JP2008291347A - Steel material with excellent toughness in weld heat-affected zone, and its manufacturing method - Google Patents
Steel material with excellent toughness in weld heat-affected zone, and its manufacturing method Download PDFInfo
- Publication number
- JP2008291347A JP2008291347A JP2008044870A JP2008044870A JP2008291347A JP 2008291347 A JP2008291347 A JP 2008291347A JP 2008044870 A JP2008044870 A JP 2008044870A JP 2008044870 A JP2008044870 A JP 2008044870A JP 2008291347 A JP2008291347 A JP 2008291347A
- Authority
- JP
- Japan
- Prior art keywords
- rem
- less
- amount
- steel material
- toughness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Description
本発明は、橋梁や高層建造物、船舶などの構造物に使用される鋼材に関するものであり、より詳細には、溶接するにあたり、熱影響を受ける部位(以下、「溶接熱影響部」または「HAZ」ということがある)の靭性を改善した鋼材およびその製法に関するものである。 The present invention relates to a steel material used for structures such as bridges, high-rise buildings, and ships. More specifically, the present invention relates to a portion that is affected by heat (hereinafter referred to as “welding heat affected zone” or “ The present invention relates to a steel material having improved toughness (sometimes referred to as “HAZ”) and a manufacturing method thereof.
橋梁や高層建造物、船舶などに使用される鋼材に要求される特性は、近年益々厳しくなっており、とりわけ良好な靭性が求められている。これらの鋼材は、一般的に溶接にて接合されることが多いが、特にHAZは溶接時に熱影響を受けて靭性が劣化しやすいという問題がある。この靭性劣化は溶接時の入熱量が大きくなるほど顕著に現れ、その原因は溶接時の入熱量が大きくなるとHAZの冷却速度が遅くなり、焼入性が低下して粗大な島状マルテンサイトを生成することにあると考えられている。従ってHAZの靭性を改善するには、溶接時の入熱量を極力抑えればよいと考えられる。しかしその一方で、溶接作業効率を高めるうえでは、例えばエレクトロガス溶接、エレクトロスラグ溶接、サブマージ溶接などの溶接入熱量が50kJ/mm以上の大入熱溶接法の採用が望まれる。 The properties required for steel materials used in bridges, high-rise buildings, ships and the like have become increasingly severe in recent years, and particularly good toughness is required. In general, these steel materials are often joined by welding. In particular, HAZ has a problem that the toughness is easily deteriorated due to thermal influence during welding. This toughness deterioration becomes more prominent as the heat input during welding increases, and the cause is that the larger the heat input during welding, the slower the cooling rate of the HAZ, and the lower the hardenability and the generation of coarse island martensite. It is thought that there is to do. Therefore, in order to improve the toughness of the HAZ, it is considered that the heat input during welding should be suppressed as much as possible. However, on the other hand, in order to increase the welding work efficiency, it is desired to employ a high heat input welding method in which the heat input of welding is 50 kJ / mm or more, such as electrogas welding, electroslag welding, submerged welding, and the like.
大入熱溶接法を採用した場合のHAZ靭性劣化を抑制する鋼材は、既にいくつか提案されている。例えば特許文献1には、鋼材中に微細なTiNを分散再析出させることで、大入熱溶接を行なったときのHAZで生じるオーステナイト粒の粗大化を抑制し、HAZ靭性の劣化を抑えた鋼材が提案されている。しかし本発明者らが検討したところ、溶接金属が1400℃以上の高温になると、HAZのうち特に溶接金属に近接した部位(以下、「ボンド部」ということがある)において溶接時に受ける熱によって上記TiNが固溶消失してしまい、HAZ靭性の劣化を抑えることができないことが分かった。
Several steel materials that suppress the HAZ toughness deterioration when the high heat input welding method is adopted have already been proposed. For example,
また特許文献2には、母材とHAZの靭性を向上させる技術として、鋼材に含まれる酸化物と窒化物の存在形態を制御することが開示されている。この特許文献2には、TiとZrを組み合わせて使用することにより、微細な酸化物と窒化物を生成させて母材とHAZの靭性を向上させることが記載されている。またこうした微細な酸化物と窒化物を生成させるには、製造工程においてTiとZrをこの順で添加すればよいことが開示されている。しかし本発明者らが検討したところ、HAZの靭性を更に高めるには、酸化物量を増やせばよいが、上記特許文献2に開示されている技術において酸化物量を増やすためにTiやZrを多量に添加すると、TiやZrなどの炭化物が形成され、鋼材(母材)の靭性が却って低下することが分かった。
ところで本出願人は、溶接時に高温の熱影響を受けた場合でもHAZの靭性が劣化しない鋼材を特許文献3で先に提案している。この鋼材は、La2O3−SiO2系酸化物やCe2O3−SiO2系酸化物、La2O3−Ce2O3−SiO2系酸化物などの複合酸化物を鋼材中に分散させたものであり、この複合酸化物は、溶鋼中では液状で存在するため鋼中に微細分散し、しかも溶接時には熱影響を受けても固溶消失しないため、HAZの靭性向上に寄与する。上記特許文献3には、上記複合酸化物を生成させるために、溶存酸素量を調整した溶鋼へLaやCeを添加し、次いでSiを添加すればよいことを開示している。また特許文献3には、鋼材にTiを含有させて鋼材組織中にTiNを析出させることにより、HAZの靭性が更に高められること、またこうしたTiNを生成させるには、上記複合酸化物が生成した溶鋼へTiを添加すればよいことを開示している。
By the way, the present applicant has previously proposed a steel material in which the HAZ toughness does not deteriorate even if it is affected by high temperature heat during welding. This steel material is composed of complex oxides such as La 2 O 3 —SiO 2 oxide, Ce 2 O 3 —SiO 2 oxide, and La 2 O 3 —Ce 2 O 3 —SiO 2 oxide in the steel material. This composite oxide is in a liquid state in molten steel, so it is finely dispersed in the steel, and it does not disappear in solid solution even if it is affected by heat during welding, contributing to the improvement of HAZ toughness. .
なお、HAZ靭性の向上を狙った技術ではないが、特許文献4には、鋼材中にREMとZr等の元素を含有させるとともに、固溶REMと固溶Zrを積極的に含有させることによって、水素性の超音波探傷欠陥を防止して厚鋼板の内部品質を向上させるとともに、内部品質の健全性を保つ技術が提案されている。この技術では、安定した固溶量を確保するために、Al,Ca,Ti等を複合添加している。
本発明者らは、特許文献3として先に開示した技術に対して、上記組成の複合酸化物以外の組成の介在物に注目し、上記特許文献3とは異なる組成の介在物を鋼材中に分散させることによってHAZの靭性を高めることができないかについて検討を重ねた。
The present inventors pay attention to inclusions having a composition other than the composite oxide having the above composition with respect to the technique previously disclosed as
本発明の目的は、上記特許文献3で提案した鋼材とは異なる組成の介在物を鋼材中に分散させることによって、HAZ(溶接熱影響部)の靭性を改善すると共に、このHAZ靭性のバラツキを低減した鋼材およびその製造方法を提供することにある。
The object of the present invention is to improve the toughness of HAZ (welding heat affected zone) by dispersing inclusions having a composition different from that of the steel material proposed in
上記課題を解決することのできた本発明に係る鋼材とは、C:0.01〜0.2%(「質量%」の意味。以下同じ)、Si:0.5%以下(0%を含まない)、Mn:2.5%以下(0%を含まない)、Ti:0.03%以下(0%を含まない)、およびN:0.01%以下(0%を含まない)を含み、P:0.02%以下(0%を含まない)、S:0.015%以下(0%を含まない)、およびAl:0.01%以下(0%を含む)を満足すると共に、更に、REM:0.0010〜0.1%と、Zr:0.001〜0.05%を夫々含有し、残部が鉄および不可避不純物からなる鋼材であり、介在物中にREMとZrを含有すると共に、固溶REM:0.0010%以下(0%を含む)と、固溶Zr:0.0010%以下(0%を含む)を満足する点に要旨を有する。 The steel materials according to the present invention that have solved the above problems are: C: 0.01 to 0.2% (meaning “mass%”; the same shall apply hereinafter), Si: 0.5% or less (including 0%) Not including), Mn: not more than 2.5% (not including 0%), Ti: not exceeding 0.03% (not including 0%), and N: not exceeding 0.01% (not including 0%) P: 0.02% or less (not including 0%), S: 0.015% or less (not including 0%), and Al: 0.01% or less (including 0%), Further, REM: 0.0010 to 0.1% and Zr: 0.001 to 0.05% respectively, and the balance is a steel material composed of iron and inevitable impurities, and REM and Zr are contained in the inclusions. In addition, solid solution REM: 0.0010% or less (including 0%) and solid solution Zr: 0.0010% or less (including 0%) It includes the features in that satisfactory.
上記鋼材は、該鋼材に含まれる介在物の組成を測定し、該介在物に含まれる元素のうち、O,C,N,S以外の元素の存在比をモル換算し、換算後の元素量全体を1モルとしたときに、REMのモル分率が0.050以上で、Zrのモル分率が0.04以上であることが好ましい。 The above steel material measures the composition of inclusions contained in the steel material, converts the abundance ratio of elements other than O, C, N, and S among the elements contained in the inclusions, and converts the element amount after conversion. When the total is 1 mol, it is preferable that the molar fraction of REM is 0.050 or more and the molar fraction of Zr is 0.04 or more.
前記鋼材は、更に他の元素として、
(1)Ca:0.01%以下(0%を含まない)、
(2)Cu:2%以下(0%を含まない)、Ni:3.5%以下(0%を含まない)、Cr:3%以下(0%を含まない)、Mo:1%以下(0%を含まない)、Nb:0.25%以下(0%を含まない)、V:0.1%以下(0%を含まない)、およびB:0.005%以下(0%を含まない)よりなる群から選ばれる1種以上の元素、
等を含んでも良い。
The steel material, as another element,
(1) Ca: 0.01% or less (excluding 0%),
(2) Cu: 2% or less (not including 0%), Ni: 3.5% or less (not including 0%), Cr: 3% or less (not including 0%), Mo: 1% or less ( Nb: not more than 0.25% (not including 0%), V: not more than 0.1% (not including 0%), and B: not more than 0.005% (including 0%) One or more elements selected from the group consisting of:
Etc. may be included.
上記鋼材を製造する際には、トータル酸素量[O]1を0.0020〜0.015%の範囲に調整した溶鋼へ、REMとZrを添加して溶鋼の溶存酸素量[O]2を0.0010〜0.0035%の範囲に調整した後、鋳造すればよい。 When manufacturing the steel material, REM and Zr are added to the molten steel in which the total oxygen amount [O] 1 is adjusted to a range of 0.0020 to 0.015%, and the dissolved oxygen amount [O] 2 of the molten steel is changed. After adjusting to the range of 0.0010 to 0.0035%, casting may be performed.
前記溶存酸素量[O]2を調整するには、例えば、前記トータル酸素量[O]1を測定し、このトータル酸素量[O]1に応じて下記(1)式を満足するようにREMとZrを添加すればよい。但し、(1)式中、[REM]と[Zr]は、夫々REMまたはZrの添加量(質量%)であり、[O]1は、REMとZrを添加する前の溶鋼のトータル酸素量(質量%)である。
[REM]+[Zr]≦15×[O]1 ・・・(1)
In order to adjust the dissolved oxygen amount [O] 2 , for example, the total oxygen amount [O] 1 is measured, and REM is satisfied so as to satisfy the following formula (1) according to the total oxygen amount [O] 1. And Zr may be added. However, in (1), [REM] and [Zr] are the addition amounts (mass%) of REM or Zr, respectively, and [O] 1 is the total oxygen amount of the molten steel before adding REM and Zr. (Mass%).
