JP2013127108A - Thick steel plate excellent in toughness of weld heat-affected zone - Google Patents

Thick steel plate excellent in toughness of weld heat-affected zone Download PDF

Info

Publication number
JP2013127108A
JP2013127108A JP2012207193A JP2012207193A JP2013127108A JP 2013127108 A JP2013127108 A JP 2013127108A JP 2012207193 A JP2012207193 A JP 2012207193A JP 2012207193 A JP2012207193 A JP 2012207193A JP 2013127108 A JP2013127108 A JP 2013127108A
Authority
JP
Japan
Prior art keywords
less
rem
toughness
steel plate
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012207193A
Other languages
Japanese (ja)
Other versions
JP5824434B2 (en
Inventor
Hidenori Nako
秀徳 名古
Hitoshi Hatano
等 畑野
Yoshiomi Okazaki
喜臣 岡崎
Akira Ibano
朗 伊庭野
Tetsushi Deura
哲史 出浦
Masaki Shimamoto
正樹 島本
Takashi Sugitani
崇 杉谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2012207193A priority Critical patent/JP5824434B2/en
Publication of JP2013127108A publication Critical patent/JP2013127108A/en
Application granted granted Critical
Publication of JP5824434B2 publication Critical patent/JP5824434B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thick steel plate excellent in toughness of weld heat-affected zone, which can enhance a mean value and a minimum value of an HAZ toughness, even when welded at a high heat input.SOLUTION: The steel sheet satisfies a prescribed chemical composition and has an A value of 5.0-25.0 obtained from the following expression: A=10×[B]×(0.4+30×[Ti]-82×[N]). The steel sheet further includes oxides in which constituent elements except oxygen satisfy the following relations, by mass%, 2%<Ti<40%, 5%<Al<30%, 5%<Ca<40%, 5%<REM<50%, 2%<Zr<30%, 1.5≤REM/Zr. Among oxides, inclusions having a circle equivalent diameter of less than 2 μm exist 300 pieces/mmor more, inclusions having a circle equivalent diameter 2 μm or more exist 100 pieces/mmor less. Among Ti nitrides, Ti nitrides having a circle equivalent diameter of 1 μm or more exist 5 pieces/mmor below.

Description

本発明は、橋梁や高層建造物、船舶、ラインパイプなどの溶接構造物に適用される厚鋼板に関し、より詳しくは、大入熱後の熱影響部(以下、HAZとも述べる。)の靭性に優れた厚鋼板に関するものである。   The present invention relates to a thick steel plate applied to a welded structure such as a bridge, a high-rise building, a ship, or a line pipe. More specifically, the present invention relates to the toughness of a heat affected zone (hereinafter also referred to as HAZ) after large heat input. It relates to an excellent thick steel plate.

近年、橋梁や高層建造物、船舶、ラインパイプなどの溶接構造物の大型化に伴い、このような溶接構造物には50mm以上の板厚の厚鋼板が適用されることが多くなってきており、50mm以上の板厚の厚鋼板の溶接が不可避となっている。以上のような実情もあり、溶接施工効率向上を目的とした大入熱溶接が求められている。   In recent years, with the increase in the size of welded structures such as bridges, high-rise buildings, ships, and line pipes, thick steel plates with a thickness of 50 mm or more are often applied to such welded structures. The welding of thick steel plates with a thickness of 50 mm or more is inevitable. In view of the above circumstances, high heat input welding for the purpose of improving welding construction efficiency is required.

しかしながら、大入熱溶接時のHAZは、加熱によって高温のオーステナイト(γ)領域に長時間保持された後、徐冷されるため、加熱時におけるγ粒の成長、冷却過程における粗大フェライト(α)粒の生成に代表されるような組織の粗大化がもたらされやすく、それが大入熱溶接時のHAZの靭性低下の原因となっている。そのため、大入熱溶接時におけるHAZの靭性(以下、HAZ靭性とも述べる。)を安定して高い水準に保つ技術を開発することが、必要課題となっている。   However, since HAZ during high heat input welding is kept in a high temperature austenite (γ) region by heating for a long time and then gradually cooled, γ grains grow during heating, and coarse ferrite (α) during the cooling process. The coarsening of the structure as typified by the formation of grains is likely to be caused, which causes a reduction in the toughness of the HAZ during high heat input welding. Therefore, it is necessary to develop a technique for stably maintaining the HAZ toughness (hereinafter also referred to as HAZ toughness) at the time of high heat input welding at a high level.

HAZ靭性を確保するための手段としては、酸化物、窒化物、硫化物等の介在物粒子によるγ粒成長ピン止め、介在物粒子を起点とする粒内α生成による組織の微細化に関する技術等が提案されている。こうした技術の提案例として、特許文献1や特許文献2に記載の技術があり、鋼材中に微細なTi窒化物をγ粒成長ピン止め粒子として分散析出させることで、大入熱溶接時のHAZで生じるオーステナイト粒の粗大化を抑制し、HAZ靭性の劣化を抑えることが開示されている。しかしながら、Ti窒化物は、溶接入熱を増大させると消失しやすく、安定したHAZ靭性が得られないという課題があり、近年の溶接入熱増大に対応することはできない。   Means for ensuring HAZ toughness include pinning gamma grain growth by inclusion particles such as oxides, nitrides, and sulfides, and techniques for refining the structure by intragranular α formation starting from inclusion particles. Has been proposed. As a proposal example of such a technique, there are techniques described in Patent Document 1 and Patent Document 2, and by dispersing and depositing fine Ti nitride as γ-growth growth pinning particles in a steel material, HAZ at the time of high heat input welding It suppresses the coarsening of the austenite grain which arises by this, and suppresses deterioration of HAZ toughness. However, Ti nitride tends to disappear when welding heat input is increased, and there is a problem that stable HAZ toughness cannot be obtained. Thus, Ti nitride cannot cope with the recent increase in welding heat input.

これに対し、特許文献3〜6では、高温で安定な酸化物系介在物をγ粒成長ピン止め粒子として利用する技術が提案されている。しかしながら、酸化物系介在物はTi含有窒化物に比べて数が少なく、十分なピン止め効果を得ることができないため、大入熱溶接に対して対応することが十分にはできず、尚一層の改善が必要である。   On the other hand, Patent Documents 3 to 6 propose a technique in which oxide inclusions that are stable at high temperatures are used as γ-grown pinning particles. However, the number of oxide inclusions is smaller than that of Ti-containing nitrides, and a sufficient pinning effect cannot be obtained. Improvement is necessary.

すなわち、特許文献3には、REMやZrを含む酸化物を存在させることによって良好なHAZ特性が得られると記載されてはいるものの、想定した入熱は低い水準にとどまっており、必ずしも大入熱溶接で良好なHAZ特性が得られるとはいいえない。また、特許文献4には、特許文献3と同様にREMやZrを含む酸化物を利用する技術が記載されており、HAZ靭性としてシャルピー吸収エネルギーを評価しているものの、材料の信頼性という観点では、平均値のみならずその最小値も高い水準に保障する必要があると考えられる。   That is, Patent Document 3 describes that good HAZ characteristics can be obtained by the presence of an oxide containing REM or Zr, but the assumed heat input is only at a low level and is not necessarily large. No good HAZ properties can be obtained by thermal welding. Patent Document 4 describes a technique using an oxide containing REM and Zr as in Patent Document 3, and evaluates Charpy absorbed energy as HAZ toughness, but it is a viewpoint of material reliability. Therefore, it is considered necessary to guarantee not only the average value but also its minimum value to a high level.

更には、特許文献5には、酸化物系介在物とTi含有介在物の両方をγ粒成長ピン止め粒子として利用することで、高いHAZ靭性を得る技術が記載されている。しかしながら、近年の入熱量の増大傾向を考慮すると、Ti含有介在物の利用には限界があり、酸化物系介在物による大入熱でのHAZ靭性向上手段を早急に確立する必要があるということができる。また、発明者らは特許文献6で、微細酸化物系介在物のγ粒成長ピン止め効果を活用した技術を提案しているが、この技術は微細Mn硫化物の再析出抑制を併用した技術であり、溶存酸素量、溶存硫黄量に基づき合金添加量を決定するという煩雑な制御を必要としている。   Furthermore, Patent Document 5 describes a technique for obtaining high HAZ toughness by using both oxide inclusions and Ti-containing inclusions as γ-growth growth pinning particles. However, considering the recent trend of increasing heat input, there is a limit to the use of Ti-containing inclusions, and it is necessary to immediately establish means for improving HAZ toughness with large heat input by oxide inclusions. Can do. In addition, the inventors have proposed a technique that utilizes the gamma grain growth pinning effect of fine oxide inclusions in Patent Document 6, but this technique is a technique that also uses reprecipitation suppression of fine Mn sulfide. Therefore, the complicated control of determining the alloy addition amount based on the dissolved oxygen amount and the dissolved sulfur amount is required.

また、介在物粒子を起点とする粒内α生成による組織の微細化に関する技術としては、特許文献7に記載のTiやREMを含む複合酸化物とMnSを利用した技術が提案されているほか、発明者らは、特許文献8で介在物形状を制御することで、粒内α生成を促進する技術を提案している。これらの技術は、粒内α生成に対し、(粒内α/介在物)界面エネルギーの低い介在物が有効との前提で構築されているものである。しかしながら、粒内αの生成に際しては、(粒内α/γ)界面エネルギーの寄与も大きく、単に(粒内α/介在物)界面エネルギーを下げるだけでは、十分な粒内αの生成を得ることができないため、大入熱HAZ靭性を十分に保障するまでには至っていない。   In addition, as a technique related to the refinement of the structure by intragranular α generation starting from inclusion particles, a technique using a composite oxide containing Ti and REM described in Patent Document 7 and MnS is proposed, Inventors have proposed the technique which accelerates | stimulates intra-granular alpha production | generation by controlling the inclusion shape in patent document 8. FIG. These techniques are constructed on the premise that inclusions with low interfacial energy are effective for intragranular α production (intragranular α / inclusions). However, in the production of intra-granular α, the contribution of (intra-granular α / γ) interfacial energy is also large, and by simply reducing (intra-granular α / inclusion) interfacial energy, sufficient intra-granular α can be obtained Therefore, sufficient heat input HAZ toughness has not been sufficiently ensured.

