr or (b) contains a composite inclusion containing REM and Zr (C) means that it contains a single inclusion of REM and a single inclusion of Zr, and a composite inclusion containing REM and Zr.

REMの単独介在物としては、REMの酸化物やREMの硫化物などの形態が挙げられ、Zrの単独介在物としては、Zrの酸化物やZrの炭化物、Zrの窒化物などの形態が挙げられる。REMとZrの複合介在物としては、REMとZrを含む酸化物、硫化物、或いは酸硫化物などの形態が挙げられる。なお、これらの介在物は、更に窒化物(例えば、TiNなど)や他の硫化物(例えば、CaSやMnSなど)と共存した形態であってもよい。なお、以下では説明の便宜上、単独介在物と複合酸化物をまとめて「介在物」と呼ぶことがある。   Examples of REM single inclusions include REM oxides and REM sulfides. Examples of Zr single inclusions include Zr oxides, Zr carbides, and Zr nitrides. It is done. Examples of the composite inclusion of REM and Zr include oxides, sulfides, and oxysulfides containing REM and Zr. In addition, these inclusions may be in the form of coexistence with nitride (for example, TiN) or other sulfide (for example, CaS, MnS). Hereinafter, for convenience of explanation, the single inclusion and the composite oxide may be collectively referred to as “inclusion”.

REMとZrの介在物は、溶接時に熱影響を受けて1400℃レベルの高温になっても固溶消失しないため、これらの介在物を含有させれば、溶接時のHAZにおいて、オーステナイト粒の粗大化を抑制したり、冷却時における粒内変態を促進することができるため、HAZ組織を微細化でき、HAZの靭性を一段と改善できる。   Since inclusions of REM and Zr are affected by heat during welding and do not disappear as a solid solution even at a high temperature of 1400 ° C., if these inclusions are included, the coarse austenite grains in the HAZ during welding Therefore, the HAZ structure can be refined and the toughness of the HAZ can be further improved.

しかもREMとZrを併用添加して鋼材中に介在物として含有させることにより、鋼材(母材)の靭性劣化の原因となる粗大なZrの単独炭化物や粗大なREMの硫化物の生成を防止でき、結果として母材の靭性劣化を抑えつつHAZの靭性を向上させることができる。即ち、REMまたはZrを単独で添加する場合は、介在物の個数を増やすためには、REMまたはZrの添加量を増やさなければならないが、REMまたはZrの添加量を増やし過ぎるとREMの単独介在物やZrの単独介在物のサイズが大きくなり、却ってHAZ靭性を劣化させる。よってREMまたはZrを単独で添加する場合は、添加量に制限があり、そのためにREMやZrの添加量を増量できず、微細な介在物量も一定以上に増やすことができなかった。従ってHAZ靭性を向上させることができなかった。   Moreover, by adding REM and Zr together and including them as inclusions in the steel material, it is possible to prevent the formation of coarse Zr single carbides and coarse REM sulfides that cause toughness deterioration of the steel (base material). As a result, the toughness of the HAZ can be improved while suppressing toughness deterioration of the base material. That is, when adding REM or Zr alone, in order to increase the number of inclusions, it is necessary to increase the amount of REM or Zr added. The size of the inclusions and single inclusions of Zr is increased, and the HAZ toughness is deteriorated. Therefore, when REM or Zr is added alone, there is a limit to the amount of addition, so that the amount of REM or Zr added cannot be increased, and the amount of fine inclusions cannot be increased beyond a certain level. Therefore, the HAZ toughness could not be improved.

これに対し、REMとZrを含む介在物を鋼材中に含有させれば、REMを単独で含有させるか、Zrを単独で含有させる場合よりも鋼材中に含まれる介在物の絶対量を増大させることができるため、HAZの靭性を一層向上させることができる。このように鋼材中にREMとZrの介在物を含有させることにより、HAZの靭性を向上させることができる。従ってHAZの靭性を向上させるには、REMとZrを積極的に添加して鋼材中に介在物を多く生成させることが望ましいと考えられる。   On the other hand, if inclusions containing REM and Zr are contained in the steel material, the absolute amount of inclusions contained in the steel material is increased as compared with the case where REM is contained alone or Zr is contained alone. Therefore, the toughness of HAZ can be further improved. Thus, by including inclusions of REM and Zr in the steel material, the toughness of the HAZ can be improved. Therefore, in order to improve the toughness of HAZ, it is desirable that REM and Zr are positively added to generate a lot of inclusions in the steel material.

本発明の鋼材は、該鋼材に含まれる介在物の組成を測定し、該介在物を構成する元素のうち、O,C,N,S以外の元素の存在比をモル換算し、換算後の元素量全体を1モルとしたときに、REMのモル分率が0.05以上で、Zrのモル分率が0.04以上を満足することが好ましい。REMのモル分率は0.10以上であることが好ましく、より好ましくは0.15以上、更に好ましくは0.20以上である。一方、Zrのモル分率は0.08以上であることが好ましく、より好ましくは0.10以上、更に好ましくは0.15以上である。   The steel material of the present invention measures the composition of inclusions contained in the steel material, converts the abundance ratio of elements other than O, C, N, and S among the elements constituting the inclusions, When the total amount of elements is 1 mol, it is preferable that the molar fraction of REM is 0.05 or more and the molar fraction of Zr is 0.04 or more. The molar fraction of REM is preferably 0.10 or more, more preferably 0.15 or more, and still more preferably 0.20 or more. On the other hand, the molar fraction of Zr is preferably 0.08 or more, more preferably 0.10 or more, and still more preferably 0.15 or more.

上記REMのモル分率と上記Zrのモル分率の合計は0.10以上であるのがよい。合計が0.10未満では、HAZの靭性向上に寄与する介在物量が不足し、HAZの靭性を充分に改善できない。合計は、より好ましくは0.15以上、更に好ましくは0.20以上である。   The sum of the molar fraction of the REM and the molar fraction of the Zr is preferably 0.10 or more. If the total is less than 0.10, the amount of inclusions contributing to the improvement of HAZ toughness is insufficient, and the HAZ toughness cannot be sufficiently improved. The total is more preferably 0.15 or more, and still more preferably 0.20 or more.

なお、REMの介在物とZrの介在物以外の残りの介在物の組成は特に限定されないが、例えばCaOやSiO2、Al23、MnO、TiN、TiCであればよい。 The composition of the remaining inclusions other than the REM inclusion and the Zr inclusion is not particularly limited, but may be, for example, CaO, SiO 2 , Al 2 O 3 , MnO, TiN, or TiC.

鋼材に含まれる介在物の組成は、鋼材の断面を例えば電子線マイクロプローブX線分析計(Electron Probe X−ray Micro Analyzer;EPMA)で観察し、観察視野内に認められる介在物を定量分析すれば測定できる。EPMAの観察は、例えば加速電圧を7kV,試料電流を0.003μA,観察視野面積を1cm2とし、介在物の中央部での組成を特性X線の波長分散分光により定量分析する。分析対象とする介在物の大きさは、最大径が0.2μm以上のものとし、分析個数は無作為に選択した100個とする。 The composition of inclusions contained in the steel material is determined by observing the cross section of the steel material with, for example, an electron probe X-ray micro analyzer (EPMA) and quantitatively analyzing the inclusions observed in the observation field. Can be measured. In the EPMA observation, for example, the acceleration voltage is 7 kV, the sample current is 0.003 μA, the observation visual field area is 1 cm 2, and the composition at the center of the inclusion is quantitatively analyzed by wavelength dispersion spectroscopy of characteristic X-rays. The size of inclusions to be analyzed is a maximum diameter of 0.2 μm or more, and the number of analyzes is 100 selected at random.

分析対象元素は、O,C,N,S以外の元素とし、本発明の鋼材の組成を考慮すれば、分析対象元素は、Al,Mn,Si,Ti,Zr,Ca,REM(例えば、LaとCe)とすればよい。介在物に含まれるAl,Mn,Si,Ti,Zr,CaおよびREMの存在比をモル換算し、換算後の元素量全体を1モルとしたときに、分析対象とする介在物に含まれる各元素のモル分率を算出すればよい。   The analysis target element is an element other than O, C, N, and S, and considering the composition of the steel material of the present invention, the analysis target element is Al, Mn, Si, Ti, Zr, Ca, REM (for example, La And Ce). When the abundance ratio of Al, Mn, Si, Ti, Zr, Ca and REM contained in inclusions is converted into moles, and the total amount of elements after conversion is set to 1 mole, each inclusion contained in the inclusions to be analyzed What is necessary is just to calculate the mole fraction of an element.

[(B)溶接継手部のHAZ靭性のバラツキについて]
REMとZrの含有量を多くした鋼材を溶接し、HAZの靭性を複数個所で測定したところ、特に熱影響の大きいボンド部(HAZのうち特に溶接金属に近接した部位)近傍では、局所的に靭性が低下し、測定値がバラつくことが判明した。そこで局所的に靭性が低下した部分の組織を観察したところ、粒界にREMやZrが偏析していることが明らかになった。このREMやZrの偏析を低減すべく検討を重ねたところ、鋼材中の固溶REM量と固溶Zr量を低減すればよいことを見出した。
[(B) Variation in HAZ toughness of welded joints]
Welded steel with increased REM and Zr contents, and measured the toughness of HAZ at multiple locations. Especially in the vicinity of the bond part (part of HAZ close to the weld metal) that has a large thermal effect, It was found that the toughness decreased and the measured values varied. Then, when the structure of the part where the toughness fell locally was observed, it became clear that REM and Zr were segregating at the grain boundary. As a result of repeated studies to reduce the segregation of REM and Zr, it was found that the amount of solute REM and the amount of solute Zr in the steel material should be reduced.

即ち、本発明の鋼材は、固溶REM:0.0010%以下(0%を含む)と、固溶Zr:0.0010%以下(0%を含む)を満足することが重要である。鋼材中の固溶REM量が0.0010%を超えるか、固溶Zr量が0.0010%を超えると、溶接時に熱影響を受けたときに、REMやZrが粒界に偏析して靭性を局所的に低下させる。従って固溶REM量は0.0010%以下とし、好ましくは0.0008%以下、より好ましくは0.0005%以下とする。固溶Zr量は0.0010%以下とし、好ましくは0.0008%以下、より好ましくは0.0005%以下とする。固溶REM量と固溶Zr量は、できるだけ低減することがよく、最も好ましくは0%である。   That is, it is important for the steel material of the present invention to satisfy a solid solution REM: 0.0010% or less (including 0%) and a solid solution Zr: 0.0010% or less (including 0%). If the amount of solute REM in the steel material exceeds 0.0010% or the amount of solute Zr exceeds 0.0010%, REM and Zr segregate at the grain boundaries when subjected to thermal effects during welding, and toughness Is reduced locally. Therefore, the solid solution REM content is 0.0010% or less, preferably 0.0008% or less, more preferably 0.0005% or less. The amount of solid solution Zr is 0.0010% or less, preferably 0.0008% or less, more preferably 0.0005% or less. The amount of solid solution REM and the amount of solid solution Zr should be reduced as much as possible, and most preferably 0%.

上記固溶REMと上記固溶Zrの合計は、0.0015%以下であることが好ましく、より好ましくは0.0010%以下である。   The total of the solid solution REM and the solid solution Zr is preferably 0.0015% or less, more preferably 0.0010% or less.

鋼材に含まれる固溶REM量は、後述する実施例に示すように、ICP[Inductively Coupled Plasma;誘導結合プラズマ]−MS法で分析して算出されるREM含有量(トータルREM含有量)から、電解抽出とICP−MSによって算出される鋼材に含まれる介在物に含有するREM量を引くことによって算出すればよい。固溶Zr量についても同様に、Zr含有量(トータルZr含有量)から鋼材に含まれる介在物に含有するZr量を引くことによって算出すればよい。   From the REM content (total REM content) calculated by analyzing by ICP [Inductively Coupled Plasma] -MS method, as shown in the examples described later, What is necessary is just to calculate by subtracting the amount of REM contained in the inclusion contained in the steel material calculated by electrolytic extraction and ICP-MS. Similarly, the solid solution Zr content may be calculated by subtracting the Zr content contained in the inclusions contained in the steel material from the Zr content (total Zr content).

[(C)母材自体の低温靭性について]
本発明の鋼材は、金属組織を後方散乱電子回折像法(EBSP法)で観察したときに、下記(1)式と(2)式を満足している必要がある。両方の式を満足することで、母材自体の低温靭性が改善される。
D≦30 ・・・(1)
50≦M ・・・(2)
[(C) Low temperature toughness of base metal itself]
The steel material of the present invention needs to satisfy the following formulas (1) and (2) when the metal structure is observed by a backscattered electron diffraction image method (EBSP method). Satisfying both equations improves the low temperature toughness of the base metal itself.
D ≦ 30 (1)
50 ≦ M (2)

上記(1)式中、Dは、EBSP法で隣接する2つの結晶の方位差を測定し、結晶方位差が15°以上の大角粒界で囲まれた結晶粒の平均円相当径(μm)を意味している。本発明では、このDの値を30μm以下とする。脆性亀裂は、結晶方位差が15°以上の大角粒界で屈曲したり、迂回したり、或いは停留することが一般的に知られている。そのため、結晶方位差が15°以上の大角粒界で囲まれた結晶粒を微細化することで、脆性亀裂が屈曲・迂回・停留する位置が増加するため、衝撃特性が上昇し、母材自体の低温靭性が高くなる。Dの値は小さいほど良く、好ましくは28μm以下であり、より好ましくは25μm以下である。   In the above formula (1), D measures the orientation difference between two adjacent crystals by the EBSP method, and the average equivalent circle diameter (μm) of the crystal grains surrounded by a large-angle grain boundary with a crystal orientation difference of 15 ° or more. Means. In the present invention, the value of D is set to 30 μm or less. It is generally known that a brittle crack is bent, detoured, or retained at a large-angle grain boundary having a crystal orientation difference of 15 ° or more. Therefore, by refining the crystal grains surrounded by large-angle grain boundaries with a crystal orientation difference of 15 ° or more, the position where the brittle crack is bent, detoured and retained increases, so the impact characteristics are increased and the base metal itself The low temperature toughness is increased. The smaller the value of D, the better, preferably 28 μm or less, and more preferably 25 μm or less.