[REM] + [Zr] ≦ 15 × [O] 1 (1)
本発明によれば、鋼材にREMとZrを複合添加することによって、上記特許文献3で提案した鋼材とは異なる組成の介在物を鋼材中に分散させることができ、この介在物は、1400℃レベルの高温に達しても鋼材中に固溶消失しないため、小〜中入熱溶接に限らず大入熱溶接を行なっても溶接熱影響部(HAZ)の靭性劣化を防止できる。また、本発明によれば、鋼材に含まれる固溶REM量と固溶Zr量を極力低減することで、HAZ靭性のバラツキを抑えることができる。
According to the present invention, by adding REM and Zr to the steel material in combination, inclusions having a composition different from the steel material proposed in
本発明者らは、上記特許文献3とは異なる組成の介在物を鋼材中に分散させることによってHAZ靭性の向上を達成できないかについて検討を重ねた。その結果、REMとZrを鋼材に複合添加し、介在物中にREMとZrを含有するように調整すれば、HAZ靭性を高めることができることを見出した。更に、鋼材に含まれる固溶REM量と固溶Zr量をできるだけ低減すれば、局所的に靭性が劣化する現象を防止でき、HAZ靭性のバラツキを抑えることができることを見出し、本発明を完成した。
The present inventors have repeatedly studied whether or not the improvement of HAZ toughness can be achieved by dispersing inclusions having a composition different from that of
まず、本発明の鋼材では、介在物中にREMとZrを含有している。介在物中にREMとZrを含有するとは、鋼材中にREMとZrの単独介在物もしくは複合介在物を含有していることを意味する。なお、以下では説明の便宜上、単独介在物と複合酸化物をまとめて「介在物」と呼ぶことがある。 First, the steel material of the present invention contains REM and Zr in inclusions. The inclusion of REM and Zr in the inclusion means that the steel material contains a single inclusion or a composite inclusion of REM and Zr. Hereinafter, for convenience of explanation, the single inclusion and the composite oxide may be collectively referred to as “inclusion”.
REMとZrの介在物は、溶接時に熱影響を受けて1400℃レベルの高温になっても固溶消失しないため、これらの介在物を含有させれば、溶接時のHAZにおいて、オーステナイト粒の粗大化を抑制したり、冷却時における粒内変態を促進することができるため、HAZ組織を微細化できる。その結果、HAZの靭性を一段と改善できる。 Since inclusions of REM and Zr are affected by heat during welding and do not disappear as a solid solution even at a high temperature of 1400 ° C., if these inclusions are included, the coarse austenite grains in the HAZ during welding Since it is possible to suppress crystallization and promote intragranular transformation during cooling, the HAZ structure can be refined. As a result, the toughness of HAZ can be further improved.
しかもREMとZrを併用添加して鋼材中に介在物として含有させることにより、鋼材(母材)の靭性劣化の原因となる粗大なZrの単独炭化物や粗大なREMの硫化物の生成を防止でき、結果として母材の靭性劣化を抑えつつHAZの靭性を向上させることができる。即ち、REMまたはZrを単独で添加する場合は、介在物の個数を増やすためには、REMまたはZrの添加量を増やさなければならないが、REMまたはZrの添加量を増やし過ぎるとREMの単独介在物やZrの単独介在物のサイズが大きくなり、却ってHAZ靭性を劣化させる。よってREMまたはZrを単独で添加する場合は、添加量に制限があり、そのためにREMやZrの添加量を増量できず、微細な介在物量も一定以上に増やすことができなかった。従ってHAZ靭性を向上させることができなかった。 Moreover, by adding REM and Zr together and including them as inclusions in the steel material, it is possible to prevent the formation of coarse Zr single carbides and coarse REM sulfides that cause toughness deterioration of the steel (base material). As a result, the toughness of the HAZ can be improved while suppressing toughness deterioration of the base material. That is, when adding REM or Zr alone, in order to increase the number of inclusions, it is necessary to increase the amount of REM or Zr added. The size of the inclusions and single inclusions of Zr is increased, and the HAZ toughness is deteriorated. Therefore, when REM or Zr is added alone, there is a limit to the amount of addition, so that the amount of REM or Zr added cannot be increased, and the amount of fine inclusions cannot be increased beyond a certain level. Therefore, the HAZ toughness could not be improved.
これに対し、REMとZrを含む介在物を鋼材中に含有させれば、REMを単独で含有させるか、Zrを単独で含有させる場合よりも鋼材中に含まれる介在物の絶対量を増大させることができるため、HAZの靭性を一層向上させることができる。 On the other hand, if inclusions containing REM and Zr are contained in the steel material, the absolute amount of inclusions contained in the steel material is increased as compared with the case where REM is contained alone or Zr is contained alone. Therefore, the toughness of HAZ can be further improved.
このように鋼材中にREMとZrの介在物を含有させることにより、HAZの靭性を向上させることができる。従ってHAZの靭性を向上させるには、REMとZrを積極的に添加して鋼材中に介在物を多く生成させることが望ましいと考えられる。しかしREMとZrの含有量を多くした鋼材を溶接し、HAZの靭性を複数個所で測定したところ、特に熱影響の大きいボンド部近傍では、局所的に靭性が低下し、測定値がバラつくことが判明した。そこで局所的に靭性が低下した部分の組織を観察したところ、粒界にREMやZrが偏析していることが明らかになった。このREMやZrの偏析を低減すべく検討を重ねたところ、鋼材中の固溶REM量と固溶Zr量を低減すればよいことを見出した。 Thus, by including inclusions of REM and Zr in the steel material, the toughness of the HAZ can be improved. Therefore, in order to improve the toughness of HAZ, it is desirable that REM and Zr are positively added to generate a lot of inclusions in the steel material. However, when steel materials with increased contents of REM and Zr are welded and the toughness of HAZ is measured at multiple locations, the toughness decreases locally and the measured values vary, especially in the vicinity of the bond where heat effects are large. There was found. Then, when the structure of the part where the toughness fell locally was observed, it became clear that REM and Zr were segregating at the grain boundary. As a result of repeated studies to reduce the segregation of REM and Zr, it was found that the amount of solute REM and the amount of solute Zr in the steel material should be reduced.
即ち、本発明の鋼材は、固溶REM:0.0010%以下(0%を含む)と、固溶Zr:0.0010%以下(0%を含む)を満足することが重要である。鋼材中の固溶REM量が0.0010%を超えるか、固溶Zr量が0.0010%を超えると、溶接時に熱影響を受けたときに、REMやZrが粒界に偏析して靭性を局所的に低下させる。従って固溶REM量は0.0010%以下とし、好ましくは0.0008%以下、より好ましくは0.0005%以下とする。固溶Zr量は0.0010%以下とし、好ましくは0.0008%以下、より好ましくは0.0005%以下とする。固溶REM量と固溶Zr量は、できるだけ低減することがよく、最も好ましくは0%である。 That is, it is important for the steel material of the present invention to satisfy a solid solution REM: 0.0010% or less (including 0%) and a solid solution Zr: 0.0010% or less (including 0%). If the amount of solute REM in the steel material exceeds 0.0010% or the amount of solute Zr exceeds 0.0010%, REM and Zr segregate at the grain boundaries when subjected to thermal effects during welding, and toughness Is reduced locally. Therefore, the solid solution REM content is 0.0010% or less, preferably 0.0008% or less, more preferably 0.0005% or less. The amount of solid solution Zr is 0.0010% or less, preferably 0.0008% or less, more preferably 0.0005% or less. The amount of solid solution REM and the amount of solid solution Zr should be reduced as much as possible, and most preferably 0%.
固溶REMと固溶Zrの合計は、0.0015%以下であることが好ましく、より好ましくは0.0010%以下である。 The total of the solid solution REM and the solid solution Zr is preferably 0.0015% or less, and more preferably 0.0010% or less.
鋼材に含まれる固溶REM量は、後述する実施例に示すように、ICP[Inductively Coupled Plasma;誘導結合プラズマ]−MS法で分析して算出されるREM含有量(トータルREM含有量)から、電解抽出とICP−MSによって算出される鋼材に含まれる介在物に含有するREM量を引くことによって算出すればよい。 From the REM content (total REM content) calculated by analyzing by ICP [Inductively Coupled Plasma] -MS method, as shown in the examples described later, What is necessary is just to calculate by subtracting the amount of REM contained in the inclusion contained in the steel material calculated by electrolytic extraction and ICP-MS.
また、固溶Zr量についても同様に、Zr含有量(トータルZr含有量)から鋼材に含まれる介在物に含有するZr量を引くことによって算出すればよい。 Similarly, the solid solution Zr amount may be calculated by subtracting the Zr amount contained in the inclusions contained in the steel material from the Zr content (total Zr content).
本発明の鋼材について、「介在物中にREMとZrを含有する」とは、(a)REMの単独介在物とZrの単独介在物を含有するか、あるいは(b)REMとZrを含む複合介在物を含有するか、(c)REMの単独介在物とZrの単独介在物を含有すると共に、REMとZrを含む複合介在物を含有することを意味する。 Regarding the steel material of the present invention, “contains REM and Zr in inclusions” means (a) a single inclusion of REM and a single inclusion of Zr, or (b) a composite containing REM and Zr. It means that it contains inclusions, or (c) contains a single inclusion of REM and a single inclusion of Zr, and a composite inclusion containing REM and Zr.
REMの単独介在物としては、REMの酸化物やREMの硫化物などの形態が挙げられ、Zrの単独介在物としては、Zrの酸化物やZrの炭化物、Zrの窒化物などの形態が挙げられる。REMとZrの複合介在物としては、REMとZrを含む酸化物、硫化物、或いは酸硫化物などの形態が挙げられる。なお、これらの介在物は、更に窒化物(例えば、TiNなど)や他の硫化物(例えば、CaSやMnSなど)と共存した形態であってもよい。 Examples of REM single inclusions include REM oxides and REM sulfides. Examples of Zr single inclusions include Zr oxides, Zr carbides, and Zr nitrides. It is done. Examples of the composite inclusion of REM and Zr include oxides, sulfides, and oxysulfides containing REM and Zr. In addition, these inclusions may be in the form of coexistence with nitride (for example, TiN) or other sulfide (for example, CaS, MnS).
上記鋼材は、該鋼材に含まれる介在物の組成を測定し、該介在物を構成する元素のうち、O,C,N,S以外の元素の存在比をモル換算し、換算後の元素量全体を1モルとしたときに、REMのモル分率が0.050以上で、Zrのモル分率が0.04以上を満足することが好ましい。REMのモル分率は0.10以上であることが好ましく、より好ましくは0.15以上、更に好ましくは0.20以上である。一方、Zrのモル分率は0.08以上であることが好ましく、より好ましくは0.10以上、更に好ましくは0.15以上である。 The steel material measures the composition of inclusions contained in the steel material, converts the abundance ratio of elements other than O, C, N, and S among the elements constituting the inclusions in molar terms, and the element amount after conversion It is preferable that the molar fraction of REM is 0.050 or more and the molar fraction of Zr is 0.04 or more when the whole is 1 mol. The molar fraction of REM is preferably 0.10 or more, more preferably 0.15 or more, and still more preferably 0.20 or more. On the other hand, the molar fraction of Zr is preferably 0.08 or more, more preferably 0.10 or more, and still more preferably 0.15 or more.