更に、発明者らは、酸硫化物起点の粒内α生成を活用した高HAZ靭性技術を構築し、特許文献9として提案している。しかしながら、代償として2μm以上の比較的サイズの大きい酸硫化物粒子を一定数分散させる必要があるため、この技術でも、大入熱HAZ靭性を十分に保障するまでには至っていない。すなわち、特許文献7記載の技術では、想定する入熱量自体が小さく、また、特許文献8や特許文献9に記載の技術においても、シャルピー吸収エネルギーの平均値こそ高いものの、最小値には改善の余地があるのが現状である。   Furthermore, the inventors have constructed a high HAZ toughness technique utilizing intragranular α generation starting from an oxysulfide and has proposed it as Patent Document 9. However, since it is necessary to disperse a certain number of relatively large oxysulfide particles having a size of 2 μm or more as a compensation, even this technique has not yet sufficiently secured the high heat input HAZ toughness. That is, in the technique described in Patent Document 7, the assumed heat input itself is small, and even in the techniques described in Patent Document 8 and Patent Document 9, although the average value of Charpy absorbed energy is high, the minimum value is not improved. There is room for it now.

加えて、発明者らは、組織を制御した酸化物を分散させることで、高いHAZ靭性を得ることができる技術を、特許文献10および特許文献11として提案している。これらの技術により溶接熱影響部の靭性に優れた厚鋼板を実現することができたが、製造上において、まだ改善すべき課題が残っていた。   In addition, the inventors have proposed, as Patent Document 10 and Patent Document 11, a technique that can obtain high HAZ toughness by dispersing an oxide whose structure is controlled. Although these techniques enabled the realization of a thick steel plate with excellent weld heat affected zone toughness, problems still need to be improved in manufacturing.

特許文献10記載の技術では、所定の酸化物形態を実現するために、Ca添加前の溶存酸素量に基づいてCa添加量を制御しているが、同時にTi添加からCa添加までの時間を3〜20分に収める必要があるため、作業者の負担が増すことが懸念される。一方、特許文献11記載の技術では、Ca添加から鋳込み開始まで40分〜90分保持する必要があるため、生産性に改善点が残っている。   In the technique described in Patent Document 10, the Ca addition amount is controlled based on the dissolved oxygen amount before the Ca addition in order to realize a predetermined oxide form, but at the same time, the time from Ti addition to Ca addition is 3 There is a concern that the burden on the operator will increase because it is necessary to keep it within -20 minutes. On the other hand, in the technique described in Patent Document 11, since it is necessary to hold for 40 minutes to 90 minutes from the addition of Ca to the start of casting, an improvement point remains in productivity.

特開2001−98340号公報JP 2001-98340 A 特開2004−218010号公報JP 2004-2181010 A 特開2001−20031号公報Japanese Patent Laid-Open No. 2001-20031 特開2007−247005号公報JP 2007-247005 A 特開2008−223062号公報JP 2008-223062 A 特開2009−179844号公報JP 2009-179844 A 特開平7−252586号公報Japanese Patent Laid-Open No. 7-252586 特開2008−223081号公報JP 2008-223081 A 特開2009−138255号公報JP 2009-138255 A 特開2010−168644号公報JP 2010-168644 A 特開2011−219797号公報JP 2011-219797 A

本発明は、上記従来の実情を鑑みてなされたもので、大入熱溶接を行った場合であっても、HAZ靭性の平均値は勿論のこと、その最小値をも向上させることができ、溶接熱影響部の靭性に優れ、更には生産性にも優れた、厚鋼板を提供することを課題とするものである。   The present invention was made in view of the above-described conventional situation, and even when high heat input welding is performed, the average value of HAZ toughness can be improved as well as the minimum value, An object of the present invention is to provide a thick steel plate that is excellent in the toughness of the weld heat-affected zone and is also excellent in productivity.

請求項1記載の発明は、質量%で、C:0.03〜0.12%、Si:0.25%以下(0%を含む)、Mn:1.0〜2.0%、P:0.03%以下(0%を含まない)、S:0.015%以下(0%を含まない)、Al:0.004〜0.05%、Ti:0.010〜0.050%、REM:0.0003〜0.02%、Zr:0.0003〜0.02%、Ca:0.0005〜0.010%、N:0.002〜0.010%、B:0.0005〜0.0050%を含有し、残部が鉄および不可避的不純物である厚鋼板であって、A=10×[B]×(0.4+30×[Ti]−82×[N])という式から求められるA値が、5.0≦A≦25.0を満足し、更に、酸素を除く構成元素が、質量%で、2%<Ti<40%、5%<Al<30%、5%<Ca<40%、5%<REM<50%、2%<Zr<30%、1.5≦REM/Zrを満たす酸化物を含有し、且つ、前記酸化物のうち、円相当径が2μm未満の酸化物が300個/mm以上、円相当径が2μm以上の酸化物が100個/mm以下、存在すると共に、含有されるTi窒化物のうち、円相当径が1μm以上のTi窒化物が5個/mm以下であることを特徴とする溶接熱影響部の靭性に優れた厚鋼板である。但し、上式で[ ]は各元素の含有量(質量%)を示す。 Invention of Claim 1 is the mass%, C: 0.03-0.12%, Si: 0.25% or less (including 0%), Mn: 1.0-2.0%, P: 0.03% or less (not including 0%), S: 0.015% or less (not including 0%), Al: 0.004 to 0.05%, Ti: 0.010 to 0.050%, REM: 0.0003-0.02%, Zr: 0.0003-0.02%, Ca: 0.0005-0.010%, N: 0.002-0.010%, B: 0.0005- A thick steel plate containing 0.0050%, the balance being iron and inevitable impurities, and A = 10 4 × [B] × (0.4 + 30 × [Ti] −82 × [N]) The required A value satisfies 5.0 ≦ A ≦ 25.0, and the constituent elements excluding oxygen are 2% <Ti <40%, 5% <Al in mass%. <30%, 5% <Ca <40%, 5% <REM <50%, 2% <Zr <30%, an oxide satisfying 1.5 ≦ REM / Zr, and among the oxides , equivalent circle diameter oxides of less than 2μm is 300 / mm 2 or more, circle oxides of equivalent diameter above 2μm have 100 / mm 2 or less, with present, among Ti nitrides contained equivalent circle It is a thick steel plate excellent in toughness of the weld heat affected zone, characterized in that Ti nitride having a diameter of 1 μm or more is 5 pieces / mm 2 or less. However, in the above formula, [] indicates the content (% by mass) of each element.

尚、上記記載を含め、本発明で説明する円相当径とは、酸化物およびTi窒化物の大きさに着目して、その面積が等しくなるように想定した円の直径を求めたもので、透過型電子顕微鏡(TEM)や走査型電子顕微鏡(SEM)で観察することで求めることができる。   In addition, including the above description, the equivalent circle diameter described in the present invention is the diameter of a circle assumed to have the same area, focusing on the size of the oxide and Ti nitride. It can obtain | require by observing with a transmission electron microscope (TEM) or a scanning electron microscope (SEM).

請求項2記載の発明は、更に、質量%で、Ni:0.05〜1.50%、Cu:0.05〜1.50%、Cr:0.05〜1.50%、Mo:0.05〜1.50%よりなる群から選ばれる1種以上を含有すると共に、[Ni]+[Cu]+[Cr]+[Mo]<2.5%を満足することを特徴とする請求項1記載の溶接熱影響部の靭性に優れた厚鋼板である。但し、上式で[ ]は各元素の含有量(質量%)を示す。   The invention according to claim 2 further includes, in mass%, Ni: 0.05 to 1.50%, Cu: 0.05 to 1.50%, Cr: 0.05 to 1.50%, Mo: 0. It contains at least one selected from the group consisting of 0.05 to 1.50%, and satisfies [Ni] + [Cu] + [Cr] + [Mo] <2.5%. Item 2. A thick steel plate excellent in toughness of the weld heat affected zone according to item 1. However, in the above formula, [] indicates the content (% by mass) of each element.

請求項3記載の発明は、更に、質量%で、Nb:0.002〜0.10%および/またはV:0.002〜0.10%を含有することを特徴とする請求項1または2記載の溶接熱影響部の靭性に優れた厚鋼板である。   The invention according to claim 3 further contains Nb: 0.002 to 0.10% and / or V: 0.002 to 0.10% by mass%. It is a thick steel plate excellent in the toughness of the described weld heat affected zone.

本発明によると、小〜中入熱溶接は勿論のこと、大入熱溶接を行った場合であっても、HAZ靭性の平均値および最小値を向上させることができ、溶接熱影響部の靭性に優れ、更には生産性にも優れた、厚鋼板を得ることができる。   According to the present invention, the average value and the minimum value of the HAZ toughness can be improved not only for small to medium heat input welding but also for large heat input welding. In addition, it is possible to obtain a thick steel plate having excellent productivity.