上記(2)式中、Mは、結晶方位差が55°以上の大角粒界で囲まれた結晶粒が鋼材全体に占める割合(面積%)を意味している。本発明では、このMの値を50面積%以上とする。結晶方位差が15°以上の大角粒界による脆性亀裂の屈曲・迂回・停留作用は、大角粒界のなかでも特に結晶方位差が55°以上の大角粒界によって一段と発揮されるからである。そこで本発明においても結晶方位差が55°以上の大角粒界で囲まれた結晶粒が鋼材全体に占める割合を50面積%以上とする。Mの値は、好ましくは55面積%以上であり、より好ましくは60面積%以上である。   In the above formula (2), M means the ratio (area%) of crystal grains surrounded by large-angle grain boundaries having a crystal orientation difference of 55 ° or more to the entire steel material. In the present invention, the value of M is 50 area% or more. This is because brittle crack bending, detouring, and retention due to large-angle grain boundaries with a crystal misorientation of 15 ° or more are further exhibited by large-angle grain boundaries with a crystal misorientation of 55 ° or more. Therefore, also in the present invention, the ratio of crystal grains surrounded by large-angle grain boundaries having a crystal orientation difference of 55 ° or more to the entire steel material is set to 50 area% or more. The value of M is preferably 55 area% or more, more preferably 60 area% or more.

金属組織の観察は、鋼材の板厚をt(mm)としたときに、板厚方向のt/4位置で行なう。具体的な観察手順は、後記の実施例の項で説明する。   The observation of the metal structure is performed at a t / 4 position in the thickness direction when the thickness of the steel material is t (mm). A specific observation procedure will be described in the section of the example below.

[鋼材の金属組織について]
本発明の鋼材は、ベイナイト主体の組織から構成される。ベイナイト主体とすることで鋼材の強度を確保できる。ベイナイト主体とは、金属組織を観察したときに、ベイナイトの面積率が80%以上であることを意味する。本発明の鋼材は、ベイナイトのみから構成されていてもよく、ベイナイト以外の組織としては、マルテンサイトやフェライトなどが生成していてもよい。なお、強度低下を防止するためにフェライト組織は少ないほどよく、おおむね4面積%未満であることが好ましい。
[Metal structure of steel]
The steel material of the present invention is composed of a bainite-based structure. By using bainite as a main component, the strength of the steel material can be secured. By bainite-based is meant that the area ratio of bainite is 80% or more when the metal structure is observed. The steel material of this invention may be comprised only from bainite, and martensite, a ferrite, etc. may produce | generate as structure | tissues other than bainite. In order to prevent a decrease in strength, the ferrite structure is preferably as small as possible, and is preferably less than 4% by area.

[成分組成について]
次に、本発明の鋼材(母材)における成分組成について説明する。本発明の鋼材は、REM:0.0010〜0.1%とZr:0.0010〜0.05%を含有するところに特徴がある。こうした範囲を定めた理由は以下の通りである。
[About component composition]
Next, the component composition in the steel material (base material) of the present invention will be described. The steel material of the present invention is characterized in that it contains REM: 0.0010 to 0.1% and Zr: 0.0010 to 0.05%. The reasons for setting these ranges are as follows.

REMおよびZrは、鋼材中にREMとZrの単独介在物もしくは複合介在物を形成してHAZの靭性向上に寄与する元素である。   REM and Zr are elements that contribute to improving the toughness of HAZ by forming single inclusions or composite inclusions of REM and Zr in the steel material.

REMは、0.0010%以上とすべきであり、好ましくは0.0015%以上、より好ましくは0.002%以上である。しかし過剰に添加すると、粗大な介在物(例えば、酸化物など)が生成して母材の靭性が劣化するため、0.1%以下に抑えるべきである。好ましくは0.09%以下であり、より好ましくは0.08%以下とする。   The REM should be 0.0010% or more, preferably 0.0015% or more, and more preferably 0.002% or more. However, if added excessively, coarse inclusions (for example, oxides) are generated and the toughness of the base material deteriorates, so it should be suppressed to 0.1% or less. Preferably it is 0.09% or less, More preferably, it is 0.08% or less.

なお、本発明において、REMとは、ランタノイド元素(LaからLuまでの15元素)およびSc(スカンジウム)とY(イットリウム)を含む意味であり、これらの元素のなかでも、La、CeおよびYよりなる群から選ばれる少なくとも1種の元素を含有することが好ましく、より好ましくはLaおよび/またはCeを含有するのがよい。   In the present invention, REM means a lanthanoid element (15 elements from La to Lu) and Sc (scandium) and Y (yttrium). Among these elements, La, Ce and Y It is preferable to contain at least one element selected from the group consisting of, and more preferably La and / or Ce.

Zrは、0.0010%以上とすべきであり、好ましくは0.0015%以上、より好ましくは0.002%以上である。しかし過剰に添加すると、粗大なZrの炭化物が生成して母材の靭性が劣化するため、0.05%以下に抑えるべきである。好ましくは0.04%以下であり、より好ましくは0.03%以下とする。   Zr should be 0.0010% or more, preferably 0.0015% or more, and more preferably 0.002% or more. However, if added excessively, coarse Zr carbide is generated and the toughness of the base material deteriorates, so it should be suppressed to 0.05% or less. Preferably it is 0.04% or less, More preferably, it is 0.03% or less.

本発明の鋼材は、REMとZrを含むほか、基本元素として、C:0.04〜0.13%、Si:0.5%以下(0%を含まない)、Mn:2%以下(0%を含まない)、Ti:0.02%以下(0%を含まない)、およびN:0.01%以下(0%を含まない)を含有し、更に、Cu:0.3%以下(0%を含まない)、Ni:0.4%以下(0%を含まない)、およびNb:0.25%以下(0%を含まない)よりなる群から選ばれる少なくとも1種の元素を含むものである。このような範囲を定めた理由は以下の通りである。   In addition to containing REM and Zr, the steel material of the present invention includes, as basic elements, C: 0.04 to 0.13%, Si: 0.5% or less (not including 0%), Mn: 2% or less (0 %), Ti: 0.02% or less (not including 0%), and N: 0.01% or less (not including 0%), and Cu: 0.3% or less (not including At least one element selected from the group consisting of Ni: 0.4% or less (not including 0%), and Nb: 0.25% or less (not including 0%). It is a waste. The reason for setting such a range is as follows.

Cは、鋼材(母材)の強度を確保するために欠くことのできない元素であり、0.04%以上含有させる必要がある。Cは、0.05%以上含有させることが好ましく、より好ましくは0.06%以上とする。しかし0.13%を超えると、溶接時にHAZに島状マルテンサイトが多く生成してHAZの靭性劣化を招くばかりでなく、溶接性にも悪影響を及ぼす。従ってCは0.13%以下、好ましくは0.12%以下、より好ましくは0.11%以下に抑える必要がある。   C is an element indispensable for securing the strength of the steel material (base material), and needs to be contained by 0.04% or more. C is preferably contained at 0.05% or more, more preferably 0.06% or more. However, if it exceeds 0.13%, a lot of island martensite is generated in the HAZ at the time of welding and not only causes deterioration of the toughness of the HAZ, but also adversely affects the weldability. Therefore, C must be suppressed to 0.13% or less, preferably 0.12% or less, more preferably 0.11% or less.

Siは、脱酸作用を有すると共に鋼材(母材)の強度向上に寄与する元素である。こうした効果を有効に発揮させるには、0.02%以上含有させることが好ましく、より好ましくは0.05%以上、更に好ましくは0.1%以上含有させるのがよい。しかし0.5%を超えると、鋼材(母材)の溶接性や母材靭性が劣化するため、0.5%以下に抑える必要がある。好ましくは0.45%以下であり、より好ましくは0.4%以下に抑えるのがよい。なお、HAZに更なる高靭性が求められる場合は、Siは0.3%以下に抑えるのがよい。より好ましくは0.05%以下であり、更に好ましくは0.01%以下である。但し、このようにSi含有量を抑えるとHAZの靭性は向上するが、強度は低下する傾向がある。   Si is an element that has a deoxidizing action and contributes to improving the strength of the steel (base material). In order to exhibit such an effect effectively, it is preferable to contain 0.02% or more, more preferably 0.05% or more, and still more preferably 0.1% or more. However, if it exceeds 0.5%, the weldability and base material toughness of the steel (base material) deteriorate, so it is necessary to keep it to 0.5% or less. It is preferably 0.45% or less, and more preferably 0.4% or less. In addition, when the further high toughness is calculated | required by HAZ, it is good to suppress Si to 0.3% or less. More preferably, it is 0.05% or less, More preferably, it is 0.01% or less. However, when the Si content is suppressed in this way, the toughness of the HAZ is improved, but the strength tends to decrease.

Mnは、鋼材(母材)の強度向上に寄与する元素であり、こうした効果を有効に発揮させるには、0.5%以上含有させることが好ましい。より好ましくは0.7%以上、更に好ましくは0.8%以上である。しかし2%を超えて過剰に含有させると、HAZ靭性が劣化すると共に、鋼材(母材)の溶接性が劣化する。従ってMn量は2%以下に抑える必要がある。好ましくは1.8%以下であり、より好ましくは1.6%以下である。   Mn is an element that contributes to improving the strength of the steel material (base material), and it is preferable to contain 0.5% or more in order to effectively exhibit these effects. More preferably, it is 0.7% or more, More preferably, it is 0.8% or more. However, if it is contained in excess of 2%, the HAZ toughness deteriorates and the weldability of the steel (base material) deteriorates. Therefore, the amount of Mn needs to be suppressed to 2% or less. Preferably it is 1.8% or less, More preferably, it is 1.6% or less.

Tiは、鋼材中にTiNなどの窒化物やTi酸化物を生成してHAZの靭性向上に寄与する元素である。こうした効果を有効に発揮させるには、Tiは0.005%以上含有させることが好ましく、より好ましくは0.007%以上、更に好ましくは0.010%以上とする。しかし過剰に添加すると鋼材(母材)の靭性を劣化させるため、0.02%以下に抑えるべきである。好ましくは0.018%以下であり、より好ましくは0.016%以下とする。   Ti is an element that contributes to improving the toughness of the HAZ by generating a nitride such as TiN or Ti oxide in the steel material. In order to exert such an effect effectively, Ti is preferably contained in an amount of 0.005% or more, more preferably 0.007% or more, and further preferably 0.010% or more. However, if added excessively, the toughness of the steel (base material) is deteriorated, so it should be suppressed to 0.02% or less. Preferably it is 0.018% or less, More preferably, you may be 0.016% or less.

Nは、窒化物(例えば、ZrNやTiNなど)を析出する元素であり、該窒化物は溶接時にHAZに生成するオーステナイト粒の粗大化を防止してフェライト変態を促進するため、HAZ靭性を向上させるのに寄与する。こうした効果を有効に発揮させるには、0.002%以上含有させるのが好ましい。より好ましくは0.003%以上である。Nは多いほどオーステナイト粒の微細化が促進されるため、HAZの靭性向上に有効に作用する。しかし0.01%を超えると、固溶N量が増大して母材の靭性が劣化する。従ってNは0.01%以下に抑える必要があり、好ましくは0.009%以下、より好ましくは0.008%以下とする。   N is an element that precipitates nitrides (for example, ZrN and TiN). The nitrides prevent austenite grains formed in the HAZ during welding and promote ferrite transformation, thereby improving HAZ toughness. Contributes to In order to exhibit such an effect effectively, it is preferable to contain 0.002% or more. More preferably, it is 0.003% or more. The more N, the more refined austenite grains are promoted, which effectively works to improve the toughness of HAZ. However, if it exceeds 0.01%, the amount of solute N increases and the toughness of the base material deteriorates. Therefore, N must be suppressed to 0.01% or less, preferably 0.009% or less, more preferably 0.008% or less.

Cu、Ni、Nbは、いずれも鋼材の強度を高める元素である。特に、低温靭性が求められる船舶等に用いられる鋼材には、良好な母材靭性とHAZ靭性の他、強度も求められるため、本発明の鋼材は、必須元素として、少なくとも1種の元素を含有する必要がある。好ましくはCuとNiを両方含有するか、Nbのみを含有すればよい。   Cu, Ni, and Nb are all elements that increase the strength of the steel material. In particular, steel materials used in ships and the like that require low-temperature toughness require strength in addition to good base material toughness and HAZ toughness. Therefore, the steel material of the present invention contains at least one element as an essential element. There is a need to. Preferably, both Cu and Ni may be contained, or only Nb may be contained.

Cuは、鋼材を固溶強化させる元素であり、こうした効果を有効に発揮させるには、0.05%以上含有させることが好ましい。より好ましくは0.1%以上であり、更に好ましくは0.2%以上である。しかし0.3%を超えて含有させると、鋼材(母材)の靭性を低下させるため、Cuは0.3%以下に抑えるのがよい。好ましくは0.28%以下であり、より好ましくは0.25%以下とする。   Cu is an element for solid solution strengthening of the steel material, and in order to exhibit such an effect effectively, it is preferable to contain 0.05% or more. More preferably, it is 0.1% or more, More preferably, it is 0.2% or more. However, if the content exceeds 0.3%, the toughness of the steel (base material) is lowered, so Cu is preferably suppressed to 0.3% or less. Preferably it is 0.28% or less, More preferably, you may be 0.25% or less.

Niは、鋼材の強度を高めると共に、鋼材の靭性を向上させるのに有効に作用する元素であり、こうした作用を発揮させるには、0.05%以上含有させることが好ましい。より好ましくは0.1%以上であり、更に好ましくは0.2%以上とする。Niは多いほど好ましいが、高価な元素であるため経済的観点から0.4%以下に抑えることが好ましい。より好ましくは0.38%以下であり、更に好ましくは0.35%以下とする。   Ni is an element that effectively acts to increase the strength of the steel material and improve the toughness of the steel material. In order to exert such an effect, Ni is preferably contained in an amount of 0.05% or more. More preferably, it is 0.1% or more, More preferably, it is 0.2% or more. The more Ni, the better. However, since it is an expensive element, it is preferable to suppress it to 0.4% or less from an economical viewpoint. More preferably, it is 0.38% or less, More preferably, it is 0.35% or less.

Nbは、再結晶抑制作用を有する元素であり、組織の微細化に有効に寄与する元素である。こうした作用を有効に発揮させるには、0.005%以上含有させるのが好ましい。より好ましくは0.01%以上であり、更に好ましくは0.03%以上である。しかし0.25%を超えると母材の靭性を劣化させるので、Nbは0.25%以下に抑えるのが好ましい。より好ましくは0.23%以下であり、更に好ましくは0.2%以下とする。   Nb is an element having a recrystallization inhibitory effect and is an element that contributes effectively to refinement of the structure. In order to exhibit such an action effectively, it is preferable to contain 0.005% or more. More preferably, it is 0.01% or more, More preferably, it is 0.03% or more. However, if it exceeds 0.25%, the toughness of the base material is deteriorated, so Nb is preferably suppressed to 0.25% or less. More preferably, it is 0.23% or less, and still more preferably 0.2% or less.

本発明の鋼材は、上記元素を含むほか、P:0.02%以下(0%を含まない)、S:0.015%以下(0%を含まない)およびAl:0.01%以下(0%を含む)を満足するものである。このような範囲を定めた理由は以下の通りである。   The steel material of the present invention contains the above elements, P: 0.02% or less (not including 0%), S: 0.015% or less (not including 0%), and Al: 0.01% or less ( 0% is included). The reason for setting such a range is as follows.

Pは、偏析し易い元素であり、特に鋼材中の結晶粒界に偏析して靭性を劣化させる。従ってPは0.02%以下に抑制する必要があり、好ましくは0.018%以下、より好ましくは0.015%以下とする。   P is an element that easily segregates, and particularly segregates at a grain boundary in the steel material to deteriorate toughness. Therefore, P must be suppressed to 0.02% or less, preferably 0.018% or less, more preferably 0.015% or less.

Sは、Mnと結合して硫化物(MnS)を生成し、母材の靭性や板厚方向の延性を劣化させる有害な元素である。従ってSは0.015%以下に抑えるべきであり、好ましくは0.012%以下、より好ましくは0.008%以下、特に0.006%以下とする。   S is a harmful element that combines with Mn to produce sulfide (MnS) and degrades the toughness of the base material and the ductility in the thickness direction. Therefore, S should be suppressed to 0.015% or less, preferably 0.012% or less, more preferably 0.008% or less, and particularly 0.006% or less.

Alは、脱酸力の強い元素であり、過剰に添加すると酸化物を還元して所望の酸化物を生成し難くなる。従ってAlは0.01%以下に抑える必要があり、好ましくは0.0090%以下、より好ましくは0.0080%以下とする。なお、Alは0%であってもよい。   Al is an element having a strong deoxidizing power, and when added in excess, the oxide is reduced and it becomes difficult to produce a desired oxide. Therefore, Al must be suppressed to 0.01% or less, preferably 0.0090% or less, more preferably 0.0080% or less. Al may be 0%.

本発明で規定する含有元素は上記の通りであり、残部は鉄および不可避不純物である。該不可避不純物として、原料、資材、製造設備等の状況によって持ち込まれる元素(例えば、MgやAs,Seなど)の混入が許容され得る。   The contained elements specified in the present invention are as described above, and the balance is iron and inevitable impurities. As the inevitable impurities, mixing of elements (for example, Mg, As, Se, etc.) brought in depending on the situation of raw materials, materials, manufacturing facilities, etc. can be allowed.

本発明の鋼材は、
(i)HAZ靭性を向上させるために、Ca:0.01%以下(0%を含まない)を含有することや、
(ii)鋼材の強度を高めるために、B:0.005%以下(0%を含まない)を含有すること、
等も有効である。こうした範囲を定めた理由は以下の通りである。
The steel material of the present invention is
(I) In order to improve HAZ toughness, Ca: 0.01% or less (not including 0%),
(Ii) In order to increase the strength of the steel material, B: 0.005% or less (not including 0%),
Etc. are also effective. The reasons for setting these ranges are as follows.

(i)Caは、鋼材のHAZ靭性を向上させる作用を有する元素である。より詳細には、Caは、介在物の形態を制御して(具体的には、MnSを球状化して)鋼材の異方性を低減する作用を有しており、鋼材の異方性が低減されることで、HAZ靭性が向上する。こうした効果を有効に発揮させるには、0.0003%以上含有させることが好ましい。より好ましくは0.0005%以上、更に好ましくは0.001%以上である。しかし過剰に添加すると、粗大な酸化物を形成し、HAZ靭性が却って劣化する。従ってCaは、0.01%以下が好ましい。より好ましくは0.008%以下であり、更に好ましくは0.005%以下である。   (I) Ca is an element having an action of improving the HAZ toughness of the steel material. More specifically, Ca has an action of controlling the form of inclusions (specifically, spheroidizing MnS) to reduce the anisotropy of the steel material, and the anisotropy of the steel material is reduced. As a result, the HAZ toughness is improved. In order to exhibit such an effect effectively, it is preferable to make it contain 0.0003% or more. More preferably, it is 0.0005% or more, More preferably, it is 0.001% or more. However, if added excessively, a coarse oxide is formed, and the HAZ toughness deteriorates. Therefore, Ca is preferably 0.01% or less. More preferably, it is 0.008% or less, More preferably, it is 0.005% or less.

(ii)Bは、鋼材の強度を高めると共に、溶接時に加熱されたHAZが冷却される過程において鋼中のNと結合してBNを析出し、オーステナイト粒内からのフェライト変態を促進させる。こうした効果を有効に発揮させるには、0.0003%以上含有させるのが好ましい。より好ましくは0.0005%以上であり、更に好ましくは0.0008%以上とする。しかし0.005%を超えると鋼材(母材)の靭性を劣化させるためBは0.005%以下とするのが好ましい。より好ましくは0.004%以下であり、更に好ましくは0.003%以下とするのがよい。   (Ii) B enhances the strength of the steel material and, in the process of cooling the HAZ heated during welding, combines with N in the steel to precipitate BN and promote ferrite transformation from within the austenite grains. In order to exhibit such an effect effectively, it is preferable to contain 0.0003% or more. More preferably it is 0.0005% or more, and still more preferably 0.0008% or more. However, if it exceeds 0.005%, the toughness of the steel (base material) is deteriorated, so B is preferably 0.005% or less. More preferably, it is 0.004% or less, and further preferably 0.003% or less.

[製造方法について]
次に、本発明の鋼材を製造するに当たり、好適に採用できる製法について説明する。本発明の鋼材は、固溶REMと固溶Zrを所定量以下に低減するために、トータル酸素量[O]1を0.0020〜0.015%の範囲に調整した溶鋼へ、REMとZrを添加して溶存酸素量[O]2を0.0010〜0.0035%の範囲に調整した後、鋳造する。鋳造して得られた鋳片(例えば、スラブ)は、金属組織が上記(1)式と(2)式の要件を満足するように、得られた鋼片をAc3点以上、1200℃以下の温度域(以下、この温度域の温度を「加熱温度」または「T1」と呼ぶことがある。)に加熱し、次いで熱間圧延を行なう。熱間圧延では、鋼片の平均温度がAr3点+10℃以上、900℃以下の温度域(以下、この温度域の温度を「T2」と呼ぶことがある。)においては、1パスあたりの最大圧下率を12%以下、累積圧下率を40%以上とする。次いで得られた熱間圧延材の平均温度がAr3点以上の温度域(以下、この温度域の温度を「T3」と呼ぶことがある。)から、熱間圧延材の表面温度が500℃以下の温度域(以下、この温度域の温度を「T4」と呼ぶことがある。)まで冷却速度5℃/秒以上で冷却する。以下、こうした範囲を規定した理由を説明する。
[About manufacturing method]
Next, a production method that can be suitably employed in producing the steel material of the present invention will be described. In order to reduce the solid solution REM and the solid solution Zr to a predetermined amount or less, the steel material of the present invention is converted into a molten steel in which the total oxygen amount [O] 1 is adjusted to a range of 0.0020 to 0.015%. Is added to adjust the amount of dissolved oxygen [O] 2 to a range of 0.0010 to 0.0035%, and then cast. The cast slab obtained by casting (for example, slab) is obtained from Ac 3 point or more and 1200 ° C. or less so that the metal structure satisfies the requirements of the above formulas (1) and (2). (Hereinafter, the temperature in this temperature range may be referred to as “heating temperature” or “T1”), followed by hot rolling. In the hot rolling, in the temperature range where the average temperature of the steel slab is Ar 3 point + 10 ° C. or more and 900 ° C. or less (hereinafter, the temperature in this temperature range may be referred to as “T2”), The maximum rolling reduction is 12% or less, and the cumulative rolling reduction is 40% or more. Next, the surface temperature of the hot rolled material is 500 ° C. from the temperature range where the average temperature of the obtained hot rolled material is Ar 3 or higher (hereinafter, the temperature in this temperature range may be referred to as “T3”). Cooling is performed at a cooling rate of 5 ° C./second or more to the following temperature range (hereinafter, the temperature in this temperature range may be referred to as “T4”). The reason why this range is specified will be described below.

まず、トータル酸素量[O]1を適切に制御した溶鋼へ、REMとZrを複合添加すれば、REMとZrを介在物の一形態である酸化物として鋼中に生成させることができる。このとき溶鋼に複合添加するREM量とZr量を調整することによって、溶鋼の溶存酸素量[O]2を適切に制御し、この溶鋼を鋳造すれば、鋼材中の固溶REM量と固溶Zr量を低減できる。 First, when REM and Zr are combined and added to molten steel in which the total oxygen amount [O] 1 is appropriately controlled, REM and Zr can be generated in the steel as oxides that are one form of inclusions. By adjusting the amount of REM and Zr added to the molten steel at this time, the dissolved oxygen amount [O] 2 of the molten steel is appropriately controlled, and if this molten steel is cast, the amount of solid solution REM and solid solution in the steel material The amount of Zr can be reduced.

通常、転炉や電気炉で一次精錬された溶鋼中のトータル酸素量[O]1は、0.015%を超えている。この溶鋼にREMやZrを添加すると、溶鋼中の酸素量が多すぎるため、REMやZrと酸素の反応が激しくなって溶製作業上好ましくない。また、粗大なREMの酸化物と粗大なZrO2が生成し、母材靭性自体が劣化する。 Usually, the total oxygen amount [O] 1 in molten steel primarily refined in a converter or electric furnace exceeds 0.015%. If REM or Zr is added to this molten steel, the amount of oxygen in the molten steel is too large, and the reaction between REM, Zr and oxygen becomes violent, which is not preferable for melting work. In addition, coarse REM oxide and coarse ZrO 2 are generated, and the base metal toughness itself deteriorates.

そこで本発明では、トータル酸素量[O]1を従来よりも少なめに調整した溶鋼へREMとZrを添加することによってREMの介在物としてREM酸化物を、Zrの介在物としてZr酸化物、或いはREMとZrの複合介在物としてREMとZrを含む酸化物を生成させることができる。 Therefore, in the present invention, by adding REM and Zr to molten steel in which the total oxygen amount [O] 1 is adjusted to be smaller than before, REM oxide as REM inclusions, Zr oxide as Zr inclusions, or An oxide containing REM and Zr can be formed as a composite inclusion of REM and Zr.

一方、REMとZrの介在物のうち、特に、酸化物量を増やす観点からすれば、トータル酸素量[O]1を調整した溶鋼に、REMとZrを多量に添加すればよいが、酸化物を形成しない過剰なREMとZrは、鋼材中に固溶する。ところが固溶REMや固溶Zrが多くなると、上述したように、HAZ靭性にバラツキが生じてしまう。 On the other hand, among the inclusions of REM and Zr, in particular, from the viewpoint of increasing the amount of oxide, a large amount of REM and Zr may be added to the molten steel in which the total oxygen amount [O] 1 is adjusted. Excess REM and Zr that do not form are dissolved in the steel. However, when the solid solution REM and the solid solution Zr increase, as described above, the HAZ toughness varies.

そこで本発明では、溶鋼に添加するREM量とZr量を調整することで、REMとZrを添加した後の溶存酸素量[O]2を従来よりも多めに調整し、REMとZrが鋳造中に固溶するのを防止することとした。 Therefore, in the present invention, by adjusting the amount of REM and Zr added to the molten steel, the amount of dissolved oxygen [O] 2 after adding REM and Zr is adjusted to be larger than before, and REM and Zr are being cast. It was decided to prevent solid solution.

REMとZrを添加する前の上記トータル酸素量[O]1は、一次製錬後の溶鋼に含まれる通常のトータル酸素量よりも少なく、0.015%以下に抑えるべきであり、好ましくは0.01%以下、より好ましくは0.008%以下とする。しかし上記トータル酸素量[O]1を少なくし過ぎて0.0020%未満になると、酸素量不足になるため、REMとZrを複合添加しても、HAZの靭性向上に寄与する酸化物量を確保することができず、しかも酸化物を形成できなかったREMやZrが鋼材中に固溶したり、或いはZrが炭化物等を形成して母材の靭性を劣化する。従ってREMとZrを複合添加する前のトータル酸素量[O]1は、0.0020%以上に調整することが好ましく、より好ましくは0.0025%以上である。 The total oxygen amount [O] 1 before adding REM and Zr is less than the normal total oxygen amount contained in the molten steel after primary smelting, and should be suppressed to 0.015% or less, preferably 0. 0.01% or less, more preferably 0.008% or less. However, if the total oxygen content [O] 1 is made too small and less than 0.0020%, the oxygen content becomes insufficient. Therefore, even if REM and Zr are added in combination, the oxide content that contributes to improving the toughness of HAZ is secured. REM and Zr, which cannot be formed and oxides cannot be formed, dissolve in the steel material, or Zr forms carbide or the like to deteriorate the toughness of the base material. Therefore, the total oxygen amount [O] 1 before adding REM and Zr in combination is preferably adjusted to 0.0020% or more, more preferably 0.0025% or more.

上記トータル酸素量[O]1とは、溶鋼中に含まれる全酸素量(全O量)を意味し、溶鋼に溶存原子として含まれる酸素量(いわゆるフリー酸素)と酸化物系介在物として存在している酸素量を合わせた全酸素量を意味する。溶鋼に溶存原子として含まれる酸素量は、固体電解質を用いた酸素センサーを用いれば測定できる。トータル酸素量は、一般的な不活性ガス融解−赤外線吸収法などによって測定できる。 The total oxygen amount [O] 1 means the total oxygen amount (total O amount) contained in the molten steel, and is present as an oxide inclusion in the molten steel as the dissolved atoms (so-called free oxygen). This means the total amount of oxygen combined with the amount of oxygen being used. The amount of oxygen contained in the molten steel as dissolved atoms can be measured by using an oxygen sensor using a solid electrolyte. The total oxygen amount can be measured by a general inert gas melting-infrared absorption method or the like.

溶鋼中のトータル酸素量[O]1を上記範囲に調整するには、例えばRH式脱ガス精錬装置を用いて脱酸する方法、取鍋加熱式精錬装置や簡易式溶鋼処理設備などを用いて脱酸する方法、溶鋼にSi,Mn,Ti,Alなどの脱酸元素を添加して脱酸する方法等が挙げられる。勿論これらの方法を適宜組み合わせてトータル酸素量[O]1を調整しても良い。脱酸元素を添加する方法を採用するときは、転炉から取鍋へ出鋼する際に脱酸元素を添加しても構わない。 In order to adjust the total oxygen amount [O] 1 in the molten steel to the above range, for example, a method of deoxidizing using an RH type degassing refining apparatus, a ladle heating type refining apparatus, a simple type molten steel processing facility, etc. Examples of the deoxidizing method include a method of adding a deoxidizing element such as Si, Mn, Ti, and Al to the molten steel and deoxidizing the molten steel. Of course, the total oxygen amount [O] 1 may be adjusted by appropriately combining these methods. When employing a method of adding a deoxidizing element, the deoxidizing element may be added when steel is removed from the converter to the ladle.

上記トータル酸素量[O]1を調整した溶鋼へ、REMとZrを複合添加する手順は特に限定されず、例えば(a)REMを添加した後に、Zrを添加してもよいし、(b)Zrを添加した後にREMを添加してもよいし、(c)REMとZrを同時に複合添加してもよい。REMを複数種類添加する場合は、同時に、或いは別々に添加してもよい。例えば、REMとしてCeとLaを用い、Ce→Zr→Laの順で添加してもよい。 The procedure for adding REM and Zr in combination to the molten steel with the total oxygen content [O] 1 adjusted is not particularly limited. For example, (a) REM may be added, then Zr may be added, (b) REM may be added after adding Zr, or (c) REM and Zr may be added simultaneously. When a plurality of types of REM are added, they may be added simultaneously or separately. For example, Ce and La may be used as REM and added in the order of Ce → Zr → La.

溶鋼へ添加するREMやZrの形態は特に限定されず、例えば、REMとして、純Laや純Ce,純Yなど、或いは純Zr,更にはFe−Si−La合金,Fe−Si−Ce合金,Fe−Si−La−Ce合金などを添加すればよい。また、溶鋼へミッシュメタルを添加してもよい。ミッシュメタルとは、希土類元素の混合物であり、具体的には、Ceを40〜50%程度,Laを20〜40%程度含有している。   The form of REM or Zr added to the molten steel is not particularly limited. For example, as REM, pure La, pure Ce, pure Y, or pure Zr, and further Fe-Si-La alloy, Fe-Si-Ce alloy, An Fe—Si—La—Ce alloy or the like may be added. Moreover, you may add misch metal to molten steel. Misch metal is a mixture of rare earth elements, and specifically contains about 40 to 50% of Ce and about 20 to 40% of La.

上記REMとZrを複合添加した後は、鋳造直前の上記溶存酸素量[O]2に影響がでない程度であれば、合金元素を添加して鋼材の成分を調整してもよい。 After the REM and Zr are added together, an alloy element may be added to adjust the components of the steel material so long as the dissolved oxygen amount [O] 2 immediately before casting is not affected.

鋳造直前の上記溶存酸素量[O]2は0.0010%以上とする。0.0010%未満では、酸素量不足になるため、鋳造中にREMやZrが鋼材中に固溶してしまい、HAZ靭性のバラツキを発生させる原因となる。従って溶存酸素量[O]2は、0.0010%以上とし、好ましくは0.0015%以上である。しかし上記溶存酸素量[O]2が過剰になると、鋳造中に粗大な酸化物が多く生成し、母材自体の靭性を低下する。従って溶存酸素量[O]2は、0.0035%以下に抑えるべきであり、好ましくは0.0030%以下、より好ましくは0.0025%以下とする。 The amount of dissolved oxygen [O] 2 immediately before casting is set to 0.0010% or more. If it is less than 0.0010%, the amount of oxygen becomes insufficient, so REM and Zr are dissolved in the steel during casting, which causes variation in HAZ toughness. Accordingly, the dissolved oxygen amount [O] 2 is set to 0.0010% or more, preferably 0.0015% or more. However, when the amount of dissolved oxygen [O] 2 becomes excessive, a large amount of coarse oxide is generated during casting, and the toughness of the base metal itself is lowered. Therefore, the amount of dissolved oxygen [O] 2 should be suppressed to 0.0035% or less, preferably 0.0030% or less, more preferably 0.0025% or less.

上記溶存酸素量[O]2を0.0010〜0.0035%の範囲に制御するには、トータル酸素量[O]1に応じてREMとZrの添加量を調整すればよく、具体的には、トータル酸素量[O]1に応じて下記(3)式を満足するようにREMとZrの添加量を決定し、決定されたREMとZrの添加量の範囲で元素を添加すればよい。(3)式中、[REM]と[Zr]は、夫々REMまたはZrの添加量(質量%)であり、[O]1は、REMとZrを添加する前の溶鋼のトータル酸素量(質量%)である。右辺の係数15は、実験を繰り返し行なった結果決定した値である。
[REM]+[Zr]≦15×[O]1 ・・・(3)
但し、鋼材に含まれるREM(total REM)量とZr(total Zr)量は、上記成分組成で規定する範囲を満足している必要がある。
In order to control the amount of dissolved oxygen [O] 2 in the range of 0.0010 to 0.0035%, the amount of REM and Zr added may be adjusted according to the total amount of oxygen [O] 1. Determines the addition amount of REM and Zr so as to satisfy the following formula (3) according to the total oxygen amount [O] 1 , and adds the element within the range of the determined addition amount of REM and Zr. . In the formula (3), [REM] and [Zr] are the addition amount (mass%) of REM or Zr, respectively, and [O] 1 is the total oxygen amount (mass of the molten steel before adding REM and Zr). %). The coefficient 15 on the right side is a value determined as a result of repeated experiments.
[REM] + [Zr] ≦ 15 × [O] 1 (3)
However, the amount of REM (total REM) and the amount of Zr (total Zr) contained in the steel material must satisfy the range defined by the above component composition.

なお、上記トータル酸素量[O]1に対してREMやZrを多めに添加して上記溶存酸素量[O]2が0.0010%を下回った場合には、酸素源として酸化物[例えば、MnOや鉄酸化物(例えば、FeO)]を添加してもよい。 When the amount of dissolved oxygen [O] 2 is less than 0.0010% by adding a large amount of REM or Zr to the total oxygen amount [O] 1 , an oxide [for example, MnO or iron oxide (for example, FeO)] may be added.

鋳造して得られた鋼片は、加熱温度(T1)をAc3点以上、1200℃以下として加熱する。加熱温度(T1)は、鋼片の金属組織をオーステナイトとするために、Ac3点以上に加熱する必要がある。しかし加熱温度が1200℃を超えると、初期オーステナイト粒が粗大化するため、変態組織を充分に微細化できない。従って加熱温度(T1)は1200℃以下とする。 The steel slab obtained by casting is heated at a heating temperature (T1) of Ac 3 point or higher and 1200 ° C. or lower. The heating temperature (T1) needs to be heated to Ac 3 point or higher in order to make the metal structure of the steel slab austenite. However, if the heating temperature exceeds 1200 ° C., the initial austenite grains become coarse, so that the transformation structure cannot be sufficiently refined. Therefore, heating temperature (T1) shall be 1200 degrees C or less.

上記Ac3点の温度は、下記式から算出できる。式中、[ ]は、各元素の含有量(質量%)を示している。
Ac3(℃)=908−223.7×[C]+438.5×[P]+30.49×[Si]−34.43×[Mn]−23×[Ni] ・・・(a)
The temperature at the Ac 3 point can be calculated from the following equation. In the formula, [] indicates the content (% by mass) of each element.
Ac 3 (° C.) = 908-223.7 × [C] + 438.5 × [P] + 30.49 × [Si] −34.43 × [Mn] −23 × [Ni] (a)

加熱温度(T1)に加熱した鋼片は熱間圧延されるが、熱間圧延では、鋼片の平均温度がAr3点+10℃以上、900℃以下の温度域においては、1パスあたりの最大圧下率を12%以下、累積圧下率を40%以上とする必要がある。Ar3点+10℃以上、900℃以下の温度域での圧延条件を制御することによって、オーステナイト粒の成長を抑制でき、変態前のオーステナイト粒に歪を効率的に導入できるため、結晶方位差が15°以上の大角粒界で囲まれた結晶粒を微細化でき、母材自体の低温靭性を高めることができる。 The steel slab heated to the heating temperature (T1) is hot-rolled, but in the hot rolling, the maximum temperature per pass in the temperature range where the average temperature of the steel slab is Ar 3 point + 10 ° C. or more and 900 ° C. or less It is necessary that the rolling reduction is 12% or less and the cumulative rolling reduction is 40% or more. By controlling the rolling conditions in the temperature range of Ar 3 point + 10 ° C. or more and 900 ° C. or less, the growth of austenite grains can be suppressed, and strain can be efficiently introduced into the austenite grains before transformation. Crystal grains surrounded by large-angle grain boundaries of 15 ° or more can be refined, and the low temperature toughness of the base material itself can be improved.

Ar3点+10℃以上、900℃以下の温度域における1パスあたりの最大圧下率が12%を超えると、オーステナイト粒に歪が過度に蓄積し、歪の回復現象が起こり、変態後の組織(大角粒界で囲まれた結晶粒)が粗大化するため母材自体の低温靭性が悪くなる。従って歪の回復を抑制するために、Ar3点+10℃以上、900℃以下の温度域における1パスあたりの最大圧下率は12%以下とする。好ましくは11%以下であり、より好ましくは10%以下である。1パスあたりの最大圧下率を小さくする方が大角粒界で囲まれた結晶粒の粗大化抑制効果が大きくなるが、最大圧下率を小さくし過ぎると製造時間が長くなり、生産性が悪くなる。従って1パスあたりの最大圧下率の下限は6%とすることが好ましい。 When the maximum rolling reduction per pass in the temperature range of Ar 3 point + 10 ° C. or higher and 900 ° C. or lower exceeds 12%, strain is excessively accumulated in the austenite grains, and the strain recovery phenomenon occurs, and the structure after transformation ( Since the crystal grains surrounded by the large-angle grain boundaries are coarsened, the low temperature toughness of the base material itself is deteriorated. Therefore, in order to suppress the recovery of strain, the maximum rolling reduction per pass in the temperature range of Ar 3 point + 10 ° C. to 900 ° C. is set to 12% or less. Preferably it is 11% or less, More preferably, it is 10% or less. Decreasing the maximum rolling reduction per pass increases the effect of suppressing the coarsening of crystal grains surrounded by large-angle grain boundaries. However, if the maximum rolling reduction is made too small, the manufacturing time becomes longer and the productivity becomes worse. . Accordingly, the lower limit of the maximum rolling reduction per pass is preferably 6%.

Ar3点+10℃以上、900℃以下の温度域における累積圧下率は40%以上とする。累積圧下率が40%を下回ると、オーステナイト粒へ導入される歪量が少なくなり、変態後の核生成サイトが少なくなるため、大角粒界で囲まれた結晶粒が粗大化し、母材自体の低温靭性が悪くなる。従ってAr3点+10℃以上、900℃以下の温度域における累積圧下率は40%以上とする。好ましくは45%以上、より好ましくは50%以上である。Ar3点+10℃以上、900℃以下の温度域における累積圧下率の上限は特に限定されないが、通常、60%程度である。 The cumulative rolling reduction in the temperature range of Ar 3 point + 10 ° C. or more and 900 ° C. or less is 40% or more. When the cumulative rolling reduction is less than 40%, the amount of strain introduced into the austenite grains is reduced, and the number of nucleation sites after transformation is reduced, so that the crystal grains surrounded by the large-angle grain boundaries are coarsened, and the base metal itself Low temperature toughness deteriorates. Therefore, the cumulative rolling reduction in the temperature range of Ar 3 point + 10 ° C. or higher and 900 ° C. or lower is set to 40% or higher. Preferably it is 45% or more, more preferably 50% or more. The upper limit of the cumulative rolling reduction in the temperature range of Ar 3 point + 10 ° C. or higher and 900 ° C. or lower is not particularly limited, but is usually about 60%.

上記Ar3点の温度は、下記式から算出できる。式中、[ ]は、各元素の含有量(質量%)を示しており、tは製品の仕上厚(mm)を意味している。
Ar3(℃)=910−310×[C]−80×[Mn]−20×[Cu]−55×[Ni]+0.35×(t−8) ・・・(b)
The temperature at the Ar 3 point can be calculated from the following equation. In the formula, [] represents the content (% by mass) of each element, and t represents the finished thickness (mm) of the product.
Ar 3 (° C.) = 910−310 × [C] −80 × [Mn] −20 × [Cu] −55 × [Ni] + 0.35 × (t−8) (b)

上記累積圧下率は、下記式で算出できる。t0は、鋼片の平均温度が900℃以下の温度域における鋼片の圧延開始厚(mm)、t1は、鋼片の平均温度がAr3点+10℃以上の温度域における鋼片の圧延終了厚(mm)を意味している。
累積圧下率=[(t0−t1)/t0]×100 ・・・(c)
The cumulative rolling reduction can be calculated by the following formula. t 0 is start rolling thickness of the steel strip in the temperature range average temperature of 900 ° C. or less of the billet (mm), t 1 is the average temperature of the steel strip is a steel strip in the temperature range of not lower than Ar 3 point + 10 ° C. The rolling end thickness (mm) is meant.
Cumulative rolling reduction = [(t 0 −t 1 ) / t 0 ] × 100 (c)

上記鋼片の平均温度は、後記する実施例の項で説明する手順で算出したt/4位置における温度で管理する。tは、スラブの厚み(mm)を意味する。   The average temperature of the steel slab is managed by the temperature at the t / 4 position calculated by the procedure described in the section of an example described later. t means the thickness (mm) of the slab.

なお、鋼片の平均温度が900℃を超える温度域(オーステナイト再結晶領域)での1パスあたりの最大圧下率や累積圧下率は特に限定されない。   In addition, the maximum rolling reduction per one pass and cumulative rolling reduction in the temperature range (austenite recrystallization area | region) where the average temperature of a steel slab exceeds 900 degreeC are not specifically limited.

次に、熱間圧延して得られた熱間圧延材を、平均温度がAr3点以上の温度域(T3)から、熱間圧延材の表面温度が500℃以下の温度域(T4)まで平均冷却速度5℃/秒以上で冷却することで、結晶方位差が55°以上の大角粒界で囲まれた結晶粒の分率を高めることができ、母材自体の靭性を向上させることができる。 Next, the hot-rolled material obtained by hot rolling is from a temperature range (T3) where the average temperature is Ar 3 or higher to a temperature range (T4) where the surface temperature of the hot-rolled material is 500 ° C. or lower. By cooling at an average cooling rate of 5 ° C./second or more, the fraction of crystal grains surrounded by large-angle grain boundaries with a crystal orientation difference of 55 ° or more can be increased, and the toughness of the base material itself can be improved. it can.

即ち、本発明の鋼材は、ベイナイト組織を主体としたものであるが、一般にベイナイトは、オーステナイトおよびベイナイトの結晶格子の最密面と、それに応じた最密方向がほぼ平行になるというK−S(Kurdjumov−Scahs)関係を持って生成する事が知られている。この関係では、ベイナイトはオーステナイトに対して最大24通りの方位のうち、いずれかの方位を選択して生成することになるが、ベイナイト変態の温度が変化することで、この選択される傾向が変化し、ベイナイト形態が変化すると言われている(川田ら:CAMP−ISJvol16,No.3(2003),PS30)。これは変態温度が低下するにつれて、ベイナイトがフェライト変態に代表される拡散変態から、マルテンサイトに代表されるせん断変態へ変化するか、或いは変態温度低下により変態の核生成能、生成した組織の成長速度等が変化し、変態後の組織が大きく変化するためと考えられる。以上のことから、上記Ar3点以上の温度域(T3)から500℃以下の温度域(T4)への平均冷却速度を大きくすることによって、結晶方位差が55°以上の大角粒界で囲まれた結晶粒の分率を高められる。 That is, the steel material of the present invention is mainly composed of a bainite structure. In general, bainite has a K-S in which the close-packed surface of the crystal lattice of austenite and bainite and the close-packed direction corresponding thereto are substantially parallel. It is known to generate with a (Kurdjumov-Scahs) relationship. In this relationship, bainite is generated by selecting any one of a maximum of 24 orientations with respect to austenite, but this selected tendency changes as the temperature of the bainite transformation changes. It is said that the bainite form changes (Kawada et al .: CAMP-ISJvol16, No. 3 (2003), PS30). This is because as the transformation temperature decreases, the bainite changes from the diffusion transformation represented by ferrite transformation to the shear transformation represented by martensite, or the nucleation ability of transformation by the transformation temperature reduction, and the growth of the produced structure. This is thought to be due to the fact that the structure after transformation changes greatly due to changes in speed and the like. From the above, by enlarging the average cooling rate from the temperature range (T3) of the Ar 3 point or higher to the temperature range (T4) of 500 ° C. or lower, it is surrounded by a large-angle grain boundary having a crystal orientation difference of 55 ° or higher. The fraction of crystal grains produced can be increased.

500℃以下の温度域(T4)まで平均冷却速度5℃/秒以上で冷却した後は、必要に応じて、焼き戻しを行なってもよい。焼き戻しすることで、熱間圧延や変態によって導入された歪が消失するため、母材の低温靭性を更に高めることができる。焼き戻しは、例えば、500℃以上、Ac1点未満の温度に加熱して行なえばよい。 After cooling to a temperature range of 500 ° C. or lower (T4) at an average cooling rate of 5 ° C./second or higher, tempering may be performed as necessary. By tempering, strain introduced by hot rolling or transformation disappears, so that the low temperature toughness of the base material can be further enhanced. Tempering may be performed by heating to a temperature of 500 ° C. or higher and lower than Ac 1 point, for example.

上記Ac1点の温度は、下記式から算出できる。式中、[ ]は、各元素の含有量(質量%)を示している。
Ac1(℃)=723−14×[Mn]+22×[Si]−14.4×[Ni] ・・・(d)
The temperature of the Ac 1 point can be calculated from the following equation. In the formula, [] indicates the content (% by mass) of each element.
Ac 1 (° C.) = 723-14 × [Mn] + 22 × [Si] −14.4 × [Ni] (d)

本発明に係る鋼材は、例えば橋梁や高層建造物、船舶などの構造物の材料として使用でき、小〜中入熱溶接はもとより、大入熱溶接においても溶接熱影響部の靭性劣化を防ぐことができる。   The steel material according to the present invention can be used as a material for structures such as bridges, high-rise buildings, ships, etc., and prevents toughness deterioration of the weld heat affected zone not only in small to medium heat input welding but also in large heat input welding. Can do.

以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に適合し得る範囲で適当に変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are not intended to limit the present invention, and may be implemented with appropriate modifications within a range that can meet the purpose described above and below. These are all possible and are within the scope of the present invention.

下記実験例1、2では、同一の鋼種を用い、鋼材のHAZ靭性とそのバラツキ(実験例1)、および鋼材自体の低温靭性(実験例2)について検討し、実験例1と実験例2を総合して鋼材の特性を評価した。   In Experimental Examples 1 and 2 below, the same steel type was used, and the HAZ toughness and variation of the steel material (Experimental Example 1) and the low temperature toughness of the steel material itself (Experimental Example 2) were examined. Overall, the characteristics of the steel materials were evaluated.

[実験例1(HAZ靭性とそのバラツキの評価)]
溶銑を240トン転炉で一次精錬した後、該転炉から取鍋へ出鋼し、成分調整および温度調整しながら二次精錬を行った。
[Experimental Example 1 (Evaluation of HAZ toughness and its variation)]
After the hot metal was first refined in a 240-ton converter, the steel was removed from the converter into a ladle and subjected to secondary refining while adjusting the components and adjusting the temperature.

取鍋では、SiとMnを用いて脱酸し、下記表1に示すトータル酸素量[O]1に調整しつつ化学成分組成を調整した。トータル酸素量[O]1は、溶鋼に溶存原子として含まれる酸素量と酸化物系介在物として存在している酸素量を合わせた全酸素量を意味し、溶鋼に溶存原子として含まれる酸素量は、固体電解質を用いた酸素センサーを用いて測定し、トータル酸素量は、一般的な不活性ガス融解−赤外線吸収法によって測定した。なお、下記表1には、トータル酸素量[O]1の他に、REMとZrを添加する前の溶鋼の溶存酸素量も併せて示した。 In the ladle, deoxidation was performed using Si and Mn, and the chemical component composition was adjusted while adjusting the total oxygen amount [O] 1 shown in Table 1 below. The total oxygen amount [O] 1 means the total oxygen amount that is the sum of the oxygen amount contained as dissolved atoms in the molten steel and the oxygen amount present as oxide inclusions, and the oxygen amount contained as dissolved atoms in the molten steel Was measured using an oxygen sensor using a solid electrolyte, and the total oxygen content was measured by a general inert gas melting-infrared absorption method. In addition to the total oxygen amount [O] 1 , the following Table 1 also shows the dissolved oxygen amount of the molten steel before adding REM and Zr.

上記トータル酸素量[O]1に応じて上記(3)式を満足するようにREMとZrの添加量を算出し、REMとZrを添加して下記表1に示す溶存酸素量[O]2に調整した。下記表1に、REMの添加量[REM]と、Zrの添加量[Zr]、REMとZrの添加量の合計([REM]+[Zr])を示す。また、REMとZrの添加量の合計とトータル酸素量[O]1との比([REM]+[Zr])/[O]1も併せて示す。 The amount of REM and Zr added is calculated according to the total oxygen amount [O] 1 so as to satisfy the above formula (3), and the amount of dissolved oxygen [O] 2 shown in Table 1 below is added by adding REM and Zr. Adjusted. Table 1 below shows the REM addition amount [REM], the Zr addition amount [Zr], and the total addition amount of REM and Zr ([REM] + [Zr]). In addition, a ratio ([REM] + [Zr]) / [O] 1 of the total amount of REM and Zr added and the total oxygen amount [O] 1 is also shown.

溶存酸素量[O]2に調整した後、該[O]2量に影響を及ぼさない程度で化学成分を調整してから鋳造した。 After adjusting the amount of dissolved oxygen [O] 2 , the chemical components were adjusted to such an extent that the amount of [O] 2 was not affected, and then casting was performed.

なお、二次精錬にはRH式脱ガス精錬装置等を用いて脱Hや脱Sなどを行なった。   In the secondary refining, dehydrogenation and desulfurization were performed using an RH type degassing refining apparatus.

下記表1において、REMはLaを50%程度とCeを25%程度含有するミッシュメタルの形態で、ZrはZr単体で、夫々添加した。   In Table 1 below, REM was in the form of a misch metal containing about 50% La and about 25% Ce, and Zr was added alone as Zr alone.

図1に、REMとZrを添加する前のトータル酸素量[O]1と、REMとZrの添加量の合計([REM]+[Zr])の関係をグラフに示す。図1中、○は下記表1のNo.1〜4の結果、×は下記表1のNo.9〜12の結果を夫々示す。なお、図1では、トータル酸素量[O]1の単位をppmで表記した。 FIG. 1 is a graph showing the relationship between the total oxygen amount [O] 1 before adding REM and Zr and the total amount of addition of REM and Zr ([REM] + [Zr]). In FIG. As a result of Nos. 1 to 4, × indicates No. in Table 1 below. The results of 9 to 12 are shown respectively. In FIG. 1, the unit of the total oxygen amount [O] 1 is expressed in ppm.

また、下記表2には、成分調整後の鋼材の成分組成(残部は鉄および不可避不純物)を示す。   Table 2 below shows the component composition of the steel material after component adjustment (the balance is iron and inevitable impurities).

成分調整後の溶鋼を、連続鋳造機でスラブに鋳造し、該スラブのt/4(但し、tはスラブの厚み)位置における横断面からサンプルを切り出した。切り出されたサンプル表面を日本電子製のEPMA「JXA−8500F(装置名)」を用いて10,000倍で観察し、最大径が0.2μm以上の介在物について成分組成を定量分析した。観察条件は、加速電圧を7kV,試料電流を0.003μA,観察視野面積を1cm2,分析個数は無作為に選択した100個とし、特性X線の波長分散分光により介在物中央部での成分組成を定量分析した。分析対象元素は、Al,Mn,Si,Ti,Zr,Ca,La,Ceとし、分析対象とする元素の存在比をモル換算し、換算後の元素量全体を1モルとしたときに、分析対象とする介在物に含まれる各元素のモル分率を算出した。モル分率の算出結果を下記表3に示す。 The molten steel after the component adjustment was cast into a slab with a continuous casting machine, and a sample was cut out from the cross section at the t / 4 (where t is the thickness of the slab) position of the slab. The cut sample surface was observed at 10,000 times using EPMA “JXA-8500F (device name)” manufactured by JEOL, and the component composition was quantitatively analyzed for inclusions having a maximum diameter of 0.2 μm or more. The observation conditions were an acceleration voltage of 7 kV, a sample current of 0.003 μA, an observation field area of 1 cm 2 , and an analysis number of 100 randomly selected, and components at the center of the inclusion by wavelength dispersion spectroscopy of characteristic X-rays. The composition was quantitatively analyzed. The analysis target elements are Al, Mn, Si, Ti, Zr, Ca, La, and Ce, and the analysis is performed when the abundance ratio of the elements to be analyzed is converted into moles, and the converted element amount is 1 mole. The molar fraction of each element contained in the inclusions to be targeted was calculated. The calculation results of the molar fraction are shown in Table 3 below.

上記サンプル表面をEPMAで観察した結果、観察された介在物は、REMとZrを含む複合介在物が大半であったが、単独介在物としてREMの介在物やZrの介在物も生成していた。   As a result of observing the sample surface with EPMA, most of the observed inclusions were composite inclusions containing REM and Zr, but REM inclusions and Zr inclusions were also generated as single inclusions. .

また、鋼材に含まれる固溶REM量と固溶Zr量は、次の手順で算出した。まず、鋼材に介在物として含まれているREM量とZr量を電解抽出法で測定した。電解抽出は、電解液として、メタノール100cc中に、トリエタノールアミン2ccとテトラメチルアンモニウムクロライド1gを含有する溶液を用い、上記サンプルを500A/m2以下の電流下で抽出(電気分解)した。これによりマトリックスが溶解すると共に、固溶REMと固溶Zrも電解液中へ抽出された。サンプルの大きさは、縦15mm×横15mm×長さ5mmとした。 Moreover, the amount of solid solution REM and the amount of solid solution Zr contained in steel materials were calculated in the following procedure. First, the amount of REM and the amount of Zr contained as inclusions in the steel material were measured by an electrolytic extraction method. In the electrolytic extraction, a solution containing 2 cc of triethanolamine and 1 g of tetramethylammonium chloride in 100 cc of methanol was used as an electrolytic solution, and the sample was extracted (electrolyzed) under a current of 500 A / m 2 or less. As a result, the matrix was dissolved, and solid solution REM and solid solution Zr were also extracted into the electrolytic solution. The size of the sample was 15 mm long × 15 mm wide × 5 mm long.

次いで、抽出後の電解液をメンブランフィルター(フィルター径は47mm、ポアサイズは0.1μm)を用いてろ過し、フィルターごと残渣を白金製るつぼに移し、ガスバーナーで加熱して灰化した。次いで、アルカリ融剤(炭酸ナトリウムと四ほう酸ナトリウムの混合物)を加え、再度ガスバーナーで加熱して残渣を融解した。次に、18体積%塩酸を加えて融解物を溶液化した後、メスフラスコに移し、さらに純水を加えてメスアップして分析液を得た。分析液中のREMとZr濃度をICP−MS法で測定した。   Next, the extracted electrolyte was filtered using a membrane filter (filter diameter was 47 mm, pore size was 0.1 μm), and the residue along with the filter was transferred to a platinum crucible and heated with a gas burner to be ashed. Next, an alkali flux (a mixture of sodium carbonate and sodium tetraborate) was added and heated again with a gas burner to melt the residue. Next, 18 vol% hydrochloric acid was added to make the melt into a solution, and then the solution was transferred to a volumetric flask, and further diluted with pure water to obtain an analysis solution. The REM and Zr concentrations in the analysis solution were measured by ICP-MS method.

このようにして求めた介在物に含まれるREM量とZr量を、別途通常のICP−MS法で分析したREM量(トータルREM量)またはZr量(トータルZr量)から引くことにより、固溶REM量と固溶Zr量を求めた。算出した結果を下記表3に併せて示した。表3において、「<0.0001」は、元素が検出されなかったことを意味している。   By subtracting the REM amount and Zr amount contained in the inclusions thus obtained from the REM amount (total REM amount) or Zr amount (total Zr amount) separately analyzed by the usual ICP-MS method, The REM amount and the solid solution Zr amount were determined. The calculated results are also shown in Table 3 below. In Table 3, “<0.0001” means that no element was detected.

図2に、鋳造前の溶鋼に含まれる溶存酸素量[O]2と、鋼材に含まれる固溶REM量または固溶Zr量との関係をグラフに示す。なお、図2では、溶存酸素量[O]2の単位をppmで表記した。また、図2には、固溶REMまたは固溶Zrが検出されたデータのみプロットした。 FIG. 2 is a graph showing the relationship between the amount of dissolved oxygen [O] 2 contained in the molten steel before casting and the amount of solute REM or solute Zr contained in the steel material. In FIG. 2, the unit of dissolved oxygen amount [O] 2 is expressed in ppm. In FIG. 2, only data in which solute REM or solute Zr is detected are plotted.

次に、溶接時に熱影響を受けるHAZの靭性を評価するために、大入熱溶接を模擬して下記に示す溶接再現試験を行なった。溶接再現試験は、スラブから切り出したサンプルが1400℃になる様に加熱し、この温度で5秒間保持した後、冷却して行った。冷却は、800℃から500℃への冷却時間が300秒となるように調整した。   Next, in order to evaluate the toughness of HAZ which is affected by heat during welding, a welding reproduction test shown below was performed by simulating high heat input welding. The welding reproduction test was performed by heating the sample cut from the slab to 1400 ° C., holding at this temperature for 5 seconds, and then cooling. The cooling was adjusted so that the cooling time from 800 ° C. to 500 ° C. was 300 seconds.

冷却後のサンプルの衝撃特性は、Vノッチシャルピー試験を行って−40℃における吸収エネルギー(vE-40)を測定して評価した。 The impact characteristics of the sample after cooling were evaluated by conducting a V-notch Charpy test and measuring the absorbed energy (vE -40 ) at -40 ° C.

サンプルは、同一鋼種からJIS Z2242「金属材料のシャルピー衝撃試験方法」に準じて3本ずつ採取し、各サンプルについてvE-40を測定した結果とそれらの平均値を下記表4に示す。vE-40の平均値が150J以上のものを合格(HAZ靭性良好)とする。 Three samples were collected from the same steel type in accordance with JIS Z2242 “Charpy impact test method for metal materials”, and the results of measuring vE- 40 for each sample and their average values are shown in Table 4 below. An average value of vE- 40 of 150 J or more is regarded as acceptable (haz toughness is good).

また、各サンプルについて、vE-40値の最大値と最小値に基づいて下記基準で靭性のバラツキを評価した。評価結果を下記表4に示す。 For each sample, the toughness variation was evaluated based on the following criteria based on the maximum and minimum values of the vE- 40 value. The evaluation results are shown in Table 4 below.

[最大値と最小値の評価基準]
○:HAZ靭性の最大値または最小値が150J以上である。
×:HAZ靭性の最大値または最小値が150J未満である。
[Evaluation criteria for maximum and minimum values]
(Circle): The maximum value or minimum value of HAZ toughness is 150J or more.
X: The maximum value or minimum value of HAZ toughness is less than 150J.

[総合評価基準]
○:3本測定した結果のうち、最小値が150J以上であり、高いHAZ靭性が安定して確保されている。
△:3本測定した結果のうち、少なくとも1本が150J以上であるが、HAZ靭性のバラツキが大きく、最小値は150J未満である。
×:3本測定した結果のうち、全てが150J未満である。
[Comprehensive evaluation criteria]
○: The minimum value is 150 J or more among the results of the three measurements, and high HAZ toughness is stably secured.
Δ: Of the three measured results, at least one is 150 J or more, but the variation in HAZ toughness is large, and the minimum value is less than 150 J.
X: All of the results of the three measurements are less than 150 J.

図3に、下記表4に示した各サンプルについて、HAZ靭性の平均値(図中の○印)と、HAZ靭性の最大値と最小値の幅をグラフに示す。   FIG. 3 is a graph showing the average value of HAZ toughness (circles in the figure) and the maximum and minimum widths of HAZ toughness for each sample shown in Table 4 below.

以上の結果から、次のように考察できる。上記図1と図3から明らかなように、REMとZrを添加する前のトータル酸素量[O]1を0.0020〜0.015%(20〜150ppm)に調整した溶鋼に、上記(3)式を満足するようにREMとZrを添加すれば、HAZ靭性が良好となり、HAZ靭性のバラツキも少なくなることが分かる。なお、図1に示した直線の式は、([REM]+[Zr])=15×10-4×[O]1である。 From the above results, it can be considered as follows. As apparent from FIG. 1 and FIG. 3, the above-mentioned (3) is added to the molten steel in which the total oxygen amount [O] 1 before adding REM and Zr is adjusted to 0.0020 to 0.015% (20 to 150 ppm). It can be seen that if REM and Zr are added so as to satisfy the formula, the HAZ toughness is improved and the variation in the HAZ toughness is reduced. The equation of the straight line shown in FIG. 1 is ([REM] + [Zr]) = 15 × 10 −4 × [O] 1 .

表1、表3、および図2から明らかなように、鋳造前の溶存酸素量[O]2を0.0010〜0.0035%(10〜35ppm)の範囲に調整してから鋳造すれば、鋼材に含まれる固溶REM量と固溶Zr量を所定値以下に低減することができることがわかる。 As is apparent from Tables 1 and 3 and FIG. 2, if the amount of dissolved oxygen [O] 2 before casting is adjusted to a range of 0.0010 to 0.0035% (10 to 35 ppm), casting is performed. It can be seen that the amount of solid solution REM and the amount of solid solution Zr contained in the steel material can be reduced to a predetermined value or less.

表2〜表4、および図3から明らかなように、No.1〜4は、本発明で規定する要件を満足する例であり、鋼材の化学成分のうち特にREM量とZr量が適切に調整されていると共に、固溶REM量と固溶Zr量が適切に制御されているため、HAZ靭性の平均値が150J以上となり、HAZ靭性に優れている。また、HAZ靭性のバラツキも少なくなっている。   As is apparent from Tables 2 to 4 and FIG. 1-4 is an example which satisfies the requirements prescribed | regulated by this invention, and while especially REM amount and Zr amount are appropriately adjusted among the chemical components of steel materials, solid solution REM amount and solid solution Zr amount are appropriate. Therefore, the average value of the HAZ toughness is 150 J or more, and the HAZ toughness is excellent. Moreover, the variation in HAZ toughness is also reduced.

一方、No.5〜13は、本発明で規定する要件から外れる例であり、鋼材の化学成分のうち特にREM量またはZr量が本発明で規定する範囲から外れているか(No.5〜8、13)、或いは固溶REM量と固溶Zr量が本発明で規定する範囲から外れているため(No.9〜12)、HAZ靭性の平均値が150J未満となり、HAZ靭性が劣っている。また、HAZ靭性のバラツキも大きいものが多くなっている。   On the other hand, no. 5 to 13 are examples that deviate from the requirements defined in the present invention, and in particular, the amount of REM or Zr among the chemical components of the steel material is out of the range defined in the present invention (Nos. 5 to 8, 13), Or since the amount of solid solution REM and the amount of solid solution Zr are outside the range specified in the present invention (Nos. 9 to 12), the average value of HAZ toughness is less than 150 J, and the HAZ toughness is inferior. In addition, the number of HAZ toughness variations is increasing.

Figure 2010121199
Figure 2010121199

Figure 2010121199
Figure 2010121199

Figure 2010121199
Figure 2010121199

Figure 2010121199
Figure 2010121199

[実験例2(母材の低温靭性の評価)]
上記実験例1に記載した条件で鋳造して得られたスラブ(鋼種a〜m)を、下記表5に示す加熱温度(T1)に加熱した後、熱間圧延して熱間圧延材を得た。熱間圧延は、スラブの平均温度がAr3点+10℃以上、900℃以下の温度域(T2)における1パスあたりの最大圧下率と累積圧下率を下記表5に示す条件で行なった。累積圧下率は上記(c)式を用いて算出した。
[Experiment 2 (Evaluation of low temperature toughness of base material)]
A slab (steel types a to m) obtained by casting under the conditions described in Experimental Example 1 was heated to the heating temperature (T1) shown in Table 5 below, and then hot rolled to obtain a hot rolled material. It was. The hot rolling was performed under the conditions shown in Table 5 below for the maximum rolling reduction and the cumulative rolling reduction per pass in the temperature range (T2) where the average temperature of the slab is Ar 3 point + 10 ° C. or higher and 900 ° C. or lower. The cumulative rolling reduction was calculated using the above formula (c).

次に、熱間圧延して得られた熱間圧延材を、熱間圧延材の平均温度がAr3点以上の温度域(T3)から、熱間圧延材の表面温度が500℃以下の温度域(T4)まで冷却した。冷却開始温度(T3)と冷却時の平均冷却速度を下記表5に示す。 Next, the hot-rolled material obtained by hot rolling is a temperature at which the surface temperature of the hot-rolled material is 500 ° C. or less from the temperature range (T3) in which the average temperature of the hot-rolled material is Ar 3 or higher. Cooled to zone (T4). Table 5 below shows the cooling start temperature (T3) and the average cooling rate during cooling.

下記表5のNo.23については、熱間圧延材の表面温度が500℃以下の温度域(T4)まで冷却した後、580℃に加熱して焼き戻しを行なった。   No. in Table 5 below. About 23, after the surface temperature of the hot-rolled material was cooled to a temperature range (T4) of 500 ° C. or lower, it was tempered by heating to 580 ° C.

なお、上記スラブまたは上記熱間圧延材の平均温度は、スラブまたは熱間圧延材の厚みをtとしたとき、t/4位置における温度で管理した。t/4位置における温度は、下記手順で計算した。   The average temperature of the slab or the hot rolled material was controlled by the temperature at the t / 4 position, where t is the thickness of the slab or the hot rolled material. The temperature at the t / 4 position was calculated according to the following procedure.

《平均温度の算出方法》
(1)プロセスコンピュータを用い、加熱開始から抽出までの雰囲気温度と在炉時間に基づき、鋼片の表面から裏面までの板厚方向における任意の位置の加熱温度を算出する。
(2)上記算出した加熱温度を用い、圧延中の圧延パススケジュールやパス間の冷却方法(水冷あるいは空冷)のデータに基づいて、板厚方向の任意の位置の圧延温度を差分法など計算に適した方法を用いて算出しつつ、圧延する。
(3)鋼板表面温度は、圧延ライン上に設置された放射型温度計を用いて実測する(但し、プロセスコンピュータ上においても計算する。)。
(4)粗圧延開始時、粗圧延終了時、および仕上圧延開始時に夫々実測した鋼板表面温度を、プロセスコンピュータ上の計算表面温度と照合する。
(5)計算表面温度と実測した鋼板表面温度の差が±30℃以上の場合は、実測した鋼板表面温度を計算表面温度に置き換えてプロセスコンピュータ上の計算表面温度とする。
(6)補正された計算表面温度を用い、t/4位置における温度を求める。
<Calculation method of average temperature>
(1) Using a process computer, the heating temperature at an arbitrary position in the thickness direction from the front surface to the back surface of the steel slab is calculated based on the ambient temperature from the start of heating to extraction and the in-furnace time.
(2) Using the calculated heating temperature, calculate the rolling temperature at any position in the plate thickness direction based on the rolling pass schedule during rolling and the cooling method between the passes (water cooling or air cooling). Roll while calculating using a suitable method.
(3) The steel sheet surface temperature is measured using a radiation thermometer installed on the rolling line (however, it is also calculated on a process computer).
(4) The steel plate surface temperature actually measured at the start of rough rolling, at the end of rough rolling, and at the start of finish rolling is collated with the calculated surface temperature on the process computer.
(5) When the difference between the calculated surface temperature and the measured steel plate surface temperature is ± 30 ° C. or more, the measured steel plate surface temperature is replaced with the calculated surface temperature to obtain the calculated surface temperature on the process computer.
(6) Using the corrected calculated surface temperature, obtain the temperature at the t / 4 position.

一方、熱間圧延材の表面温度は、圧延ライン上に設置された放射型温度計を用いて測定した。   On the other hand, the surface temperature of the hot-rolled material was measured using a radial thermometer installed on the rolling line.

下記表5には、冷却して得られた圧延材の製品厚(mm)も示した。また、下記表5には、上記表2に示した化学成分組成に基づいて、上記(a)式、(b)式、および(d)式を用いて算出したAc3点、Ar3点、Ac1点の値も示す。 Table 5 below also shows the product thickness (mm) of the rolled material obtained by cooling. Table 5 below shows Ac 3 points, Ar 3 points calculated using the above formulas (a), (b), and (d) based on the chemical composition shown in Table 2 above. The value of Ac 1 point is also shown.

次に、得られた圧延材のt/4位置(tは板厚)から鏡面研磨後試験片を採取し、これを2%硝酸−エタノール溶液(ナイタール溶液)でエッチングした後、5視野において光学顕微鏡を用いて400倍で観察を行ない、画像解析によって鋼組織中のベイナイト分率(面積%)を測定した。この際、フェライトおよびマルテンサイト以外の組織は全てベイナイトとみなした。ベイナイト分率(面積%)を下記表6に示す。   Next, after mirror polishing from a t / 4 position (t is the plate thickness) of the obtained rolled material, a test piece was collected, etched with a 2% nitric acid-ethanol solution (a nital solution), and optically viewed in five fields of view. Observation was performed at 400 times using a microscope, and the bainite fraction (area%) in the steel structure was measured by image analysis. At this time, all the structures other than ferrite and martensite were regarded as bainite. The bainite fraction (area%) is shown in Table 6 below.

また、上記圧延材の金属組織を下記手順で観察し、結晶方位差が15°以上の大角粒界で囲まれた結晶粒の平均円相当径Dと、結晶方位差が55°以上の大角粒界で囲まれた結晶粒が鋼材全体に占める割合Mを求めた。D(μm)とM(面積%)の値を下記表6に示す。   Further, the metal structure of the rolled material is observed according to the following procedure, and the average equivalent circle diameter D of the crystal grains surrounded by the large-angle grain boundaries having a crystal orientation difference of 15 ° or more and the large-angle grains having a crystal orientation difference of 55 ° or more. The ratio M of the crystal grains surrounded by the boundary in the entire steel material was determined. The values of D (μm) and M (area%) are shown in Table 6 below.

《Dの算出方法》
(1)圧延材の表面と裏面の両方を含むように、圧延方向(長手方向)に平行に切断したサンプルを準備する。
(2)#150〜#1000までの湿式エメリー研磨紙、或いはそれと同等の機能を有する研磨方法で研磨し、ダイヤモンドスラリーなどの研磨剤を用いて鏡面仕上げを施す。
(3)鏡面研磨面を、TexSEM Laboratories社製のEBSP(Electron Back Scattering Pattern)装置で、板厚方向のt/4位置において測定範囲を200μm×200μm、ピッチを0.5μmとして2つの結晶の方位差を測定し、結晶方位差が15°以上の境界を大角粒界とした。なお、測定方位の信頼性を示すコンフィデンス・インデックスが0.1よりも小さい測定点は解析対象から除外した。
(4)Grain distribution mapにおいて、結晶方位差が15°以上の大角粒界で囲まれた結晶粒の最大幅(通常板厚方向に沿った長さ)と最大長さ(通常圧延方向に沿った長さ)を測定し、結晶粒の面積を算出して結晶粒の円相当径を算出し、平均値を求めた。
<< Calculation method of D >>
(1) Prepare a sample cut parallel to the rolling direction (longitudinal direction) so as to include both the front and back surfaces of the rolled material.
(2) Polishing with a wet emery polishing paper of # 150 to # 1000 or a polishing method having the same function as that, and a mirror finish using a polishing agent such as diamond slurry.
(3) The mirror polished surface is an EBSP (Electron Back Scattering Pattern) device manufactured by TexSEM Laboratories, and the orientation of two crystals is set at a measurement range of 200 μm × 200 μm and a pitch of 0.5 μm at the t / 4 position in the plate thickness direction. The difference was measured, and the boundary where the crystal orientation difference was 15 ° or more was defined as a large-angle grain boundary. Note that measurement points with a confidence index indicating the reliability of the measurement direction smaller than 0.1 were excluded from the analysis target.
(4) In the grain distribution map, the maximum width (usually along the plate thickness direction) and the maximum length (usually along the rolling direction) of the crystal grain surrounded by the large-angle grain boundary having a crystal orientation difference of 15 ° or more. Length), the area of the crystal grains was calculated, the equivalent circle diameter of the crystal grains was calculated, and the average value was obtained.

《Mの算出方法》
結晶方位差が55°以上の大角粒界で囲まれた結晶粒が鋼材全体に占める割合Mは、上記Dの算出方法における(3)の工程で、結晶方位差のテキストデータを解析して算出した。テキストデータの解析は、結晶方位差が5°以下のものをノイズとして削除し、金属組織全体に占める結晶方位差が55°以上の大角粒界で囲まれた結晶粒の面積分率を算出した。
<< Calculation method of M >>
The ratio M of the crystal grains surrounded by large-angle grain boundaries with a crystal orientation difference of 55 ° or more to the whole steel material is calculated by analyzing the text data of the crystal orientation difference in the step (3) in the calculation method of D above. did. In the analysis of the text data, those with a crystal orientation difference of 5 ° or less were deleted as noise, and the area fraction of crystal grains surrounded by large-angle grain boundaries with a crystal orientation difference of 55 ° or more in the entire metal structure was calculated. .

平均円相当径Dと未再結晶域における累積圧下率の関係を図4に示す。図4から明らかなように、未再結晶域における累積圧下率を40%以上とすれば、結晶方位差が15°以上の大角粒界で囲まれた結晶粒の平均円相当径Dを30μm以下にすることができる。   FIG. 4 shows the relationship between the average equivalent circle diameter D and the cumulative rolling reduction in the non-recrystallized region. As apparent from FIG. 4, when the cumulative reduction ratio in the non-recrystallized region is 40% or more, the average equivalent circle diameter D of the crystal grains surrounded by the large-angle grain boundaries having a crystal orientation difference of 15 ° or more is 30 μm or less. Can be.

結晶方位差が55°以上の大角粒界で囲まれた結晶粒が鋼材全体に占める割合Mと、Ar3点以上の温度域(T3)から500℃以下の温度域(T4)への平均冷却速度との関係を図5に示す。図5から明らかなように、Ar3点以上の温度域(T3)から500℃以下の温度域(T4)への平均冷却速度を5℃/秒以上に制御すれば、結晶方位差が55°以上の大角粒界で囲まれた結晶粒が鋼材全体に占める割合Mを50面積%以上にすることができる。 Average cooling from the ratio M of crystal grains surrounded by large-angle grain boundaries with a crystal orientation difference of 55 ° or more to the entire steel material and the temperature range (T3) of Ar 3 or higher to a temperature range (T4) of 500 ° C. or lower The relationship with speed is shown in FIG. As is apparent from FIG. 5, if the average cooling rate from the temperature range (T3) of Ar 3 or higher to the temperature range (T4) of 500 ° C. or lower is controlled to 5 ° C./second or higher, the crystal orientation difference is 55 °. The ratio M of the crystal grains surrounded by the large-angle grain boundaries to the entire steel material can be 50 area% or more.

次に、得られた圧延材の低温靭性を次の手順で評価した。   Next, the low temperature toughness of the obtained rolled material was evaluated by the following procedure.

《低温靭性の評価方法》
圧延材の低温靭性は、Vノッチシャルピー試験を行い、圧延材の衝撃特性を−60℃における吸収エネルギー(vE-60)を測定することによって評価した。vE-60の測定は、t/4位置からNK(日本海事協会)船級が定めるU4号試験片を採取し、JIS Z2242に従って行なった。測定結果を下記表6に示す。
<Evaluation method of low temperature toughness>
The low temperature toughness of the rolled material was evaluated by performing a V-notch Charpy test and measuring the impact characteristics of the rolled material by measuring the absorbed energy (vE- 60 ) at -60 ° C. The measurement of vE- 60 was carried out according to JIS Z2242 by collecting U4 test piece defined by NK (Japan Maritime Association) classification from t / 4 position. The measurement results are shown in Table 6 below.

なお、NK船級における造船Eグレードでは母材の衝撃特性を、試験温度を−40℃で評価するため、本実験例では、条件をより厳しく試験温度を−60℃として吸収エネルギー(vE-60)を測定し、この平均値が100J以上を合格(母材の低温靭性が良好)とした。 In the shipbuilding E grade in the NK class, the impact characteristics of the base material are evaluated at a test temperature of −40 ° C. In this experimental example, the conditions are more stringent and the test temperature is −60 ° C., and the absorbed energy (vE -60 ) The average value of 100 J or more was determined to be acceptable (the low temperature toughness of the base material was good).

平均円相当径Dと、圧延材のvE-60の関係を図6に示す。図6から明らかなように、結晶方位差が15°以上の大角粒界で囲まれた結晶粒の平均円相当径Dを30μm以下にすれば、vE-60を100J以上とすることができ、母材自体の低温靭性を改善できることがわかる。 FIG. 6 shows the relationship between the average equivalent circle diameter D and the rolling material vE- 60 . As apparent from FIG. 6, when the average equivalent circle diameter D of the crystal grains surrounded by the large-angle grain boundaries having a crystal orientation difference of 15 ° or more is 30 μm or less, vE- 60 can be 100 J or more. It can be seen that the low temperature toughness of the base metal itself can be improved.

結晶方位差が55°以上の大角粒界で囲まれた結晶粒が全体に占める割合Mと、圧延材のvE-60の関係を図7に示す。図7から明らかなように、結晶方位差が55°以上の大角粒界で囲まれた結晶粒が鋼材全体に占める割合Mを50面積%以上にすれば、vE-60を100J以上とすることができ、母材自体の低温靭性を改善できることがわかる。 FIG. 7 shows the relationship between the ratio M of crystal grains surrounded by large-angle grain boundaries having a crystal orientation difference of 55 ° or more and vE- 60 of the rolled material. As is clear from FIG. 7, if the ratio M of the crystal grains surrounded by large-angle grain boundaries with a crystal orientation difference of 55 ° or more to the entire steel material is 50 area% or more, vE- 60 should be 100 J or more. It can be seen that the low temperature toughness of the base metal itself can be improved.

Figure 2010121199
Figure 2010121199

Figure 2010121199
Figure 2010121199

上記実験例1と上記実験例2の結果を総合すると、上記表4と上記表6から次のように考察できる。   When the results of Experimental Example 1 and Experimental Example 2 are combined, it can be considered from Table 4 and Table 6 as follows.

No.21〜25、27〜33は、本発明で規定する要件を満足する鋼種a〜dを用いた例であり、表4から明らかなように、HAZ靭性が良好で、HAZ靭性のバラツキも少なく、表6から明らかなように、母材自体の低温靭性も良好である。   No. 21 to 25 and 27 to 33 are examples using steel types a to d that satisfy the requirements defined in the present invention. As is apparent from Table 4, HAZ toughness is good and there is little variation in HAZ toughness. As is clear from Table 6, the low temperature toughness of the base material itself is also good.

No.26は、本発明で規定する要件を満足する鋼種bを用いているため、表4から明らかなように、HAZ靭性が良好で、HAZ靭性のバラツキは少ないが、未再結晶域における1パスあたりの最大圧下率が12%を超えているため、結晶方位差が15°以上の大角粒界で囲まれた結晶粒の平均円相当径Dが30μmを超えてしまい、母材の低温靭性が悪くなっている。   No. No. 26 uses steel type b that satisfies the requirements specified in the present invention, and as is clear from Table 4, HAZ toughness is good and there is little variation in HAZ toughness, but per pass in the non-recrystallized region. Since the maximum rolling reduction of 12% exceeds 12%, the average equivalent circle diameter D of crystal grains surrounded by large-angle grain boundaries with a crystal orientation difference of 15 ° or more exceeds 30 μm, and the low-temperature toughness of the base material is poor. It has become.

No.34とNo.35は、表6から明らかなように、母材の低温靭性は良好であるが、本発明で規定する要件を満足しない鋼種eと鋼種fを用いているため、表4から明らかなように、HAZ靭性が悪く、HAZ靭性のバラツキも大きくなっている。   No. 34 and no. 35, as is clear from Table 6, the low temperature toughness of the base metal is good, but since the steel type e and the steel type f that do not satisfy the requirements specified in the present invention are used, as is clear from Table 4, The HAZ toughness is poor and the HAZ toughness variation is also increasing.

No.36〜42は、本発明で規定する要件を満足しない鋼種g〜鋼種mを用いているため、表4から明らかなように、HAZ靭性が悪く、HAZ靭性のバラツキも大きくなっている。また、表6から明らかなように、金属組織が適切に制御できていないため、母材自体の低温靭性も悪くなっている。   No. 36 to 42 use steel type g to steel type m that do not satisfy the requirements defined in the present invention, and as is apparent from Table 4, the HAZ toughness is poor and the HAZ toughness variation is also large. Further, as apparent from Table 6, since the metal structure is not properly controlled, the low temperature toughness of the base material itself is also deteriorated.

図1は、REMとZrを添加する前のトータル酸素量[O]1と、REMとZrの添加量の合計との関係を示すグラフである。FIG. 1 is a graph showing the relationship between the total amount of oxygen [O] 1 before adding REM and Zr and the total amount of addition of REM and Zr. 図2は、鋳造前の溶鋼に含まれる溶存酸素量[O]2と、鋼材に含まれる固溶REM量または固溶Zr量との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the amount of dissolved oxygen [O] 2 contained in the molten steel before casting and the amount of solute REM or solute Zr contained in the steel material. 図3は、HAZ靭性の平均値と、HAZ靭性の最大値と最小値の幅を示すグラフである。FIG. 3 is a graph showing the average value of HAZ toughness and the width of the maximum and minimum values of HAZ toughness. 図4は、平均円相当径Dと未再結晶域における累積圧下率の関係を示すグラフである。FIG. 4 is a graph showing the relationship between the average equivalent circle diameter D and the cumulative rolling reduction in the non-recrystallized region. 図5は、結晶方位差が55°以上の大角粒界で囲まれた結晶粒が鋼材全体に占める割合Mと、Ar3点以上の温度域(T3)から500℃以下の温度域(T4)への平均冷却速度との関係を示すグラフである。FIG. 5 shows the ratio M of the crystal grains surrounded by large-angle grain boundaries having a crystal orientation difference of 55 ° or more to the entire steel material, and the temperature range (T3) of Ar 3 or higher to a temperature range of 500 ° C. or lower (T4). It is a graph which shows the relationship with the average cooling rate to. 図6は、平均円相当径Dと、圧延材のvE-60の関係を示すグラフである。FIG. 6 is a graph showing the relationship between the average equivalent circle diameter D and the vE- 60 of the rolled material. 図7は、結晶方位差が55°以上の大角粒界で囲まれた結晶粒が鋼材全体に占める割合Mと、圧延材のvE-60の関係を示すグラフである。FIG. 7 is a graph showing the relationship between the ratio M of the crystal grains surrounded by large-angle grain boundaries having a crystal orientation difference of 55 ° or more to the whole steel material and the vE- 60 of the rolled material.

Claims (7)

C :0.04〜0.13%(「質量%」の意味。以下同じ)、
Si:0.5%以下(0%を含まない)、
Mn:2%以下(0%を含まない)、
Ti:0.02%以下(0%を含まない)、および
N :0.01%以下(0%を含まない)を含み、
更に、
Cu:0.3%以下(0%を含まない)、
Ni:0.4%以下(0%を含まない)、および
Nb:0.25%以下(0%を含まない)よりなる群から選ばれる少なくとも1種を含み、
P :0.02%以下(0%を含まない)、
S :0.015%以下(0%を含まない)、および
Al:0.01%以下(0%を含む)を満足すると共に、
更に、
REM:0.0010〜0.1%と、Zr:0.0010〜0.05%を夫々含有し、
残部が鉄および不可避不純物からなる鋼材であり、
(A)前記鋼材は、REMとZrを含有する介在物を含む他、
(B)鋼材中の固溶REMと固溶Zrが、
固溶REM:0.0010%以下(0%を含む)、
固溶Zr :0.0010%以下(0%を含む)を満足し、
(C)鋼材の金属組織を後方散乱電子回折像法(EBSP法)で観察したときに、下記(1)式と(2)式を満足することを特徴とする溶接熱影響部の靭性および母材低温靭性に優れた鋼材。
D≦30 ・・・(1)
50≦M ・・・(2)
[但し、(1)式中、Dは、EBSP法で隣接する2つの結晶の方位差を測定し、結晶方位差が15°以上の大角粒界で囲まれた結晶粒の平均円相当径(μm)を意味する。また、(2)式中、Mは、結晶方位差が55°以上の大角粒界で囲まれた結晶粒が鋼材全体に占める割合(面積%)を意味する。]
C: 0.04 to 0.13% (meaning “mass%”; the same applies hereinafter)
Si: 0.5% or less (excluding 0%),
Mn: 2% or less (excluding 0%),
Ti: 0.02% or less (not including 0%), and N: 0.01% or less (not including 0%),
Furthermore,
Cu: 0.3% or less (excluding 0%),
Including at least one selected from the group consisting of Ni: 0.4% or less (excluding 0%) and Nb: 0.25% or less (not including 0%),
P: 0.02% or less (excluding 0%),
S: 0.015% or less (excluding 0%) and Al: 0.01% or less (including 0%),
Furthermore,
REM: 0.0010 to 0.1% and Zr: 0.0010 to 0.05%, respectively,
The balance is steel consisting of iron and inevitable impurities,
(A) The steel material includes inclusions containing REM and Zr,
(B) Solid solution REM and solid solution Zr in steel
Solid solution REM: 0.0010% or less (including 0%),
Solid solution Zr: 0.0010% or less (including 0%) is satisfied,
(C) Toughness and base of weld heat affected zone characterized by satisfying the following equations (1) and (2) when the metallographic structure of the steel material is observed by backscattered electron diffraction imaging (EBSP method): Steel material with excellent low-temperature toughness.
D ≦ 30 (1)
50 ≦ M (2)
[However, in the formula (1), D is a measurement of the orientation difference between two adjacent crystals by the EBSP method, and the average equivalent circle diameter of a crystal grain surrounded by a large-angle grain boundary with a crystal orientation difference of 15 ° or more ( μm). In the formula (2), M means the ratio (area%) of the crystal grains surrounded by the large-angle grain boundaries having a crystal orientation difference of 55 ° or more to the entire steel material. ]
前記鋼材に含まれる介在物の組成を測定し、該介在物に含まれる元素のうち、O,C,N,S以外の元素の存在比をモル換算し、換算後の元素量全体を1モルとしたときに、REMのモル分率が0.05以上で、Zrのモル分率が0.04以上を満足するものである請求項1に記載の鋼材。 The composition of inclusions contained in the steel material is measured, and the abundance ratio of elements other than O, C, N, and S among the elements contained in the inclusions is converted into moles, and the total amount of elements after conversion is 1 mole. The steel material according to claim 1, wherein the molar fraction of REM satisfies 0.05 or more and the molar fraction of Zr satisfies 0.04 or more. 前記鋼材が、更に他の元素として、Ca:0.01%以下(0%を含まない)を含むものである請求項1または2に記載の鋼材。 The steel material according to claim 1 or 2, wherein the steel material further contains Ca: 0.01% or less (not including 0%) as another element. 前記鋼材が、更に他の元素として、B:0.005%以下(0%を含まない)を含むものである請求項1〜3のいずれかに記載の鋼材。 The steel material according to any one of claims 1 to 3, wherein the steel material further contains B: 0.005% or less (not including 0%) as another element. 請求項1〜4のいずれかに記載の鋼材を製造する方法であって、
トータル酸素量[O]1を0.0020〜0.015%の範囲に調整した溶鋼へ、REMとZrを添加して溶存酸素量[O]2を0.0010〜0.0035%の範囲に調整した後、鋳造し、
得られた鋼片をAc3点以上、1200℃以下の温度域に加熱後、
鋼片の平均温度がAr3点+10℃以上、900℃以下の温度域においては、1パスあたりの最大圧下率を12%以下、累積圧下率を40%以上に制御して熱間圧延し、
得られた熱間圧延材の平均温度がAr3点以上の温度域から、熱間圧延材の表面温度が500℃以下の温度域まで平均冷却速度5℃/秒以上で冷却することを特徴とする溶接熱影響部の靭性および母材低温靭性に優れた鋼材の製造方法。
A method for producing the steel material according to any one of claims 1 to 4,
REM and Zr are added to the molten steel in which the total oxygen amount [O] 1 is adjusted in the range of 0.0020 to 0.015%, so that the dissolved oxygen amount [O] 2 is in the range of 0.0010 to 0.0035%. After adjusting, casting,
After heating the obtained slab to a temperature range of Ac 3 points or more and 1200 ° C. or less,
In the temperature range where the average temperature of the steel slab is Ar 3 point + 10 ° C. or more and 900 ° C. or less, the maximum rolling reduction per pass is controlled to 12% or less, the cumulative rolling reduction is controlled to 40% or more, and hot rolling is performed.
The hot-rolled material obtained is cooled at an average cooling rate of 5 ° C / second or more from a temperature range where the average temperature of the hot-rolled material is Ar 3 or higher to a temperature range where the surface temperature of the hot-rolled material is 500 ° C or lower. A method for producing a steel material having excellent weld heat affected zone toughness and base metal low temperature toughness.
前記トータル酸素量[O]1を測定し、このトータル酸素量[O]1に応じて下記(3)式を満足するようにREMとZrを添加して前記溶存酸素量[O]2を調整する請求項5に記載の製造方法。
[REM]+[Zr]≦15×[O]1 ・・・(3)
[但し、(3)式中、[REM]と[Zr]は、夫々REMまたはZrの添加量(質量%)であり、[O]1は、REMとZrを添加する前の溶鋼のトータル酸素量(質量%)である。]
The total oxygen content [O] 1 was measured, the total oxygen content [O] the amount of dissolved oxygen by the addition of REM and Zr so as to satisfy the following formula (3) in response to 1 [O] 2 adjusted The manufacturing method according to claim 5.
[REM] + [Zr] ≦ 15 × [O] 1 (3)
[However, in the formula (3), [REM] and [Zr] are the addition amount (mass%) of REM or Zr, respectively, and [O] 1 is the total oxygen of the molten steel before adding REM and Zr. Amount (% by mass). ]
前記鋼材の表面温度が500℃以下の温度域まで冷却速度5℃/秒以上で冷却した後、500℃以上、Ac1点未満の温度域に加熱して焼き戻しを行なう請求項5または6に記載の製造方法。 The steel material is cooled at a cooling rate of 5 ° C / second or more to a temperature range of 500 ° C or lower, and then tempered by heating to a temperature range of 500 ° C or higher and less than Ac 1 point. The manufacturing method as described.
JP2008298555A 2008-11-21 2008-11-21 Steel material excellent in toughness of weld heat-affected zone and base metal low-temperature toughness, and method for producing the same Active JP5234951B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008298555A JP5234951B2 (en) 2008-11-21 2008-11-21 Steel material excellent in toughness of weld heat-affected zone and base metal low-temperature toughness, and method for producing the same
KR1020090112025A KR101169866B1 (en) 2008-11-21 2009-11-19 Steel material having excellent toughness in welding heat-affected zone, and method for producing the same
CN2009102228558A CN101736197B (en) 2008-11-21 2009-11-19 Steels with excellent toughness for welding heat affected section and method of producing the same
KR1020160019663A KR20160025545A (en) 2008-11-21 2016-02-19 Steel material having excellent toughness in welding heat-affected zone, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008298555A JP5234951B2 (en) 2008-11-21 2008-11-21 Steel material excellent in toughness of weld heat-affected zone and base metal low-temperature toughness, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010121199A true JP2010121199A (en) 2010-06-03
JP5234951B2 JP5234951B2 (en) 2013-07-10

Family

ID=42322782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008298555A Active JP5234951B2 (en) 2008-11-21 2008-11-21 Steel material excellent in toughness of weld heat-affected zone and base metal low-temperature toughness, and method for producing the same

Country Status (1)

Country Link
JP (1) JP5234951B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010209433A (en) * 2009-03-11 2010-09-24 Kobe Steel Ltd Steel material superior in toughness of weld heat-affected zone and fatigue characteristics of base metal, and method for manufacturing the same
JP2010222652A (en) * 2009-03-24 2010-10-07 Kobe Steel Ltd Thick steel plate having excellent toughness in weld heat affected zone and excellent low temperature base metal toughness
JP2012092419A (en) * 2010-09-30 2012-05-17 Jfe Steel Corp Thick steel plate with superior fatigue resistance and method of manufacturing the same
JP2019023322A (en) * 2017-07-21 2019-02-14 新日鐵住金株式会社 Steel plate and method for manufacturing steel plate
JP2019023324A (en) * 2017-07-21 2019-02-14 新日鐵住金株式会社 Steel plate and method for manufacturing steel plate
CN111225987A (en) * 2017-10-11 2020-06-02 株式会社Posco Thick steel sheet having excellent low-temperature strain aging impact characteristics and method for producing same
JP2022545984A (en) * 2019-09-10 2022-11-01 中国科学院金属研究所 Rare earth microalloy steel and control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08333651A (en) * 1995-06-06 1996-12-17 Nippon Steel Corp Steel material excellent in heat-affected zone hardening resistance
JP2008088485A (en) * 2006-09-29 2008-04-17 Kobe Steel Ltd Steel material excellent in toughness and fatigue crack progress resistance of welding heat-affected zone, and producing method therefor
JP2008088488A (en) * 2006-09-29 2008-04-17 Kobe Steel Ltd Steel with excellent toughness in weld heat-affected zone and toughness in base material, and its manufacturing method
JP2008280600A (en) * 2007-05-14 2008-11-20 Kobe Steel Ltd Steel sheet excellent in brittle crack propagation-arresting property and toughness at sheet thickness center part, and its manufacturing method
JP2008291347A (en) * 2007-04-23 2008-12-04 Kobe Steel Ltd Steel material with excellent toughness in weld heat-affected zone, and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08333651A (en) * 1995-06-06 1996-12-17 Nippon Steel Corp Steel material excellent in heat-affected zone hardening resistance
JP2008088485A (en) * 2006-09-29 2008-04-17 Kobe Steel Ltd Steel material excellent in toughness and fatigue crack progress resistance of welding heat-affected zone, and producing method therefor
JP2008088488A (en) * 2006-09-29 2008-04-17 Kobe Steel Ltd Steel with excellent toughness in weld heat-affected zone and toughness in base material, and its manufacturing method
JP2008291347A (en) * 2007-04-23 2008-12-04 Kobe Steel Ltd Steel material with excellent toughness in weld heat-affected zone, and its manufacturing method
JP2008280600A (en) * 2007-05-14 2008-11-20 Kobe Steel Ltd Steel sheet excellent in brittle crack propagation-arresting property and toughness at sheet thickness center part, and its manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010209433A (en) * 2009-03-11 2010-09-24 Kobe Steel Ltd Steel material superior in toughness of weld heat-affected zone and fatigue characteristics of base metal, and method for manufacturing the same
JP2010222652A (en) * 2009-03-24 2010-10-07 Kobe Steel Ltd Thick steel plate having excellent toughness in weld heat affected zone and excellent low temperature base metal toughness
JP2012092419A (en) * 2010-09-30 2012-05-17 Jfe Steel Corp Thick steel plate with superior fatigue resistance and method of manufacturing the same
JP2019023322A (en) * 2017-07-21 2019-02-14 新日鐵住金株式会社 Steel plate and method for manufacturing steel plate
JP2019023324A (en) * 2017-07-21 2019-02-14 新日鐵住金株式会社 Steel plate and method for manufacturing steel plate
CN111225987A (en) * 2017-10-11 2020-06-02 株式会社Posco Thick steel sheet having excellent low-temperature strain aging impact characteristics and method for producing same
JP2022545984A (en) * 2019-09-10 2022-11-01 中国科学院金属研究所 Rare earth microalloy steel and control method
JP7307279B2 (en) 2019-09-10 2023-07-11 中国科学院金属研究所 Rare earth microalloy steel and control method

Also Published As

Publication number Publication date
JP5234951B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
JP5342902B2 (en) Steel material excellent in toughness and base metal fatigue characteristics of weld heat-affected zone and its manufacturing method
JP5202031B2 (en) Steel material excellent in toughness of weld heat-affected zone and method for producing the same
JP5110989B2 (en) Large steel plate for high heat input welding with excellent brittle crack propagation stopping characteristics
JP4950528B2 (en) Low yield ratio high strength steel with excellent toughness of heat affected zone and its manufacturing method
JP5574059B2 (en) High-strength H-section steel with excellent low-temperature toughness and method for producing the same
JP4515430B2 (en) Steel with excellent toughness and base metal toughness of weld heat affected zone and its manufacturing method
JPWO2019069771A1 (en) Steel plate and method for producing steel plate
JP5096087B2 (en) High tensile strength steel plate for high heat input welding with excellent base metal low temperature toughness
JP4515427B2 (en) Steel with excellent toughness and fatigue crack growth resistance in weld heat affected zone and its manufacturing method
JP5234951B2 (en) Steel material excellent in toughness of weld heat-affected zone and base metal low-temperature toughness, and method for producing the same
KR101169866B1 (en) Steel material having excellent toughness in welding heat-affected zone, and method for producing the same
KR20210127736A (en) Steel and its manufacturing method
JP2006063351A (en) High strength steel plate with excellent hydrogen induced cracking resistance, its manufacturing method, and steel pipe for line pipe
WO2014175122A1 (en) H-shaped steel and method for producing same
JP4950529B2 (en) Steel with excellent toughness and base metal toughness of weld heat affected zone and its manufacturing method
JP2009041057A (en) Thick steel plate for high-heat-input welding superior in shear cutting
JP5234952B2 (en) Low yield ratio steel material excellent in toughness of weld heat affected zone, and method for producing the same
JP2016008308A (en) High-strength steel sheet and production method thereof
JP2010202938A (en) Thick steel plate having excellent brittle crack arrest property
JP5520105B2 (en) Steel material excellent in toughness of weld heat-affected zone and method for producing the same
JP2010059505A (en) Thick steel plate superior in characteristic to stop brittle crack propagation
JP4515428B2 (en) Steel material excellent in toughness and brittle fracture occurrence characteristics of weld heat affected zone and its manufacturing method
JP4515429B2 (en) Steel with excellent toughness and brittle crack stopping characteristics in weld heat affected zone and its manufacturing method
KR100899053B1 (en) Low yield ratio and high tension steel material excellent in toughness of weld heat-affected zone, and process for producing the same
KR100937069B1 (en) Steel material having superior toughness in weld heat-affected zone and process for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3