本発明の鋼材は、該鋼材に含まれる介在物の組成を測定し、該介在物を構成する元素のうち、O,C,N,S以外の元素の存在比をモル換算し、換算後の元素量全体を1モルとしたときに、REMとZrのモル分率の合計が0.10以上であるのがよい。合計が0.10未満では、HAZの靭性向上に寄与する介在物量が不足し、HAZの靭性を充分に改善できない。合計は、より好ましくは0.15以上、更に好ましくは0.20以上である。 The steel material of the present invention measures the composition of inclusions contained in the steel material, converts the abundance ratio of elements other than O, C, N, and S among the elements constituting the inclusions, When the total amount of elements is 1 mol, the total of the molar fractions of REM and Zr is preferably 0.10 or more. If the total is less than 0.10, the amount of inclusions contributing to the improvement of HAZ toughness is insufficient, and the HAZ toughness cannot be sufficiently improved. The total is more preferably 0.15 or more, and still more preferably 0.20 or more.
なお、REMの介在物とZrの介在物以外の残りの介在物の組成は特に限定されないが、例えばCaOやSiO2、Al2O3、MnO、TiN、TiCであればよい。 The composition of the remaining inclusions other than the REM inclusion and the Zr inclusion is not particularly limited, but may be, for example, CaO, SiO 2 , Al 2 O 3 , MnO, TiN, or TiC.
鋼材に含まれる介在物の組成は、鋼材の断面を例えば電子線マイクロプローブX線分析計(Electron Probe X−ray Micro Analyzer;EPMA)で観察し、観察視野内に認められる介在物を定量分析すれば測定できる。EPMAの観察は、例えば加速電圧を7kV,試料電流を0.003μA,観察視野面積を1cm2とし、介在物の中央部での組成を特性X線の波長分散分光により定量分析する。分析対象とする介在物の大きさは、最大径が0.2μm以上のものとし、分析個数は無作為に選択した100個とする。 The composition of inclusions contained in the steel material is determined by observing the cross section of the steel material with, for example, an electron probe X-ray micro analyzer (EPMA) and quantitatively analyzing the inclusions observed in the observation field. Can be measured. In the EPMA observation, for example, the acceleration voltage is 7 kV, the sample current is 0.003 μA, the observation visual field area is 1 cm 2, and the composition at the center of the inclusion is quantitatively analyzed by wavelength dispersion spectroscopy of characteristic X-rays. The size of inclusions to be analyzed is a maximum diameter of 0.2 μm or more, and the number of analyzes is 100 selected at random.
分析対象元素は、O,C,N,S以外の元素とし、本発明の鋼材の組成を考慮すれば、分析対象元素は、Al,Mn,Si,Ti,Zr,Ca,REM(例えば、LaとCe)とすればよい。介在物に含まれるAl,Mn,Si,Ti,Zr,CaおよびREMの存在比をモル換算し、換算後の元素量全体を1モルとしたときに、分析対象とする介在物に含まれる各元素のモル分率を算出すればよい。 The analysis target element is an element other than O, C, N, and S, and considering the composition of the steel material of the present invention, the analysis target element is Al, Mn, Si, Ti, Zr, Ca, REM (for example, La And Ce). When the abundance ratio of Al, Mn, Si, Ti, Zr, Ca and REM contained in inclusions is converted into moles, and the total amount of elements after conversion is set to 1 mole, each inclusion contained in the inclusions to be analyzed What is necessary is just to calculate the mole fraction of an element.
次に、本発明の鋼材(母材)における成分組成について説明する。本発明の鋼材は、REM:0.0010〜0.1%とZr:0.001〜0.05%を含有するところに特徴がある。こうした範囲を定めた理由は以下の通りである。 Next, the component composition in the steel material (base material) of the present invention will be described. The steel material of the present invention is characterized in that it contains REM: 0.0010 to 0.1% and Zr: 0.001 to 0.05%. The reasons for setting these ranges are as follows.
REMおよびZrは、鋼材中にREMとZrの単独介在物もしくは複合介在物を形成してHAZの靭性向上に寄与する元素である。 REM and Zr are elements that contribute to improving the toughness of HAZ by forming single inclusions or composite inclusions of REM and Zr in the steel material.
REMは、0.0010%以上とすべきであり、好ましくは0.003%以上、より好ましくは0.006%以上、更に好ましくは0.010%以上である。しかし過剰に添加すると、粗大な介在物(例えば、酸化物など)が生成して母材の靭性が劣化するため、0.1%以下に抑えるべきである。好ましくは0.09%以下であり、より好ましくは0.08%以下とする。 The REM should be 0.0010% or more, preferably 0.003% or more, more preferably 0.006% or more, and still more preferably 0.010% or more. However, if added excessively, coarse inclusions (for example, oxides) are generated and the toughness of the base material deteriorates, so it should be suppressed to 0.1% or less. Preferably it is 0.09% or less, More preferably, it is 0.08% or less.
なお、本発明において、REMとは、ランタノイド元素(LaからLuまでの15元素)およびSc(スカンジウム)とY(イットリウム)を含む意味であり、これらの元素のなかでも、La、CeおよびYよりなる群から選ばれる少なくとも1種の元素を含有することが好ましく、より好ましくはLaおよび/またはCeを含有するのがよい。 In the present invention, REM means a lanthanoid element (15 elements from La to Lu) and Sc (scandium) and Y (yttrium). Among these elements, La, Ce and Y It is preferable to contain at least one element selected from the group consisting of, and more preferably La and / or Ce.
Zrは、0.001%以上とすべきであり、好ましくは0.003%以上、より好ましくは0.005%以上である。しかし過剰に添加すると、粗大なZrの炭化物が生成して母材の靭性が劣化するため、0.05%以下に抑えるべきである。好ましくは0.04%以下であり、より好ましくは0.03%以下とする。 Zr should be 0.001% or more, preferably 0.003% or more, and more preferably 0.005% or more. However, if added excessively, coarse Zr carbide is generated and the toughness of the base material deteriorates, so it should be suppressed to 0.05% or less. Preferably it is 0.04% or less, More preferably, it is 0.03% or less.
本発明の鋼材は、REMとZrを含むほか、基本元素として、C:0.01〜0.2%、Si:0.5%以下(0%を含まない)、Mn:2.5%以下(0%を含まない)、Ti:0.03%以下(0%を含まない)、およびN:0.01%以下(0%を含まない)を含むものである。このような範囲を定めた理由は以下の通りである。 The steel material of the present invention includes REM and Zr, and as basic elements, C: 0.01 to 0.2%, Si: 0.5% or less (not including 0%), Mn: 2.5% or less (Not including 0%), Ti: not more than 0.03% (not including 0%), and N: not more than 0.01% (not including 0%). The reason for setting such a range is as follows.
Cは、鋼材(母材)の強度を確保するために欠くことのできない元素であり、0.01%以上含有させる必要がある。Cは、0.02%以上含有させることが好ましく、より好ましくは0.03%以上とする。しかし0.2%を超えると、溶接時にHAZに島状マルテンサイトが多く生成してHAZの靭性劣化を招くばかりでなく、溶接性にも悪影響を及ぼす。従ってCは0.2%以下、好ましくは0.18%以下、より好ましくは0.15%以下に抑える必要がある。 C is an element indispensable for securing the strength of the steel material (base material), and needs to be contained in an amount of 0.01% or more. C is preferably contained in an amount of 0.02% or more, more preferably 0.03% or more. However, if it exceeds 0.2%, a lot of island martensite is generated in the HAZ at the time of welding and not only causes deterioration of the toughness of the HAZ, but also adversely affects the weldability. Therefore, C must be suppressed to 0.2% or less, preferably 0.18% or less, more preferably 0.15% or less.
Siは、脱酸作用を有すると共に鋼材(母材)の強度向上に寄与する元素である。こうした効果を有効に発揮させるには、0.02%以上含有させることが好ましく、より好ましくは0.05%以上、更に好ましくは0.1%以上含有させるのがよい。しかし0.5%を超えると、鋼材(母材)の溶接性や母材靭性が劣化するため、0.5%以下に抑える必要がある。好ましくは0.45%以下であり、より好ましくは0.4%以下に抑えるのがよい。なお、HAZに更なる高靭性が求められる場合は、Siは0.3%以下に抑えるのがよい。より好ましくは0.05%以下であり、更に好ましくは0.01%以下である。但し、このようにSi含有量を抑えるとHAZの靭性は向上するが、強度は低下する傾向がある。 Si is an element that has a deoxidizing action and contributes to improving the strength of the steel (base material). In order to exhibit such an effect effectively, it is preferable to contain 0.02% or more, more preferably 0.05% or more, and still more preferably 0.1% or more. However, if it exceeds 0.5%, the weldability and base material toughness of the steel (base material) deteriorate, so it is necessary to keep it to 0.5% or less. It is preferably 0.45% or less, and more preferably 0.4% or less. In addition, when the further high toughness is calculated | required by HAZ, it is good to suppress Si to 0.3% or less. More preferably, it is 0.05% or less, More preferably, it is 0.01% or less. However, if the Si content is suppressed in this way, the toughness of the HAZ is improved, but the strength tends to decrease.
Mnは、鋼材(母材)の強度向上に寄与する元素であり、こうした効果を有効に発揮させるには、0.5%以上含有させることが好ましい。より好ましくは0.7%以上、更に好ましくは0.8%以上である。しかし2.5%を超えて過剰に含有させると、HAZ靭性が劣化すると共に、鋼材(母材)の溶接性が劣化する。従ってMn量は2.5%以下に抑える必要がある。好ましくは2.3%以下であり、より好ましくは2%以下である。 Mn is an element that contributes to improving the strength of the steel material (base material), and it is preferable to contain 0.5% or more in order to effectively exhibit these effects. More preferably, it is 0.7% or more, More preferably, it is 0.8% or more. However, if the content exceeds 2.5%, the HAZ toughness deteriorates and the weldability of the steel (base material) deteriorates. Therefore, the amount of Mn needs to be suppressed to 2.5% or less. Preferably it is 2.3% or less, More preferably, it is 2% or less.
Tiは、鋼材中にTiNなどの窒化物やTi酸化物を生成してHAZの靭性向上に寄与する元素である。こうした効果を有効に発揮させるには、Tiは0.005%以上含有させることが好ましく、より好ましくは0.007%以上、更に好ましくは0.010%以上とする。しかし過剰に添加すると鋼材(母材)の靭性を劣化させるため、0.03%以下に抑えるべきである。好ましくは0.025%以下であり、より好ましくは0.020%以下とする。 Ti is an element that contributes to improving the toughness of the HAZ by generating a nitride such as TiN or Ti oxide in the steel material. In order to exert such an effect effectively, Ti is preferably contained in an amount of 0.005% or more, more preferably 0.007% or more, and further preferably 0.010% or more. However, if added excessively, the toughness of the steel (base material) is deteriorated, so it should be suppressed to 0.03% or less. Preferably it is 0.025% or less, More preferably, you may be 0.020% or less.
Nは、窒化物(例えば、ZrNやTiNなど)を析出する元素であり、該窒化物は溶接時にHAZに生成するオーステナイト粒の粗大化を防止してフェライト変態を促進するため、HAZ靭性を向上させるのに寄与する。こうした効果を有効に発揮させるには、0.002%以上含有させる。より好ましくは0.003%以上である。Nは多いほどオーステナイト粒の微細化が促進されるため、HAZの靭性向上に有効に作用する。しかし0.01%を超えると、固溶N量が増大して母材の靭性が劣化する。従ってNは0.01%以下に抑える必要があり、好ましくは0.009%以下、より好ましくは0.008%以下とする。 N is an element that precipitates nitrides (for example, ZrN and TiN). The nitrides prevent austenite grains formed in the HAZ during welding and promote ferrite transformation, thereby improving HAZ toughness. Contributes to In order to exhibit such an effect effectively, 0.002% or more is contained. More preferably, it is 0.003% or more. The more N, the more refined austenite grains are promoted, which effectively works to improve the toughness of HAZ. However, if it exceeds 0.01%, the amount of solute N increases and the toughness of the base material deteriorates. Therefore, N must be suppressed to 0.01% or less, preferably 0.009% or less, more preferably 0.008% or less.