本発明者らは、比較的生産性の高い製造条件下で厚鋼板の大入熱HAZ靭性を改善する手段を探索した。その結果、酸化物起点の粒内αの生成を確保すると共に、HAZ靭性阻害因子である粗大Ti窒化物、粗大粒界フェライトの生成を抑制することで、厚鋼板の生産性と大入熱HAZ靭性を両立できることを見出した。すなわち、酸化物組成を適切に制御することで、粒内αの生成を確保できると共に、従来、溶鋼中において酸化物を起点として晶出していた粗大Ti窒化物の生成を抑制でき、更には、鋼材成分を適切に制御することで、粗大粒界フェライトの生成を抑制できるため、優れた大入熱HAZ靭性を有する厚鋼板を得ることができることを知見した。   The inventors searched for a means for improving the high heat input HAZ toughness of a thick steel plate under production conditions with relatively high productivity. As a result, it is possible to ensure the formation of intra-granular α at the oxide starting point, and suppress the formation of coarse Ti nitride and coarse grain boundary ferrite which are HAZ toughness inhibiting factors, thereby increasing the productivity and high heat input HAZ of thick steel plates. It has been found that toughness can be achieved at the same time. That is, by appropriately controlling the oxide composition, it is possible to ensure the production of intra-grain α, and conventionally, it is possible to suppress the formation of coarse Ti nitride that has been crystallized from the oxide in the molten steel, It has been found that, by appropriately controlling the steel material components, the formation of coarse grain boundary ferrite can be suppressed, so that a thick steel plate having excellent high heat input HAZ toughness can be obtained.

より詳しくは、これら酸化物のうち、円相当径が2μm未満の酸化物を300個/mm以上分散させると共に、円相当径が2μm以上の酸化物は100個/mm以下に抑制することで、優れたHAZ靭性が得られることを確認した。 More specifically, among these oxides, oxides having an equivalent circle diameter of less than 2 μm are dispersed at 300 / mm 2 or more, and oxides having an equivalent circle diameter of 2 μm or more are suppressed to 100 / mm 2 or less. Thus, it was confirmed that excellent HAZ toughness was obtained.

以上説明したような知見を基に、本発明を完成したものであるが、各構成要件を規定した理由は下記に示す通りである。   The present invention has been completed on the basis of the knowledge described above. The reasons for defining each constituent element are as follows.

(酸素を除く構成元素が、質量%で、2%<Ti<40%、5%<Al<30%、5%<Ca<40%、5%<REM<50%、2%<Zr<30%、1.5≦REM/Zrを満たし、円相当径が2μm未満の酸化物が300個/mm以上)
酸化物の円相当径を2μm未満とすることで、粒内α促進によってHAZ靭性を促進することができる。酸化物の円相当径が2μm以上になると、粗大Ti窒化物が晶出する際の障壁エネルギーが低下し、粗大Ti窒化物の生成量が増加してしまう。また、酸化物の組成が、質量%で、2%<Ti<40%、5%<Al<30%、5%<Ca<40%、5%<REM<50%、2%<Zr<30%、1.5≦REM/Zrという範囲から外れると十分な粒内α生成が得られなくなる。特に、酸化物中のREM/Zr比(質量%)を1.5以上とすることで、溶鋼中において酸化物の表面に生成する粗大晶出Ti窒化物量が減少する。また、円相当径が2μm未満の酸化物が300個/mmより少なくなると、粒内α生成の起点が不足するため、やはり粒内αの生成量が減少し、十分なHAZ靭性が得られなくなる。
(Constituent elements excluding oxygen are in mass%, 2% <Ti <40%, 5% <Al <30%, 5% <Ca <40%, 5% <REM <50%, 2% <Zr <30. %, 1.5 ≦ REM / Zr and equivalent circle diameter of less than 2 μm is 300 oxides / mm 2 or more)
By setting the equivalent circle diameter of the oxide to less than 2 μm, HAZ toughness can be promoted by promoting intragranular α. When the equivalent circle diameter of the oxide is 2 μm or more, the barrier energy when the coarse Ti nitride is crystallized decreases, and the amount of coarse Ti nitride generated increases. Further, the composition of the oxide is 2% <Ti <40%, 5% <Al <30%, 5% <Ca <40%, 5% <REM <50%, 2% <Zr <30 in mass%. %, 1.5 ≦ REM / Zr, a sufficient intragranular α formation cannot be obtained. In particular, when the REM / Zr ratio (% by mass) in the oxide is 1.5 or more, the amount of coarse crystallization Ti nitride generated on the surface of the oxide in the molten steel is reduced. In addition, when the number of oxides having an equivalent circle diameter of less than 2 μm is less than 300 pieces / mm 2 , the starting point of intragranular α formation is insufficient, so the amount of intragranular α generation is also reduced, and sufficient HAZ toughness is obtained. Disappear.

(円相当径が2μm以上の酸化物が100個/mm以下)
上記した組成を満足する酸化物のうち、円相当径が2μm以上の酸化物は、脆性破壊を助長し、HAZ靭性を劣化させるので、できるだけ少ないことが好ましい。こうした観点から本発明では、円相当径が2μm以上の酸化物は100個/mm以下と規定した。
(Equivalent circle diameter of 2 μm or more is 100 oxides / mm 2 or less)
Of the oxides satisfying the above composition, an oxide having an equivalent circle diameter of 2 μm or more promotes brittle fracture and deteriorates HAZ toughness, so that it is preferably as small as possible. From this point of view, in the present invention, the oxide having an equivalent circle diameter of 2 μm or more is defined as 100 / mm 2 or less.

(円相当径が1μm以上のTi窒化物が5個/mm以下)
円相当径が1μm以上のTi窒化物の個数が5個/mmを超えると、脆性破壊を助長し、HAZ靭性を劣化させてしまう。このようなTi窒化物は、直方体形状を有することに加えて、鋼に比べて著しく硬度が高いため、応力集中によりHAZ靭性を著しく劣化させるという特性を有する。よって、粗大Ti窒化物は粗大酸化物より厳密に制御する必要がある。
(Ti nitride with equivalent circle diameter of 1 μm or more is 5 / mm 2 or less)
When the number of Ti nitrides having an equivalent circle diameter of 1 μm or more exceeds 5 / mm 2 , brittle fracture is promoted and HAZ toughness is deteriorated. In addition to having a rectangular parallelepiped shape, such a Ti nitride has a characteristic that the HAZ toughness is remarkably deteriorated due to stress concentration because the hardness is significantly higher than that of steel. Therefore, coarse Ti nitride needs to be controlled more strictly than coarse oxide.

(製造方法)
上記した要件を満足する本発明の厚鋼板、すなわち、酸素を除く構成元素が、質量%で、2%<Ti<40%、5%<Al<30%、5%<Ca<40%、5%<REM<50%、2%<Zr<30%、1.5≦REM/Zrを満たす酸化物を含有し、且つ、前記酸化物のうち、円相当径が2μm未満の酸化物が300個/mm以上、円相当径が2μm以上の酸化物が100個/mm以下、存在すると共に、含有されるTi窒化物のうち、円相当径が1μm以上の粗大Ti窒化物の存在個数が5個/mm以下の厚鋼板を製造するためには、以下の製造要件を満足するようにして、厚鋼板を製造する必要がある。
(Production method)
The thick steel plate of the present invention that satisfies the above-mentioned requirements, that is, the constituent elements excluding oxygen are 2% <Ti <40%, 5% <Al <30%, 5% <Ca <40%, 5% by mass. % <REM <50%, 2% <Zr <30%, and an oxide satisfying 1.5 ≦ REM / Zr, and among the oxides, 300 oxides having an equivalent circle diameter of less than 2 μm / mm 2 or more, circle oxides of equivalent diameter above 2μm have 100 / mm 2 or less, with present, there number of equivalent circle diameter of more than 1μm coarse Ti nitrides of Ti nitrides contained the In order to manufacture a steel plate of 5 pieces / mm 2 or less, it is necessary to manufacture the steel plate so as to satisfy the following manufacturing requirements.

その製造要件は、溶製時において、Mn、Si等を用いた脱酸により溶鋼中の溶存酸素量を、質量%で、0.002〜0.01%とした後、REM添加量[REM]とZr添加量[Zr]の質量比である[REM]/[Zr]を1.8以上とし、Al→Ti→(REM、Zr)→Caの順に、REMまたはZrの添加からCa添加までの時間t1が10分以上となるようにして制御しつつ、各元素を添加し、更に、鋳造時における1500〜1450℃の温度範囲での冷却時間t2を300秒以内とすれば良い。次に、これらの製造要件の規定理由について詳しく説明する。   The manufacturing requirement is that the amount of dissolved oxygen in molten steel is 0.002 to 0.01% by mass% by deoxidation using Mn, Si, etc. at the time of melting, and then the amount of REM added [REM] [REM] / [Zr], which is a mass ratio of Zr addition amount [Zr] to 1.8 or more, and from the addition of REM or Zr to Ca addition in the order of Al → Ti → (REM, Zr) → Ca. Each element may be added while controlling the time t1 to be 10 minutes or longer, and the cooling time t2 in the temperature range of 1500 to 1450 ° C. during casting may be within 300 seconds. Next, the reasons for defining these manufacturing requirements will be described in detail.

・Mn、Si等を用いた脱酸により溶鋼中の溶存酸素量を、0.002〜0.01%
溶存酸素量が0.002%を下回ると、粒内α生成の起点となる適切な組成を有する酸化物を必要量確保できなくなる。また、溶存酸素量が0.01%を超えると、円相当径が2μm以上の粗大酸化物が増加し、HAZ靭性を劣化させてしまう。
-The amount of dissolved oxygen in molten steel is 0.002 to 0.01% by deoxidation using Mn, Si, etc.
When the amount of dissolved oxygen is less than 0.002%, a required amount of oxide having an appropriate composition that becomes the starting point of intragranular α formation cannot be secured. On the other hand, if the amount of dissolved oxygen exceeds 0.01%, coarse oxides having an equivalent circle diameter of 2 μm or more increase, and the HAZ toughness is deteriorated.

・REM添加量[REM]とZr添加量[Zr]の質量比:[REM]/[Zr]を1.8以上
・REMまたはZrの添加からCa添加までの時間t1を10分以上
本発明で規定した酸化物は、粒内αの生成促進作用を有すると共に、粗大Ti窒化物の晶出起点として機能し難いという特徴を有する。特に、酸化物中のREM/Zr比(質量%)を1.5以上とするためには、REM添加量[REM]とZr添加量[Zr]の質量比である[REM]/[Zr]を1.8以上とすると共に、強脱酸元素であるCaの添加に先立ち、REMまたはZrの酸化物形成反応を十分に進行させる必要がある。具体的には、REMまたはZrの添加からCa添加までの時間t1を10分以上に制御することで、所定の個数密度のREM/Zr≧1.5を満たす酸化物を得ることができる。REMまたはZrの添加からCa添加までの時間t1が10分未満であると、REM/Zr≧1.5を満たす酸化物が不足することになる。
-Mass ratio of REM addition amount [REM] and Zr addition amount [Zr]: [REM] / [Zr] is 1.8 or more-Time t1 from addition of REM or Zr to Ca addition is 10 minutes or more In the present invention The specified oxide has a feature that it has an action of promoting the formation of α within the grains and is difficult to function as a crystallization starting point of coarse Ti nitride. In particular, in order to set the REM / Zr ratio (mass%) in the oxide to 1.5 or more, [REM] / [Zr], which is the mass ratio of the REM addition amount [REM] and the Zr addition amount [Zr]. It is necessary to make the REM or Zr oxide formation reaction sufficiently proceed prior to the addition of Ca, which is a strong deoxidizing element. Specifically, an oxide satisfying REM / Zr ≧ 1.5 having a predetermined number density can be obtained by controlling the time t1 from the addition of REM or Zr to the addition of Ca to 10 minutes or more. When the time t1 from the addition of REM or Zr to the addition of Ca is less than 10 minutes, the oxide satisfying REM / Zr ≧ 1.5 is insufficient.

尚、溶製時において、Al→Ti→(REM、Zr)→Caの順に添加する理由は、この添加順序以外の順序で各元素を添加すると、粒内α生成の起点となる適切な組成を有する酸化物を必要数確保できなくなるからである。特に、Caは脱酸力が極めて強い強脱酸元素であるため、TiやAlに先立って添加すると、TiやAlと結びつく酸素が著しく少なくなる。   At the time of melting, the reason for adding Al → Ti → (REM, Zr) → Ca in this order is that if each element is added in an order other than this addition order, an appropriate composition that will be the starting point of intragranular α formation This is because the required number of oxides cannot be secured. In particular, since Ca is a strong deoxidizing element having a very strong deoxidizing power, if it is added prior to Ti or Al, oxygen associated with Ti or Al is remarkably reduced.

・鋳造時の1500〜1450℃における冷却時間t2を300秒以内
鋳造時の1500〜1450℃における冷却時間t2が300秒を超えると、凝固時の成分偏析により粗大Ti窒化物が晶出し、HAZ靭性が劣化することになる。
・ Cooling time t2 at 1500 to 1450 ° C. during casting is less than 300 seconds If cooling time t2 at 1500 to 1450 ° C. during casting exceeds 300 seconds, coarse Ti nitride crystallizes due to component segregation during solidification, and HAZ toughness Will deteriorate.

(化学成分組成)
次に、本発明の厚鋼板における化学成分組成について説明する。本発明の厚鋼板は、先に説明した酸化物の分散状態等が適切であっても、夫々の化学成分(元素)の含有量が適正範囲内でなければ、母材(厚鋼板)の特性とHAZを良好にすることができない。従って、本発明の厚鋼板では、夫々の化学成分の含有量が、以下に説明する範囲内にあることも併せて要件とする。これらの化学成分のうち、酸化物を構成するAl、Ca、Ti等の含有量は、その作用効果から明らかなように、酸化物を構成する量を含めたものである。尚、下記の化学成分の含有量(%)は全て質量%を示す。
(Chemical composition)
Next, the chemical component composition in the thick steel plate of the present invention will be described. The steel plate of the present invention has characteristics of the base material (thick steel plate) if the content of each chemical component (element) is not within the proper range even if the oxide dispersion state described above is appropriate. And HAZ cannot be improved. Therefore, in the thick steel plate of the present invention, it is also a requirement that the content of each chemical component is within the range described below. Among these chemical components, the content of Al, Ca, Ti, etc. constituting the oxide includes the amount constituting the oxide, as is apparent from its action and effect. In addition, all the content (%) of the following chemical component shows the mass%.

C:0.03〜0.12%
Cは、鋼板の強度を確保するための必須元素である。Cの含有量が0.03%より低い場合は、必要な強度を確保できなくなる。一方で、Cの含有量が過剰になると、硬質な島状マルテンサイト(MA)が多く生成して母材の靭性劣化を招くことになる。従って、Cの含有量は0.12%以下とする必要がある。Cの含有量の好ましい下限は0.04%、好ましい上限は0.10%である。
C: 0.03-0.12%
C is an essential element for ensuring the strength of the steel sheet. If the C content is lower than 0.03%, the required strength cannot be ensured. On the other hand, when the C content is excessive, a large amount of hard island martensite (MA) is generated, leading to deterioration of the toughness of the base material. Therefore, the C content needs to be 0.12% or less. The minimum with preferable content of C is 0.04%, and a preferable upper limit is 0.10%.

Si:0.25%以下(0%を含む)
Siは、必須元素ではないが、固溶強化により強度を確保するのに有用な元素である。しかしながら、過剰に添加されると、HAZにおいて、硬質な島状マルテンサイト(MA)が増加し、HAZ靭性の劣化を招くことになる。従って、Siの含有量の上限は0.25%とする。また、好ましい上限は0.21%、より好ましい上限は0.18%である。
Si: 0.25% or less (including 0%)
Si is not an essential element, but is an element useful for securing strength by solid solution strengthening. However, if it is added excessively, in HAZ, hard island martensite (MA) increases, leading to degradation of HAZ toughness. Therefore, the upper limit of the Si content is 0.25%. Moreover, a preferable upper limit is 0.21% and a more preferable upper limit is 0.18%.

Mn:1.0〜2.0%
Mnは、鋼板の強度を確保するのに有用な元素である。こうした効果を有効に発揮させるには1.0%以上含有させる必要がある。しかし、2.0%を超えて過剰に含有させるとHAZの強度が上昇しすぎて靭性が劣化するので、Mnの含有量は2.0%以下とする。Mnの含有量の好ましい下限は1.4%、好ましい上限は1.8%である。
Mn: 1.0-2.0%
Mn is an element useful for ensuring the strength of the steel sheet. In order to exhibit such an effect effectively, it is necessary to contain 1.0% or more. However, if the content exceeds 2.0% excessively, the strength of the HAZ increases excessively and the toughness deteriorates, so the Mn content is set to 2.0% or less. The preferable lower limit of the Mn content is 1.4%, and the preferable upper limit is 1.8%.

P:0.03%以下(0%を含まない)
Pは、粒界破壊を起こし易く靭性に悪影響を及ぼす不純物元素であるので、その含有量はできるだけ少ないことが好ましい。HAZ靭性を確保するという観点からして、Pの含有量は0.03%以下に抑制する必要があり、好ましくは0.02%以下とする。しかし、工業的に鋼中のPを0%にすることは困難である。
P: 0.03% or less (excluding 0%)
Since P is an impurity element that easily causes grain boundary fracture and adversely affects toughness, its content is preferably as small as possible. From the viewpoint of securing HAZ toughness, the P content needs to be suppressed to 0.03% or less, and preferably 0.02% or less. However, it is difficult to make P in steel 0% industrially.

S:0.015%以下(0%を含まない)
Sは、HAZにおいて、旧オーステナイト粒界にMn硫化物を形成して、HAZ靭性を劣化させる元素であるので、その含有量はできるだけ少ないことが好ましい。HAZ靭性を確保するという観点からして、Sの含有量は0.015%以下に抑制する必要があり、好ましくは0.010%以下とする。しかし、工業的に鋼中のSを0%にすることは困難である。
S: 0.015% or less (excluding 0%)
Since S is an element that degrades the HAZ toughness by forming Mn sulfide at the prior austenite grain boundaries in the HAZ, its content is preferably as small as possible. From the viewpoint of ensuring HAZ toughness, the S content must be suppressed to 0.015% or less, and preferably 0.010% or less. However, it is difficult to industrially make S in steel 0%.

Al:0.004〜0.05%
Alは、粒内αの起点となる酸化物を形成する元素である。その含有量が0.004%未満であると、所定の酸化物形態が得られなくなると共に、粗大Ti窒化物が晶出するようになる。一方、含有量が過剰であると、粗大酸化物が生成してHAZ靭性が劣化するので、0.05%以下に抑える必要がある。Alの含有量の好ましい下限は0.007%、好ましい上限は0.04%である。
Al: 0.004 to 0.05%
Al is an element that forms an oxide serving as a starting point of the intra-grain α. When the content is less than 0.004%, a predetermined oxide form cannot be obtained and coarse Ti nitride is crystallized. On the other hand, if the content is excessive, a coarse oxide is generated and the HAZ toughness is deteriorated, so it is necessary to suppress it to 0.05% or less. The preferable lower limit of the Al content is 0.007%, and the preferable upper limit is 0.04%.

Ti:0.010〜0.050%
Tiを、REM、Zr、Caに先立ち添加することによって、粒内αの生成促進作用を有する酸化物の微細分散が可能となる。こうした効果を有効に発揮させるためには、Tiを0.010%以上含有させる必要がある。しかしながら、その含有量が過剰であると粗大Ti窒化物が多く晶出してHAZ靭性を劣化させるので、0.050%以下に抑える必要がある。Tiの含有量の好ましい下限は0.012%、好ましい上限は0.035%、より好ましい上限は0.025%である。
Ti: 0.010 to 0.050%
By adding Ti prior to REM, Zr, and Ca, it becomes possible to finely disperse the oxide having the action of promoting the formation of intra-grain α. In order to exhibit such an effect effectively, it is necessary to contain Ti 0.010% or more. However, if the content is excessive, a large amount of coarse Ti nitride is crystallized and the HAZ toughness is deteriorated, so it is necessary to suppress it to 0.050% or less. The preferable lower limit of the Ti content is 0.012%, the preferable upper limit is 0.035%, and the more preferable upper limit is 0.025%.

REM:0.0003〜0.02%、Zr:0.0003〜0.02%
REM(希土類元素)およびZrは、Tiの添加後、Caの添加に先立って添加することで、粒内αの生成に有効な酸化物を形成する。こうした効果は、それらの含有量が増加するにつれて増大するが、こうした効果を有効に発揮させるためには、いずれも0.0003%以上含有させる必要がある。しかし、これらを過剰に含有させると、酸化物が粗大になってHAZ靭性を劣化させるため、いずれも0.02%以下に抑えるべきである。これらの含有量のより好ましい下限は0.0005%、より好ましい上限は0.015%である。
REM: 0.0003-0.02%, Zr: 0.0003-0.02%
REM (rare earth element) and Zr are added prior to the addition of Ca after the addition of Ti, thereby forming an oxide effective for the generation of intragranular α. Such effects increase as their content increases, but in order to effectively exhibit these effects, it is necessary to contain 0.0003% or more of all. However, if these are excessively contained, the oxide becomes coarse and deteriorates the HAZ toughness, so both should be suppressed to 0.02% or less. The more preferable lower limit of these contents is 0.0005%, and the more preferable upper limit is 0.015%.

Ca:0.0005〜0.010%
Caは、Ti、REM、Zrの添加から10分以上後に添加することによって、粒内αの生成に有効で、且つ粗大Ti窒化物の晶出を抑制する酸化物を形成する。こうした効果を有効に発揮させるためには、0.0005%以上含有させる必要がある。しかしながら、その含有量が過剰であると粗大酸化物が生成してHAZ靭性が劣化するので0.010%以下に抑える必要がある。Caの含有量の好ましい下限は0.0008%、好ましい上限は0.008%である。
Ca: 0.0005 to 0.010%
When Ca is added 10 minutes or more after the addition of Ti, REM, and Zr, it forms an oxide that is effective in generating intragranular α and suppresses crystallization of coarse Ti nitride. In order to exhibit such an effect effectively, it is necessary to contain 0.0005% or more. However, if the content is excessive, a coarse oxide is generated and the HAZ toughness is deteriorated, so it is necessary to suppress it to 0.010% or less. The preferable lower limit of the Ca content is 0.0008%, and the preferable upper limit is 0.008%.

N:0.002〜0.010%
Nは、微細なTi窒化物を形成することによって、HAZの靭性を確保する上で有用な元素である。その含有量を0.002%以上とすることで、所望のTi窒化物を確保することができる。しかし、その含有量が過剰になると、粗大Ti窒化物の晶出が助長されるので0.010%以下に抑える必要がある。Nの含有量の好ましい下限は0.003%、好ましい上限は0.008%である。
N: 0.002 to 0.010%
N is an element useful for securing the toughness of HAZ by forming fine Ti nitride. By making the content 0.002% or more, desired Ti nitride can be secured. However, if the content is excessive, crystallization of coarse Ti nitride is promoted, so it is necessary to suppress it to 0.010% or less. The preferable lower limit of the N content is 0.003%, and the preferable upper limit is 0.008%.

B:0.0005〜0.005%
粒内αが生成し、粗大Ti窒化物の晶出が抑制されても、HAZにおいて粗大な粒界フェライトが生成すると、得られるHAZ靭性は限定的となる。Bは、粗大な粒界フェライトの生成を抑制することで、HAZ靭性を改善する効果を有している。その効果はその含有量が増加するにつれて増大するが、こうした効果を有効に発揮させるためには、0.0005%以上含有させる必要がある。しかし、その含有量が過剰になると、旧オーステナイト粒界からの粗大ベイナイトバケットが促進される、HAZ靭性を劣化させるため、0.005%以下に抑えることが好ましい。Bの含有量の好ましい下限は0.0010%、より好ましい下限は0.0015%であって、好ましい上限は0.004%である。
B: 0.0005 to 0.005%
Even if intragranular α is generated and crystallization of coarse Ti nitride is suppressed, if coarse grain boundary ferrite is produced in HAZ, the obtained HAZ toughness is limited. B has the effect of improving the HAZ toughness by suppressing the formation of coarse grain boundary ferrite. The effect increases as the content increases, but in order to effectively exhibit such an effect, it is necessary to contain 0.0005% or more. However, when the content is excessive, coarse bainite buckets from the prior austenite grain boundaries are promoted, and the HAZ toughness is deteriorated. Therefore, it is preferably suppressed to 0.005% or less. A preferable lower limit of the B content is 0.0010%, a more preferable lower limit is 0.0015%, and a preferable upper limit is 0.004%.

以上が本発明で規定する必須の含有元素であって、残部は鉄および不可避的不純物である。不可避的不純物としては、原料、資材、製造設備等の状況によって持ち込まれるSn、As、Pb等の元素の混入が許容される。また、更に以下に示す元素を積極的に含有させることも有効であり、含有される化学成分(元素)の種類によって厚鋼板の特性が更に改善される。   The above are the essential elements specified in the present invention, and the balance is iron and inevitable impurities. As an inevitable impurity, mixing of elements such as Sn, As, and Pb brought in depending on the situation of raw materials, materials, manufacturing equipment, etc. is allowed. Further, it is also effective to positively contain the following elements, and the characteristics of the thick steel plate are further improved depending on the kind of chemical components (elements) contained.

Ni:0.05〜1.50%、Cu::0.05〜1.50%、Cr:0.05〜1.50%、Mo:0.05〜1.50%よりなる群から選ばれる1種以上
Ni、Cu、Cr、およびMoは、いずれもが鋼板の高強度化に有効な元素であり、その効果はそれらの含有量が増加するにつれて増大する。こうした効果を有効に発揮させるためには、いずれも0.05%以上含有させることが好ましい。しかし、それらを過剰に含有させると、強度の過大な上昇を招き、HAZ靭性を劣化させるため、いずれも1.50%以下に抑えることが好ましい。それらの含有量のより好ましい下限は0.10%、より好ましい上限は1.20%である。
Selected from the group consisting of Ni: 0.05 to 1.50%, Cu :: 0.05 to 1.50%, Cr: 0.05 to 1.50%, Mo: 0.05 to 1.50%. One or more types Ni, Cu, Cr, and Mo are all effective elements for increasing the strength of the steel sheet, and the effect thereof increases as the content thereof increases. In order to exhibit such an effect effectively, it is preferable to contain 0.05% or more of all. However, if they are contained excessively, the strength is excessively increased, and the HAZ toughness is deteriorated. The more preferable lower limit of the content thereof is 0.10%, and the more preferable upper limit is 1.20%.

Nb:0.002〜0.10%および/またはV:0.002〜0.10%
NbおよびVは、炭窒化物として析出し、γ粒の粗大化を抑制することで、母材靭性を良好にするのに有効な元素である。その効果はそれらの含有量が増加するにつれて増大するが、こうした効果を有効に発揮させるためには、いずれも0.002%以上含有させることが好ましい。しかし、それらを過剰に含有させると、HAZ組織の粗大化を招き、HAZ靭性を劣化させるため、いずれも0.10%以下に抑えることが好ましい。それらの含有量のより好ましい下限は0.005%、より好ましい上限は0.08%である。
Nb: 0.002-0.10% and / or V: 0.002-0.10%
Nb and V precipitate as carbonitrides and are effective elements for improving the base material toughness by suppressing the coarsening of γ grains. Although the effect increases as the content thereof increases, in order to effectively exhibit such an effect, it is preferable that the content is 0.002% or more. However, if they are contained excessively, the HAZ structure is coarsened and the HAZ toughness is deteriorated. The more preferable lower limit of the content thereof is 0.005%, and the more preferable upper limit is 0.08%.

(パラメータ)
以上の化学成分組成を満足した上で、本発明の厚鋼板は、A=10×[B]×(0.4+30×[Ti]−82×[N])という式から求められるA値が、5.0≦A≦25.0を満足する必要がある(但し、上式で[ ]は各元素の含有量(質量%)を示す。)。粗大粒界フェライトの生成を抑制するにはBを添加した上で、フリーBを確保しなければならない。上式から求められるA値は、フリーB量を制御するためのものであり、このA値が5.0を下回ると、粗大粒界フェライトの生成が抑制できなくなる一方、A値が25.0を超えると、オーステナイト粒界からの粗大ベイナイトバケットが促進され、HAZ靭性が低下してしまう。
(Parameter)
After satisfying the above chemical composition, the thick steel plate of the present invention has an A value determined from the formula A = 10 4 × [B] × (0.4 + 30 × [Ti] −82 × [N]). 5.0 ≦ A ≦ 25.0 must be satisfied (however, in the above formula, [] indicates the content (% by mass) of each element). In order to suppress the formation of coarse grain boundary ferrite, B must be added and free B must be ensured. The A value obtained from the above equation is for controlling the amount of free B. When this A value is less than 5.0, the formation of coarse grain boundary ferrite cannot be suppressed, while the A value is 25.0. When exceeding, the coarse bainite bucket from an austenite grain boundary will be accelerated | stimulated and HAZ toughness will fall.

尚、A値を求めるための上式において、各元素の係数、制御範囲は、以下の考えに基づき実験的に求めた。   In the above equation for obtaining the A value, the coefficient of each element and the control range were obtained experimentally based on the following idea.

Bは、鋼中において、主にフリーBとB窒化物として存在するため、フリーB量は、B添加量ならびにB窒化物量により略決定される。B窒化物は、HAZ高温加熱時にTi窒化物の溶解により生じたフリーNが、その後の冷却過程でBと結びつくことで生成する。そこで、上式を導出するにあたっては、熱力学計算ソフトThermo−Calcを用いた計算により、HAZ高温加熱(1400℃)時におけるフリーN量を表す、[Ti]、[N]の一次回帰式を求めた。更に、HAZ冷却時に生成するB窒化物量は、フリーN量と添加B量との積に比例すると考え、実験的に求めたフリーB量と比較することで、比例係数を決定した。このようにして算出したB窒化物量を表す式を、添加B量から減算したものが、A=10×[B]×(0.4+30×[Ti]−82×[N]という式である。 Since B exists mainly in the steel as free B and B nitride, the amount of free B is substantially determined by the amount of B added and the amount of B nitride. B nitride is produced by free N generated by dissolution of Ti nitride during high-temperature heating of HAZ combined with B in the subsequent cooling process. Therefore, in deriving the above equation, a linear regression equation of [Ti] and [N] representing the free N amount at the time of HAZ high temperature heating (1400 ° C.) is calculated by calculation using thermodynamic calculation software Thermo-Calc. Asked. Further, the amount of B nitride generated during the HAZ cooling was considered to be proportional to the product of the amount of free N and the amount of added B, and the proportionality coefficient was determined by comparing with the amount of free B obtained experimentally. The formula representing the amount of B nitride calculated in this way is subtracted from the amount of added B is the formula A = 10 4 × [B] × (0.4 + 30 × [Ti] −82 × [N]. .

また、化学成分組成の説明で、Ni、Cu、Cr、Moよりなる群から選ばれる1種以上を含有することが有効であることを説明したが、その場合、それらの含有量(質量%)が、[Ni]+[Cu]+[Cr]+[Mo]<2.5%を満足することが必要である。   In addition, in the description of the chemical component composition, it has been explained that it is effective to contain one or more selected from the group consisting of Ni, Cu, Cr, and Mo. In that case, their content (mass%) However, it is necessary to satisfy [Ni] + [Cu] + [Cr] + [Mo] <2.5%.

粗大Ti窒化物は、溶鋼の凝固段階において、凝固偏析によりTi、Nが濃化した液相に晶出する。[Ni]+[Cu]+[Cr]+[Mo]が2.5%を超えると、凝固温度が低温化し、粗大Ti窒化物晶出の駆動力が大きくなる低温まで液相が残存するようになるため、粗大Ti窒化物の生成量が増加してしまう。   Coarse Ti nitride crystallizes in a liquid phase in which Ti and N are concentrated by solidification segregation in the solidification stage of the molten steel. When [Ni] + [Cu] + [Cr] + [Mo] exceeds 2.5%, the solidification temperature is lowered, and the liquid phase remains until a low temperature at which the driving force of coarse Ti nitride crystallization becomes large. Therefore, the amount of coarse Ti nitride produced increases.

本発明は厚鋼板に関する発明であるが、一般に厚鋼板とは、JISで定義されるように、板厚が3.0mm以上の鋼板のことを示す。一方、本発明の厚鋼板は、50mm以上の板厚の厚鋼板の溶接を対象として発明されたものであり、対象とする鋼板は、板厚が50mm以上の鋼板であるということができると思われるが、これらは単に好ましい態様に過ぎず、本発明を50mm未満の板厚の厚鋼板へ適用することを排除するものではない。   Although this invention is invention regarding a thick steel plate, generally a thick steel plate shows the steel plate whose plate | board thickness is 3.0 mm or more as defined by JIS. On the other hand, the thick steel plate of the present invention was invented for welding thick steel plates having a thickness of 50 mm or more, and the target steel plate can be said to be a steel plate having a thickness of 50 mm or more. However, these are merely preferred embodiments and do not exclude application of the present invention to thick steel plates having a thickness of less than 50 mm.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適宜変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, and the present invention is implemented with appropriate modifications within a range that can meet the gist of the present invention. These are all included in the technical scope of the present invention.

本発明の実施例では、まず、表1および表2に示す各成分組成の鋼を、真空溶解炉(VIF:150kg)によって溶製した後、その溶鋼を用いて鋳片(断面形状:150mm×250mm)を鋳造し、更にその鋳片を用いて熱間圧延を行うことで、板厚80mmの熱間圧延板を得た。尚、熱間圧延条件は、圧延前加熱:1100℃×3時間、仕上げ圧延温度:780℃以上、450℃までの平均冷却速度:6℃/s、冷却停止温度:450℃とした。   In the examples of the present invention, first, steels having respective component compositions shown in Tables 1 and 2 were melted in a vacuum melting furnace (VIF: 150 kg), and then cast into slabs (cross-sectional shape: 150 mm × 250 mm) was cast, and hot rolling was further performed using the slab, thereby obtaining a hot rolled sheet having a thickness of 80 mm. The hot rolling conditions were heating before rolling: 1100 ° C. × 3 hours, finish rolling temperature: 780 ° C. or higher, average cooling rate up to 450 ° C .: 6 ° C./s, and cooling stop temperature: 450 ° C.

この熱間圧延板(厚鋼板)を製造するにあたり、制御した各条件を表3および表4に示す。その条件は、Al(Ti)添加前の溶鋼中の溶存酸素量[Of](質量%)、Al,Ti,REM,Zr,Caの添加順序、REMまたはZr添加からCa添加までの時間t1、REM添加量[REM]とZr添加量[Zr]の質量比:[REM]/[Zr](表にはREM/Zrと記載)、鋳造時の1500〜1450℃における冷却時間t2である。   Tables 3 and 4 show the controlled conditions in producing this hot-rolled sheet (thick steel sheet). The conditions are as follows: dissolved oxygen amount [Of] (% by mass) in molten steel before addition of Al (Ti), addition order of Al, Ti, REM, Zr, Ca, time t1 from addition of REM or Zr to addition of Ca, Mass ratio of REM addition amount [REM] and Zr addition amount [Zr]: [REM] / [Zr] (described in the table as REM / Zr), cooling time t2 at 1500 to 1450 ° C. during casting.

尚、表1および表2において、REMは、質量%で、Ceを50%程度とLaを25%程度含有するミッシュメタルの形態で添加した。また、表1および表2で、「−」は該当元素を添加していないことを示す。   In Tables 1 and 2, REM was added in the form of a misch metal containing, by mass%, about 50% Ce and about 25% La. In Tables 1 and 2, “-” indicates that the corresponding element is not added.

また、表3および表4において、Al,Ti,REM,Zr,Caの添加順序は、Al→Ti→(REM、Zr)→Caの順序のときを「○」、それ以外の順序のときを「×」で示す。   In Tables 3 and 4, the order of addition of Al, Ti, REM, Zr, and Ca is “◯” when Al → Ti → (REM, Zr) → Ca, and other orders. Indicated by “x”.

以上の要件で製造した各熱間圧延板(厚鋼板)を用いて、円相当径が2μm未満の酸化物の個数密度N1、円相当径が2μm以上の酸化物の個数密度N2、円相当径が1μm以上のTi窒化物の個数密度N3、およびHAZ靭性を下記する測定により求め出した。これらの測定結果を表5および表6に示す。   Using each hot-rolled sheet (thick steel plate) manufactured according to the above requirements, the number density N1 of oxides having an equivalent circle diameter of less than 2 μm, the number density N2 of oxides having an equivalent circle diameter of 2 μm or more, and the equivalent circle diameter The number density N3 and the HAZ toughness of Ti nitride having a thickness of 1 μm or more were determined by the following measurements. These measurement results are shown in Tables 5 and 6.

(円相当径が2μm未満の酸化物の個数密度の測定)
各厚鋼板の表面から深さt/4(t:板厚)の位置から試験片を切り出し(試験片の軸心がt/4の位置を通るように採取)、圧延方向および板厚方向に平行な断面を、Carl Zeiss社製の電界放射式走査型電子顕微鏡「SUPRA35(商品名)」(以下、FE−SEMと呼ぶ)を用いて観察した。その観察条件は、倍率:5000倍、観察視野:0.0024mm、観察箇所:20箇所とした。画像解析によって、この観察視野中の各酸化物の面積を測定し、その面積から各酸化物の円相当径を算出した。尚、各酸化物が上記した成分組成を満足するものであることは、EDX(エネルギー分散型X線検出器)によって確認した。EDXによる成分組成測定時の加速電圧は15kV、測定時間は100秒である。そして、円相当径が2μm未満となる酸化物の個数(N1)を1mm相当の個数密度に換算して求めた。但し、円相当径が0.2μm以下となる酸化物については、EDXの信頼性が十分でないため、解析から除外した。
(Measurement of number density of oxides with equivalent circle diameter less than 2 μm)
A test piece is cut out from the surface of each thick steel plate at a depth of t / 4 (t: thickness) (taken so that the axis of the test piece passes through the position of t / 4), and in the rolling direction and the thickness direction. The parallel cross section was observed using a field emission scanning electron microscope “SUPRA35 (trade name)” (hereinafter referred to as FE-SEM) manufactured by Carl Zeiss. The observation conditions were as follows: magnification: 5000 times, observation visual field: 0.0024 mm 2 , observation location: 20 locations. The area of each oxide in this observation field was measured by image analysis, and the equivalent circle diameter of each oxide was calculated from the area. In addition, it was confirmed by EDX (energy dispersive X-ray detector) that each oxide satisfies the above-described component composition. The acceleration voltage at the time of component composition measurement by EDX is 15 kV, and the measurement time is 100 seconds. Then, the number (N1) of oxides having an equivalent circle diameter of less than 2 μm was determined by converting to a number density equivalent to 1 mm 2 . However, oxides having an equivalent circle diameter of 0.2 μm or less were excluded from the analysis because the reliability of EDX was not sufficient.

(円相当径が2μm以上の酸化物の個数密度の測定)
各厚鋼板の表面から深さt/4(t:板厚)の位置から試験片を切り出し(試験片の軸心がt/4の位置を通るように採取)、圧延方向および板厚方向に平行な断面を、FE−SEMを用いて観察した。その観察条件は、倍率:1000倍、観察視野:0.06mm、観察箇所:20箇所とした。画像解析によって、この観察視野中の各酸化物の面積を測定し、その面積から各酸化物の円相当径を算出した。尚、各酸化物が上記した成分組成を満足するものであることは、EDX(エネルギー分散型X線検出器)によって確認した。EDXによる成分組成測定時の加速電圧は15kV、測定時間は100秒である。そして、円相当径が2μm以上となる酸化物の個数(N2)を1mm相当の個数密度に換算して求めた。
(Measurement of number density of oxides with equivalent circle diameter of 2 μm or more)
A test piece is cut out from the surface of each thick steel plate at a depth of t / 4 (t: thickness) (taken so that the axis of the test piece passes through the position of t / 4), and in the rolling direction and the thickness direction. Parallel cross sections were observed using FE-SEM. The observation conditions were as follows: magnification: 1000 times, observation visual field: 0.06 mm 2 , observation location: 20 locations. The area of each oxide in this observation field was measured by image analysis, and the equivalent circle diameter of each oxide was calculated from the area. In addition, it was confirmed by EDX (energy dispersive X-ray detector) that each oxide satisfies the above-described component composition. The acceleration voltage at the time of component composition measurement by EDX is 15 kV, and the measurement time is 100 seconds. Then, the number (N2) of oxides having an equivalent circle diameter of 2 μm or more was determined by converting into a number density equivalent to 1 mm 2 .

(円相当径が1μm以上のTi窒化物の個数密度の測定)
各厚鋼板の表面から深さt/4(t:板厚)の位置から試験片を切り出し(試験片の軸心がt/4の位置を通るように採取)、圧延方向および板厚方向に平行な断面を、光学顕微鏡を用いて倍率:200倍で20視野撮影し、の粗大Ti窒化物の個数をカウントし、1mm相当の個数密度に換算して求めた。測定画像の面積は、1視野あたり0.148mm、1試料あたり2.96mmである。Ti窒化物の同定は形状および色に基づいて行い、角ばった形状且つ鮮やかなオレンジ色の介在物をTi窒化物と見なした。また、Ti窒化物の円相当径は解析ソフトにより算出した。尚、粗大Ti窒化物は、酸化物を起点として晶出することが多いが、その場合、内部の酸化物は円相当径の計測の対象から除外した。
(Measurement of number density of Ti nitride with equivalent circle diameter of 1 μm or more)
A test piece is cut out from the surface of each thick steel plate at a depth of t / 4 (t: thickness) (taken so that the axis of the test piece passes through the position of t / 4), and in the rolling direction and the thickness direction. A parallel section was photographed with 20 optical fields at a magnification of 200 times using an optical microscope, and the number of coarse Ti nitrides was counted and converted to a number density corresponding to 1 mm 2 . Area of the measurement image is one field per 0.148 mm 2, per sample 2.96 mm 2. Ti nitrides were identified based on shape and color, and square-shaped and bright orange inclusions were considered Ti nitrides. The equivalent circle diameter of Ti nitride was calculated by analysis software. Coarse Ti nitride is often crystallized starting from an oxide. In that case, the internal oxide was excluded from the measurement of the equivalent circle diameter.

(HAZ靭性の評価)
各厚鋼板から、溶接継手用試験片を採取し、V先加工を施した後、入熱量:50kJ/mmにてエレクトロガスアーク溶接を実施した。これら試験片から、各厚鋼板の表面から深さt/4(t:板厚)の位置の溶接線(ボンド)近傍のHAZに切欠きを加工したシャルピー衝撃試験片(JIS Z 2242のVノッチ試験片)を3本ずつ採取し、−40℃でシャルピー衝撃試験を行い、吸収エネルギー(vE−40)を測定し、それらの平均値と最小値を求めた。この測定結果から、vE−40の平均値が180Jを超え、最小値が120Jを超えるものを、HAZ靭性に優れると評価した。
(Evaluation of HAZ toughness)
Test specimens for welded joints were collected from each thick steel plate, subjected to V pre-processing, and then subjected to electrogas arc welding at a heat input of 50 kJ / mm. From these test pieces, Charpy impact test pieces (V notches of JIS Z 2242) in which notches were formed in the HAZ near the weld line (bond) at a depth t / 4 (t: thickness) from the surface of each thick steel plate. Three test specimens) were collected and subjected to a Charpy impact test at −40 ° C., the absorbed energy (vE −40 ) was measured, and the average value and the minimum value thereof were obtained. From this measurement result, an average value of vE- 40 exceeding 180 J and a minimum value exceeding 120 J were evaluated as excellent in HAZ toughness.

また、入熱量:60kJ/mmにてエレクトロガスアーク溶接を実施する以外は全て上記した条件と同じ条件でもシャルピー衝撃試験を行い、3本の試験片の吸収エネルギー(vE−40)を測定して、その平均値を求めた。この測定結果から、vE−40の平均値が120Jを超えるものを、HAZ靭性に優れると評価した。 In addition, the Charpy impact test was performed under the same conditions as described above except that electrogas arc welding was performed at a heat input of 60 kJ / mm, and the absorbed energy (vE- 40 ) of three test pieces was measured. The average value was obtained. From this measurement result, those having an average value of vE- 40 exceeding 120 J were evaluated as having excellent HAZ toughness.

No.1〜30は、本発明の要件を満足する発明例であり、化学成分組成、酸化物、Ti窒化物の分散等が適切になされており、入熱量を50kJ/mmにした場合のHAZ靭性(平均値および最小値)、並びに入熱量を60kJ/mmにした場合のHAZ靭性(平均値)が優れていることが分かる。すなわち、No.1〜30は、溶接熱影響部の靭性に優れた厚鋼板であるということができる。   No. 1 to 30 are examples of the invention that satisfy the requirements of the present invention, in which chemical composition, oxide, Ti nitride dispersion, etc. are appropriately made, and the HAZ toughness when the heat input is 50 kJ / mm ( It can be seen that the HAZ toughness (average value) is excellent when the average value and the minimum value) and the heat input amount are 60 kJ / mm. That is, no. It can be said that 1-30 are thick steel plates excellent in the toughness of the weld heat affected zone.

これに対し、No.31〜52は、本発明の要件のうちいずれかの要件を満足しない比較例であり、入熱量を50kJ/mmにした場合のHAZ靭性(平均値および最小値)、並びに入熱量を60kJ/mmにした場合のHAZ靭性(平均値)のいずれかが、評価基準を満足していないことが分かる。   In contrast, no. 31 to 52 are comparative examples not satisfying any of the requirements of the present invention, and HAZ toughness (average value and minimum value) when the heat input is 50 kJ / mm, and the heat input is 60 kJ / mm. It can be seen that any of the HAZ toughness (average value) does not satisfy the evaluation criteria.

Claims (3)

質量%で、C:0.03〜0.12%、Si:0.25%以下(0%を含む)、Mn:1.0〜2.0%、P:0.03%以下(0%を含まない)、S:0.015%以下(0%を含まない)、Al:0.004〜0.05%、Ti:0.010〜0.050%、REM:0.0003〜0.02%、Zr:0.0003〜0.02%、Ca:0.0005〜0.010%、N:0.002〜0.010%、B:0.0005〜0.0050%を含有し、残部が鉄および不可避的不純物である厚鋼板であって、
A=10×[B]×(0.4+30×[Ti]−82×[N])という式から求められるA値が、5.0≦A≦25.0を満足し、
更に、酸素を除く構成元素が、質量%で、2%<Ti<40%、5%<Al<30%、5%<Ca<40%、5%<REM<50%、2%<Zr<30%、1.5≦REM/Zrを満たす酸化物を含有し、且つ、前記酸化物のうち、円相当径が2μm未満の酸化物が300個/mm以上、円相当径が2μm以上の酸化物が100個/mm以下、存在すると共に、
含有されるTi窒化物のうち、円相当径が1μm以上のTi窒化物が5個/mm以下であることを特徴とする溶接熱影響部の靭性に優れた厚鋼板。
但し、上式で[ ]は各元素の含有量(質量%)を示す。
In mass%, C: 0.03-0.12%, Si: 0.25% or less (including 0%), Mn: 1.0-2.0%, P: 0.03% or less (0% S: 0.015% or less (excluding 0%), Al: 0.004-0.05%, Ti: 0.010-0.050%, REM: 0.0003-0. 02%, Zr: 0.0003-0.02%, Ca: 0.0005-0.010%, N: 0.002-0.010%, B: 0.0005-0.0050%, A steel plate with the balance being iron and inevitable impurities,
The A value obtained from the formula A = 10 4 × [B] × (0.4 + 30 × [Ti] −82 × [N]) satisfies 5.0 ≦ A ≦ 25.0,
Further, the constituent elements excluding oxygen are in mass%, 2% <Ti <40%, 5% <Al <30%, 5% <Ca <40%, 5% <REM <50%, 2% <Zr <. 30%, containing oxides satisfying 1.5 ≦ REM / Zr, and among the oxides, 300 / mm 2 or more of oxides having an equivalent circle diameter of less than 2 μm and an equivalent circle diameter of 2 μm or more 100 oxides / mm 2 or less are present,
A steel plate excellent in toughness of the weld heat affected zone, characterized in that, among the contained Ti nitrides, the number of Ti nitrides having an equivalent circle diameter of 1 μm or more is 5 pieces / mm 2 or less.
However, in the above formula, [] indicates the content (% by mass) of each element.
更に、質量%で、Ni:0.05〜1.50%、Cu:0.05〜1.50%、Cr:0.05〜1.50%、Mo:0.05〜1.50%よりなる群から選ばれる1種以上を含有すると共に、
[Ni]+[Cu]+[Cr]+[Mo]<2.5%を満足することを特徴とする請求項1記載の溶接熱影響部の靭性に優れた厚鋼板。
但し、上式で[ ]は各元素の含有量(質量%)を示す。
Furthermore, in terms of mass%, Ni: 0.05 to 1.50%, Cu: 0.05 to 1.50%, Cr: 0.05 to 1.50%, Mo: 0.05 to 1.50% Containing one or more selected from the group consisting of:
The thick steel plate excellent in toughness of the heat affected zone according to claim 1, wherein [Ni] + [Cu] + [Cr] + [Mo] <2.5% is satisfied.
However, in the above formula, [] indicates the content (% by mass) of each element.
更に、質量%で、Nb:0.002〜0.10%および/またはV:0.002〜0.10%を含有することを特徴とする請求項1または2記載の溶接熱影響部の靭性に優れた厚鋼板。   The toughness of the heat affected zone according to claim 1 or 2, further comprising Nb: 0.002 to 0.10% and / or V: 0.002 to 0.10% in mass%. Excellent steel plate.
JP2012207193A 2011-11-14 2012-09-20 Thick steel plate with excellent toughness in weld heat affected zone Expired - Fee Related JP5824434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012207193A JP5824434B2 (en) 2011-11-14 2012-09-20 Thick steel plate with excellent toughness in weld heat affected zone

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011248879 2011-11-14
JP2011248879 2011-11-14
JP2012207193A JP5824434B2 (en) 2011-11-14 2012-09-20 Thick steel plate with excellent toughness in weld heat affected zone

Publications (2)

Publication Number Publication Date
JP2013127108A true JP2013127108A (en) 2013-06-27
JP5824434B2 JP5824434B2 (en) 2015-11-25

Family

ID=47428440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012207193A Expired - Fee Related JP5824434B2 (en) 2011-11-14 2012-09-20 Thick steel plate with excellent toughness in weld heat affected zone

Country Status (4)

Country Link
JP (1) JP5824434B2 (en)
KR (1) KR101422353B1 (en)
CN (1) CN103103440A (en)
BE (1) BE1021426B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150038664A (en) * 2012-09-19 2015-04-08 가부시키가이샤 고베 세이코쇼 Thick steel sheet having excellent welding heat-affected part toughness
WO2016190150A1 (en) * 2015-05-22 2016-12-01 株式会社神戸製鋼所 Thick steel sheet and welded joint
JPWO2015141203A1 (en) * 2014-03-17 2017-04-06 Jfeスチール株式会社 Steel for welding
JP2017133081A (en) * 2016-01-29 2017-08-03 新日鐵住金株式会社 Thick sheet steel material excellent in toughness in heat affected zone

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6462376B2 (en) * 2015-01-23 2019-01-30 株式会社神戸製鋼所 Bearing steel and bearing parts with excellent rolling fatigue characteristics
JP2016216819A (en) * 2015-05-22 2016-12-22 株式会社神戸製鋼所 Thick steel plate and welded joint

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100940667B1 (en) * 2002-12-27 2010-02-05 주식회사 포스코 High strength steel plate with superior HAZ toughness for high heat input welding and method for manufacturing the same
JP4311740B2 (en) * 2004-10-27 2009-08-12 株式会社神戸製鋼所 Thick steel plate with high heat input welded joint toughness
JP5103037B2 (en) * 2007-03-09 2012-12-19 株式会社神戸製鋼所 Thick steel plate with excellent toughness of base metal and weld heat affected zone
KR100944850B1 (en) * 2006-11-13 2010-03-04 가부시키가이샤 고베 세이코쇼 Thick steel plate with welding heat effect portion having excellent toughness
JP5201665B2 (en) * 2007-11-13 2013-06-05 株式会社神戸製鋼所 High strength thick steel plate for welding with excellent toughness of heat affected zone during high heat input welding
CN101724780B (en) * 2008-10-20 2012-01-04 株式会社神户制钢所 Thick steel plate
JP5394785B2 (en) * 2009-03-24 2014-01-22 株式会社神戸製鋼所 Thick steel plate with excellent weld heat affected zone toughness and low temperature base metal toughness
JP5394849B2 (en) * 2008-12-22 2014-01-22 株式会社神戸製鋼所 Thick steel plate with excellent toughness in weld heat affected zone
KR101151577B1 (en) * 2008-12-22 2012-05-31 가부시키가이샤 고베 세이코쇼 Steel plate
JP5432539B2 (en) * 2009-01-28 2014-03-05 株式会社神戸製鋼所 Steel with excellent toughness in weld heat affected zone
JP5320274B2 (en) * 2009-12-07 2013-10-23 株式会社神戸製鋼所 Thick steel plate with excellent toughness and strength uniformity in the heat affected zone
JP5818343B2 (en) * 2010-09-29 2015-11-18 株式会社神戸製鋼所 Thick steel plate with excellent toughness in weld heat affected zone

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150038664A (en) * 2012-09-19 2015-04-08 가부시키가이샤 고베 세이코쇼 Thick steel sheet having excellent welding heat-affected part toughness
EP2899289A4 (en) * 2012-09-19 2016-06-01 Kobe Steel Ltd Thick steel sheet having excellent welding heat-affected part toughness
KR101659245B1 (en) 2012-09-19 2016-09-22 가부시키가이샤 고베 세이코쇼 Thick steel sheet having excellent welding heat-affected part toughness
JPWO2015141203A1 (en) * 2014-03-17 2017-04-06 Jfeスチール株式会社 Steel for welding
WO2016190150A1 (en) * 2015-05-22 2016-12-01 株式会社神戸製鋼所 Thick steel sheet and welded joint
JP2017133081A (en) * 2016-01-29 2017-08-03 新日鐵住金株式会社 Thick sheet steel material excellent in toughness in heat affected zone

Also Published As

Publication number Publication date
KR101422353B1 (en) 2014-07-22
CN103103440A (en) 2013-05-15
BE1021426B1 (en) 2015-11-19
JP5824434B2 (en) 2015-11-25
KR20130054173A (en) 2013-05-24

Similar Documents

Publication Publication Date Title
JP5201665B2 (en) High strength thick steel plate for welding with excellent toughness of heat affected zone during high heat input welding
KR101718275B1 (en) Steel material having superior toughness at welding heat affected zone
JP5207914B2 (en) Thick steel plate with excellent toughness of base metal and weld heat affected zone
JP5651090B2 (en) Steel material excellent in toughness of weld heat-affected zone and method for producing the same
JP5444093B2 (en) Thick steel plate with excellent toughness in weld heat affected zone
JP5824434B2 (en) Thick steel plate with excellent toughness in weld heat affected zone
JP5394785B2 (en) Thick steel plate with excellent weld heat affected zone toughness and low temperature base metal toughness
JP5320274B2 (en) Thick steel plate with excellent toughness and strength uniformity in the heat affected zone
JP4950529B2 (en) Steel with excellent toughness and base metal toughness of weld heat affected zone and its manufacturing method
JP5394849B2 (en) Thick steel plate with excellent toughness in weld heat affected zone
JP5576640B2 (en) Steel with excellent toughness in weld heat affected zone
JP2008121074A (en) Thick steel plate excellent in toughness of welding heat-affected zone
JP5818343B2 (en) Thick steel plate with excellent toughness in weld heat affected zone
JP5340839B2 (en) Steel sheet with excellent toughness of weld heat affected zone
JP5883369B2 (en) Thick steel plate with excellent toughness in weld heat affected zone
KR101151577B1 (en) Steel plate
JP5723234B2 (en) Thick steel plate with excellent toughness in weld heat affected zone
JP2005307261A (en) Thick high strength steel plate having large heat input weld heat affected zone toughness
JP2011038180A (en) Steel member having excellent toughness in weld heat affected zone, and method for producing the same
JP2009179844A (en) High tensile strength thick steel plate having excellent toughness in weld heat affected zone
JP2008223062A (en) Thick steel plate excellent in toughness of basic material and weld heat-affected zone
JP2005336602A (en) STEEL MATERIAL USED FOR HIGH HEAT INPUT WELDING BY HEAT INPUT OF 20 TO 100 kJ/mm AND HAVING HIGH TOUGHNESS AT HAZ
JP2017082267A (en) Thick steel plate
JP2023148713A (en) Thick steel plate and manufacturing method thereof
JP2004323867A (en) High-tensile-strength steel for welding superior in toughness at heat-affected zone in super high-heat-input weld

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151009

R150 Certificate of patent or registration of utility model

Ref document number: 5824434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees