JP2009179844A - High tensile strength thick steel plate having excellent toughness in weld heat affected zone - Google Patents

High tensile strength thick steel plate having excellent toughness in weld heat affected zone Download PDF

Info

Publication number
JP2009179844A
JP2009179844A JP2008019192A JP2008019192A JP2009179844A JP 2009179844 A JP2009179844 A JP 2009179844A JP 2008019192 A JP2008019192 A JP 2008019192A JP 2008019192 A JP2008019192 A JP 2008019192A JP 2009179844 A JP2009179844 A JP 2009179844A
Authority
JP
Japan
Prior art keywords
rem
less
insol
sulfide
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008019192A
Other languages
Japanese (ja)
Inventor
Hidenori Nako
秀徳 名古
Yoshiomi Okazaki
喜臣 岡崎
Tetsushi Deura
哲史 出浦
Tomoko Sugimura
朋子 杉村
Hiromi Ota
裕己 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008019192A priority Critical patent/JP2009179844A/en
Priority to CN2008101907152A priority patent/CN101497962B/en
Priority to KR1020080137115A priority patent/KR101082639B1/en
Publication of JP2009179844A publication Critical patent/JP2009179844A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high tensile strength thick steel plate having excellent toughness in the weld heat affected zone in high heat input welding. <P>SOLUTION: The high tensile strength thick steel plate has a composition comprising, by mass, 0.02 to 0.12% C, 0 to 0.40% Si, 1.0 to 2.0% Mn, 0 to 0.03% P, 0 to 0.015% S, 0 to 0.050% Al, 0.005 to 0.100% Ti, 0.0002 to 0.0500% REM and/or 0.0003 to 0.0100% Ca, 0.0001 to 0.0500% Zr, 0.0020 to 0.0300% N and 0.0005 to 0.0100% O, and the balance Fe with inevitable impurities, in which the number of oxides present in the steel and having an equivalent circle diameter of <2 μm is ≥500 pieces/mm<SP>2</SP>, also, the number of oxides present in the steel and having an equivalent circle diameter of >5 μm is ≤5 pieces/mm<SP>2</SP>, and X value defined by formula (1): X=100×[insol Mn]/([insol REM]+[insol Ca]+0.05) from the concentrations of Mn, REM and Ca forming a compound in the steel is <10.0. In the formula, [insol Mn], [insol REM] and [insol Ca] denote the concentrations (mass%) of Mn, REM and Ca forming a compound in the steel, respectively. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、造船、建築等の分野において構造材として用いられ、大入熱溶接の適用に対し、溶接熱影響部(以下、「HAZ」と呼称する)の靭性に優れた溶接用高張力厚鋼板に関するものである。   The present invention is used as a structural material in the fields of shipbuilding, construction, and the like, and has high toughness for welding excellent in toughness of a weld heat affected zone (hereinafter referred to as “HAZ”) for application of high heat input welding. It relates to steel plates.

一般に、造船、建築等の分野において構造材として用いられる鋼材は、溶接施工により接合されることが多く、母材靭性に加えて、優れたHAZ靭性を有することが必須とされる。   In general, steel materials used as structural materials in fields such as shipbuilding and construction are often joined by welding, and it is essential that they have excellent HAZ toughness in addition to base metal toughness.

近年、建築、造船分野における溶接構造物の大型化に伴い、板厚50mm以上の厚鋼板の適用範囲が拡大しつつあり、溶接施工コスト低減の観点から、大入熱溶接が希求されている。しかしながら、一般に厚鋼板のHAZは靭性劣化をきたしやすく、特に大入熱溶接において、その傾向はより顕著となる。すなわち、大入熱溶接においては、HAZは溶接時の加熱によって高温のオーステナイト域に保持された後に徐冷されるため、オーステナイト粒成長、オーステナイト粒界からの粗大粒界フェライト生成といった、組織粗大化がもたらされやすく、それに伴う靭性劣化が大きな課題となっている。   In recent years, with the increase in size of welded structures in the building and shipbuilding fields, the application range of thick steel plates with a thickness of 50 mm or more is expanding, and high heat input welding is desired from the viewpoint of reducing welding construction costs. However, in general, HAZ of thick steel plates is liable to deteriorate toughness, and the tendency becomes more remarkable particularly in high heat input welding. That is, in high heat input welding, since HAZ is gradually cooled after being held in a high temperature austenite region by heating during welding, the coarsening of the structure such as austenite grain growth and generation of coarse grain boundary ferrite from the austenite grain boundary. As a result, toughness deterioration associated with this is a major issue.

この課題に対し、HAZの靭性(以下、HAZ靭性と呼称する)を確保するための技術として、大きく分けて、酸化物、硫化物、あるいは窒化物といった介在物を利用したγ粒粗大化抑制技術、および粒内α変態促進技術が提案されている。前者は、鋼中に分散した介在物粒子がオーステナイト粒成長をピン止めすることで、高温加熱時のオーステナイト粒粗大化を抑制し、微細組織を得る技術であり、後者は、介在物を粒内α変態の起点として活用し、溶接終了後の徐冷過程における粒内α変態を促進することで、微細組織を得る技術である。   In response to this problem, as a technique for ensuring the toughness of HAZ (hereinafter referred to as HAZ toughness), γ grain coarsening suppression technology using inclusions such as oxides, sulfides, or nitrides can be roughly divided. , And intragranular α-transformation promotion techniques have been proposed. The former is a technique for suppressing the austenite grain coarsening during high-temperature heating by pinning austenite grain growth by inclusion particles dispersed in the steel, and the latter is a technique for obtaining a fine structure. It is a technique for obtaining a microstructure by utilizing the α transformation as a starting point and promoting intragranular α transformation in the slow cooling process after the end of welding.

従来、γ粒粗大化抑制、粒内α変態促進に有効な介在物として、主にTiNが用いられてきた。例えば、特開2001−20031号公報(特許文献1)には、組成を適切に制御したTi−REM−Ca−Al系酸化物、およびTiNを利用したHAZ靭性改善技術が提示されている。また、特開2003−166017号公報(特許文献2)には、TiNによるγ粒粗大化抑制、Mn硫化物による粒内α変態促進を利用した技術が示されている。さらに、特開2003−321728号公報(特許文献3)には、Mg酸化物を内包するTiNによるγ粒粗大化抑制、MnCaSによる粒内α変態促進を組み合わせ、高いHAZ靭性を得る技術が提案されている。   Conventionally, TiN has been mainly used as an inclusion effective for suppressing γ grain coarsening and promoting intragranular α transformation. For example, Japanese Laid-Open Patent Publication No. 2001-20031 (Patent Document 1) proposes a HAZ toughness improving technique using Ti-REM-Ca-Al-based oxides with appropriately controlled compositions and TiN. Japanese Patent Application Laid-Open No. 2003-166017 (Patent Document 2) discloses a technique using suppression of γ grain coarsening by TiN and promotion of intragranular α transformation by Mn sulfide. Furthermore, Japanese Patent Laid-Open No. 2003-321728 (Patent Document 3) proposes a technique for obtaining high HAZ toughness by combining the suppression of γ grain coarsening by TiN containing Mg oxide and the promotion of intragranular α transformation by MnCaS. ing.

しかしながら、近年の溶接入熱増大傾向に対し、TiNは溶接時の消失・粗大化が進行しやすいため、安定したHAZ靭性の確保が困難となりつつある。それに対し、γ粒粗大化抑制、粒内α変態促進に有効な介在物として、高温で安定な酸化物、硫化物、あるいは酸硫化物を用いた技術が提案され、数多くの検討がなされている。   However, in contrast to the recent trend of increasing welding heat input, TiN is prone to disappearance and coarsening during welding, making it difficult to ensure stable HAZ toughness. On the other hand, technologies using oxides, sulfides, or oxysulfides that are stable at high temperatures have been proposed as inclusions effective in suppressing γ grain coarsening and promoting intragranular α transformation, and many studies have been made. .

例えば、特開2005−206910号公報(特許文献4)には、REM,Mn含有酸硫化物によりγ粒粗大化を抑制し、高いHAZ靭性を得る技術が示されている。また、特開2003−286540号公報(特許文献5)には、REMを適切に制御することでMn酸硫化物を微細に分散させ、γ粒粗大化を抑制する技術が提示されている。また、特開2007−100213号公報(特許文献6)には、REM、Zrを含む酸化物を用いたγ粒粗大化抑制により、高いHAZ靭性を得る技術が提案されている。また、特公平4−54734号公報(特許文献7)には、REMあるいはCaの酸化物、硫化物にBNを析出させ、粒内α変態の起点とする技術が提案されている。
特開2001−20031号公報 特開2003−166017号公報 特開2003−321728号公報 特開2005−206910号公報 特開2003−286540号公報 特開2007−100213号公報 特公平4−54734号公報
For example, Japanese Patent Application Laid-Open No. 2005-206910 (Patent Document 4) discloses a technique for suppressing γ grain coarsening with REM and Mn-containing oxysulfides and obtaining high HAZ toughness. Japanese Patent Laid-Open No. 2003-286540 (Patent Document 5) proposes a technique for finely dispersing Mn oxysulfide by appropriately controlling REM and suppressing γ grain coarsening. Japanese Unexamined Patent Application Publication No. 2007-100133 (Patent Document 6) proposes a technique for obtaining high HAZ toughness by suppressing γ grain coarsening using an oxide containing REM and Zr. Japanese Patent Publication No. 4-54734 (Patent Document 7) proposes a technique in which BN is precipitated in an REM or Ca oxide or sulfide, and is used as a starting point of intragranular α transformation.
Japanese Patent Laid-Open No. 2001-20031 Japanese Patent Laid-Open No. 2003-166017 JP 2003-321728 A JP 2005-206910 A JP 2003-286540 A Japanese Patent Laid-Open No. 2007-1001000 Japanese Examined Patent Publication No. 4-54734

しかしながら、近年の溶接入熱増大に伴う最高加熱温度上昇、高温保持時間長時間化は、組織粗大化を助長すると同時に、溶接時のHAZにおけるMn硫化物溶解をもたらし、その後の冷却過程で再析出するMn硫化物微細粒子が析出強化によりHAZ硬度を上昇させることで、HAZ靭性低下の原因となる。そのため、従来の組織微細化技術だけでは、HAZ靭性向上の効果は限定的なものとならざるを得ず、より優れたHAZ靭性を得る手段が望まれている。   However, the increase in the maximum heating temperature and the prolonged high-temperature holding time accompanying the recent increase in welding heat input promotes the coarsening of the structure and at the same time leads to Mn sulfide dissolution in the HAZ during welding and reprecipitation during the subsequent cooling process. The Mn sulfide fine particles that increase the HAZ hardness by precipitation strengthening cause a decrease in HAZ toughness. Therefore, the effect of improving the HAZ toughness is inevitably limited only by the conventional structure refinement technique, and a means for obtaining a better HAZ toughness is desired.

本発明は、上記問題に鑑みなされたもので、特に大入熱溶接において、優れたHAZ靭性を有する溶接用高張力厚鋼板を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a high-tensile steel plate for welding having excellent HAZ toughness particularly in high heat input welding.

本発明者らは、上記の課題を達成するため、γ粒粗大化抑制による組織微細化、微細Mn硫化物再析出抑制を同時に達成することで、優れたHAZ靭性を得る手段について実験、検討を行った。その結果、鋳造プロセスを適切に制御することで、γ粒粗大化抑制に有効な、円相当径が2μmより小さい酸化物を高密度で分散させることができ、さらに鋼中において化合物を形成するMn、REM、Caの濃度に基づいて、鋼中に存在するMn硫化物量を表すパラメータ(後述するX値)を所定の値未満に制御することで、微細Mn硫化物再析出が抑制されることを見出した。本発明はかかる知見を基に完成されたものである。   In order to achieve the above-mentioned problems, the present inventors conducted experiments and examinations on means for obtaining excellent HAZ toughness by simultaneously achieving microstructure refinement by inhibiting γ grain coarsening and fine Mn sulfide reprecipitation inhibition. went. As a result, by appropriately controlling the casting process, it is possible to disperse an oxide having an equivalent circle diameter smaller than 2 μm at a high density, which is effective in suppressing γ grain coarsening, and to form a compound in steel. Based on the concentrations of REM and Ca, the parameter indicating the amount of Mn sulfide present in the steel (X value to be described later) is controlled to be less than a predetermined value to suppress the reprecipitation of fine Mn sulfide. I found it. The present invention has been completed based on such knowledge.

すなわち、本発明の溶接用高張力厚鋼板は、質量%(以下、「質量%」は単に「%」と記載する)で、
C :0.02〜0.12%、
Si:0.40%以下(0%を含む)、
Mn:1.0〜2.0%、
P :0.03%以下(0%を含む)、
S :0.015%以下(0%を含む)、
Al:0.050%以下(0%を含む)、
Ti:0.005〜0.100%、
REM:0.0002〜0.0500%及び/又はCa:0.0003〜0.0100%、
Zr:0.0001〜0.0500%
N :0.0020〜0.0300%、
O :0.0005〜0.0100%
を含有し、残部がFeおよび不可避的な不純物で構成される。組織的には、鋼中に存在する円相当径が2μmより小さい酸化物が500個/mm2 以上で、かつ円相当径が5μmより大きい酸化物が5個/mm2 以下であり、鋼中において化合物を形成するMn、REM、Caの濃度から(1)式で定義されるX値が10.0未満である。
That is, the high-tensile steel plate for welding of the present invention is in mass% (hereinafter, “mass%” is simply described as “%”),
C: 0.02 to 0.12%,
Si: 0.40% or less (including 0%),
Mn: 1.0-2.0%,
P: 0.03% or less (including 0%),
S: 0.015% or less (including 0%),
Al: 0.050% or less (including 0%),
Ti: 0.005 to 0.100%,
REM: 0.0002 to 0.0500% and / or Ca: 0.0003 to 0.0100%,
Zr: 0.0001 to 0.0500%
N: 0.0020 to 0.0300%,
O: 0.0005 to 0.0100%
The balance is composed of Fe and inevitable impurities. Organizationally, the number of oxides having an equivalent circle diameter of less than 2 μm existing in steel is 500 / mm 2 or more and the number of oxides having an equivalent circle diameter of more than 5 μm is 5 / mm 2 or less. The X value defined by the formula (1) is less than 10.0 based on the concentrations of Mn, REM, and Ca forming the compound.

また、上記基本成分にA群(Ni:0.05〜1.50%、Cu:0.05〜1.50%、Cr:0.05〜1.50%、Mo:0.05〜1.50%)、B群(Nb:0.002〜0.10%、V:0.002〜0.10%)、B:0.0010〜0.0050%の内、1種以上の元素を添加して下記(1) から(3) の化学組成とすることができる。
(1) 基本成分+A群から1種以上
(2) 基本成分又は上記(1) の成分+B群から1種以上
(3) 基本成分、上記(1) 又は上記(2) の成分+B
Further, the above basic components include Group A (Ni: 0.05-1.50%, Cu: 0.05-1.50%, Cr: 0.05-1.50%, Mo: 0.05-1. 50%), Group B (Nb: 0.002-0.10%, V: 0.002-0.10%), B: 0.0010-0.0050%, one or more elements added Thus, the following chemical compositions (1) to (3) can be obtained.
(1) Basic component + 1 or more from Group A
(2) Basic component or one or more of component (1) above + Group B
(3) Basic component, component (B) above (1) or component (B) above + B

本発明の溶接用高張力厚鋼板によると、所定の鋼組成の下、円相当径で2μm未満の小径酸化物を用いてγ粒粗大化を抑制して組織微細化を図ると共に脆性破壊の起点となる円相当径で5μm超の大径酸化物の生成を抑制し、さらに微細Mn硫化物の再析出を抑制することができる化合物組成としたので、従来に比して大入熱溶接に対して優れたHAZ靭性を備えたものとなる。   According to the high-strength thick steel plate for welding of the present invention, with a predetermined steel composition, a small-diameter oxide having an equivalent circle diameter of less than 2 μm is used to suppress the coarsening of γ grains and to refine the structure and to start the brittle fracture As a compound composition that can suppress the formation of large-diameter oxides with an equivalent circle diameter of more than 5 μm and further suppress the reprecipitation of fine Mn sulfide, And excellent HAZ toughness.

本発明の実施形態に係る溶接用高張力鋼板について、まず、その組織条件から以下詳細に説明する。
一般に、γ粒粗大化抑制に対しては、微細な介在物粒子を高密度に分散させる必要があり、粒子サイズが大きくなるにつれて、介在物粒子の個数密度が低下し、γ粒粗大化を抑制できなくなる。そこで、本発明者らは、十分なγ粒粗大化抑制効果が得られる介在物粒子サイズおよび個数密度を実験により求め、円相当径が2μmより小さい酸化物を500個/mm2 以上分散させることで、γ粒粗大化が抑制されることを見出した。円相当径が2μmより小さい酸化物が500個/mm2 より少ないと、必要なγ粒粗大化が得られなくなる。なお、円相当径が2μmより小さい酸化物個数は、800個/mm2 以上であることが好ましい。
First, the high-strength steel sheet for welding according to an embodiment of the present invention will be described in detail below from the structural conditions.
In general, to suppress γ grain coarsening, it is necessary to disperse fine inclusion particles at high density. As the particle size increases, the number density of inclusion particles decreases, and γ grain coarsening is suppressed. become unable. Accordingly, the present inventors have determined experimentally the inclusion particle size and number density at which a sufficient γ grain coarsening suppression effect can be obtained, and disperse 500 oxides / mm 2 or more of oxides having an equivalent circle diameter smaller than 2 μm. Thus, it was found that γ grain coarsening is suppressed. When the circle equivalent diameter of 2μm smaller oxide is less than 500 / mm 2, necessary γ grains coarsening can not be obtained. Note that the number of oxides having an equivalent circle diameter of less than 2 μm is preferably 800 / mm 2 or more.

また、HAZにおける微細Mn硫化物再析出を抑制する手段として、本発明者らは、Mn硫化物に比べより高温で安定なREM硫化物及び/又はCa硫化物に着目し、鋼中において化合物を形成するMn、REM、Caの濃度から下記(1) 式のとおり定義されるX値を10.0未満に制御することで、硫化物の主体がCa硫化物及び/又はREM硫化物となり、HAZにおける微細Mn硫化物の再析出が抑制されることを見出した。
X=100×[insol Mn]/([insol REM]+[insol Ca]+0.05)……(1)
但し、[insol Mn]、[insol REM]、[insol Ca]は、それぞれ鋼中において化合物を形成するMn、REM、Caの濃度(%)を示す。
In addition, as a means of suppressing fine Mn sulfide reprecipitation in HAZ, the present inventors have focused on REM sulfide and / or Ca sulfide, which are stable at higher temperatures than Mn sulfide, and have added compounds in steel. By controlling the X value defined as the following formula (1) to less than 10.0 from the concentration of Mn, REM, and Ca to be formed, the main component of sulfide becomes Ca sulfide and / or REM sulfide, and HAZ It has been found that the reprecipitation of fine Mn sulfides in is suppressed.
X = 100 × [insol Mn] / ([insol REM] + [insol Ca] +0.05) (1)
However, [insol Mn], [insol REM], and [insol Ca] indicate the concentrations (%) of Mn, REM, and Ca that form compounds in the steel, respectively.

前記X値の表す技術的意味については以下のとおりである。X値は、鋼中に存在するMn硫化物量を表現するパラメータである。Mn硫化物に対しては、一般的に、光学顕微鏡、あるいは走査型電子顕微鏡等を用いた組織観察により、Mn硫化物粒子の個数、またはサイズが評価される。しかしながら、本発明の成分系においては、Mn硫化物は単独で存在することが少なく、大多数が、REM硫化物、Ca硫化物等との複合粒子として存在するため、組織観察によりMn硫化物量を求めるのは困難である。よって、本発明では、X値によりMn硫化物量を間接的に評価する手法を採用した。すなわち、X値が10.0未満の時、化合物として存在するMn量に対し、化合物として存在するREM、Ca量が十分確保されることで、硫化物の主体は高温でより安定なREM硫化物、Ca硫化物となり、HAZにおける微細Mn硫化物の再析出は抑制される。X値が10.0以上となると、鋼中の硫化物の主体がMn硫化物となり、微細Mn硫化物の再析出が十分に抑制されなくなる。なお、X値は8.0未満であることが望ましい。   The technical meaning of the X value is as follows. The X value is a parameter expressing the amount of Mn sulfide present in the steel. For Mn sulfide, the number or size of Mn sulfide particles is generally evaluated by structural observation using an optical microscope, a scanning electron microscope, or the like. However, in the component system of the present invention, Mn sulfide is rarely present alone, and most of the Mn sulfide is present as composite particles with REM sulfide, Ca sulfide, and the like. It is difficult to find. Therefore, in this invention, the method of indirectly evaluating the amount of Mn sulfide by the X value was adopted. That is, when the X value is less than 10.0, the amount of REM and Ca existing as a compound is sufficiently secured with respect to the amount of Mn present as a compound, so that the main component of sulfide is REM sulfide that is more stable at high temperatures. , Ca sulfide, and reprecipitation of fine Mn sulfide in HAZ is suppressed. When the X value is 10.0 or more, the main component of sulfide in the steel is Mn sulfide, and reprecipitation of fine Mn sulfide is not sufficiently suppressed. The X value is preferably less than 8.0.

良好なHAZ靭性を得るためには、上記の微細酸化物分散、微細Mn硫化物再析出抑制に加え、鋼中に存在する、円相当径が5μmより大きい酸化物を5個/mm2 以下に制御する必要がある。円相当径が5μmより大きい酸化物が5個/mm2 を上回ると、これらの酸化物が脆性破壊の起点として作用し、靭性が悪化する。なお、円相当径が5μmより大きい酸化物は、3個mm2 以下であることが好ましい。 In order to obtain good HAZ toughness, in addition to the above-mentioned fine oxide dispersion and fine Mn sulfide reprecipitation suppression, the number of oxides having an equivalent circle diameter larger than 5 μm in steel is 5 pieces / mm 2 or less. Need to control. When the number of oxides having an equivalent circle diameter larger than 5 μm exceeds 5 / mm 2 , these oxides act as starting points for brittle fracture, and the toughness deteriorates. The number of oxides having an equivalent circle diameter larger than 5 μm is preferably 3 mm 2 or less.

上記酸化物の分布、X値を得るには、鋳造工程において溶存酸素量、REM及び/又はCa、並びにZrの合金元素添加量、合金元素添加完了から鋳込み開始までの時間を以下のように制御する必要がある。すなわち、鋳造時において、Ti添加に先立ちMn、Si、Al等を添加し、Ti添加前の溶存酸素量を0.0020〜0.0100%に制御し、Ti添加前の溶存酸素量、硫黄量を基に、下記(2) 式から求まるZ値が0.58以上となるよう、REM及び/又はCa、並びにZr添加量を決定したうえで、Tiを添加した後に、REM及び/又はCa、並びにZrを添加し、さらに、これらの合金元素添加完了から鋳込み開始までの時間t(min)を下記(3) 式で定義される範囲に保ったうえで、鋳造時に凝固が進行する1450〜1500℃の冷却時間を60〜300sに制御する。
Z=(3.5×([REM]+[Ca])−0.7×[O]+2.6×[Zr]+0.3)/([S]+0.5) ……(2)
3+200×[O]×[S]/([REM]+[Ca]) <t<60……(3)
なお、[O]、[S]はそれぞれ%で表される、Ti添加前の溶存O量、溶存S量であり、[REM]、[Ca]、[Zr]はそれぞれ%で表される、REM、Ca、Zrの添加量である。
In order to obtain the above-mentioned oxide distribution and X value, the amount of dissolved oxygen, REM and / or Ca and Zr alloy elements added in the casting process, and the time from the completion of alloy element addition to the start of casting are controlled as follows. There is a need to. That is, at the time of casting, Mn, Si, Al, etc. are added prior to Ti addition, and the dissolved oxygen amount before Ti addition is controlled to 0.0020 to 0.0100%, and the dissolved oxygen amount and sulfur amount before Ti addition. Based on the above, after determining the amount of REM and / or Ca and Zr added so that the Z value obtained from the following formula (2) is 0.58 or more, after adding Ti, REM and / or Ca, In addition, Zr is added, and further, the time t (min) from the completion of the addition of these alloy elements to the start of casting is maintained within the range defined by the following formula (3), and solidification proceeds at the time of casting: 1450-1500 The cooling time at 0 ° C. is controlled to 60 to 300 s.
Z = (3.5 × ([REM] + [Ca]) − 0.7 × [O] + 2.6 × [Zr] +0.3) / ([S] +0.5) (2)
3 + 200 × [O] × [S] / ([REM] + [Ca]) <t <60 …… (3)
In addition, [O] and [S] are each expressed in%, and are dissolved O amount and dissolved S amount before addition of Ti, and [REM], [Ca], and [Zr] are each expressed in%. This is the amount of REM, Ca, Zr added.

鋳造時、Ti添加前の溶存酸素量が0.0020%より少ないと、円相当径が2μmより小さい酸化物の量を十分に確保できない。また、同溶存酸素量が0.0100%より多い、あるいはTiに先立ちREM及び/又はCa、並びにZrを添加すると、円相当径が5μmより大きい酸化物の量が増加する、あるいは円相当径が2μmより小さい酸化物の量が十分に得られなくなる。   At the time of casting, if the amount of dissolved oxygen before addition of Ti is less than 0.0020%, a sufficient amount of oxide having an equivalent circle diameter of less than 2 μm cannot be secured. Further, when the dissolved oxygen amount is more than 0.0100%, or when REM and / or Ca and Zr are added prior to Ti, the amount of oxide having an equivalent circle diameter larger than 5 μm is increased or the equivalent circle diameter is increased. A sufficient amount of oxide smaller than 2 μm cannot be obtained.

前記Z値は、REM硫化物及び/又はCa硫化物の形成に寄与するREM、Ca、S量を考慮した値であり、Z値が0.58より小さいと、REM及び/又はCaに対するSの割合が高くなりすぎるため、より低温におけるMn硫化物の生成量、あるいは固溶Sの増加を招き、HAZにおける微細Mn硫化物の再析出量が増加する。前記Z値、t(min)の定義式に対し、式中の各係数は実験的に決定した。   The Z value is a value that takes into account the amount of REM, Ca, and S that contribute to the formation of REM sulfide and / or Ca sulfide. If the Z value is less than 0.58, the S value relative to REM and / or Ca Since the ratio becomes too high, the amount of Mn sulfide produced at a lower temperature or the amount of solute S is increased, and the amount of reprecipitation of fine Mn sulfide in HAZ increases. Each coefficient in the formula was experimentally determined with respect to the definition formula of the Z value and t (min).

また、合金元素添加完了から鋳込み開始までの時間t(min)が上記(3) 式の範囲から逸脱すると、十分なHAZ靭性改善効果が得られなくなる。すなわち、tの値が3+200×[O]×[S]/([REM]+[Ca])以下となると、溶鋼中におけるREM硫化物及び/又はCa硫化物の形成が十分に進行せず、微細Mn硫化物の再析出が十分抑制されなくなる。また、tの値が60以上となると、酸化物の合体・成長により円相当径が5μmより大きい酸化物が増加し、HAZ靭性低下の原因となる。   Further, if the time t (min) from the completion of addition of the alloy element to the start of casting deviates from the range of the above formula (3), a sufficient HAZ toughness improving effect cannot be obtained. That is, when the value of t is 3 + 200 × [O] × [S] / ([REM] + [Ca]) or less, the formation of REM sulfide and / or Ca sulfide in the molten steel does not proceed sufficiently, Reprecipitation of fine Mn sulfide is not sufficiently suppressed. On the other hand, when the value of t is 60 or more, oxides having an equivalent circle diameter larger than 5 μm increase due to coalescence / growth of oxides, which causes a reduction in HAZ toughness.

さらに、成分調整した溶湯を鋳型に鋳込み後、凝固までの間に1450〜1500℃の温度域を通過する際の冷却時間が60sより短いと、二次介在物としてREM硫化物及び/又はCa硫化物が形成される時間が十分確保されないため、より低温におけるMn硫化物生成量、あるいは固溶Sの増加を招き、HAZにおける微細Mn硫化物の再析出量が増加する。また、同冷却時間が300sを超えると、凝固偏析による合金元素濃化域において円相当径が5μmより大きい酸化物の形成が促進され、HAZ靭性低下をもたらす。   Further, if the cooling time for passing the temperature range of 1450 to 1500 ° C. is shorter than 60 s after casting the molten metal whose components are adjusted into the mold and before solidification, REM sulfide and / or Ca sulfide is used as a secondary inclusion. Since sufficient time for the formation of the product is not ensured, the amount of Mn sulfide produced at a lower temperature or the amount of solid solution S is increased, and the amount of reprecipitation of fine Mn sulfide in HAZ increases. On the other hand, when the cooling time exceeds 300 s, formation of an oxide having an equivalent circle diameter larger than 5 μm is promoted in the alloy element concentration region due to solidification segregation, resulting in a decrease in HAZ toughness.

次に、実施形態に係る溶接用高張力厚鋼板の化学組成の基本成分について説明する。
C:0.02〜0.12%
Cは、強度確保に必須の元素であり、含有量が0.02%より少ないと必要な強度が得られないため、下限を0.02%とした。また、含有量が0.12%を超えると、硬質MA組織増加によるHAZ靭性低下を招くため、上限を0.12%とした。なお、好ましい下限は0.04%、好ましい上限は0.10%である。
Next, basic components of the chemical composition of the high-tensile thick steel plate for welding according to the embodiment will be described.
C: 0.02-0.12%
C is an element essential for securing the strength, and if the content is less than 0.02%, the required strength cannot be obtained, so the lower limit was made 0.02%. On the other hand, if the content exceeds 0.12%, the HAZ toughness decreases due to an increase in the hard MA structure, so the upper limit was made 0.12%. The preferred lower limit is 0.04%, and the preferred upper limit is 0.10%.

Si:0.40%以下(0%を含む)
Siは、固溶強化により強度を確保する元素であり、含有量が0.40%を超えると、硬質MA組織(マルテンサイトと残留オーステナイトの混合組織)が増加し、HAZ靭性の低下を招くため、上限を0.40%とした。なお、好ましくは0.35%以下(0%を含む)である。
Si: 0.40% or less (including 0%)
Si is an element that secures strength by solid solution strengthening, and if the content exceeds 0.40%, a hard MA structure (mixed structure of martensite and residual austenite) increases and HAZ toughness decreases. The upper limit was made 0.40%. Note that the content is preferably 0.35% or less (including 0%).

Mn:1.0〜2.0%
Mnは、強度確保に有効な元素であり、1.0%より少ないと必要な強度が得られないため、下限を1.0%とした。また、含有量が2.0%を超えると、HAZ強度の過大な上昇を招いてHAZ靭性低下の原因となるため、上限を2.0%とした。なお、好ましい下限は1.4%、好ましい上限は1.8%である。
Mn: 1.0-2.0%
Mn is an element effective for securing the strength, and if it is less than 1.0%, the required strength cannot be obtained, so the lower limit was made 1.0%. Further, if the content exceeds 2.0%, the HAZ strength is excessively increased and the HAZ toughness is lowered, so the upper limit was made 2.0%. The preferred lower limit is 1.4% and the preferred upper limit is 1.8%.

P:0.03%以下(0%を含む)
Pは、粒界偏析によって粒界破壊の原因となる不純物元素であり、含有量が0.03%を超えると、HAZ靭性低下を招くため、上限を0.03%とした。なお、好ましくは0.02%以下(0%を含む)である。
P: 0.03% or less (including 0%)
P is an impurity element that causes grain boundary fracture due to grain boundary segregation. If the content exceeds 0.03%, the HAZ toughness is reduced, so the upper limit was made 0.03%. Note that the content is preferably 0.02% or less (including 0%).

S :0.015%以下(0%を含む)
Sは、Mn硫化物として存在することで、HAZにおける微細Mn硫化物の再析出によるHAZ靭性低下をもたらす元素であり、含有量が0.015%を超えると、Mn硫化物の再析出が抑制されなくなるため、上限を0.015%とした。なお、好ましくは0.012%以下(0%を含む)である。
S: 0.015% or less (including 0%)
S is an element that is present as Mn sulfide and causes HAZ toughness reduction due to reprecipitation of fine Mn sulfide in HAZ. When the content exceeds 0.015%, reprecipitation of Mn sulfide is suppressed. Therefore, the upper limit was made 0.015%. Note that the content is preferably 0.012% or less (including 0%).

Al:0.050%以下(0%を含む)
Alは、鋳造時の脱酸に用いられる元素であり、含有量が0.050%を超えると、粗大酸化物を形成してHAZ靭性低下を招くため、上限を0.050%とした。なお、好ましくは0.040%以下である。
Al: 0.050% or less (including 0%)
Al is an element used for deoxidation at the time of casting. When the content exceeds 0.050%, a coarse oxide is formed and the HAZ toughness is reduced, so the upper limit was made 0.050%. In addition, Preferably it is 0.040% or less.

Ti:0.005〜0.100%
Tiは、REM、Zrに先立ち添加されることで微細酸化物の形成に寄与する元素であり、含有量が0.005%より少ないと、十分な効果が得られないため、下限を0.005%とした。また、含有量が0.100%を超えると、酸化物の粗大化によりHAZ靭性低下を招くため、上限を0.100%とした。なお、好ましい下限は0.010%、好ましい上限は0.080%であり、より好ましい上限は0.060%、更に好ましい上限は0.050%である。
Ti: 0.005 to 0.100%
Ti is an element that contributes to the formation of fine oxides by adding prior to REM and Zr. If the content is less than 0.005%, a sufficient effect cannot be obtained, so the lower limit is set to 0.005. %. Further, if the content exceeds 0.100%, the HAZ toughness is reduced due to the coarsening of the oxide, so the upper limit was made 0.100%. A preferred lower limit is 0.010%, a preferred upper limit is 0.080%, a more preferred upper limit is 0.060%, and a more preferred upper limit is 0.050%.

REM:0.0002〜0.0500%及び又はCa:0.0003〜0.0100%
REM(希土類元素)、Caは、それぞれREM硫化物、Ca硫化物を形成することで、Mn硫化物量を減らし、微細Mn硫化物の再析出によるHAZ靭性低下を抑制する。これらの効果を十分に得るためには、REMで0.0002%以上、Caで0.0003%以上含有させる必要がある。なお、好ましくは、REMで0.0005%以上、Caで0.0010%以上である。しかし、これら元素の含有量が過剰になると、粗大酸化物の形成によりHAZ靭性が低下するため、REMで0.0500%以下、Caで0.0100%以下とする必要がある。なお、好ましくは、REMで0.0400%以下、Caで0.0080%以下である。
REM: 0.0002-0.0500% and / or Ca: 0.0003-0.0100%
REM (rare earth element) and Ca form REM sulfide and Ca sulfide, respectively, thereby reducing the amount of Mn sulfide and suppressing the reduction in HAZ toughness due to reprecipitation of fine Mn sulfide. In order to obtain these effects sufficiently, it is necessary to contain 0.0002% or more in REM and 0.0003% or more in Ca. Preferably, the REM content is 0.0005% or more, and the Ca content is 0.0010% or more. However, if the content of these elements is excessive, the HAZ toughness is lowered due to the formation of coarse oxides, so it is necessary to make 0.0500% or less in REM and 0.0100% or less in Ca. Preferably, the REM is 0.0400% or less, and the Ca is 0.0080% or less.

Zr:0.0001〜0.0500%
Zrは、鋳造時において、Ti添加の後に添加されることで、円相当径が2μmより小さい微細酸化物形成に寄与する元素であり、含有量が0.0001%より少ないと、その効果が十分に得られなくなるため、下限を0.0001%とした。また、含有量が0.0500%より多いと、粗大酸化物、あるいは析出強化をもたらす微細な炭化物を形成して靭性低下を招くため、上限を0.0500%とした。なお、好ましい下限は0.0005%、好ましい上限は0.0400%である。
Zr: 0.0001 to 0.0500%
Zr is an element that contributes to the formation of fine oxides with an equivalent circle diameter of less than 2 μm when added after the addition of Ti during casting. If the content is less than 0.0001%, the effect is sufficient. Therefore, the lower limit was made 0.0001%. Further, if the content is more than 0.0500%, coarse oxides or fine carbides that cause precipitation strengthening are formed and the toughness is reduced, so the upper limit was made 0.0500%. A preferred lower limit is 0.0005%, and a preferred upper limit is 0.0400%.

N:0.0020〜0.0300%
Nは、Ti窒化物を形成して靭性向上をもたらす元素であり、含有量が0.0020%より少ないと、十分な効果が得られないため、下限を0.0020%とした。また、含有量が0.0300%を超えると、固溶Nとして歪時効による靭性低下をもたらすため、上限を0.0300%とした。なお、好ましい下限は0.0030%、好ましい上限は0.0250%であり、より好ましい上限は0.0200%、更に好ましい上限は0.0150%である。
N: 0.0020 to 0.0300%
N is an element that forms Ti nitride to improve toughness, and if the content is less than 0.0020%, a sufficient effect cannot be obtained, so the lower limit was made 0.0020%. Moreover, when content exceeds 0.0300%, since the toughness fall by strain aging will be caused as solid solution N, the upper limit was made 0.0300%. The preferred lower limit is 0.0030%, the preferred upper limit is 0.0250%, the more preferred upper limit is 0.0200%, and the still more preferred upper limit is 0.0150%.

O:0.0005〜0.0100%
Oは、微細酸化物の生成に必須の元素であり、含有量が0.0005%より低いと、十分な量の酸化物が得られないため、下限を0.0005%とした。また、含有量が0.0100%を超えると、酸化物の粗大化によりHAZ靭性低下を招くため、上限を0.0100%とした。なお、好ましい下限は0.0010%、好ましい上限は0.0080%である。
O: 0.0005 to 0.0100%
O is an essential element for the production of fine oxides. If the content is lower than 0.0005%, a sufficient amount of oxide cannot be obtained, so the lower limit was made 0.0005%. Further, if the content exceeds 0.0100%, the HAZ toughness is reduced due to the coarsening of the oxide, so the upper limit was made 0.0100%. A preferred lower limit is 0.0010%, and a preferred upper limit is 0.0080%.

上記基本成分に対して鋼板の機械的性質をより向上させるために、上記基本成分にA群(Ni:0.05〜1.50%、Cu:0.05〜1.50%、Cr:0.05〜1.50%、Mo:0.05〜1.50%)、B群(Nb:0.002〜0.10%、V:0.002〜0.10%)、B:0.0010〜0.0050%の1種以上を添加して下記(1) から(3) の組成(残部はFeおよび不可避的不純物)とすることができる。
(1) 基本成分+A群から1種以上
(2) 基本成分又は上記(1) の成分+B群から1種以上
(3) 基本成分、上記(1) 又は(2) のいずれかの成分+B
In order to further improve the mechanical properties of the steel sheet with respect to the basic component, the basic component includes group A (Ni: 0.05 to 1.50%, Cu: 0.05 to 1.50%, Cr: 0). 0.05 to 1.50%, Mo: 0.05 to 1.50%), Group B (Nb: 0.002 to 0.10%, V: 0.002 to 0.10%), B: 0.0. One or more of 0010 to 0.0050% can be added to obtain the following compositions (1) to (3) (the balance being Fe and inevitable impurities).
(1) Basic component + 1 or more from Group A
(2) Basic component or one or more of component (1) above + Group B
(3) Basic component, component (B) above in either (1) or (2)

Ni、Cu、Cr、Moは、いずれも鋼材の高強度化に有効な元素であり、それぞれ、含有量が0.05%より少ないと、その効果が十分に得られないため、下限を0.05%とした。また、それぞれ、含有量が1.50%を超えると、強度の過大な上昇を招いて、靭性低下をもたらすため、上限を1.50%とした。なお、好ましい下限はそれぞれ0.10%、好ましい上限はそれぞれ1.20%である。   Ni, Cu, Cr, and Mo are all effective elements for increasing the strength of steel materials. If the content is less than 0.05%, the effect cannot be sufficiently obtained. 05%. In addition, when the content exceeds 1.50%, the strength is excessively increased and the toughness is reduced. Therefore, the upper limit is set to 1.50%. The preferred lower limit is 0.10%, and the preferred upper limit is 1.20%.

Nb、Vは、いずれも炭窒化物として析出することで、オーステナイト粒粗大化を抑制する元素であり、それぞれ、含有量が0.002%より少ないと、その効果が十分に得られないため、下限を0.002%とした。また、それぞれ、含有量が0.10%を超えると、粗大炭窒化物として靭性低下を招くため、上限を0.10%とした。なお、好ましい下限はそれぞれ0.005%、好ましい上限は0.08%である。   Nb and V are elements that suppress austenite grain coarsening by precipitating as carbonitrides, and if the content is less than 0.002%, the effect cannot be sufficiently obtained. The lower limit was made 0.002%. In addition, when the content exceeds 0.10%, the coarse carbonitride causes a reduction in toughness, so the upper limit was made 0.10%. The preferred lower limit is 0.005% and the preferred upper limit is 0.08%.

Bは、粒界フェライト生成を抑制することで、靭性を向上させる元素であり、含有量が0.0010%より少ないと、その効果が十分に得られないため、下限を0.0010%とした。また、含有量が0.0050%より多いと、BNとしてオーステナイト粒界に析出し、靭性低下を招くため、上限を0.0050%とした。なお、好ましい下限は0.0015%、好ましい上限は0.0040%である。   B is an element that improves toughness by suppressing the formation of intergranular ferrite. If the content is less than 0.0010%, the effect cannot be sufficiently obtained, so the lower limit is made 0.0010%. . On the other hand, if the content is more than 0.0050%, BN precipitates at the austenite grain boundary and causes a decrease in toughness, so the upper limit was made 0.0050%. A preferred lower limit is 0.0015%, and a preferred upper limit is 0.0040%.

次に、上記溶接用高張力厚鋼板の製造方法について説明する。同厚鋼板の製造方法における特徴は鋳造工程にあり、これについてはすでに説明したので、以下、鋳造後の鋼塊に対する処理を簡単に説明する。上記鋳造プロセス、成分範囲等を満たして製造された鋳塊を、通常の熱間圧延手順に従い、圧延開始温度を1200〜900℃程度、圧延終了温度を950〜750℃程度として、圧延を終了したの後、室温〜500℃程度の間の冷却停止温度まで冷却することで、厚鋼板が得られる。冷却終了後、さらにテンパー処理を施しても良い。なお、製造される厚鋼板の板厚については特に制限されないが、50〜120mm程度が溶接用厚鋼板として求められており、本発明はかかる板厚であっても、優れたHAZ靭性を得ることができる。   Next, the manufacturing method of the said high-tensile steel plate for welding is demonstrated. The feature of the method for producing the same steel plate is the casting process, which has already been described, and hereinafter, the processing for the steel ingot after casting will be briefly described. The ingot produced by satisfying the above casting process, component range, etc., was rolled according to a normal hot rolling procedure, with a rolling start temperature of about 1200 to 900 ° C. and a rolling end temperature of about 950 to 750 ° C. Then, a thick steel plate is obtained by cooling to the cooling stop temperature between room temperature and about 500 degreeC. A temper treatment may be further performed after the cooling. In addition, although it does not restrict | limit especially about the plate | board thickness of the steel plate manufactured, About 50-120mm is calculated | required as a steel plate for welding, and this invention obtains the outstanding HAZ toughness even if it is this plate | board thickness. Can do.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はかかる実施例により限定的に解釈されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated more concretely, this invention is not limitedly interpreted by this Example.

真空溶解炉(150kg)を用い、シリコン等の添加量を調整してTi添加前の溶存酸素量を変化させ、Z値を考慮しつつ、REM及び/又はCa、並びにZr添加量を決定のうえ、一部のもの(表1の鋼No.26)を除き、Tiを添加した後、REM及び/又はCa、Zrを添加し、合金元素添加完了から鋳込み開始までの時間t(min)、および成分調整した溶湯を鋳型に鋳込み後、凝固までの間に1450〜1500℃の温度域を通過する際の冷却時間t1(s)を変化させて鋼を溶製し、得られた鋳塊を、圧延開始温度を950℃程度、最終圧延温度を880℃程度として熱間圧延を施し、厚さ80mmの厚鋼板を製造した。その組成を表1、表2に、Ti添加前の溶存酸素量[O](%)、およびZ値、(3) 式に基づき、下記(4) 式で表現されるt(min)の許容下限値Y、t(min)、t1(s)の各値を表3に示す。
Y=3+200×[O]×[S]/([REM]+[Ca])……(4)
なお、[O]、[S] はそれぞれTi添加前の溶存O量(%)、溶存S量(%)であり、[REM]、[Ca]はそれぞれREM、Caの添加量(%)である。
Using a vacuum melting furnace (150 kg), adjust the amount of silicon added to change the amount of dissolved oxygen before adding Ti, and determine the amount of REM and / or Ca and Zr added while considering the Z value. , Except for some (steel No. 26 in Table 1), after adding Ti, add REM and / or Ca, Zr, time t (min) from completion of addition of alloy element to start of casting, and After casting the component-adjusted molten metal in the mold, the steel is melted by changing the cooling time t1 (s) when passing through the temperature range of 1450 to 1500 ° C. until solidification, and the resulting ingot is obtained. Hot rolling was performed at a rolling start temperature of about 950 ° C. and a final rolling temperature of about 880 ° C. to produce a thick steel plate having a thickness of 80 mm. The compositions are shown in Tables 1 and 2, and the amount of dissolved oxygen before adding Ti [O] (%), the Z value, and the allowable t (min) expressed by the following equation (4) based on the equation (3) Table 3 shows the lower limit values Y, t (min), and t1 (s).
Y = 3 + 200 × [O] × [S] / ([REM] + [Ca]) (4)
[O] and [S] are respectively the dissolved O amount (%) and the dissolved S amount (%) before Ti addition, and [REM] and [Ca] are respectively the addition amount (%) of REM and Ca. is there.

得られた各厚鋼板のt(板厚)/4位置において、化合物を形成するMn、REM、Caの濃度を測定し、X値を算出した。化合物を形成するMnの濃度については、ヨウ素メタノール法により測定を行った。また、化合物を形成するREM、Caの濃度については、電解液としてメタノール100cc中にトリエタノールアミン2ccとテトラメチルアンモニウムクロライド1gを含有する溶液を用いた電解抽出法により測定を行った。なお、残渣のろ過に際しては、ポアサイズ0.1μmのフィルターを使用した。得られたX値を表3に示す。   At the position t (plate thickness) / 4 of each thick steel plate obtained, the concentrations of Mn, REM, and Ca forming the compound were measured, and the X value was calculated. About the density | concentration of Mn which forms a compound, it measured by the iodine methanol method. Further, the concentrations of REM and Ca forming the compound were measured by an electrolytic extraction method using a solution containing 2 cc of triethanolamine and 1 g of tetramethylammonium chloride in 100 cc of methanol as an electrolytic solution. A filter having a pore size of 0.1 μm was used for filtering the residue. The obtained X values are shown in Table 3.

また、得られた各厚鋼板のt(板厚)/4位置から試験片を切り出し、圧延方向および板厚方向に平行な断面(圧延面に垂直で圧延方向に沿った断面)を電界放射式走査型電子顕微鏡(装置名:SUPRA 35、Carl Zeiss社製)(以下、FE−SEMと呼称する)を用いて観察し、円相当径が2μmより小さいの酸化物、および5μmより大きい酸化物の個数密度を測定した。測定方法は以下のとおりである。   In addition, a test piece was cut out from each of the obtained thick steel plates at t (plate thickness) / 4 position, and a cross section parallel to the rolling direction and the plate thickness direction (cross section perpendicular to the rolling surface and along the rolling direction) was field emission type. Observed using a scanning electron microscope (device name: SUPRA 35, manufactured by Carl Zeiss) (hereinafter referred to as FE-SEM), an oxide having an equivalent circle diameter of less than 2 μm and an oxide of more than 5 μm The number density was measured. The measurement method is as follows.

まず、FE−SEMの観察倍率を5000倍に設定し、0.0024mm2 の面積を有する視野を無作為に20視野選択し、各視野の画像を撮影した。同時に、各視野に含まれる、最大径2μm以下の個々の介在物粒子中央部をFE−SEM付属のEDSにて測定し、構成元素に酸素が含まれる介在物粒子を酸化物と判定した。なお、最大径にして0.2μm以下の介在物粒子については、EDS測定の信頼性が低いため、測定対象から除外した。そのうえで、得られた画像を、画像処理ソフト(ソフト名:Image-Pro Plus、Media Cybernetic社製)を用いた画像解析にかけ、これら酸化物のうち円相当径が2μmより小さいものの個数密度N1(個/mm2 )を算出した。N1の値を表3に示す。同様に、FE−SEMの観察倍率を1000倍に設定し、0.06mm2 の面積を有する20視野から算出された、円相当径が5μmより大きい酸化物の個数密度NL(個/mm2 )の値を表3に示す。 First, the observation magnification of FE-SEM was set to 5000 times, 20 visual fields having an area of 0.0024 mm 2 were randomly selected, and images of each visual field were taken. At the same time, the central part of each inclusion particle having a maximum diameter of 2 μm or less included in each field of view was measured with EDS attached to the FE-SEM, and the inclusion particle containing oxygen as a constituent element was determined to be an oxide. Inclusion particles having a maximum diameter of 0.2 μm or less were excluded from the measurement target because of the low reliability of EDS measurement. After that, the obtained image was subjected to image analysis using an image processing software (software name: Image-Pro Plus, manufactured by Media Cybernetic). Among these oxides, the number density N1 (number of ones having an equivalent circle diameter of less than 2 μm) / Mm 2 ) was calculated. The value of N1 is shown in Table 3. Similarly, the number density NL (pieces / mm 2 ) of oxides having an equivalent circle diameter larger than 5 μm, calculated from 20 fields of view having an area of 0.06 mm 2 , with the observation magnification of FE-SEM set to 1000 times. Table 3 shows the values.

さらに、得られた各厚鋼板のt(板厚)/4位置から、圧延方向に対し平行に、シャルピー試験片(Vノッチ)を採取し、大入熱溶接時のHAZ熱サイクルを模擬した、再現HAZ熱サイクルを施した際の靭性を評価した。上記再現HAZ熱サイクルは、試験片を1400℃に加熱して60s間保持した後、800〜500℃の温度範囲を500sかけて冷却したものである。シャルピー衝撃試験は、JIS Z 2242に準拠し、3本の試験片について−40℃での衝撃吸収エネルギーvE-40 (J)を測定した値の最小値vE-40(min)が100Jを超えるものを、HAZ靭性に優れると評価した。vE-40(min)の値を表3に示す。 Furthermore, from the t (plate thickness) / 4 position of each thick steel plate obtained, a Charpy test piece (V notch) was sampled in parallel to the rolling direction, and the HAZ thermal cycle during large heat input welding was simulated, The toughness when subjected to reproducible HAZ thermal cycling was evaluated. The reproduced HAZ thermal cycle is a test piece heated to 1400 ° C. and held for 60 s, and then cooled in a temperature range of 800 to 500 ° C. over 500 s. The Charpy impact test conforms to JIS Z 2242, and the minimum value vE- 40 (min) of the measured values of impact absorption energy vE- 40 (J) at -40 ° C for three test pieces exceeds 100J. Was evaluated as having excellent HAZ toughness. Table 3 shows the value of vE -40 (min).

表1〜表3から明らかなとおり、発明例No. 1〜25は、厚鋼板の組成、鋳造プロセスを適切に制御したので、酸化物を適切な形態で分散させ、加えてX値を10.0未満とすることに成功した。このため、組織微細化および微細Mn硫化物再析出抑制を達成することができ、HAZ靭性(vE-40(min))において高い値が得られた。一方、比較例No. 26〜47では、Ti、REM、Zrの添加順、Ti添加前の溶存酸素量[O](%)、およびZ値、合金元素添加完了から鋳込み開始までの時間t(min)、および鋳込み後、1450〜1500℃の温度域を通過する際の冷却時間t1(s)、あるいは鋼の組成が適正な範囲から逸脱するなどし、規定の酸化物形態が得られないため、或いはX値が10.0を超えたため、あるいは、おそらくは粗大介在物の増加、不純物の増加、過度の強化、固溶元素の粒界偏析などの理由により、発明例に比してHAZ靭性がかなり低下している。 As apparent from Tables 1 to 3, Invention Examples Nos. 1 to 25 appropriately controlled the composition of the thick steel plate and the casting process, so that the oxide was dispersed in an appropriate form, and the X value was 10. Succeeded to make it less than 0. For this reason, microstructure refinement and fine Mn sulfide reprecipitation suppression can be achieved, and a high value was obtained in HAZ toughness (vE -40 (min)). On the other hand, in Comparative Examples Nos. 26 to 47, the order of addition of Ti, REM, and Zr, the amount of dissolved oxygen [O] (%) before Ti addition, and the time t ( min), and after casting, the cooling time t1 (s) when passing through the temperature range of 1450 to 1500 ° C., or the composition of the steel deviates from an appropriate range, and the prescribed oxide form cannot be obtained. Or because the X value exceeded 10.0, or perhaps because of increased coarse inclusions, increased impurities, excessive strengthening, grain boundary segregation of solid solution elements, etc. It has dropped considerably.

Figure 2009179844
Figure 2009179844

Figure 2009179844
Figure 2009179844

Figure 2009179844
Figure 2009179844

Claims (4)

質量%で、
C :0.02〜0.12%、
Si:0.40%以下(0%を含む)、
Mn:1.0〜2.0%、
P :0.03%以下(0%を含む)、
S :0.015%以下(0%を含む)、
Al:0.050%以下(0%を含む)、
Ti:0.005〜0.100%、
REM:0.0002〜0.0500%及び/又はCa:0.0003〜0.0100%、
Zr:0.0001〜0.0500%
N :0.0020〜0.0300%、
O :0.0005〜0.0100%
を含有し、残部がFeおよび不可避的な不純物で構成される鋼であって、鋼中に存在する円相当径が2μmより小さい酸化物が500個/mm2 以上で、かつ円相当径が5μmより大きい酸化物が5個/mm2 以下であり、鋼中において化合物を形成するMn、REM、Caの濃度から(1)式で定義されるX値が10.0未満である、大入熱溶接時の熱影響部の靭性に優れた溶接用高張力厚鋼板。
X=100×[insol Mn]/([insol REM]+[insol Ca]+0.05)……(1)
但し、[insol Mn]、[insol REM]、[insol Ca]は、それぞれ鋼中において化合物を形成するMn、REM、Caの濃度(質量%)を示す。
% By mass
C: 0.02 to 0.12%,
Si: 0.40% or less (including 0%),
Mn: 1.0-2.0%,
P: 0.03% or less (including 0%),
S: 0.015% or less (including 0%),
Al: 0.050% or less (including 0%),
Ti: 0.005 to 0.100%,
REM: 0.0002 to 0.0500% and / or Ca: 0.0003 to 0.0100%,
Zr: 0.0001 to 0.0500%
N: 0.0020 to 0.0300%,
O: 0.0005 to 0.0100%
In which the balance is Fe and inevitable impurities, and the equivalent circle diameter in the steel is 500 / mm 2 or more and the equivalent circle diameter is 5 μm or more. Large heat input, in which the number of larger oxides is 5 / mm 2 or less, and the X value defined by the formula (1) is less than 10.0 based on the concentration of Mn, REM, and Ca forming a compound in steel High strength thick steel plate for welding with excellent toughness of heat affected zone during welding.
X = 100 × [insol Mn] / ([insol REM] + [insol Ca] +0.05) (1)
However, [insol Mn], [insol REM], and [insol Ca] indicate the concentrations (mass%) of Mn, REM, and Ca that form compounds in the steel, respectively.
さらに、質量%で、
Ni:0.05〜1.50%、
Cu:0.05〜1.50%、
Cr:0.05〜1.50%、
Mo:0.05〜1.50%、
のうち一種あるいは二種以上を含む、請求項1に記載した溶接用高張力厚鋼板。
Furthermore, in mass%,
Ni: 0.05-1.50%,
Cu: 0.05 to 1.50%,
Cr: 0.05 to 1.50%,
Mo: 0.05 to 1.50%,
The high-tensile thick steel plate for welding according to claim 1, comprising one or more of them.
さらに、質量%で
Nb:0.002〜0.10%、
V :0.002〜0.10%
のうち一種あるいは二種以上を含む、請求項1または2のいずれかに記載した溶接用高張力厚鋼板。
Furthermore, Nb by mass%: 0.002 to 0.10%,
V: 0.002-0.10%
The high-tensile steel plate for welding according to claim 1, comprising one or more of them.
さらに、質量%で
B:0.0010〜0.0050%
を含む、請求項1から3のいずれか1項に記載した溶接用高張力厚鋼板。
Furthermore, B by mass%: 0.0010 to 0.0050%
The high-tensile thick steel plate for welding according to any one of claims 1 to 3, comprising:
JP2008019192A 2008-01-30 2008-01-30 High tensile strength thick steel plate having excellent toughness in weld heat affected zone Pending JP2009179844A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008019192A JP2009179844A (en) 2008-01-30 2008-01-30 High tensile strength thick steel plate having excellent toughness in weld heat affected zone
CN2008101907152A CN101497962B (en) 2008-01-30 2008-12-30 High tension thick steel plate with excellent toughness at welding heat affected zone
KR1020080137115A KR101082639B1 (en) 2008-01-30 2008-12-30 High-tensile strength thick steel plate with excellent toughness of weld heat affected zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008019192A JP2009179844A (en) 2008-01-30 2008-01-30 High tensile strength thick steel plate having excellent toughness in weld heat affected zone

Publications (1)

Publication Number Publication Date
JP2009179844A true JP2009179844A (en) 2009-08-13

Family

ID=40945232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008019192A Pending JP2009179844A (en) 2008-01-30 2008-01-30 High tensile strength thick steel plate having excellent toughness in weld heat affected zone

Country Status (3)

Country Link
JP (1) JP2009179844A (en)
KR (1) KR101082639B1 (en)
CN (1) CN101497962B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174314A (en) * 2009-01-28 2010-08-12 Kobe Steel Ltd Steel material excellent in toughness of weld heat-affected zone
WO2012099119A1 (en) * 2011-01-18 2012-07-26 株式会社神戸製鋼所 Steel material having superior toughness of welded heat-affected zone, and method for manufacturing same
WO2014045829A1 (en) 2012-09-19 2014-03-27 株式会社神戸製鋼所 Thick steel sheet having excellent welding heat-affected part toughness
WO2014148447A1 (en) * 2013-03-22 2014-09-25 株式会社神戸製鋼所 Steel material having superior toughness at welding heat affected zone

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174314A (en) * 2009-01-28 2010-08-12 Kobe Steel Ltd Steel material excellent in toughness of weld heat-affected zone
WO2012099119A1 (en) * 2011-01-18 2012-07-26 株式会社神戸製鋼所 Steel material having superior toughness of welded heat-affected zone, and method for manufacturing same
JP2012162797A (en) * 2011-01-18 2012-08-30 Kobe Steel Ltd Steel excellent in toughness of weld heat affected zone and method for producing thereof
CN103328672A (en) * 2011-01-18 2013-09-25 株式会社神户制钢所 Steel material having superior toughness of welded heat-affected zone, and method for manufacturing same
EP2666880A1 (en) * 2011-01-18 2013-11-27 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Steel material having superior toughness of welded heat-affected zone, and method for manufacturing same
EP2666880A4 (en) * 2011-01-18 2015-02-25 Kobe Steel Ltd Steel material having superior toughness of welded heat-affected zone, and method for manufacturing same
CN103328672B (en) * 2011-01-18 2015-06-03 株式会社神户制钢所 Steel material having superior toughness of welded heat-affected zone, and method for manufacturing same
WO2014045829A1 (en) 2012-09-19 2014-03-27 株式会社神戸製鋼所 Thick steel sheet having excellent welding heat-affected part toughness
KR20150038664A (en) 2012-09-19 2015-04-08 가부시키가이샤 고베 세이코쇼 Thick steel sheet having excellent welding heat-affected part toughness
WO2014148447A1 (en) * 2013-03-22 2014-09-25 株式会社神戸製鋼所 Steel material having superior toughness at welding heat affected zone
EP2977479A4 (en) * 2013-03-22 2016-11-30 Kobe Steel Ltd Steel material having superior toughness at welding heat affected zone

Also Published As

Publication number Publication date
CN101497962A (en) 2009-08-05
KR101082639B1 (en) 2011-11-10
KR20090083844A (en) 2009-08-04
CN101497962B (en) 2011-11-23

Similar Documents

Publication Publication Date Title
JP5201665B2 (en) High strength thick steel plate for welding with excellent toughness of heat affected zone during high heat input welding
JP4485561B2 (en) High tensile steel plate for welding with excellent base metal toughness
JP6409598B2 (en) High-strength ultra-thick H-shaped steel with excellent toughness and method for producing the same
JP4897126B2 (en) Thick steel plate manufacturing method
JP6763141B2 (en) Manufacturing method of steel plate for LPG tank
JP6245417B1 (en) Steel
WO2011065479A1 (en) High-strength ultra-thick h shape steel and process for production thereof
WO2013089089A1 (en) High-strength extra-thick steel h-beam
JP2008163446A (en) Steel member for high heat input welding
JP2009209401A (en) Steel sheet superior in toughness of weld heat-affected zone and uniform elongation
JP5796636B2 (en) Steel material for large heat input welding
JP6418418B2 (en) Steel material for large heat input welding
JP5223706B2 (en) Steel material excellent in toughness of heat-affected zone with high heat input and manufacturing method thereof
JP5340839B2 (en) Steel sheet with excellent toughness of weld heat affected zone
JP2010174357A (en) Thick steel plate and method for producing the same
JP6424867B2 (en) Stainless steel having a steel structure composed of two phases of a ferrite phase and a martensite phase and a method of manufacturing the same
JP2009179844A (en) High tensile strength thick steel plate having excellent toughness in weld heat affected zone
JP5849892B2 (en) Steel material for large heat input welding
JP2007254767A (en) Welded joint of high-tensile strength thick steel plate
JP4276576B2 (en) Thick high-strength steel sheet with excellent heat input and heat-affected zone toughness
JP6187270B2 (en) Steel material with excellent toughness at heat affected zone
JP2009242853A (en) Steel member for high-heat input welding
JP2009242852A (en) Steel member for high-heat input welding
JP2008248293A (en) High strength steel for welded structure having excellent surface crack resistance and method for producing the same
JP2014058734A (en) Thick steel plate excellent in toughness of heat affected zone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110201