本発明の鋼材は、上記元素を含むほか、P:0.02%以下(0%を含まない)、S:0.015%以下(0%を含まない)およびAl:0.01%以下(0%を含む)を満足するものである。このような範囲を定めた理由は以下の通りである。 The steel material of the present invention contains the above elements, P: 0.02% or less (not including 0%), S: 0.015% or less (not including 0%), and Al: 0.01% or less ( 0% is included). The reason for setting such a range is as follows.
Pは、偏析し易い元素であり、特に鋼材中の結晶粒界に偏析して靭性を劣化させる。従ってPは0.02%以下に抑制する必要があり、好ましくは0.018%以下、より好ましくは0.015%以下とする。 P is an element that easily segregates, and particularly segregates at a grain boundary in the steel material to deteriorate toughness. Therefore, P must be suppressed to 0.02% or less, preferably 0.018% or less, more preferably 0.015% or less.
Sは、Mnと結合して硫化物(MnS)を生成し、母材の靭性や板厚方向の延性を劣化させる有害な元素である。従ってSは0.015%以下に抑えるべきであり、好ましくは0.012%以下、より好ましくは0.008%以下、特に0.006%以下とする。 S is a harmful element that combines with Mn to produce sulfide (MnS) and degrades the toughness of the base material and the ductility in the thickness direction. Therefore, S should be suppressed to 0.015% or less, preferably 0.012% or less, more preferably 0.008% or less, and particularly 0.006% or less.
Alは、脱酸力の強い元素であり、過剰に添加すると酸化物を還元して所望の酸化物を生成し難くなる。従ってAlは0.01%以下に抑える必要があり、好ましくは0.0090%以下、より好ましくは0.0080%以下とする。なお、Alは0%であってもよい。 Al is an element having a strong deoxidizing power, and when added in excess, the oxide is reduced and it becomes difficult to produce a desired oxide. Therefore, Al must be suppressed to 0.01% or less, preferably 0.0090% or less, more preferably 0.0080% or less. Al may be 0%.
本発明で規定する含有元素は上記の通りであり、残部は鉄および不可避不純物である。該不可避不純物として、原料、資材、製造設備等の状況によって持ち込まれる元素(例えば、MgやAs,Seなど)の混入が許容され得る。 The contained elements specified in the present invention are as described above, and the balance is iron and inevitable impurities. As the inevitable impurities, mixing of elements (for example, Mg, As, Se, etc.) brought in depending on the situation of raw materials, materials, manufacturing facilities, etc. can be allowed.
本発明の鋼材は、
(1)HAZ靭性を向上させるために、Ca:0.01%以下(0%を含まない)を含有することや、
(2)鋼材の強度を高めるために、Cu:2%以下(0%を含まない)、Ni:3.5%以下(0%を含まない)、Cr:3%以下(0%を含まない)、Mo:1%以下(0%を含まない)、Nb:0.25%以下(0%を含まない)、V:0.1%以下(0%を含まない)およびB:0.005%以下(0%を含まない)よりなる群から選ばれる1種以上の元素を含有すること、
等も有効である。こうした範囲を定めた理由は以下の通りである。
The steel material of the present invention is
(1) In order to improve HAZ toughness, Ca: 0.01% or less (not including 0%),
(2) Cu: 2% or less (not including 0%), Ni: 3.5% or less (not including 0%), Cr: 3% or less (not including 0%) in order to increase the strength of the steel material ), Mo: 1% or less (not including 0%), Nb: 0.25% or less (not including 0%), V: 0.1% or less (not including 0%), and B: 0.005 Containing one or more elements selected from the group consisting of% or less (not including 0%),
Etc. are also effective. The reasons for setting these ranges are as follows.
[(1)Ca]
Caは、鋼材のHAZ靭性を向上させる作用を有する元素である。より詳細には、Caは、介在物の形態を制御して(具体的には、MnSを球状化して)鋼材の異方性を低減する作用を有しており、鋼材の異方性が低減されることで、HAZ靭性が向上する。こうした効果を有効に発揮させるには、0.0003%以上含有させることが好ましい。より好ましくは0.0005%以上、更に好ましくは0.001%以上である。しかし過剰に添加すると、粗大な酸化物を形成し、HAZ靭性が却って劣化する。従ってCaは、0.01%以下が好ましい。より好ましくは0.008%以下であり、更に好ましくは0.005%以下である。
[(1) Ca]
Ca is an element having an action of improving the HAZ toughness of the steel material. More specifically, Ca has an action of controlling the form of inclusions (specifically, spheroidizing MnS) to reduce the anisotropy of the steel material, and the anisotropy of the steel material is reduced. As a result, the HAZ toughness is improved. In order to exhibit such an effect effectively, it is preferable to make it contain 0.0003% or more. More preferably, it is 0.0005% or more, More preferably, it is 0.001% or more. However, if added excessively, a coarse oxide is formed, and the HAZ toughness deteriorates. Therefore, Ca is preferably 0.01% or less. More preferably, it is 0.008% or less, More preferably, it is 0.005% or less.
[(2)Cu、Ni、Cr、Mo、Nb、VおよびB]
Cuは、鋼材を固溶強化させる元素であり、こうした効果を有効に発揮させるには、0.05%以上含有させることが好ましい。より好ましくは0.1%以上であり、更に好ましくは0.2%以上である。特に0.6%以上含有させると、固溶強化のほか、時効析出強化も発揮し、大幅な強度向上が可能となる。しかし2%を超えて含有させると、鋼材(母材)の靭性を低下させるため、Cuは2%以下に抑えるのがよい。好ましくは1.8%以下であり、より好ましくは1.6%以下とする。
[(2) Cu, Ni, Cr, Mo, Nb, V and B]
Cu is an element for solid solution strengthening of the steel material, and in order to exhibit such an effect effectively, it is preferable to contain 0.05% or more. More preferably, it is 0.1% or more, More preferably, it is 0.2% or more. In particular, when 0.6% or more is contained, in addition to solid solution strengthening, aging precipitation strengthening is also exhibited, and a significant improvement in strength becomes possible. However, if the content exceeds 2%, the toughness of the steel material (base material) is lowered, so Cu should be suppressed to 2% or less. Preferably it is 1.8% or less, More preferably, you may be 1.6% or less.
Niは、鋼材の強度を高めると共に、鋼材の靭性を向上させるのに有効に作用する元素であり、こうした作用を発揮させるには、0.05%以上含有させることが好ましい。より好ましくは0.1%以上であり、更に好ましくは0.2%以上とする。Niは多いほど好ましいが、高価な元素であるため経済的観点から3.5%以下に抑えることが好ましい。より好ましくは3.3%以下であり、更に好ましくは3%以下とする。 Ni is an element that effectively acts to increase the strength of the steel material and improve the toughness of the steel material. In order to exert such an effect, Ni is preferably contained in an amount of 0.05% or more. More preferably, it is 0.1% or more, More preferably, it is 0.2% or more. The more Ni, the better. However, since it is an expensive element, it is preferable to suppress it to 3.5% or less from an economical viewpoint. More preferably, it is 3.3% or less, More preferably, it is 3% or less.
Crを添加して強度を高めるには、0.01%以上含有させることが好ましい。より好ましくは0.02%以上、更に好ましくは0.03%以上である。しかし3%を超えると溶接性が劣化するため、Crは3%以下に抑えることが好ましい。より好ましくは1.5%以下であり、更に好ましくは1%以下とする。 In order to increase the strength by adding Cr, the content is preferably 0.01% or more. More preferably it is 0.02% or more, and still more preferably 0.03% or more. However, if it exceeds 3%, weldability deteriorates, so Cr is preferably suppressed to 3% or less. More preferably, it is 1.5% or less, More preferably, it is 1% or less.
Moを添加して強度を高めるには、0.01%以上含有させるのが望ましい。より好ましくは0.02%以上であり、更に好ましくは0.03%以上含有させるのが推奨される。但し、1%を超えると溶接性を悪化させるためMoは1%以下とするのが好ましい。より好ましくは0.9%以下であり、更に好ましくは0.8%以下に抑えるのが推奨される。 In order to increase the strength by adding Mo, it is desirable to contain 0.01% or more. More preferably, the content is 0.02% or more, and further preferably 0.03% or more is recommended. However, if it exceeds 1%, the weldability deteriorates, so Mo is preferably 1% or less. More preferably, it is 0.9% or less, and more preferably 0.8% or less.
Nbを添加して強度を高めるには、0.005%以上含有させるのが好ましい。より好ましくは0.01%以上であり、更に好ましくは0.03%以上である。しかし0.25%を超えると母材の靭性を劣化させるので、Nbは0.25%以下に抑えるのが好ましい。より好ましくは0.23%以下であり、更に好ましくは0.2%以下とする。 In order to increase the strength by adding Nb, it is preferable to contain 0.005% or more. More preferably, it is 0.01% or more, More preferably, it is 0.03% or more. However, if it exceeds 0.25%, the toughness of the base material is deteriorated, so Nb is preferably suppressed to 0.25% or less. More preferably, it is 0.23% or less, and still more preferably 0.2% or less.
Vを添加して強度を高めるには、0.005%以上含有させるのが望ましい。より好ましくは0.01%以上、更に好ましくは0.03%以上含有させるのがよい。しかし0.1%を超えると溶接性が悪化する共に、母材の靭性が劣化するため、Vは0.1%以下とするのが好ましい。より好ましくは0.08%以下、更に好ましくは0.06%以下に抑えるのがよい。 In order to increase the strength by adding V, it is desirable to contain 0.005% or more. More preferably 0.01% or more, still more preferably 0.03% or more. However, if it exceeds 0.1%, the weldability deteriorates and the toughness of the base material deteriorates, so V is preferably 0.1% or less. More preferably, it is 0.08% or less, and more preferably 0.06% or less.
Bは、鋼材の強度を高めると共に、溶接時に加熱されたHAZが冷却される過程において鋼中のNと結合してBNを析出し、オーステナイト粒内からのフェライト変態を促進させる。こうした効果を有効に発揮させるには、0.0003%以上含有させるのが好ましい。より好ましくは0.0005%以上であり、更に好ましくは0.0008%以上とする。しかし0.005%を超えると鋼材(母材)の靭性を劣化させるためBは0.005%以下とするのが好ましい。より好ましくは0.004%以下であり、更に好ましくは0.003%以下とするのがよい。 B increases the strength of the steel material and, in the process of cooling the HAZ heated during welding, combines with N in the steel to precipitate BN and promote ferrite transformation from within the austenite grains. In order to exhibit such an effect effectively, it is preferable to contain 0.0003% or more. More preferably it is 0.0005% or more, and still more preferably 0.0008% or more. However, if it exceeds 0.005%, the toughness of the steel (base material) is deteriorated, so B is preferably 0.005% or less. More preferably, it is 0.004% or less, and further preferably 0.003% or less.
次に、本発明の鋼材を製造するに当たり、好適に採用できる製法について説明する。本発明の鋼材は、固溶REMと固溶Zrを所定量以下に低減するために、トータル酸素量[O]1を0.0020〜0.015%の範囲に調整した溶鋼へ、REMとZrを添加して溶存酸素量[O]2を0.0010〜0.0035%の範囲に調整した後、鋳造すれば製造できる。 Next, a production method that can be suitably employed in producing the steel material of the present invention will be described. In order to reduce the solid solution REM and the solid solution Zr to a predetermined amount or less, the steel material of the present invention is converted into a molten steel in which the total oxygen amount [O] 1 is adjusted to a range of 0.0020 to 0.015%. Is added to adjust the amount of dissolved oxygen [O] 2 to a range of 0.0010 to 0.0035%, and then cast.
即ち、トータル酸素量[O]1を適切に制御した溶鋼へ、REMとZrを複合添加すれば、REMとZrを介在物の一形態である酸化物として鋼中に生成させることができる。このとき溶鋼に複合添加するREM量とZr量を調整することによって、溶鋼の溶存酸素量[O]2を適切に制御し、この溶鋼を鋳造すれば、鋼材中の固溶REM量と固溶Zr量を低減できる。 That is, if REM and Zr are combined and added to molten steel in which the total oxygen amount [O] 1 is appropriately controlled, REM and Zr can be produced in the steel as oxides that are one form of inclusions. By adjusting the amount of REM and Zr added to the molten steel at this time, the dissolved oxygen amount [O] 2 of the molten steel is appropriately controlled, and if this molten steel is cast, the amount of solid solution REM and solid solution in the steel material The amount of Zr can be reduced.
通常、転炉や電気炉で一次精錬された溶鋼中のトータル酸素量[O]1は、0.015%を超えている。この溶鋼にREMやZrを添加すると、溶鋼中の酸素量が多すぎるため、REMやZrと酸素の反応が激しくなって溶製作業上好ましくない。また、粗大なREMの酸化物と粗大なZrO2が生成し、母材靭性自体が劣化する。 Usually, the total oxygen amount [O] 1 in molten steel primarily refined in a converter or electric furnace exceeds 0.015%. If REM or Zr is added to this molten steel, the amount of oxygen in the molten steel is too large, and the reaction between REM, Zr and oxygen becomes violent, which is not preferable for melting work. In addition, coarse REM oxide and coarse ZrO 2 are generated, and the base metal toughness itself deteriorates.
そこで本発明では、トータル酸素量[O]1を従来よりも少なめに調整した溶鋼へREMとZrを添加することによってREMの介在物としてREM酸化物を、Zrの介在物としてZr酸化物、或いはREMとZrの複合介在物としてREMとZrを含む酸化物を生成させることができる。 Therefore, in the present invention, by adding REM and Zr to molten steel in which the total oxygen amount [O] 1 is adjusted to be smaller than before, REM oxide as REM inclusions, Zr oxide as Zr inclusions, or An oxide containing REM and Zr can be formed as a composite inclusion of REM and Zr.
一方、REMとZrの介在物のうち、特に、酸化物量を増やす観点からすれば、トータル酸素量[O]1を調整した溶鋼に、REMとZrを多量に添加すればよいが、酸化物を形成しない過剰なREMとZrは、鋼材中に固溶する。ところが固溶REMや固溶Zrが多くなると、上述したように、HAZ靭性にバラツキが生じてしまう。 On the other hand, among the inclusions of REM and Zr, in particular, from the viewpoint of increasing the amount of oxide, a large amount of REM and Zr may be added to the molten steel in which the total oxygen amount [O] 1 is adjusted. Excess REM and Zr that do not form are dissolved in the steel. However, when the solid solution REM and the solid solution Zr increase, as described above, the HAZ toughness varies.
そこで本発明では、溶鋼に添加するREM量とZr量を調整することで、REMとZrを添加した後の溶存酸素量[O]2を従来よりも多めに調整し、REMとZrが鋳造中に固溶するのを防止することとした。 Therefore, in the present invention, by adjusting the amount of REM and Zr added to the molten steel, the amount of dissolved oxygen [O] 2 after adding REM and Zr is adjusted to be larger than before, and REM and Zr are being cast. It was decided to prevent solid solution.
REMとZrを添加する前の上記トータル酸素量[O]1は、一次製錬後の溶鋼に含まれる通常のトータル酸素量よりも少なく、0.015%以下に抑えるべきであり、好ましくは0.01%以下、より好ましくは0.008%以下とする。しかし上記トータル酸素量[O]1を少なくし過ぎて0.0020%未満になると、酸素量不足になるため、REMとZrを複合添加しても、HAZの靭性向上に寄与する酸化物量を確保することができず、しかも酸化物を形成できなかったREMやZrが鋼材中に固溶したり、或いはZrが炭化物等を形成して母材の靭性を劣化する。従ってREMとZrを複合添加する前のトータル酸素量[O]1は、0.0020%以上に調整することが好ましく、より好ましくは0.0025%以上である。 The total oxygen amount [O] 1 before adding REM and Zr is less than the normal total oxygen amount contained in the molten steel after primary smelting, and should be suppressed to 0.015% or less, preferably 0. 0.01% or less, more preferably 0.008% or less. However, if the total oxygen content [O] 1 is made too small and less than 0.0020%, the oxygen content becomes insufficient. Therefore, even if REM and Zr are added in combination, the oxide content that contributes to improving the toughness of HAZ is secured. REM and Zr, which cannot be formed and oxides cannot be formed, dissolve in the steel material, or Zr forms carbide or the like to deteriorate the toughness of the base material. Therefore, the total oxygen amount [O] 1 before adding REM and Zr in combination is preferably adjusted to 0.0020% or more, more preferably 0.0025% or more.
上記トータル酸素量[O]1とは、溶鋼中に含まれる全酸素量(全O量)を意味し、溶鋼に溶存原子として含まれる酸素量(いわゆるフリー酸素)と酸化物系介在物として存在している酸素量を合わせた全酸素量を意味する。溶鋼に溶存原子として含まれる酸素量は、固体電解質を用いた酸素センサーを用いれば測定できる。トータル酸素量は、一般的な不活性ガス融解−赤外線吸収法などによって測定できる。 The total oxygen amount [O] 1 means the total oxygen amount (total O amount) contained in the molten steel, and is present as an oxide inclusion in the molten steel as the dissolved atoms (so-called free oxygen). This means the total amount of oxygen combined with the amount of oxygen being used. The amount of oxygen contained in the molten steel as dissolved atoms can be measured by using an oxygen sensor using a solid electrolyte. The total oxygen amount can be measured by a general inert gas melting-infrared absorption method or the like.
溶鋼中のトータル酸素量[O]1を上記範囲に調整するには、例えばRH式脱ガス精錬装置を用いて脱酸する方法、取鍋加熱式精錬装置や簡易式溶鋼処理設備などを用いて脱酸する方法、溶鋼にSi,Mn,Ti,Alなどの脱酸元素を添加して脱酸する方法等が挙げられる。勿論これらの方法を適宜組み合わせてトータル酸素量[O]1を調整しても良い。脱酸元素を添加する方法を採用するときは、転炉から取鍋へ出鋼する際に脱酸元素を添加しても構わない。 In order to adjust the total oxygen amount [O] 1 in the molten steel to the above range, for example, a method of deoxidizing using an RH type degassing refining apparatus, a ladle heating type refining apparatus, a simple type molten steel processing facility, etc. Examples of the deoxidizing method include a method of adding a deoxidizing element such as Si, Mn, Ti, and Al to the molten steel and deoxidizing the molten steel. Of course, the total oxygen amount [O] 1 may be adjusted by appropriately combining these methods. When employing a method of adding a deoxidizing element, the deoxidizing element may be added when steel is removed from the converter to the ladle.
上記トータル酸素量[O]1を調整した溶鋼へ、REMとZrを複合添加する手順は特に限定されず、例えば(a)REMを添加した後に、Zrを添加してもよいし、(b)Zrを添加した後にREMを添加してもよいし、(c)REMとZrを同時に複合添加してもよい。REMを複数種類添加する場合は、同時に、或いは別々に添加してもよい。例えば、REMとしてCeとLaを用い、Ce→Zr→Laの順で添加してもよい。 The procedure for adding REM and Zr in combination to the molten steel with the total oxygen content [O] 1 adjusted is not particularly limited. For example, (a) REM may be added, then Zr may be added, (b) REM may be added after adding Zr, or (c) REM and Zr may be added simultaneously. When a plurality of types of REM are added, they may be added simultaneously or separately. For example, Ce and La may be used as REM and added in the order of Ce → Zr → La.
溶鋼へ添加するREMやZrの形態は特に限定されず、例えば、REMとして、純Laや純Ce,純Yなど、或いは純Zr,更にはFe−Si−La合金,Fe−Si−Ce合金,Fe−Si−La−Ce合金などを添加すればよい。また、溶鋼へミッシュメタルを添加してもよい。ミッシュメタルとは、セリウム族希土類元素の混合物であり、具体的には、Ceを40〜50%程度,Laを20〜40%程度含有している。 The form of REM or Zr added to the molten steel is not particularly limited. For example, as REM, pure La, pure Ce, pure Y, or pure Zr, and further Fe-Si-La alloy, Fe-Si-Ce alloy, An Fe—Si—La—Ce alloy or the like may be added. Moreover, you may add misch metal to molten steel. Misch metal is a mixture of cerium group rare earth elements, and specifically contains about 40 to 50% of Ce and about 20 to 40% of La.
上記REMとZrを複合添加した後は、鋳造直前の上記溶存酸素量[O]2に影響がでない程度であれば、合金元素を添加して鋼材の成分を調整してもよい。 After the REM and Zr are added together, an alloy element may be added to adjust the components of the steel material so long as the dissolved oxygen amount [O] 2 immediately before casting is not affected.
鋳造直前の上記溶存酸素量[O]2は0.0010%以上とする。0.0010%未満では、酸素量不足になるため、鋳造中にREMやZrが鋼材中に固溶してしまい、HAZ靭性のバラツキを発生させる原因となる。従って溶存酸素量[O]2は、0.0010%以上とし、好ましくは0.0015%以上である。しかし上記溶存酸素量[O]2が過剰になると、鋳造中に粗大な酸化物が多く生成し、母材自体の靭性を低下する。従って溶存酸素量[O]2は、0.0035%以下に抑えるべきであり、好ましくは0.0030%以下、より好ましくは0.0025%以下とする。 The amount of dissolved oxygen [O] 2 immediately before casting is set to 0.0010% or more. If it is less than 0.0010%, the amount of oxygen becomes insufficient, so REM and Zr are dissolved in the steel during casting, which causes variation in HAZ toughness. Accordingly, the dissolved oxygen amount [O] 2 is set to 0.0010% or more, preferably 0.0015% or more. However, when the amount of dissolved oxygen [O] 2 becomes excessive, a large amount of coarse oxide is generated during casting, and the toughness of the base metal itself is lowered. Therefore, the amount of dissolved oxygen [O] 2 should be suppressed to 0.0035% or less, preferably 0.0030% or less, more preferably 0.0025% or less.
上記溶存酸素量[O]2を0.0010〜0.0035%の範囲に制御するには、トータル酸素量[O]1に応じてREMとZrの添加量を調整すればよく、具体的には、トータル酸素量[O]1に応じて下記(1)式を満足するようにREMとZrの添加量を決定し、決定されたREMとZrの添加量の範囲で元素を添加すればよい。(1)式中、[REM]と[Zr]は、夫々REMまたはZrの添加量(質量%)であり、[O]1は、REMとZrを添加する前の溶鋼のトータル酸素量(質量%)である。右辺の係数15は、実験を繰り返し行なった結果決定した値である。
[REM]+[Zr]≦15×[O]1 ・・・(1)
但し、鋼材に含まれるREM(total REM)量とZr(total Zr)量は、上記成分組成で規定する範囲を満足している必要がある。
In order to control the amount of dissolved oxygen [O] 2 in the range of 0.0010 to 0.0035%, the amount of REM and Zr added may be adjusted according to the total amount of oxygen [O] 1. Determines the addition amount of REM and Zr so as to satisfy the following formula (1) according to the total oxygen amount [O] 1 , and adds the element within the range of the determined addition amount of REM and Zr. . In the formula (1), [REM] and [Zr] are the addition amount (mass%) of REM or Zr, respectively, and [O] 1 is the total oxygen amount (mass of the molten steel before adding REM and Zr). %). The coefficient 15 on the right side is a value determined as a result of repeated experiments.
[REM] + [Zr] ≦ 15 × [O] 1 (1)
However, the amount of REM (total REM) and the amount of Zr (total Zr) contained in the steel material must satisfy the range defined by the above component composition.
なお、上記トータル酸素量[O]1に対してREMやZrを多めに添加して上記溶存酸素量[O]2が0.0010%を下回った場合には、酸素源として酸化物[例えば、MnOや鉄酸化物(例えば、FeO)]を添加してもよい。 When the amount of dissolved oxygen [O] 2 is less than 0.0010% by adding a large amount of REM or Zr to the total oxygen amount [O] 1 , an oxide [for example, MnO or iron oxide (for example, FeO)] may be added.
こうして成分調製して得られた溶鋼は、常法に従って連続鋳造してスラブとした後、常法に従って熱間圧延すればよい。 The molten steel obtained by preparing the components in this manner may be continuously cast according to a conventional method to form a slab, and then hot rolled according to a conventional method.
本発明に係る鋼材は、例えば橋梁や高層建造物、船舶などの構造物の材料として使用でき、小〜中入熱溶接はもとより、大入熱溶接においても溶接熱影響部の靭性劣化を防ぐことができる。 The steel material according to the present invention can be used as a material for structures such as bridges, high-rise buildings, ships, etc., and prevents toughness deterioration of the weld heat affected zone not only in small to medium heat input welding but also in large heat input welding. Can do.
以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に適合し得る範囲で適当に変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are not intended to limit the present invention, and may be implemented with appropriate modifications within a range that can meet the purpose described above and below. These are all possible and are within the scope of the present invention.
[実験例1]
溶銑を240トン転炉で一次精錬した後、該転炉から取鍋へ出鋼し、成分調整および温度調整しながら二次精錬を行った。
[Experimental Example 1]
After the hot metal was first refined in a 240-ton converter, the steel was removed from the converter into a ladle and subjected to secondary refining while adjusting the components and adjusting the temperature.
取鍋では、下記表1に示す脱酸方法で、下記表1に示すトータル酸素量[O]1に調整しつつ化学成分組成を調整した。トータル酸素量[O]1は、溶鋼に溶存原子として含まれる酸素量と酸化物系介在物として存在している酸素量を合わせた全酸素量を意味し、溶鋼に溶存原子として含まれる酸素量は、固体電解質を用いた酸素センサーを用いて測定し、トータル酸素量は、一般的な不活性ガス融解−赤外線吸収法によって測定した。なお、下記表1には、トータル酸素量[O]1の他に、REMとZrを添加する前の溶鋼の溶存酸素量も併せて示した。 In the ladle, the chemical component composition was adjusted by the deoxidation method shown in Table 1 below while adjusting the total oxygen amount [O] 1 shown in Table 1 below. The total oxygen amount [O] 1 means the total oxygen amount that is the sum of the oxygen amount contained as dissolved atoms in the molten steel and the oxygen amount present as oxide inclusions, and the oxygen amount contained as dissolved atoms in the molten steel Was measured using an oxygen sensor using a solid electrolyte, and the total oxygen content was measured by a general inert gas melting-infrared absorption method. In addition to the total oxygen amount [O] 1 , the following Table 1 also shows the dissolved oxygen amount of the molten steel before adding REM and Zr.
上記トータル酸素量[O]1に応じて上記(1)式を満足するようにREMとZrの添加量を算出し、REMとZrを添加して下記表1に示す溶存酸素量[O]2に調整した。下記表1に、REMの添加量[REM]と、Zrの添加量[Zr]、REMとZrの添加量の合計([REM]+[Zr])を示す。また、REMとZrの添加量の合計とトータル酸素量[O]1との比([REM]+[Zr])/[O]1も併せて示す。 The amount of REM and Zr added is calculated so as to satisfy the above formula (1) according to the total amount of oxygen [O] 1 , and the amount of dissolved oxygen [O] 2 shown in Table 1 below is added by adding REM and Zr. Adjusted. Table 1 below shows the REM addition amount [REM], the Zr addition amount [Zr], and the total addition amount of REM and Zr ([REM] + [Zr]). In addition, a ratio ([REM] + [Zr]) / [O] 1 of the total amount of REM and Zr added and the total oxygen amount [O] 1 is also shown.
溶存酸素量[O]2に調整した後、該[O]2量に影響を及ぼさない程度で化学成分を調整してから鋳造した。 After adjusting the amount of dissolved oxygen [O] 2 , the chemical components were adjusted to such an extent that the amount of [O] 2 was not affected, and then casting was performed.
なお、二次精錬にはRH式脱ガス精錬装置等を用いて脱Hや脱Sなどを行なった。 In the secondary refining, dehydrogenation and desulfurization were performed using an RH type degassing refining apparatus.
下記表1において、LaはFe−La合金の形態で、CeはFe−Ce合金の形態で、REMはLaを50%程度とCeを25%程度含有するミッシュメタルの形態で、ZrはZr単体で、夫々添加した。下記表1中の空欄は元素を添加していないことを示している。 In Table 1 below, La is in the form of an Fe-La alloy, Ce is in the form of an Fe-Ce alloy, REM is in the form of a misch metal containing about 50% La and about 25% Ce, and Zr is Zr alone. And each was added. The blank in Table 1 below indicates that no element is added.
図1に、REMとZrを添加する前のトータル酸素量[O]1と、REMとZrの添加量の合計との関係をグラフに示す。図1中、○は下記表1のNo.1〜12の結果、×は下記表1のNo.17〜20の結果を夫々示す。 FIG. 1 is a graph showing the relationship between the total amount of oxygen [O] 1 before adding REM and Zr and the total amount of addition of REM and Zr. In FIG. As a result of Nos. 1 to 12, × indicates No. The results of 17 to 20 are shown respectively.
また下記表2には、成分調整後の鋼材の成分組成(残部は鉄および不可避不純物)を示す。但し、下記表2中の空欄は元素が検出されなかったことを示している。 Table 2 below shows the component composition of the steel after component adjustment (the balance is iron and inevitable impurities). However, the blank in Table 2 below indicates that no element was detected.
成分調整後の溶鋼を、連続鋳造機でスラブに鋳造し、該スラブのD/4(但し、Dはスラブの厚み)位置における横断面からサンプルを切り出した。切り出されたサンプル表面を日本電子製のEPMA「JXA−8500F(装置名)」を用いて10,000倍で観察し、最大径が0.2μm以上の介在物について成分組成を定量分析した。観察条件は、加速電圧を7kV,試料電流を0.003μA,観察視野面積を1cm2,分析個数は無作為に選択した100個とし、特性X線の波長分散分光により介在物中央部での成分組成を定量分析した。分析対象元素は、Al,Mn,Si,Ti,Zr,Ca,La,Ceとし、分析対象とする元素の存在比をモル換算し、換算後の元素量全体を1モルとしたときに、分析対象とする介在物に含まれる各元素のモル分率を算出した。モル分率の算出結果を下記表3に示す。下記表3中の空欄は検出されなかったことを示している。 The molten steel after component adjustment was cast into a slab with a continuous casting machine, and a sample was cut out from a cross section at a D / 4 (where D is the thickness of the slab) position of the slab. The cut sample surface was observed at 10,000 times using EPMA “JXA-8500F (device name)” manufactured by JEOL, and the component composition was quantitatively analyzed for inclusions having a maximum diameter of 0.2 μm or more. The observation conditions were an acceleration voltage of 7 kV, a sample current of 0.003 μA, an observation field area of 1 cm 2 , and an analysis number of 100 randomly selected, and components at the center of the inclusion by wavelength dispersion spectroscopy of characteristic X-rays. The composition was quantitatively analyzed. The analysis target elements are Al, Mn, Si, Ti, Zr, Ca, La, and Ce, and the analysis is performed when the abundance ratio of the elements to be analyzed is converted into moles, and the converted element amount is 1 mole. The molar fraction of each element contained in the inclusions to be targeted was calculated. The calculation results of the molar fraction are shown in Table 3 below. The blank in Table 3 below indicates that no detection was made.
上記サンプル表面をEPMAで観察した結果、観察された介在物は、REMとZrを含む複合介在物が大半であったが、単独介在物としてREMの介在物やZrの介在物も生成していた。 As a result of observing the sample surface with EPMA, most of the observed inclusions were composite inclusions containing REM and Zr, but REM inclusions and Zr inclusions were also generated as single inclusions. .
また、鋼材に含まれる固溶REM量と固溶Zr量は、次の手順で算出した。まず、鋼材に介在物として含まれているREM量とZr量を電解抽出法で測定した。電解抽出は、電解液として、メタノール100cc中に、トリエタノールアミン2ccとテトラメチルアンモニウムクロライド1gを含有する溶液を用い、上記サンプルを500A/m2以下の電流下で抽出(電気分解)した。これによりマトリックスが溶解すると共に、固溶REMと固溶Zrも電解液中へ抽出された。サンプルの大きさは、縦15mm×横15mm×長さ5mmとした。 Moreover, the amount of solid solution REM and the amount of solid solution Zr contained in steel materials were calculated in the following procedure. First, the amount of REM and the amount of Zr contained as inclusions in the steel material were measured by an electrolytic extraction method. In the electrolytic extraction, a solution containing 2 cc of triethanolamine and 1 g of tetramethylammonium chloride in 100 cc of methanol was used as an electrolytic solution, and the sample was extracted (electrolyzed) under a current of 500 A / m 2 or less. As a result, the matrix was dissolved, and solid solution REM and solid solution Zr were also extracted into the electrolytic solution. The size of the sample was 15 mm long × 15 mm wide × 5 mm long.
次いで、抽出後の電解液をメンブランフィルター(フィルター径は47mm、ポアサイズは0.1μm)を用いてろ過し、フィルターごと残渣を白金製るつぼに移し、ガスバーナーで加熱して灰化した。次いで、アルカリ融剤(炭酸ナトリウムと四ほう酸ナトリウムの混合物)を加え、再度ガスバーナーで加熱して残渣を融解した。次に、18体積%塩酸を加えて融解物を溶液化した後、メスフラスコに移し、さらに純水を加えてメスアップして分析液を得た。分析液中のREMとZr濃度をICP−MS法で測定した。 Next, the extracted electrolyte was filtered using a membrane filter (filter diameter was 47 mm, pore size was 0.1 μm), and the residue along with the filter was transferred to a platinum crucible and heated with a gas burner to be ashed. Next, an alkali flux (a mixture of sodium carbonate and sodium tetraborate) was added and heated again with a gas burner to melt the residue. Next, 18 vol% hydrochloric acid was added to make the melt into a solution, and then the solution was transferred to a volumetric flask, and further diluted with pure water to obtain an analysis solution. The REM and Zr concentrations in the analysis solution were measured by ICP-MS method.
このようにして求めた介在物に含まれるREM量とZr量を、別途通常のICP−MS法で分析したREM量(トータルREM量)またはZr量(トータルZr量)から引くことにより、固溶REM量と固溶Zr量を求めた。算出した結果を下記表2に併せて示した。 By subtracting the REM amount and Zr amount contained in the inclusions thus obtained from the REM amount (total REM amount) or Zr amount (total Zr amount) separately analyzed by the usual ICP-MS method, The REM amount and the solid solution Zr amount were determined. The calculated results are also shown in Table 2 below.
図2に、鋳造前の溶鋼に含まれる溶存酸素量[O]2と、鋼材に含まれる固溶REM量または固溶Zr量との関係をグラフに示す。 FIG. 2 is a graph showing the relationship between the amount of dissolved oxygen [O] 2 contained in the molten steel before casting and the amount of solute REM or solute Zr contained in the steel material.
次に、溶接時に熱影響を受けるHAZの靭性を評価するために、大入熱溶接を模擬して下記に示す溶接再現試験を行なった。溶接再現試験は、スラブから切り出したサンプルが1400℃になる様に加熱し、この温度で5秒間保持した後、冷却して行った。冷却は、800℃から500℃への冷却時間が300秒となるように調整した。 Next, in order to evaluate the toughness of HAZ which is affected by heat during welding, a welding reproduction test shown below was performed by simulating high heat input welding. The welding reproduction test was performed by heating the sample cut from the slab to 1400 ° C., holding at this temperature for 5 seconds, and then cooling. The cooling was adjusted so that the cooling time from 800 ° C. to 500 ° C. was 300 seconds.
冷却後のサンプルの衝撃特性は、Vノッチシャルピー試験を行って−40℃における吸収エネルギー(vE-40)を測定して評価した。 The impact characteristics of the sample after cooling were evaluated by conducting a V-notch Charpy test and measuring the absorbed energy (vE -40 ) at -40 ° C.
サンプルは、同一鋼種からJIS Z2242「金属材料のシャルピー衝撃試験方法」に準じて3本ずつ採取し、各サンプルについてvE-40を測定した結果とそれらの平均値を下記表4に示す。vE-40の平均値が150J以上のものを合格(HAZ靭性良好)とする。 Three samples were collected from the same steel type in accordance with JIS Z2242 “Charpy impact test method for metal materials”, and the results of measuring vE- 40 for each sample and their average values are shown in Table 4 below. An average value of vE- 40 of 150 J or more is regarded as acceptable (haz toughness is good).
また、各サンプルについて、vE-40値の最大値と最小値に基づいて下記基準で靭性のバラツキを評価した。評価結果を下記表4に示す。 For each sample, the toughness variation was evaluated based on the following criteria based on the maximum and minimum values of the vE- 40 value. The evaluation results are shown in Table 4 below.
[最大値と最小値の評価基準]
○:HAZ靭性の最大値または最小値が150J以上である。
×:HAZ靭性の最大値または最小値が150J未満である。
[Evaluation criteria for maximum and minimum values]
(Circle): The maximum value or minimum value of HAZ toughness is 150J or more.
X: The maximum value or minimum value of HAZ toughness is less than 150J.
[総合評価基準]
○:3本測定した結果のうち、最小値が150J以上であり、高いHAZ靭性が安定して確保されている。
△:3本測定した結果のうち、少なくとも1本が150J以上であるが、HAZ靭性のバラツキが大きく、最小値は150J未満である。
×:3本測定した結果のうち、全てが150J未満である。
[Comprehensive evaluation criteria]
○: The minimum value is 150 J or more among the results of the three measurements, and high HAZ toughness is stably secured.
Δ: Of the three measured results, at least one is 150 J or more, but the variation in HAZ toughness is large, and the minimum value is less than 150 J.
X: All of the results of the three measurements are less than 150 J.
図3に、下記表4に示した各サンプルについて、HAZ靭性の平均値(図中の○印)と、HAZ靭性の最大値と最小値の幅をグラフに示す。 FIG. 3 is a graph showing the average value of HAZ toughness (circles in the figure) and the maximum and minimum widths of HAZ toughness for each sample shown in Table 4 below.
以上の結果から、次のように考察できる。上記図1から明らかなように、REMとZrを添加する前のトータル酸素量[O]1を0.0020〜0.015%(20〜150ppm)に調整した溶鋼に、上記(1)式を満足するようにREMとZrを添加すれば、HAZ靭性が良好となり、HAZ靭性のバラツキも少なくなることが分かる。なお、図1に示した直線の式は、([REM]+[Zr])=15×[O]1である。 From the above results, it can be considered as follows. As apparent from FIG. 1 above, the above formula (1) is applied to a molten steel in which the total oxygen amount [O] 1 before adding REM and Zr is adjusted to 0.0020 to 0.015% (20 to 150 ppm). It can be seen that if REM and Zr are added so as to satisfy, the HAZ toughness is improved and the variation in the HAZ toughness is reduced. The equation of the straight line shown in FIG. 1 is ([REM] + [Zr]) = 15 × [O] 1 .
表4および図2から明らかなように、鋳造前の溶存酸素量[O]2を0.0010〜0.0035%(10〜35ppm)の範囲に調整してから鋳造すれば、鋼材に含まれる固溶REM量と固溶Zr量を所定値以下に低減することができることがわかる。 As apparent from Table 4 and FIG. 2, if the amount of dissolved oxygen [O] 2 before casting is adjusted to a range of 0.0010 to 0.0035% (10 to 35 ppm) and cast, it is included in the steel material. It turns out that the amount of solid solution REM and the amount of solid solution Zr can be reduced below a predetermined value.
表4および図3から明らかなように、No.1〜12は、本発明で規定する要件を満足する例であり、鋼材の化学成分のうち特にREM量とZr量が適切に調整されていると共に、固溶REM量と固溶Zr量が適切に制御されているため、HAZ靭性の平均値が150J以上となり、HAZ靭性に優れている。また、HAZ靭性のバラツキも少なくなっている。 As apparent from Table 4 and FIG. 1 to 12 are examples that satisfy the requirements defined in the present invention. Among the chemical components of the steel material, in particular, the REM amount and the Zr amount are appropriately adjusted, and the solid solution REM amount and the solid solution Zr amount are appropriate. Therefore, the average value of the HAZ toughness is 150 J or more, and the HAZ toughness is excellent. Moreover, the variation in HAZ toughness is also reduced.
一方、No.13〜21は、本発明で規定する要件から外れる例であり、鋼材の化学成分のうち特にREM量またはZr量が本発明で規定する範囲から外れているか、或いは固溶REM量と固溶Zr量が本発明で規定する範囲から外れているため、HAZ靭性の平均値が150J未満となり、HAZ靭性が劣っている。また、HAZ靭性のバラツキも大きいものが多くなっている。 On the other hand, no. 13 to 21 are examples deviating from the requirements defined in the present invention, and among the chemical components of the steel material, the REM amount or the Zr amount is particularly out of the range defined in the present invention, or the solid solution REM amount and the solid solution Zr. Since the amount is outside the range defined in the present invention, the average value of HAZ toughness is less than 150 J, and the HAZ toughness is inferior. In addition, the number of HAZ toughness variations is increasing.
[実験例2]
上記実験例1で得られたNo.3,No.4,No.8,No.14,No.20のスラブを、熱間圧延して厚み30mmの鋼板を得た。
[Experiment 2]
No. obtained in Experimental Example 1 above. 3, No. 4, no. 8, no. 14, no. 20 slabs were hot-rolled to obtain a steel plate having a thickness of 30 mm.
得られた鋼板の圧延方向に対して垂直な断面について、上記実験例1と同じ条件で介在物の成分組成を定量分析し、分析対象とする介在物に含まれる各元素のモル分率を算出した。観察位置は、鋼板のD/4(但し、Dは鋼板の厚み)位置とし、観察条件は、観察視野面積を1cm2とする以外は、上記実験例1と同じ条件とした。モル分率の算出結果を下記表5に示す。下記表5中の空欄は検出されなかったことを示している。 About the cross section perpendicular | vertical with respect to the rolling direction of the obtained steel plate, the component composition of an inclusion is quantitatively analyzed on the same conditions as the said Experimental example 1, and the molar fraction of each element contained in the inclusion made into analysis object is calculated. did. The observation position was the same as that of Experimental Example 1 except that the position of the steel sheet was D / 4 (where D is the thickness of the steel sheet), and the observation condition was that the observation visual field area was 1 cm 2 . The calculation results of the molar fraction are shown in Table 5 below. The blank in Table 5 below indicates that no detection was made.
次に、溶接時に熱影響を受けるHAZの靭性を評価するために、大入熱溶接を模擬して下記に示す溶接再現試験を行なった。溶接再現試験は、上記鋼板から切り出した試験片を、全体が1400℃になる様に加熱し、この温度で5秒間保持した後、冷却して行った。冷却速度は、800℃から500℃への冷却時間が300秒となるように調整した。 Next, in order to evaluate the toughness of HAZ which is affected by heat during welding, a welding reproduction test shown below was performed by simulating high heat input welding. The welding reproduction test was performed by heating a test piece cut out from the steel plate so that the whole was 1400 ° C., holding at this temperature for 5 seconds, and then cooling. The cooling rate was adjusted so that the cooling time from 800 ° C. to 500 ° C. was 300 seconds.
冷却後の試験片の衝撃特性は、Vノッチシャルピー試験を行って−40℃における吸収エネルギー(vE-40)を測定して評価した。各サンプルについてvE-40を測定した結果とそれらの平均値を下記表6に示す。また、上記実験例1と同様にHAZ靭性のバラツキを評価した結果を下記表6に示す。 The impact characteristics of the test piece after cooling were evaluated by measuring the absorbed energy (vE- 40 ) at -40 ° C by conducting a V-notch Charpy test. The results of measuring vE- 40 for each sample and the average values are shown in Table 6 below. Table 6 below shows the results of evaluating the variation in HAZ toughness in the same manner as in Experimental Example 1.
図4に、下記表6に示した各サンプルについて、HAZ靭性の平均値(図中の○印)と、HAZ靭性の最大値と最小値の幅をグラフに示す。 FIG. 4 is a graph showing the average value of HAZ toughness (circles in the figure) and the maximum and minimum widths of HAZ toughness for each sample shown in Table 6 below.
下記表5と下記表6から明らかなように、熱間圧延して得られた鋼板から切り出した試験片の衝撃特性は、スラブから切り出したサンプルの衝撃特性とほぼ同程度であり、熱間圧延してもHAZ靭性は変化しないことが分かる。また、HAZ靭性のバラツキ易さも、熱間圧延して得られた鋼板とスラブから切り出したサンプルでは同じ傾向を示す。 As is clear from Table 5 and Table 6 below, the impact characteristics of the test piece cut out from the steel sheet obtained by hot rolling are almost the same as the impact characteristics of the sample cut out from the slab, and hot rolling. It can be seen that the HAZ toughness does not change. Moreover, the ease of variation in HAZ toughness also shows the same tendency in the steel sheet obtained by hot rolling and the sample cut out from the slab.
Claims (6)
Si:0.5%以下(0%を含まない)、
Mn:2.5%以下(0%を含まない)、
Ti:0.03%以下(0%を含まない)、および
N :0.01%以下(0%を含まない)を含み、
P :0.02%以下(0%を含まない)、
S :0.015%以下(0%を含まない)、および
Al:0.01%以下(0%を含む)を満足すると共に、
更に、
REM:0.0010〜0.1%と、Zr:0.001〜0.05%を夫々含有し、
残部が鉄および不可避不純物からなる鋼材であり、
介在物中にREMとZrを含有すると共に、
固溶REM:0.0010%以下(0%を含む)と、
固溶Zr :0.0010%以下(0%を含む)を満足することを特徴とする溶接熱影響部の靭性に優れた鋼材。 C: 0.01 to 0.2% (meaning “mass%”; the same shall apply hereinafter),
Si: 0.5% or less (excluding 0%),
Mn: 2.5% or less (excluding 0%),
Ti: 0.03% or less (excluding 0%), and N: 0.01% or less (not including 0%),
P: 0.02% or less (excluding 0%),
S: 0.015% or less (excluding 0%) and Al: 0.01% or less (including 0%),
Furthermore,
REM: 0.0010 to 0.1% and Zr: 0.001 to 0.05%, respectively,
The balance is steel consisting of iron and inevitable impurities,
Containing REM and Zr in the inclusions,
Solid solution REM: 0.0010% or less (including 0%);
Solid solution Zr: steel material excellent in toughness of weld heat-affected zone, characterized by satisfying 0.0010% or less (including 0%).
Ca:0.01%以下(0%を含まない)を含むものである請求項1または2に記載の鋼材。 The steel material is still another element,
The steel material according to claim 1 or 2, comprising Ca: 0.01% or less (not including 0%).
Cu:2%以下(0%を含まない)、
Ni:3.5%以下(0%を含まない)、
Cr:3%以下(0%を含まない)、
Mo:1%以下(0%を含まない)、
Nb:0.25%以下(0%を含まない)、
V :0.1%以下(0%を含まない)、および
B :0.005%以下(0%を含まない)
よりなる群から選ばれる1種以上の元素を含むものである請求項1〜3のいずれかに記載の鋼材。 The steel material is still another element,
Cu: 2% or less (excluding 0%),
Ni: 3.5% or less (excluding 0%),
Cr: 3% or less (excluding 0%),
Mo: 1% or less (excluding 0%),
Nb: 0.25% or less (excluding 0%),
V: 0.1% or less (not including 0%), and B: 0.005% or less (not including 0%)
The steel material according to any one of claims 1 to 3, which contains one or more elements selected from the group consisting of:
[REM]+[Zr]≦15×[O]1 ・・・(1)
但し、(1)式中、[REM]と[Zr]は、夫々REMまたはZrの添加量(質量%)であり、[O]1は、REMとZrを添加する前の溶鋼のトータル酸素量(質量%)である。 The total oxygen content [O] 1 was measured, the total oxygen content [O] the amount of dissolved oxygen by the addition of REM and Zr so as to satisfy the following formula (1) in accordance with 1 [O] 2 adjusted The manufacturing method according to claim 5.
[REM] + [Zr] ≦ 15 × [O] 1 (1)
However, in (1), [REM] and [Zr] are the addition amounts (mass%) of REM or Zr, respectively, and [O] 1 is the total oxygen amount of the molten steel before adding REM and Zr. (Mass%).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008044870A JP5202031B2 (en) | 2007-04-23 | 2008-02-26 | Steel material excellent in toughness of weld heat-affected zone and method for producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007113478 | 2007-04-23 | ||
JP2007113478 | 2007-04-23 | ||
JP2008044870A JP5202031B2 (en) | 2007-04-23 | 2008-02-26 | Steel material excellent in toughness of weld heat-affected zone and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008291347A true JP2008291347A (en) | 2008-12-04 |
JP5202031B2 JP5202031B2 (en) | 2013-06-05 |
Family
ID=40064787
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008044870A Expired - Fee Related JP5202031B2 (en) | 2007-04-23 | 2008-02-26 | Steel material excellent in toughness of weld heat-affected zone and method for producing the same |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5202031B2 (en) |
KR (1) | KR100983148B1 (en) |
CN (1) | CN101294257B (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010121200A (en) * | 2008-11-21 | 2010-06-03 | Kobe Steel Ltd | Low yield ratio steel having excellent toughness in weld heat-affected zone, and method for producing the same |
JP2010121199A (en) * | 2008-11-21 | 2010-06-03 | Kobe Steel Ltd | Steel having excellent weld heat-affected zone toughness and base metal low temperature toughness, and method for producing the same |
JP2011038180A (en) * | 2009-07-15 | 2011-02-24 | Kobe Steel Ltd | Steel member having excellent toughness in weld heat affected zone, and method for producing the same |
JP2011056578A (en) * | 2009-09-14 | 2011-03-24 | Sumitomo Metal Ind Ltd | Method for continuously casting molten steel |
JP2011127220A (en) * | 2009-11-18 | 2011-06-30 | Kobe Steel Ltd | Method for manufacturing steel member excellent in toughness at weld heat-affected zone |
JP2012046815A (en) * | 2010-08-30 | 2012-03-08 | Kobe Steel Ltd | METHOD FOR PRODUCING Zr-CONTAINING STEEL |
JP2012144782A (en) * | 2011-01-13 | 2012-08-02 | Sumitomo Metal Ind Ltd | Method for producing steel |
KR20180002875A (en) | 2016-04-19 | 2018-01-08 | 신닛테츠스미킨 카부시키카이샤 | Steel |
JP2018114528A (en) * | 2017-01-18 | 2018-07-26 | 新日鐵住金株式会社 | Continuously cast slab of steel and method for producing the same |
KR20210127736A (en) | 2019-06-27 | 2021-10-22 | 닛폰세이테츠 가부시키가이샤 | Steel and its manufacturing method |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5342902B2 (en) * | 2009-03-11 | 2013-11-13 | 株式会社神戸製鋼所 | Steel material excellent in toughness and base metal fatigue characteristics of weld heat-affected zone and its manufacturing method |
CN101845590A (en) * | 2009-03-25 | 2010-09-29 | 株式会社神户制钢所 | The steel of the good-toughness of welding heat affected zone |
CN101956132B (en) * | 2009-07-15 | 2012-07-25 | 株式会社神户制钢所 | Steel having excellent toughness in welding heat affected zone, and manufacturing method thereof |
CA2916653C (en) | 2013-06-27 | 2017-07-18 | Pfizer Inc. | Heteroaromatic compounds and their use as dopamine d1 ligands |
CN105648329A (en) * | 2016-03-09 | 2016-06-08 | 山东钢铁股份有限公司 | Control rolling and high strength ship-plate steel and producing method thereof |
CN110079728B (en) * | 2019-04-09 | 2020-07-10 | 东北大学 | High-strength twisted steel with good weldability and manufacturing method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08333651A (en) * | 1995-06-06 | 1996-12-17 | Nippon Steel Corp | Steel material excellent in heat-affected zone hardening resistance |
-
2008
- 2008-02-19 CN CN200810009636.7A patent/CN101294257B/en not_active Expired - Fee Related
- 2008-02-26 JP JP2008044870A patent/JP5202031B2/en not_active Expired - Fee Related
- 2008-03-11 KR KR1020080022248A patent/KR100983148B1/en active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08333651A (en) * | 1995-06-06 | 1996-12-17 | Nippon Steel Corp | Steel material excellent in heat-affected zone hardening resistance |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010121200A (en) * | 2008-11-21 | 2010-06-03 | Kobe Steel Ltd | Low yield ratio steel having excellent toughness in weld heat-affected zone, and method for producing the same |
JP2010121199A (en) * | 2008-11-21 | 2010-06-03 | Kobe Steel Ltd | Steel having excellent weld heat-affected zone toughness and base metal low temperature toughness, and method for producing the same |
JP2011038180A (en) * | 2009-07-15 | 2011-02-24 | Kobe Steel Ltd | Steel member having excellent toughness in weld heat affected zone, and method for producing the same |
JP2011056578A (en) * | 2009-09-14 | 2011-03-24 | Sumitomo Metal Ind Ltd | Method for continuously casting molten steel |
JP2011127220A (en) * | 2009-11-18 | 2011-06-30 | Kobe Steel Ltd | Method for manufacturing steel member excellent in toughness at weld heat-affected zone |
JP2012046815A (en) * | 2010-08-30 | 2012-03-08 | Kobe Steel Ltd | METHOD FOR PRODUCING Zr-CONTAINING STEEL |
JP2012144782A (en) * | 2011-01-13 | 2012-08-02 | Sumitomo Metal Ind Ltd | Method for producing steel |
KR20180002875A (en) | 2016-04-19 | 2018-01-08 | 신닛테츠스미킨 카부시키카이샤 | Steel |
JP2018114528A (en) * | 2017-01-18 | 2018-07-26 | 新日鐵住金株式会社 | Continuously cast slab of steel and method for producing the same |
KR20210127736A (en) | 2019-06-27 | 2021-10-22 | 닛폰세이테츠 가부시키가이샤 | Steel and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
CN101294257B (en) | 2014-06-18 |
KR100983148B1 (en) | 2010-09-20 |
CN101294257A (en) | 2008-10-29 |
JP5202031B2 (en) | 2013-06-05 |
KR20080095171A (en) | 2008-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5202031B2 (en) | Steel material excellent in toughness of weld heat-affected zone and method for producing the same | |
JP4825057B2 (en) | Steel with excellent toughness of weld heat affected zone and its manufacturing method | |
JP5231042B2 (en) | Steel material excellent in toughness of weld heat-affected zone and method for producing the same | |
JP4950528B2 (en) | Low yield ratio high strength steel with excellent toughness of heat affected zone and its manufacturing method | |
JP6226542B2 (en) | Steel with excellent toughness in weld heat affected zone | |
JP4515430B2 (en) | Steel with excellent toughness and base metal toughness of weld heat affected zone and its manufacturing method | |
JP5820341B2 (en) | Steel with excellent toughness in weld heat affected zone | |
JP4515427B2 (en) | Steel with excellent toughness and fatigue crack growth resistance in weld heat affected zone and its manufacturing method | |
WO2012099119A1 (en) | Steel material having superior toughness of welded heat-affected zone, and method for manufacturing same | |
JP5234951B2 (en) | Steel material excellent in toughness of weld heat-affected zone and base metal low-temperature toughness, and method for producing the same | |
JP2011219797A (en) | Thick steel plate excellent in toughness of weld heat-affected zone | |
JP5576640B2 (en) | Steel with excellent toughness in weld heat affected zone | |
JP4950529B2 (en) | Steel with excellent toughness and base metal toughness of weld heat affected zone and its manufacturing method | |
KR100997341B1 (en) | Steel plate excellent in toughness of large heat-input weld heat affected zone | |
JP2011127220A (en) | Method for manufacturing steel member excellent in toughness at weld heat-affected zone | |
JP5234952B2 (en) | Low yield ratio steel material excellent in toughness of weld heat affected zone, and method for producing the same | |
KR101124808B1 (en) | Steel having excellent toughness in welding heat affected zone | |
JP5520105B2 (en) | Steel material excellent in toughness of weld heat-affected zone and method for producing the same | |
JP4299769B2 (en) | High HAZ toughness steel for high heat input welding with heat input of 20-100 kJ / mm | |
JP2005307261A (en) | Thick high strength steel plate having large heat input weld heat affected zone toughness | |
JP4515428B2 (en) | Steel material excellent in toughness and brittle fracture occurrence characteristics of weld heat affected zone and its manufacturing method | |
JP5213517B2 (en) | Steel with excellent weld heat affected zone toughness | |
JP4515429B2 (en) | Steel with excellent toughness and brittle crack stopping characteristics in weld heat affected zone and its manufacturing method | |
JP2005048265A (en) | Steel material superior in toughness of weld heat-affected zone, and manufacturing method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110204 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121120 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130116 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130205 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130212 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5202031 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160222 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |