JP2012162797A - Steel excellent in toughness of weld heat affected zone and method for producing thereof - Google Patents

Steel excellent in toughness of weld heat affected zone and method for producing thereof Download PDF

Info

Publication number
JP2012162797A
JP2012162797A JP2011206542A JP2011206542A JP2012162797A JP 2012162797 A JP2012162797 A JP 2012162797A JP 2011206542 A JP2011206542 A JP 2011206542A JP 2011206542 A JP2011206542 A JP 2011206542A JP 2012162797 A JP2012162797 A JP 2012162797A
Authority
JP
Japan
Prior art keywords
rem
less
inclusions
steel material
addition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011206542A
Other languages
Japanese (ja)
Other versions
JP5651090B2 (en
Inventor
Takashi Sugitani
崇 杉谷
Tetsushi Deura
哲史 出浦
Yoshiomi Okazaki
喜臣 岡崎
Hidenori Nako
秀徳 名古
Hiromi Ota
裕己 太田
Masaki Shimamoto
正樹 島本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2011206542A priority Critical patent/JP5651090B2/en
Priority to PCT/JP2012/050852 priority patent/WO2012099119A1/en
Priority to CN201280005110.6A priority patent/CN103328672B/en
Priority to KR20137018728A priority patent/KR101512257B1/en
Priority to EP12736520.3A priority patent/EP2666880A4/en
Publication of JP2012162797A publication Critical patent/JP2012162797A/en
Application granted granted Critical
Publication of JP5651090B2 publication Critical patent/JP5651090B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Abstract

PROBLEM TO BE SOLVED: To provide a steel which has excellent HAZ toughness even when subjected to large heat input welding of a heat input of 50 kJ/mm or more and to provide a method for producing the same.SOLUTION: In the steel, (a) the composition of the entire oxide inclusions satisfies 5-50% ZrO, 5-50% REM oxides, and 50% or less (exclusive 0%) CaO when measured and expressed in terms of mass of a single oxide, (b) among the entire inclusions, the number of inclusions with a circle-equivalent diameter of 0.1-2 μm is 120 pieces/mmor more, the number of oxides with circle-equivalent diameters of above 3 μm is 5.0 pieces/mmor less, and the number of oxides with circle-equivalent diameters of above 5 μm is 5.0 pieces/mmor less. When the composition of the entire inclusions are measured, (c-1) the numerical ratio of the REM and Zr-containing inclusions I satisfying an REM/Zr mole ratio of 0.6-1.4 is 30% or more based on the number of the entire inclusions and/or (c-2) the numerical ratio of the REM, Zr, Al, Ca, and-Ti-containing inclusions II in which the ratio of the total number of moles of REM and Zr to the total number of moles of Al, Ca, and Ti satisfies 0.5-1.2 is 40% or more based on the number of the entire inclusions.

Description

本発明は、橋梁や高層建造物、船舶などに使用される鋼材に関するものであり、特に、溶接したときに熱影響を受ける部位(以下、「溶接熱影響部」または「HAZ」ということがある。)の靱性に優れた鋼材およびその製造方法に関するものである。   The present invention relates to a steel material used for a bridge, a high-rise building, a ship, and the like, and in particular, a part affected by heat when welding (hereinafter, referred to as “welding heat affected zone” or “HAZ”). .) Is related to a steel material excellent in toughness and a method for producing the same.

橋梁や高層建造物、船舶などに使用される鋼材に要求される特性は、近年益々厳しくなっており、とりわけ良好な靱性が求められている。これらの鋼材は、一般的に溶接して接合されることが多いが、溶接継手部のうち、特にHAZは溶接時に熱影響を受けて靱性が劣化しやすいという問題がある。この靱性劣化は溶接時の入熱量が大きくなるほど顕著に現れ、その原因は溶接時の入熱量が大きくなるとHAZの冷却速度が遅くなり、焼入性が低下して粗大な島状マルテンサイトを生成することにあると考えられている。従ってHAZの靱性を改善するには、溶接時の入熱量を極力抑えればよいと考えられる。しかしその一方で、溶接作業効率を高めるうえでは、例えばエレクトロガス溶接、エレクトロスラグ溶接、サブマージアーク溶接などの溶接入熱量が50kJ/mm以上の大入熱溶接法の採用が望まれる。   The properties required for steel materials used in bridges, high-rise buildings, ships and the like have become increasingly severe in recent years, and particularly good toughness is required. Generally, these steel materials are often joined by welding, but among the welded joint portions, particularly HAZ has a problem that the toughness is easily deteriorated due to thermal influence during welding. This toughness deterioration becomes more prominent as the heat input during welding increases, and the cause is that the larger the heat input during welding, the slower the cooling rate of the HAZ, and the lower the hardenability and the generation of coarse island martensite. It is thought that there is to do. Therefore, in order to improve the toughness of the HAZ, it is considered that the heat input during welding should be suppressed as much as possible. However, on the other hand, in order to increase the welding work efficiency, it is desired to employ a high heat input welding method in which the heat input of welding is 50 kJ / mm or more, such as electrogas welding, electroslag welding, submerged arc welding, and the like.

そこで本出願人は、大入熱溶接法を採用した場合のHAZ靱性劣化を抑制する鋼材を特許文献1〜3に提案している。これらの鋼材は、粒内フェライト変態の核となる酸化物としてREMの酸化物および/またはCaOと、ZrO2を含有しているところに特徴がある。上記酸化物は、溶鋼中では液状で存在するため鋼中に微細分散する。しかも上記酸化物は熱的に安定であり、例えば、1400℃レベルの高温に長時間曝されても固溶して消失しないため、HAZ靱性の向上に大きく寄与する。 Therefore, the present applicant has proposed steel materials that suppress the HAZ toughness deterioration when the high heat input welding method is adopted in Patent Documents 1 to 3. These steel materials are characterized in that they contain REM oxide and / or CaO and ZrO 2 as oxides that become the core of intragranular ferrite transformation. Since the oxide exists in a liquid state in molten steel, it is finely dispersed in the steel. In addition, the oxide is thermally stable, and, for example, it does not dissolve and disappear even when exposed to a high temperature of 1400 ° C. for a long time, which greatly contributes to the improvement of HAZ toughness.

また本出願人は、上記特許文献1を開示した後も一層高いレベルの大入熱溶接時のHAZ靱性に優れた鋼材を提供するための研究を重ねており、その結果、特許文献4に記載の発明を先に提案した。特許文献4では、鋼材中の全酸化物系介在物(粒内フェライト変態の核となる酸化物に限定されず、全ての酸化物を対象とする。)の大きさと個数がHAZ靱性の向上に深く関与しており、特に、円相当直径で5.0μm超の粗大な酸化物を5個以下に低減すれば、入熱量が概ね50kJ/mm程度の大入熱溶接を行なってもHAZ靱性に優れた鋼材が得られることを開示している。このように特許文献4によれば、粗大な酸化物の個数が著しく抑えられているため、上記特許文献1の実施例に開示されたHAZ靱性評価方法よりも大きな入熱量で溶接を行なってもHAZ靱性を高めることができた。具体的には、上記特許文献1では、1400℃の加熱温度で5秒間保持した後800℃から500℃までの温度を300秒で冷却する熱サイクル(入熱条件:1400℃×5秒、冷却時間Tc=300秒)を与え、−40℃における吸収エネルギー(vE-40)を測定したが、特許文献4では、1400℃の保持時間を30秒間と長くした熱サイクル(入熱条件:1400℃×30秒、冷却時間Tc=300秒)を与えたときの吸収エネルギーを上記と同様にして測定しており、この場合でも良好なHAZ靱性が得られたことを確認している。 In addition, the present applicant has repeated research for providing a steel material excellent in HAZ toughness at the time of high heat input welding at a higher level even after disclosing the above-mentioned Patent Document 1, and as a result, described in Patent Document 4 The invention was proposed previously. In Patent Document 4, the size and number of all oxide inclusions in steel (not limited to oxides that become the core of intragranular ferrite transformation, but all oxides) are improved in HAZ toughness. In particular, if the number of coarse oxides with an equivalent circle diameter of more than 5.0 μm is reduced to 5 or less, the HAZ toughness can be improved even if large heat input welding with a heat input of about 50 kJ / mm is performed. It discloses that an excellent steel material can be obtained. Thus, according to Patent Document 4, since the number of coarse oxides is remarkably suppressed, even if welding is performed with a larger amount of heat input than the HAZ toughness evaluation method disclosed in the Example of Patent Document 1 above. The HAZ toughness could be increased. Specifically, in Patent Document 1, a heat cycle in which a temperature from 800 ° C. to 500 ° C. is cooled in 300 seconds after being held at a heating temperature of 1400 ° C. for 5 seconds (heat input condition: 1400 ° C. × 5 seconds, cooling Time Tc = 300 seconds) was given, and the absorbed energy (vE -40 ) at −40 ° C. was measured. However, in Patent Document 4, the heat cycle (heat input condition: 1400 ° C.) in which the holding time at 1400 ° C. was increased to 30 seconds. X30 seconds, cooling time Tc = 300 seconds) was measured in the same manner as described above, and it was confirmed that good HAZ toughness was obtained even in this case.

一方、特許文献5〜7には、上記特許文献1〜4のようにREMの酸化物とZrO2を併用する技術ではないが、溶存酸素量を調整した溶鋼中にREMを添加すれば、約300kJ/cm(約30kJ/mm)を超える大入熱溶接を行なったときのHAZ靱性を向上できることが開示されている。 On the other hand, Patent Documents 5 to 7 are not a technique in which an oxide of REM and ZrO 2 are used in combination as in Patent Documents 1 to 4, but if REM is added to molten steel in which the amount of dissolved oxygen is adjusted, approximately It is disclosed that the HAZ toughness can be improved when high heat input welding exceeding 300 kJ / cm (about 30 kJ / mm) is performed.

特開2007−100213号公報Japanese Patent Laid-Open No. 2007-1001000 特開2007−247004号公報JP 2007-247004 A 特開2007−247005号公報JP 2007-247005 A 特開2009−197267号公報JP 2009-197267 A 特開2003−221643号公報JP 2003-221463 A 特開2003−286540号公報JP 2003-286540 A 特開2002−363687号公報JP 2002-363687 A

本発明は上記の様な事情に着目してなされたものであって、その目的は、特に入熱量が50kJ/mm以上の大入熱溶接を行なった場合であってもHAZ靱性に優れた鋼材およびその製造方法を提供することにある。   The present invention has been made by paying attention to the above-described circumstances, and the purpose thereof is a steel material excellent in HAZ toughness even when high heat input welding is performed with a heat input amount of 50 kJ / mm or more. And providing a manufacturing method thereof.

上記課題を解決することのできた本発明に係る溶接熱影響部の靱性に優れた鋼材は、C:0.02〜0.15%(質量%の意味。以下成分について同じ。)、Si:0.5%以下(0%を含まない)、Mn:2.5%以下(0%を含まない)、P:0.03%以下(0%を含まない)、S:0.02%以下(0%を含まない)、Al:0.050%以下(0%を含まない)、N:0.010%以下(0%を含まない)、Ti:0.005〜0.10%、Zr:0.0005〜0.050%、REM:0.0003〜0.015%、Ca:0.0003〜0.010%、およびO:0.0005〜0.010%を含有し、残部が鉄および不可避不純物からなる鋼材である。そして、(a)前記鋼材に含まれる全酸化物系介在物の組成を測定して単独酸化物に質量換算したとき、平均組成で、ZrO2:5〜50%、REMの酸化物(REMをMの記号で表すとM23):5〜50%、CaO:50%以下(0%を含まない)を満足し、且つ、(b)前記鋼材に含まれる全介在物のうち、円相当直径で0.1〜2μmの介在物が観察視野面積1mm2あたり120個以上で、円相当直径で3μm超の酸化物が観察視野面積1mm2あたり5.0個以下で、円相当直径で5μm超の酸化物が観察視野面積1mm2あたり5.0個以下であり、(c−1)前記鋼材に含まれる全介在物の組成を測定したとき、全介在物の個数に対して、REMとZrのモル比(REM/Zr)が0.6〜1.4を満足するREMおよびZr含有介在物Iの個数割合が30%以上であるか、および/または(c−2)前記鋼材に含まれる全介在物の組成を測定したとき、全介在物の個数に対して、REMとZrの合計モル数と、AlとCaとTiの合計モル数との比[(REM+Zr)/(Al+Ca+Ti)]が0.5〜1.2を満足するREM、Zr、Al、Ca、およびTi含有介在物IIの個数割合が40%以上である点に要旨を有している。 The steel material excellent in the toughness of the weld heat affected zone according to the present invention that has solved the above problems is C: 0.02 to 0.15% (meaning mass%; the same applies to the following components), Si: 0. 0.5% or less (not including 0%), Mn: 2.5% or less (not including 0%), P: 0.03% or less (not including 0%), S: 0.02% or less ( 0% not included), Al: not more than 0.050% (not including 0%), N: not more than 0.010% (not including 0%), Ti: 0.005 to 0.10%, Zr: 0.0005 to 0.050%, REM: 0.0003 to 0.015%, Ca: 0.0003 to 0.010%, and O: 0.0005 to 0.010%, with the balance being iron and A steel material made of inevitable impurities. And (a) When the composition of all oxide inclusions contained in the steel material is measured and converted into a single oxide by mass, the average composition is ZrO 2 : 5 to 50%, REM oxide (REM When represented by the symbol M, M 2 O 3 ): 5 to 50%, CaO: 50% or less (excluding 0%) is satisfied, and (b) of all the inclusions contained in the steel material, Inclusions with an equivalent diameter of 0.1 to 2 μm are 120 or more per 1 mm 2 of observation field area, and oxides with an equivalent diameter of 3 or more than 3 μm are 5.0 or less per 1 mm 2 of observation field area. The number of oxides exceeding 5 μm is 5.0 or less per 1 mm 2 of the observation visual field area. (C-1) When the composition of all inclusions contained in the steel material is measured, the number of all inclusions is REM. And Zr satisfying a molar ratio (REM / Zr) of 0.6 to 1.4 The number ratio of inclusion I is 30% or more, and / or (c-2) When the composition of all inclusions contained in the steel material is measured, REM and Zr with respect to the number of all inclusions And the ratio [(REM + Zr) / (Al + Ca + Ti)] of the total number of moles of Al, Ca and Ti satisfying 0.5 to 1.2, including REM, Zr, Al, Ca and Ti The point is that the number ratio of the product II is 40% or more.

上記鋼材は、更に他の元素として、
[1]Cu:2%以下(0%を含まない)および/またはNi:3.5%以下(0%を含まない)、
[2]Cr:3%以下(0%を含まない)および/またはMo:1%以下(0%を含まない)、
[3]Nb:0.25%以下(0%を含まない)および/またはV:0.1%以下(0%を含まない)、
[4]B:0.005%以下(0%を含まない)
等の元素を含有してもよい。
The steel material, as another element,
[1] Cu: 2% or less (not including 0%) and / or Ni: 3.5% or less (not including 0%),
[2] Cr: 3% or less (not including 0%) and / or Mo: 1% or less (not including 0%),
[3] Nb: 0.25% or less (not including 0%) and / or V: 0.1% or less (not including 0%),
[4] B: 0.005% or less (excluding 0%)
Etc. may be contained.

本発明の上記鋼材は、溶存酸素量QOfを0.0003〜0.01質量%の範囲に調整した溶鋼にREMを添加するにあたり、前記溶鋼の溶存酸素量QOfとREMの添加量QREMが下記(1)式を満足する量のREMを添加すると共に、上記範囲に溶存酸素量QOfを調整した溶鋼に、REM、Zr、Ti、Ca、およびAlを添加するにあたり、REMおよびZrをa群元素、Ti、Ca、およびAlをb群元素としたとき、各元素の添加条件が下記(2)および/または下記(3)を満足することによって製造できる。
2logQREM+3logQOf≦−12.00 ・・・(1)
(2)前記a群元素について、REMとZrを同時に添加するか、またはREMとZrのうち一方の元素を添加してから5分以内に他方の元素を添加する。
(3)前記a群元素の添加前および/または添加後に前記b群元素を添加することとし、前記a群元素の添加前に前記b群元素を添加する場合について、前記b群元素のうち最初の元素の添加開始時点から前記a群元素のうち最初の元素の添加開始時点までの時間をt1(分)、前記a群元素の添加後に前記b群元素を添加する場合について、前記a群元素のうち最後の元素の添加開始時点から前記b群元素のうち最初の元素の添加開始時点までの時間をt2(分)とし、前記t1と前記t2の合計を3分以上とする。(0≦t1、0≦t2、但し、t1およびt2は0ではない。)
The steel of the present invention, when the addition of REM to molten steel having an adjusted dissolved oxygen content Q Of the range of 0.0003 to 0.01 mass%, the addition amount Q REM of dissolved oxygen Q Of the REM of the molten steel When adding REM, Zr, Ti, Ca, and Al to the molten steel in which the dissolved oxygen amount Q Of is adjusted to the above range, REM and Zr are added. When the a-group element, Ti, Ca, and Al are b-group elements, the element can be manufactured by satisfying the following (2) and / or the following (3).
2logQ REM + 3logQ Of ≤-12.00 (1)
(2) About the said a group element, REM and Zr are added simultaneously, or the other element is added within 5 minutes after adding one element among REM and Zr.
(3) The case where the b group element is added before and / or after the addition of the a group element, and the b group element is added before the addition of the a group element. T1 (minutes) from the start of addition of the first element to the start of addition of the first element among the a group elements, and when the b group element is added after the addition of the a group element, the a group element The time from the start of addition of the last element to the start of addition of the first element among the group b elements is t2 (minutes), and the sum of t1 and t2 is 3 minutes or more. (0 ≦ t1, 0 ≦ t2, where t1 and t2 are not 0.)

本発明によれば、粒内α変態(αはフェライト、或いはフェライトおよびベイナイトの混合組織を意味する。以下同じ。)の核となる酸化物(Zr、REM、およびCaを含有する酸化物)が所定量生成されていると共に、鋼材中に存在する介在物および酸化物の大きさと個数(即ち、粒度分布)、並びに全介在物の個数に対して所定の元素を特定の関係で含有する介在物の個数割合が適切に制御されているため、大入熱溶接時のHAZ靱性に優れた鋼材を提供することができる。特に本発明の鋼材では、HAZ靱性向上に有用な円相当直径が0.1〜2μmの微細な介在物が所定量以上存在するだけでなく、HAZ靱性向上に悪影響を及ぼすことが明らかになった円相当直径が3μm超の粗大な酸化物および円相当直径が5μm超の超粗大な酸化物の両方の個数が有意に抑制されており、しかも全介在物の個数に対して、REMとZrのモル比が所定の関係を満足するREMおよびZr含有介在物Iの個数割合および/またはREMとZrの合計モル数と、AlとCaとTiの合計モル数との比が特定の関係を満足するREM、Zr、Al、Ca、およびTi含有介在物IIの個数割合を所定量以上としているため、上記特許文献4の実施例に開示されたHAZ靱性評価方法よりも大きな入熱量で溶接を行ってもHAZ靱性を高めることができる。   According to the present invention, an oxide (an oxide containing Zr, REM, and Ca) serving as a nucleus of intragranular α transformation (α means ferrite or a mixed structure of ferrite and bainite; the same shall apply hereinafter). Inclusions that are generated in a predetermined amount, and contain a predetermined element in a specific relationship with respect to the size and number of inclusions and oxides (ie, particle size distribution) present in the steel, and the total number of inclusions Therefore, it is possible to provide a steel material having excellent HAZ toughness during high heat input welding. In particular, in the steel material of the present invention, it has been clarified that not only a predetermined amount or more of fine inclusions having an equivalent circle diameter of 0.1 to 2 μm useful for improving HAZ toughness are present, but also adversely affecting the improvement of HAZ toughness. The number of both coarse oxides with an equivalent circle diameter of more than 3 μm and super coarse oxides with an equivalent circle diameter of more than 5 μm is significantly suppressed, and the number of inclusions is REM and Zr. The number ratio of REM and Zr-containing inclusions I and / or the ratio of the total number of moles of REM and Zr and the total number of moles of Al, Ca, and Ti satisfy a specific relationship. Since the number ratio of the REM, Zr, Al, Ca, and Ti-containing inclusions II is a predetermined amount or more, welding is performed with a larger heat input than the HAZ toughness evaluation method disclosed in the example of Patent Document 4 above. HAZ tough It can be increased.

図1は、a群元素の添加前後においてb群元素を添加したときの元素の添加順の一例を示している。FIG. 1 shows an example of the order of addition of elements when the b group element is added before and after the addition of the a group element. 図2は、本発明で規定する(1)式の左辺の値(Z値)と円相当直径が3μmを超える酸化物の観察視野面積1mm2あたりの個数との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the value (Z value) on the left side of equation (1) defined in the present invention and the number of oxides with an equivalent circle diameter exceeding 3 μm per 1 mm 2 observation field area. 図3は、円相当直径が3μmを超える酸化物の観察視野面積1mm2あたりの個数と−40℃における吸収エネルギー(vE-40)との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the number of oxides with an equivalent circle diameter exceeding 3 μm per 1 mm 2 observation field area and the absorbed energy (vE −40 ) at −40 ° C.

本発明は、上記特許文献1〜4に開示された粒内α変態の核となる酸化物を利用した技術を改良し、より大きな入熱量で溶接を行ってもHAZ靱性が劣化しない鋼材を得るための技術に関するものである。   The present invention improves the technique using the oxide that is the nucleus of the intragranular α transformation disclosed in Patent Documents 1 to 4 above, and obtains a steel material in which the HAZ toughness does not deteriorate even when welding is performed with a larger heat input. For technology.

即ち、本発明者らは、上記特許文献4を提案した後も更に一層高いレベルの大入熱溶接時のHAZ靱性に優れた鋼材を提供するため研究を進めてきた。その結果、特許文献4よりも更に大入熱量の条件である「1450℃の加熱温度で5秒間保持した後800℃から500℃までの温度を400秒で冷却する熱サイクル」(入熱条件:1450℃×5秒、冷却時間Tc=400秒)を与えた場合でもHAZ靱性に優れた鋼材を提供するには、特許文献4のように円相当直径で5.0μm超の酸化物を5個以下に低減するだけでは不充分であり、特許文献4を含め従来では全く着目されていなかった3.0μm超の酸化物の個数を低減すること、および鋼材に含まれる全介在物の組成を測定したとき、鋼材に含まれる全介在物の個数に対して、REMとZrのモル比(REM/Zr)が0.6〜1.4を満足するREMおよびZr含有介在物Iの個数割合が30%以上であるか、REMとZrの合計モル数と、AlとCaとTiの合計モル数との比[(REM+Zr)/(Al+Ca+Ti)]が0.5〜1.2を満足するREM、Zr、Al、Ca、およびTi含有介在物IIの個数割合が40%以上であることが極めて重要であることを見出し、本発明を完成した。   That is, the present inventors have advanced research in order to provide a steel material excellent in HAZ toughness at the time of high heat input welding even after proposing the above-mentioned Patent Document 4. As a result, “a heat cycle in which the temperature from 800 ° C. to 500 ° C. is cooled in 400 seconds after holding at the heating temperature of 1450 ° C. for 5 seconds”, which is a condition of a larger heat input than that of Patent Document 4 (heat input conditions: In order to provide a steel material excellent in HAZ toughness even when given 1450 ° C. × 5 seconds and cooling time Tc = 400 seconds, as in Patent Document 4, five oxides having a circle equivalent diameter exceeding 5.0 μm are provided. It is not enough to reduce below, and the number of oxides exceeding 3.0 μm, which has not been noticed in the past including Patent Document 4, is reduced, and the composition of all inclusions contained in the steel material is measured. The number ratio of REM and Zr-containing inclusions I satisfying the REM to Zr molar ratio (REM / Zr) of 0.6 to 1.4 with respect to the number of all inclusions contained in the steel material is 30. % Or more of REM and Zr REM, Zr, Al, Ca, and Ti-containing inclusions II in which the ratio of the number of moles to the total number of moles of Al, Ca, and Ti [(REM + Zr) / (Al + Ca + Ti)] satisfies 0.5 to 1.2 The present inventors have found that it is very important that the number ratio is 40% or more, thereby completing the present invention.

このように本発明の特徴部分は、
(ア)HAZ靱性向上に有用な円相当直径0.1〜2μmの微細な介在物の個数を増大させる(120個/mm2以上)と共に、
(イ)HAZ靱性向上に悪影響を及ぼす円相当直径5μm超の酸化物の個数を低減させ(5.0個/mm2以下)、更に、
(ウ)本発明においてHAZ靱性向上に悪影響を及ぼすことが初めて明らかになった円相当直径3μm超の酸化物の個数も低減させ(5.0個/mm2以下)、並びに
(エ)鋼材に含まれる全介在物の組成を測定したとき、鋼材に含まれる全介在物の個数に対して、REMとZrのモル比(REM/Zr)が0.6〜1.4を満足するREMおよびZr含有介在物Iの個数割合が30%以上であるか、鋼材に含まれる全介在物の個数に対して、REMとZrの合計モル数と、AlとCaとTiの合計モル数との比[(REM+Zr)/(Al+Ca+Ti)]が0.5〜1.2を満足するREM、Zr、Al、Ca、およびTi含有介在物IIの個数割合が40%以上であるところにある。
Thus, the characteristic part of the present invention is
(A) Increasing the number of fine inclusions having an equivalent circle diameter of 0.1 to 2 μm useful for improving HAZ toughness (120 pieces / mm 2 or more),
(A) The number of oxides having an equivalent circle diameter of more than 5 μm that adversely affects the improvement of HAZ toughness is reduced (5.0 pieces / mm 2 or less).
(C) The number of oxides having an equivalent circle diameter of more than 3 μm, which was first found to have an adverse effect on the improvement of HAZ toughness in the present invention, was reduced (5.0 pieces / mm 2 or less), and (d) REM and Zr satisfying a REM / Zr molar ratio (REM / Zr) of 0.6 to 1.4 with respect to the number of all inclusions contained in the steel when the composition of all inclusions is measured. The ratio of the number of inclusions I is 30% or more, or the ratio between the total number of moles of REM and Zr and the total number of moles of Al, Ca and Ti with respect to the number of all inclusions contained in the steel material [ The number ratio of REM, Zr, Al, Ca, and Ti-containing inclusions II satisfying (REM + Zr) / (Al + Ca + Ti)] of 0.5 to 1.2 is 40% or more.

このような特徴部分を備えることによって、上記特許文献4よりも一層大きな入熱量で溶接を行ってもHAZ靱性を改善できる。即ち、上記特許文献4との関係で言えば、上記(ア)および(イ)に加え、上記(ウ)および(エ)を規定したところに本発明の特徴部分が存在する。   By providing such a characteristic portion, the HAZ toughness can be improved even when welding is performed with a larger heat input than that of Patent Document 4. That is, in relation to the above-mentioned Patent Document 4, in addition to the above (a) and (b), the characteristic part of the present invention exists where the above (c) and (d) are defined.

なお、厳密に言えば、上記(ア)の規定は上記特許文献4とは異なっており、特許文献4では酸化物を対象にして当該酸化物中の微細な個数を制御しているのに対し、本発明では酸化物だけでなく鋼材中に存在する全ての介在物を対象にして当該介在物中の微細な個数を制御している点で相違している。本発明者らの検討結果によれば、良好なHAZ靱性を実現するには、とりわけ円相当直径(以下、単に「粒径」と略記する場合がある。)が大きい酸化物(本発明では、3μm超の酸化物と5μm超の酸化物の両方)の寄与度が非常に大きいことが明らかになった。そしてこの大きい酸化物が生成しないように制御すれば、粒径0.1〜2μmの小さい介在物については、これを酸化物に限定せずに、全介在物に拡げても所望の特性を確保できるのである。   Strictly speaking, the definition of the above (a) is different from the above-mentioned Patent Document 4, and in Patent Document 4, the fine number in the oxide is controlled for the oxide. In the present invention, the difference is that not only the oxide but also all inclusions present in the steel material are controlled, and the fine number in the inclusions is controlled. According to the examination results of the present inventors, in order to realize good HAZ toughness, an oxide having a large equivalent circle diameter (hereinafter, sometimes simply abbreviated as “particle size”) (in the present invention, It has been found that the contribution of both oxides> 3 μm and oxides> 5 μm is very large. And if this large oxide is controlled so as not to be generated, the small inclusions having a particle size of 0.1 to 2 μm are not limited to oxides, and the desired characteristics can be secured even if they are expanded to all inclusions. It can be done.

また、上記(ウ)の要件を具備させるには、上記特許文献4や前述した特許文献5〜7のように、REM添加前の溶鋼中の溶存酸素量を制御するだけでは不充分であり、当該溶鋼中の溶存酸素量QOfに応じてREMの添加量QREMを適切に制御することが極めて重要であることも判明した。詳細には、REM添加前の溶鋼の溶存酸素量QOfに応じて、下記(1)式を満足する量のREM(QREM)を添加する。これにより、所望とするHAZ靱性の実現に悪影響を及ぼす粒径が大きいREM系酸化物の生成を抑制することができる。下記(1)式の技術的意義などの詳細は後述する。
2logQREM+3logQOf≦−12.00 ・・・(1)
Moreover, in order to provide the requirement (c), it is not sufficient to control the amount of dissolved oxygen in the molten steel before the addition of REM, as in Patent Document 4 and Patent Documents 5 to 7 described above, It has also been found that it is extremely important to appropriately control the REM addition amount Q REM according to the dissolved oxygen amount Q Of in the molten steel. Specifically, an amount of REM (Q REM ) that satisfies the following formula (1) is added according to the dissolved oxygen amount Q Of of the molten steel before REM addition. Thereby, the production | generation of the REM type | system | group oxide with a large particle size which has a bad influence on realization of the desired HAZ toughness can be suppressed. Details of the technical significance of the following formula (1) will be described later.
2logQ REM + 3logQ Of ≤-12.00 (1)

更に、上記(エ)の要件うち、上記介在物Iの個数割合についての要件を具備させるには、REMとZrの添加順序、およびこれらの元素の添加間隔時間に留意する必要があり、溶存酸素量QOfを調整した溶鋼にREMを添加するにあたり、REMとZrを同時に添加するか、またはREMとZrのうち一方の元素を添加してから他方の元素を添加するまでの時間を5分以内に制御することが重要であることが明らかとなった。 Furthermore, in order to satisfy the requirement for the number ratio of inclusion I among the requirements (d) above, it is necessary to pay attention to the order of addition of REM and Zr, and the interval time between addition of these elements, and dissolved oxygen When adding REM to molten steel with adjusted amount Q Of , add REM and Zr at the same time, or add one element of REM and Zr and add other element within 5 minutes It became clear that it was important to control.

また、上記(エ)の要件うち、上記介在物IIの個数割合についての要件を具備させるには、REM、Zr、Ti、Ca、およびAlの添加条件を適切に制御することが重要であることが明らかとなった。詳細には、REM、Zr、Ti、Ca、およびAlをa群(REMおよびZr)とb群(Ti、Ca、およびAl)に分けたときの各群の添加順序、および群同士の添加間隔時間に留意する必要がある。   In addition, in order to satisfy the requirement of the number of inclusions II among the requirements of (d) above, it is important to appropriately control the addition conditions of REM, Zr, Ti, Ca, and Al. Became clear. Specifically, the addition order of each group when REM, Zr, Ti, Ca, and Al are divided into a group (REM and Zr) and b group (Ti, Ca, and Al), and the addition interval between groups It is necessary to pay attention to time.

上記(エ)の要件の技術的意義についても詳細は後述する。   Details of the technical significance of the requirement (d) will be described later.

本明細書では、粒内α変態の核となる酸化物、即ち、Zr、REM、およびCaを含有する酸化物と、鋼材中に含まれるすべての酸化物を区別するため、説明の便宜上、前者を特に「Zr・REM・Ca系酸化物」と呼び、後者を特に「全酸化物系介在物」と呼ぶ場合がある。なお、酸化物には、単独酸化物の他、酸化物以外の介在物(例えば、硫化物や窒化物、炭化物、或いはこれらの複合化合物)が複合している複合酸化物も含む意味である。また、上記のZr・REM・Ca系酸化物を構成する必須成分(Zr、REM、およびCa)を、特に「粒内α変態核生成元素」と呼ぶ場合がある。   In this specification, in order to distinguish between the oxides that are the core of the intragranular α-transformation, that is, the oxides containing Zr, REM, and Ca, and all the oxides contained in the steel material, the former is used for convenience of explanation. Is called “Zr / REM / Ca oxide”, and the latter is called “total oxide inclusions”. The oxide includes a single oxide and a composite oxide in which inclusions other than the oxide (for example, sulfide, nitride, carbide, or a composite compound thereof) are combined. In addition, the essential components (Zr, REM, and Ca) constituting the Zr / REM / Ca-based oxide may be particularly referred to as “intragranular α-transformation nucleation elements”.

ここで、粒内α変態の起点となるZr・REM・Ca系酸化物について説明する。上記Zr・REM・Ca系酸化物は、Zrの酸化物、REMの酸化物、およびCaの酸化物を必ず含んでいるものを意味している。Zr・REM・Ca系酸化物を構成する元素(粒内α変態核生成元素)は、Zr、REM、およびCaであるが、これら以外に、例えば、Ti、Mn、Si、Alなどの酸化物形成元素や、その他の鋼中成分を含んでいても良い。   Here, the Zr / REM / Ca-based oxide that is the starting point of the intragranular α transformation will be described. The Zr / REM / Ca-based oxide means an oxide containing a Zr oxide, a REM oxide, and a Ca oxide. The elements (intragranular α-transformation nucleation elements) constituting the Zr / REM / Ca-based oxide are Zr, REM, and Ca. In addition to these, for example, oxides such as Ti, Mn, Si, and Al It may contain forming elements and other steel components.

上記Zr・REM・Ca系酸化物の存在形態は特に限定されず、粒内α変態核生成元素を単独で含有する単独酸化物として存在していても良いし、粒内α変態核生成元素の2種以上を含む複合酸化物として存在していても良い。単独酸化物の例としては、ZrではZrO2;CaではCaO;REMでは、REMを「M」の記号で表したとき、M23、M35、MO2などが例示される。また、これらの酸化物は、互いに凝集して存在しても良いし、上記酸化物に硫化物や窒化物などの他の化合物が複合析出した形態で存在しても良い。 The existence form of the Zr / REM / Ca-based oxide is not particularly limited, and may be present as a single oxide containing an intragranular α-transformation nucleation element alone, or may be present as an intragranular α-transformation nucleation element. You may exist as complex oxide containing 2 or more types. Examples of the single oxide include ZrO 2 for Zr; CaO for Ca; and REM for REM represented by the symbol “M”, such as M 2 O 3 , M 3 O 5 , and MO 2 . These oxides may exist in an aggregated state, or may exist in a form in which other compounds such as sulfides and nitrides are complex-deposited on the oxides.

上記Zr・REM・Ca系酸化物は、Tiの酸化物を更に含有していることが好ましい。Tiの酸化物が更に存在すると粒内α変態が促進され、HAZ靱性の向上が一層高められるようになる。Tiの酸化物は、単独酸化物(例えば、Ti23、Ti35、TiO2)として存在していても良いし、Zr・REM・Ca系酸化物の少なくとも一種とTiとを含む複合酸化物の形態で存在していても良い。 The Zr / REM / Ca-based oxide preferably further contains an oxide of Ti. When Ti oxide further exists, intragranular α transformation is promoted, and the improvement of HAZ toughness is further enhanced. The oxide of Ti may exist as a single oxide (for example, Ti 2 O 3 , Ti 3 O 5 , TiO 2 ), or contains at least one of Zr / REM / Ca oxides and Ti. It may exist in the form of a complex oxide.

また、本発明の鋼材には、上記の酸化物以外に硫化物、窒化物、炭化物、或いはこれらの複合化合物等も含まれるが、本明細書では、鋼材中に含まれる酸化物、硫化物、窒化物、炭化物、或いはこれらの複合化合物等を総称して「全介在物」と呼ぶ。   Further, the steel material of the present invention includes sulfides, nitrides, carbides, or composite compounds thereof in addition to the oxides described above, but in this specification, oxides, sulfides, Nitride, carbide, or composite compounds thereof are collectively referred to as “all inclusions”.

また、本明細書では、鋼材に含まれる全酸化物系介在物のうち、円相当直径が0.1〜2μmの酸化物を「微細な酸化物」、円相当直径が3μm超の酸化物を「粗大な酸化物」、円相当直径が5μm超の酸化物を「超粗大な酸化物」と夫々呼び、これらを区別する場合がある。なお、上記特許文献4では、円相当直径で5μm超の酸化物を「粗大な酸化物」と定義していたが、本明細書では、円相当直径で3μm超の酸化物を「粗大な酸化物」としている。   Moreover, in this specification, among all oxide inclusions contained in the steel material, an oxide having an equivalent circle diameter of 0.1 to 2 μm is referred to as “fine oxide”, and an oxide having an equivalent circle diameter of more than 3 μm. In some cases, “coarse oxides” and oxides having an equivalent circle diameter of more than 5 μm are referred to as “supercoarse oxides”, respectively. In Patent Document 4, an oxide having an equivalent circle diameter of more than 5 μm is defined as “coarse oxide”. However, in this specification, an oxide having an equivalent circle diameter of more than 3 μm is defined as “coarse oxidation”. Things ".

本明細書において「大入熱溶接のHAZ靱性に優れた鋼材」とは、鋼材に対し、1450℃で5秒間保持した後、800℃から500℃までの温度を400秒で冷却する熱サイクル(熱履歴)を与えたとき(入熱条件:1450℃×5秒、冷却時間Tc=400秒)、−40℃における吸収エネルギー(vE-40)が130J以上を満足するものを意味する。このvE-40は大きい程良く、好ましくはvE-40が150J以上である。上記の熱サイクルを特に「大入熱熱履歴」と呼ぶ場合がある。この熱サイクルによる入熱量は、上記特許文献1や特許文献4に記載の熱サイクルによる入熱量に比べて高いものであり、その意味で、本発明の「大入熱溶接」と、上記特許文献1や特許文献4に記載の「大入熱溶接」の入熱レベルが相違するものである。 In this specification, “steel material having excellent HAZ toughness of high heat input welding” means a heat cycle in which a steel material is held at 1450 ° C. for 5 seconds and then a temperature from 800 ° C. to 500 ° C. is cooled in 400 seconds ( Heat history) (heat input condition: 1450 ° C. × 5 seconds, cooling time Tc = 400 seconds), it means that the absorbed energy (vE −40 ) at −40 ° C. satisfies 130 J or more. The larger vE -40 is better, and preferably vE -40 is 150 J or more. The above heat cycle may be particularly referred to as “large heat input heat history”. The amount of heat input by this heat cycle is higher than the amount of heat input by the heat cycle described in Patent Document 1 or Patent Document 4, and in that sense, the “large heat input welding” of the present invention and the above Patent Document. 1 and the heat input level of “Large heat input welding” described in Patent Document 4 are different.

本発明において、熱サイクルの温度を1450℃に設定したのは、HAZのうち特に溶接金属に近接した部位(ボンド部と呼ばれることがある。)の熱温度は1400℃を超えて概ね1450℃程度になることを考慮したものである。   In the present invention, the temperature of the heat cycle is set to 1450 ° C. The heat temperature of the HAZ particularly close to the weld metal (sometimes called a bond portion) exceeds 1400 ° C. and is approximately 1450 ° C. It is considered to become.

以下、本発明を構成する上記(a)〜(c)の要件について、詳しく説明する。   Hereinafter, the requirements (a) to (c) constituting the present invention will be described in detail.

[(a)酸化物の平均組成について]
本発明の鋼材は、鋼材に含まれる全酸化物系介在物の組成を測定して単独酸化物(合計が100%)として質量換算したときに、平均組成で、ZrO2:5〜50%、REMの酸化物(REMをMの記号で表すとM23):5〜50%、CaO:50%以下(0%を含まない)、を満足しており、これにより粒内α変態の核として有効に作用するようになる。各酸化物の下限値を下回ると、溶接時に粒内α変態の核となる酸化物の量が不足し、HAZ靱性の向上作用が発揮されない。一方、各酸化物の上限値を超えると、酸化物が粗大化し、粒内α変態の核として有効に作用する微細な酸化物の個数が少なくなり、HAZ靱性向上作用が有効に発揮されない。
[(A) Average composition of oxide]
The steel material of the present invention has an average composition of ZrO 2 : 5 to 50% when the composition of all oxide inclusions contained in the steel material is measured and converted to mass as a single oxide (total is 100%). REM oxides (representing M 2 O 3 when REM is represented by the symbol M): 5 to 50%, CaO: 50% or less (not including 0%) are satisfied. It works effectively as a nucleus. Below the lower limit of each oxide, the amount of oxide that becomes the nucleus of intragranular α-transformation at the time of welding is insufficient, and the effect of improving HAZ toughness is not exhibited. On the other hand, when the upper limit value of each oxide is exceeded, the oxide becomes coarse, the number of fine oxides that effectively act as nuclei of intragranular α transformation decreases, and the HAZ toughness improving effect is not exhibited effectively.

上記ZrO2は、5%以上であり、好ましくは8%以上、より好ましくは10%以上である。一方、上限は50%であり、好ましい上限は45%、より好ましい上限は40%である。 The ZrO 2 is 5% or more, preferably 8% or more, more preferably 10% or more. On the other hand, the upper limit is 50%, the preferred upper limit is 45%, and the more preferred upper limit is 40%.

上記REMの酸化物は、5%以上であり、好ましくは10%以上、より好ましくは13%以上である。一方、上限は50%であり、好ましい上限は45%、より好ましい上限は40%である。なお、REMの酸化物は、REMを記号Mで表すと、鋼材中にM23、M35、MO2などの形態で存在するが、本発明では、REMの酸化物をすべてM23に換算したときの量を意味する。 The oxide of the REM is 5% or more, preferably 10% or more, more preferably 13% or more. On the other hand, the upper limit is 50%, the preferred upper limit is 45%, and the more preferred upper limit is 40%. In addition, when the REM is represented by the symbol M, the REM oxide exists in the form of M 2 O 3 , M 3 O 5 , MO 2, etc. in the steel material. It means the amount when converted to 2 O 3 .

上記CaOは、粒内α変態の核として有効に作用するが、過剰に含まれると却って粒内α変態能が劣化する。また、CaOが過剰に含まれると鋳造時に用いるノズルの溶損を引き起こす。従って上限は50%とし、好ましくは45%以下、より好ましくは40%以下、特に好ましくは30%以下とする。上記作用を有効に発揮させるには、CaOは、3%以上含有していることが好ましい。CaOは、より好ましくは5%以上、更に好ましくは10%以上とする。   The CaO effectively acts as a nucleus for intragranular α-transformation, but if included excessively, the intragranular α-transformation ability deteriorates. Further, if CaO is excessively contained, the nozzle used for casting is melted. Therefore, the upper limit is 50%, preferably 45% or less, more preferably 40% or less, and particularly preferably 30% or less. In order to effectively exhibit the above action, CaO is preferably contained in an amount of 3% or more. CaO is more preferably 5% or more, and still more preferably 10% or more.

なお、全酸化物系介在物の組成の残りの成分は特に限定されず、本発明の鋼材中に含まれる酸化物形成元素の酸化物(例えば、SiO2、Al23、MnOなど)が挙げられる。 The remaining components of the composition of all oxide inclusions are not particularly limited, and oxides of oxide-forming elements contained in the steel material of the present invention (for example, SiO 2 , Al 2 O 3 , MnO, etc.) Can be mentioned.

上記鋼材に含まれる全酸化物系介在物の組成は、鋼材の表面を例えば電子線マイクロプローブX線分析計(Electron Probe X-ray Micro Analyzer;EPMA)で観察し、観察視野内に認められる酸化物を定量分析して測定できる。測定条件の詳細は、後記する実施例の欄で説明する。   The composition of all oxide inclusions contained in the steel material is the oxidation observed in the observation field by observing the surface of the steel material with, for example, an electron probe X-ray micro analyzer (EPMA). It can be measured by quantitative analysis. Details of the measurement conditions will be described in the column of Examples described later.

[(b)全介在物の粒度分布について]
次に、本発明を特徴付ける全介在物の個数と大きさについて説明する。本発明の鋼材は、
(i)円相当直径で0.1〜2μmの微細な介在物が観察視野面積1mm2あたり120個以上で、
(ii)円相当直径で3μmを超える粗大な酸化物が観察視野面積1mm2あたり5.0個以下で、且つ、
(iii)円相当直径で5μmを超える超粗大な酸化物が観察視野面積1mm2あたり5.0個以下
のすべてを満足するものである。特に本発明では、円相当直径(粒径)が大きな酸化物について、上記(ii)および上記(iii)の両方を規定したところに最大の特徴がある。
[(B) Particle size distribution of all inclusions]
Next, the number and size of all the inclusions that characterize the present invention will be described. The steel material of the present invention is
(I) The number of fine inclusions having an equivalent circle diameter of 0.1 to 2 μm is 120 or more per 1 mm 2 of the observation visual field area.
(Ii) The number of coarse oxides having an equivalent circle diameter exceeding 3 μm is 5.0 or less per 1 mm 2 of the observation visual field area, and
(Iii) Super coarse oxide having an equivalent circle diameter exceeding 5 μm satisfies all of 5.0 or less per 1 mm 2 of the observation visual field area. In particular, the present invention has the greatest feature when both (ii) and (iii) are defined for an oxide having a large equivalent-circle diameter (particle diameter).

ここで、上記(ii)および上記(iii)の要件を両方満足するということは、とりもなおさず、粒径が3μm超5μm以下の酸化物の個数が5.0個以下と少ないことを意味している。即ち、本発明による大入熱熱履歴を受けた場合でもvE-40≧130Jと非常に高いHAZ靱性を確保するには、上記特許文献4では全く着目していなかった「粒径3μm超5μm以下」の酸化物の低減が極めて重要であり、当該範囲の酸化物の個数を制御できない場合は、当該酸化物が脆性破壊の起点となってHAZ靱性が劣化することが、本発明者らの検討結果によって初めて明らかになった。 Here, satisfying both of the requirements (ii) and (iii) means that the number of oxides having a particle size of more than 3 μm and less than 5 μm is as small as 5.0 or less. is doing. That is, in order to ensure a very high HAZ toughness of vE -40 ≧ 130 J even when receiving a large heat input heat history according to the present invention, the above-mentioned Patent Document 4 did not pay any attention to “particle size of 3 μm to 5 μm or less. It is extremely important to reduce the number of oxides in the above range, and when the number of oxides in the range cannot be controlled, the present inventors consider that the HAZ toughness deteriorates due to the origin of brittle fracture. The results revealed for the first time.

以下、実施例の下記表5、表6を参照しながら、上記(ii)および上記(iii)の技術的意義を詳しく説明する。   Hereinafter, the technical significance of (ii) and (iii) will be described in detail with reference to Tables 5 and 6 below.

下記表5のNo.1〜32は、本発明で規定する要件をすべて満足する例である。上記(ii)および上記(iii)に着目して検討すると、No.1〜32のうち5μm超の酸化物数が最も多いNo.5(1.440個)でも3μm超の酸化物数は4.64個に抑えられており、その結果、良好なHAZ靱性を確保できている。   No. in Table 5 below. 1-32 are examples which satisfy all the requirements prescribed | regulated by this invention. Considering the above (ii) and (iii), no. No. 1 to No. 2 having the largest number of oxides exceeding 5 μm. 5 (1.440), the number of oxides exceeding 3 μm is suppressed to 4.64, and as a result, good HAZ toughness can be secured.

一方、下記表6のNo.35〜38、49、53、54、61は、上記(iii)の要件を満足するが、上記(ii)の要件を満足しない例である。詳細には、5μm超の酸化物は0.440〜2.250個と、5.0個以下に抑えられているが、3μm超の酸化物は5.0個を超え、5.71〜10.65個と増加しており、その結果、所望のHAZ靱性が得られなかった。   On the other hand, no. 35 to 38, 49, 53, 54 and 61 are examples that satisfy the requirement (iii) but do not satisfy the requirement (ii). Specifically, the number of oxides exceeding 5 μm is limited to 0.440 to 2.250 and 5.0 or less, but the number of oxides exceeding 3 μm exceeds 5.0 and is from 5.71 to 10 As a result, the desired HAZ toughness was not obtained.

ここで、上記No.35〜38、49、53、54、61は、上記(iii)の要件を満足するという点において上記特許文献4の範囲に含まれるものであるが、特許文献4の範囲内に含まれるものであっても、上記(ii)の要件を満足しないものは、本発明で規定する所望のHAZ靱性を達成できないことが分かる。そこで本発明では、上記(iii)の他に所望のHAZ靱性を確保するための要件として、上記(ii)を更に規定した次第である。   Here, in the above No. 35 to 38, 49, 53, 54, and 61 are included in the range of Patent Document 4 in that they satisfy the requirement (iii), but are included in the range of Patent Document 4. Even if it does not satisfy | fill the requirements of said (ii), it turns out that the desired HAZ toughness prescribed | regulated by this invention cannot be achieved. Therefore, in the present invention, in addition to the above (iii), the above (ii) is further defined as a requirement for ensuring the desired HAZ toughness.

また、上記(ii)および上記(iii)の要件から、所望のHAZ靱性達成には、特に3μm超5μm以下の酸化物の個数が深く関与していることが読み取れる。即ち、製造条件によっては3μm超5μm以下の極く狭い範囲に酸化物が5.0個を超えて存在することがあるが、たとえ、上記(i)の微細領域の個数を多数増大させて上記(iii)の超粗大領域の個数を低減したとしても、3μm超5μm以下の粗大領域に5.0個超の酸化物が存在するだけで、所望のHAZ靱性が得られないことは、本発明者らにとっても予想外の知見であった。   Further, from the requirements (ii) and (iii), it can be seen that the number of oxides of more than 3 μm and not more than 5 μm is deeply involved in achieving the desired HAZ toughness. That is, depending on the manufacturing conditions, there may be more than 5.0 oxides in a very narrow range of more than 3 μm and less than 5 μm. Even if the number of fine regions in (i) is increased, Even if the number of super coarse regions in (iii) is reduced, the desired HAZ toughness cannot be obtained only by the presence of more than 5.0 oxides in the coarse regions of more than 3 μm and 5 μm or less. It was an unexpected finding for the people.

上記(ii)および上記(iii)の両方を満足させることによって何故所望のHAZ靱性を確保できるのかについて、詳細なメカニズムは不明であるが、1400℃を超えて1450℃になるとTiNの消失が加速的に進行して靱性が低下する。しかし3μm超5μm以下の酸化物を低減することで、このような靱性低下を抑えられると考えられる。   The detailed mechanism is unknown as to why the desired HAZ toughness can be ensured by satisfying both (ii) and (iii) above, but the disappearance of TiN accelerates when the temperature exceeds 1400 ° C. and reaches 1450 ° C. Toughness decreases. However, it is considered that such a decrease in toughness can be suppressed by reducing the oxide of more than 3 μm and not more than 5 μm.

上述したように本発明では上記(ii)および上記(iii)の要件を同時に満足することが必要である。即ち、粒径が3μm超の粗大な酸化物の個数は5.0個以下とし、且つ、粒径が5μm超の超粗大な酸化物の個数は5.0個以下とする。これらの個数は少なければ少ない程良く、いずれの場合も、好ましくは3.0個以下、より好ましくは2.0個以下、特に好ましくは1.0個以下、最も好ましくは0個である。詳細には、両者のバランスも含めて適切に制御することが好ましく、本発明の範囲内(いずれも5.0個以下)において、粒径が3μm超の粗大な酸化物よりも粒径が5μm超の超粗大な酸化物の個数を少なくすることが好ましい。具体的には、超粗大な酸化物の個数は下限(0個)に近づく程良く、おおむね1.0個以下が好ましく、限りなく0個に近い方が最も好ましいのに対し、粗大な酸化物の個数は、上限(5.0個)に近くても良く、おおむね4.0個以下でも好ましく用いられる。   As described above, in the present invention, it is necessary to satisfy the requirements (ii) and (iii) at the same time. That is, the number of coarse oxides having a particle size exceeding 3 μm is set to 5.0 or less, and the number of super coarse oxides having a particle size exceeding 5 μm is set to 5.0 or less. The smaller the number, the better. In any case, the number is preferably 3.0 or less, more preferably 2.0 or less, particularly preferably 1.0 or less, and most preferably 0. Specifically, it is preferable to control appropriately including the balance between the two, and within the scope of the present invention (both are 5.0 or less), the particle size is 5 μm than the coarse oxide having a particle size of more than 3 μm. It is preferable to reduce the number of super super coarse oxides. Specifically, the number of super coarse oxides is better as it approaches the lower limit (0), and is generally preferably 1.0 or less, and is most preferably close to 0 as opposed to coarse oxides. May be close to the upper limit (5.0), and is generally preferably 4.0 or less.

なお、円相当直径で3μmを超える酸化物の個数と5μmを超える酸化物の個数は、鋼材の断面を、例えば、EPMAで観察し、観察視野内に認められる介在物の成分組成を定量分析し、酸素含有量が5%以上の介在物を酸化物とし、該酸化物の円相当直径を、例えば、走査型電子顕微鏡(SEM)で観察して測定して求めればよい。   The number of oxides with a circle equivalent diameter exceeding 3 μm and the number of oxides exceeding 5 μm are obtained by observing the cross section of the steel material with, for example, EPMA and quantitatively analyzing the component composition of inclusions observed in the observation field. The inclusion having an oxygen content of 5% or more is used as an oxide, and the equivalent circle diameter of the oxide may be obtained by observing and measuring with, for example, a scanning electron microscope (SEM).

以上、本発明を特徴付ける上記(ii)および上記(iii)について詳述した。   The above (ii) and (iii) that characterize the present invention have been described in detail.

本発明の鋼材においては、上記(i)で規定するように、円相当直径が0.1〜2μmの微細な介在物を観察視野面積1mm2あたり120個以上とする必要がある。微細な介在物の個数は観察視野面積1mm2あたり120個以上とし、好ましくは1mm2あたり200個以上、より好ましくは1mm2あたり500個以上、更に好ましくは1mm2あたり700個以上である。 In the steel material of the present invention, as defined in (i) above, it is necessary to provide 120 or more fine inclusions with an equivalent circle diameter of 0.1 to 2 μm per 1 mm 2 of the observation visual field area. The number of fine inclusions is 120 or more per 1 mm 2 of the observation visual field area, preferably 200 or more per 1 mm 2 , more preferably 500 or more per 1 mm 2, and still more preferably 700 or more per 1 mm 2 .

なお、円相当直径で0.1〜2μmの微細な介在物の個数は、鋼材の断面を、例えば、SEMで観察して測定して求めればよい。   The number of fine inclusions having a circle equivalent diameter of 0.1 to 2 μm may be obtained by observing and measuring the cross section of the steel material with, for example, an SEM.

本発明の鋼材では、円相当直径で0.1μm未満の介在物は、介在物分散によるHAZ靱性向上作用に殆ど寄与しないため、上記介在物の個数には含めていない。   In the steel material of the present invention, inclusions having an equivalent circle diameter of less than 0.1 μm are not included in the number of inclusions because they hardly contribute to the HAZ toughness improving effect by inclusion dispersion.

上記「円相当直径」とは、介在物(酸化物を含む)の面積が等しくなる様に想定した円の直径であり、SEM観察面上で認められるものである。   The “equivalent circle diameter” is a diameter of a circle assumed to have the same area of inclusions (including oxides) and is recognized on the SEM observation surface.

[(c)REM/Zr比が0.6〜1.4を満足するREMおよびZr含有介在物Iの個数割合、および(REM+Zr)/(Al+Ca+Ti)比が0.5〜1.2を満足するREM、Zr、Al、Ca、およびTi含有介在物IIの個数割合について]
本発明の鋼材は、全介在物の個数と大きさが適切に調整されているのに加えて、鋼材に含まれる全介在物の組成を測定したとき、全介在物の個数に対して、
(c−1)REMとZrのモル比(REM/Zr)が0.6〜1.4を満足するREMおよびZr含有介在物I(以下、単に、介在物Iということがある)の個数割合が30%以上であるか、
(c−2)REMとZrの合計モル数と、AlとCaとTiの合計モル数との比[(REM+Zr)/(Al+Ca+Ti)]が0.5〜1.2を満足するREM、Zr、Al、Ca、およびTi含有介在物II(以下、単に、介在物IIということがある)の個数割合が40%以上であることにより、HAZ靱性が一層高められるようになる。
[(C) Number ratio of REM and Zr-containing inclusion I satisfying REM / Zr ratio of 0.6 to 1.4, and (REM + Zr) / (Al + Ca + Ti) ratio satisfying 0.5 to 1.2 Number ratio of inclusions II containing REM, Zr, Al, Ca, and Ti]
In addition to the number and size of all inclusions being appropriately adjusted, the steel material of the present invention, when measuring the composition of all inclusions contained in the steel material, with respect to the number of all inclusions,
(C-1) Number ratio of REM and Zr-containing inclusion I (hereinafter, simply referred to as inclusion I) in which the molar ratio of REM to Zr (REM / Zr) satisfies 0.6 to 1.4 Is 30% or more,
(C-2) REM, Zr, wherein the ratio [(REM + Zr) / (Al + Ca + Ti)] of the total number of moles of REM and Zr and the total number of moles of Al, Ca and Ti satisfies 0.5 to 1.2 When the number ratio of Al, Ca, and Ti-containing inclusions II (hereinafter simply referred to as inclusions II) is 40% or more, the HAZ toughness is further improved.

上記(c−1)および(c−2)の要件は、少なくともいずれか一方を満足していればよく、勿論両方を満足していてもよい。   The above requirements (c-1) and (c-2) only need to satisfy at least one of them, and of course may satisfy both.

上記(c−1)の要件は、粒内α変態核生成元素(REM、Zr、およびCa)のうち、REMおよびZrを含有する介在物について、所望とするHAZ靱性を実現するためのREM/Zrのモル比および上記介在物Iの個数割合を特定したものである。一方、上記(c−2)の要件は、粒内α変態核生成元素(Zr、REM、およびCa)、および介在物を構成する他の元素(TiおよびAl)を含有する介在物について、所望とするHAZ靱性を実現するための(REM+Zr)/(Al+Ca+Ti)のモル比および上記介在物IIの個数割合を特定したものである。   The requirement (c-1) above is that REM / in order to realize desired HAZ toughness for inclusions containing REM and Zr among intragranular α-transformation nucleation elements (REM, Zr, and Ca). The molar ratio of Zr and the number ratio of the inclusion I are specified. On the other hand, the requirement (c-2) above is desirable for inclusions containing intragranular α-transformation nucleation elements (Zr, REM, and Ca) and other elements (Ti and Al) that constitute inclusions. The molar ratio of (REM + Zr) / (Al + Ca + Ti) and the number ratio of the inclusion II are specified in order to realize the HAZ toughness.

即ち、後記する実施例で明らかにするように、上記(a)、(b)の要件がほぼ同じであっても鋼材の靱性値にバラツキが生じることが判明した。つまり、上記(a)、(b)で規定するように、酸化物の平均組成および介在物の大きさと粒度分布を制御することによって、大入熱量で溶接を行っても−40℃における吸収エネルギー(vE-40)は100J以上を達成できるが、上記(a)、(b)に加えて上記(c−1)で規定する介在物Iの個数割合および/または上記(c−2)で規定する介在物IIの個数割合を制御することによって、vE-40は130J以上を達成できる。 That is, as will be apparent from the examples described later, it has been found that even if the requirements (a) and (b) are substantially the same, the toughness value of the steel material varies. That is, as defined in the above (a) and (b), by controlling the average composition of oxides and the size and particle size distribution of inclusions, the absorbed energy at −40 ° C. even when welding with a large heat input is performed. (VE -40 ) can achieve 100 J or more, but in addition to the above (a) and (b), the number ratio of inclusion I defined in (c-1) and / or the above (c-2) By controlling the number ratio of inclusions II, vE- 40 can be 130 J or more.

上記(c−1)について、例えば、下記表5に示すNo.2と下記表6に示すNo.33は、上述した(b)の全介在物の粒度分布はおおむね同じであるにもかかわらず、−40℃における吸収エネルギー(vE-40)には42Jの差が生じていた。そこで本発明者らが更に検討を重ねた結果、介在物を構成するREMおよびZrについて、Zrに対するREMのモル比(REM/Zr)が0.6〜1.4を満足する介在物Iの全介在物に対する個数割合が30%以上に制御されたもの(上記No.2)は、粒内α変態能に優れており、HAZ靱性が良好であるが、上記比を満足する介在物Iの個数割合が30%未満のもの(上記No.33)では所望のHAZ靱性を確保できないことが分かった。REMとZrは、粒内α変態の核となる酸化物を生成させる元素であり、全介在物に対する上記介在物Iの個数割合と、HAZ靱性との関係は、良好な相関関係を有していることが判明し、上記(c−1)の要件を規定した。即ち、REM/Zr比が0.6を下回るか、REM/Zr比が1.4を超える介在物に比べると、REM/Zr比が0.6〜1.4を満足している介在物Iは、粒内α変態能に優れているため、HAZにおける金属組織を一段と微細化し、HAZ靱性を向上するのに寄与することが分かった。 Regarding the above (c-1), for example, No. shown in Table 5 below. 2 and No. 2 shown in Table 6 below. No. 33 had a difference of 42 J in the absorbed energy (vE -40 ) at -40 ° C, though the particle size distribution of all the inclusions in (b) was almost the same. Therefore, as a result of further studies by the present inventors, regarding the REM and Zr constituting the inclusion, all of the inclusion I satisfying the molar ratio of REM to Zr (REM / Zr) satisfying 0.6 to 1.4. The number of inclusions I in which the number ratio to inclusions is controlled to 30% or more (above No. 2) is excellent in intragranular α-transformation ability and HAZ toughness, but satisfies the above ratio. It was found that the desired HAZ toughness could not be secured when the proportion was less than 30% (No. 33 above). REM and Zr are elements that generate an oxide that becomes the nucleus of intragranular α-transformation, and the relationship between the number ratio of inclusion I to all inclusions and HAZ toughness has a good correlation. The requirement (c-1) was specified. That is, when compared with inclusions having a REM / Zr ratio of less than 0.6 or a REM / Zr ratio of more than 1.4, the inclusion I having a REM / Zr ratio of 0.6 to 1.4 is satisfied. Is excellent in the intragranular α-transformation ability, and it has been found that this contributes to further refinement of the metal structure in HAZ and improvement of HAZ toughness.

そして、全介在物の個数に対する上記介在物Iの個数割合を30%以上とすることによって、大入熱量で溶接を行っても−40℃における吸収エネルギー(vE-40)は130J以上を達成できる。全介在物の個数に対する上記介在物Iの個数割合は多い程良く、好ましくは40%以上、より好ましくは50%以上である。上記介在物Iの個数割合は多いほどよく、最も好ましくは100%である。 And by making the number ratio of the inclusion I to the total number of inclusions 30% or more, the absorbed energy (vE- 40 ) at -40 ° C can be 130J or more even when welding is performed with a large heat input. . The number ratio of the inclusion I to the total number of inclusions is preferably as large as possible, preferably 40% or more, more preferably 50% or more. The greater the number ratio of the inclusion I, the better, and most preferably 100%.

上記(c−2)についても上記(c−1)と同様であり、例えば、下記表5に示すNo.17と下記表6に示すNo.51は、上述した(b)の全介在物の粒度分布はおおむね同じであるにもかかわらず、−40℃における吸収エネルギー(vE-40)には36Jの差が生じていた。そこで本発明者らが更に検討を重ねた結果、介在物を構成するREM、Zr、Ti、Ca、およびAlについて、REMとZrの合計モル数と、AlとCaとTiの合計モル数との比[(REM+Zr)/(Al+Ca+Ti)]が0.5〜1.2を満足する介在物IIの全介在物に対する個数割合が40%以上に制御されたもの(上記No.17)は、粒内α変態が促進され、HAZ靱性が良好になるが、上記比を満足する介在物IIの個数割合が40%未満のもの(上記No.51)では所望のHAZ靱性を確保できないことが分かった。 The above (c-2) is the same as the above (c-1). 17 and No. shown in Table 6 below. No. 51 had a difference of 36 J in the absorbed energy (vE -40 ) at -40 ° C, although the particle size distribution of all the inclusions in (b) was almost the same. Therefore, as a result of further studies by the present inventors, regarding REM, Zr, Ti, Ca, and Al constituting the inclusion, the total number of moles of REM and Zr and the total number of moles of Al, Ca, and Ti In the case where the number ratio of inclusions II with respect to all inclusions satisfying the ratio [(REM + Zr) / (Al + Ca + Ti)] of 0.5 to 1.2 is controlled to 40% or more (the above No. 17) Although the α transformation is promoted and the HAZ toughness is improved, it has been found that the desired HAZ toughness cannot be secured if the number ratio of inclusions II satisfying the above ratio is less than 40% (the above No. 51).

(REM+Zr)/(Al+Ca+Ti)比が上記範囲を満足している介在物IIは、粒内α変態の核となる元素のうちREMとZrが、介在物を構成する他の元素(Al、Ca、Ti)との関係で適切に制御されているため、粒内α変態が促進され、HAZにおける金属組織が一段と微細化するため、HAZ靱性が向上する。   Inclusions II in which the (REM + Zr) / (Al + Ca + Ti) ratio satisfies the above range include REM and Zr among other elements (Al, Ca, Since it is appropriately controlled in relation to Ti), intragranular α transformation is promoted, and the metal structure in HAZ is further refined, so that HAZ toughness is improved.

即ち、鋼中に分散している介在物の成分組成とHAZ靱性との関係について検討したところ、HAZにおいて粒内αを生成させることによって金属組織を微細化するには、粒内α変態の核となる介在物自体が、α相と良好な整合性を有していなければならない。α相との整合性が良好な介在物としては、REMとZrに加えてTiを含有する介在物が有効であることが本発明者らの実験により明らかになった。しかしREM、Zr、およびTiを含有する介在物を起点として生成した粒内αが、その後のオーステナイト相中で成長するには、REM、Zr、およびTiを含有する介在物自体とオーステナイト相との整合性も良好であることが望まれる。そこで本発明者らは、REM、Zr、およびTiを含有する介在物と、オーステナイト相との整合性を改善するために更に検討したところ、介在物の融点を制御してやれば、粒内α変態を制御できるとの知見が得られた。即ち、溶接時に、介在物がオーステナイト相中で一旦溶融すれば、溶融した介在物とオーステナイト相との親和性が良好となり、冷却過程において介在物は周囲のオーステナイト相と整合性を保ちつつ結晶化される。更に温度が低下するとα相が生成し始めるが、それはαとの整合性が良好な介在物から優先的に生成し、介在物から生成したαはオーステナイトとも整合性が良好であるため、粒内α変態が促進され、結晶の微細化によるHAZ靱性の向上効果が享受される。   That is, when the relationship between the component composition of inclusions dispersed in steel and the HAZ toughness was examined, in order to refine the metal structure by generating intragranular α in HAZ, the core of intragranular α transformation The inclusion itself must have good consistency with the α phase. As an inclusion having good consistency with the α phase, it has been clarified by experiments by the present inventors that inclusions containing Ti in addition to REM and Zr are effective. However, in order for the intragranular α produced from the inclusion containing REM, Zr, and Ti to grow in the subsequent austenite phase, the inclusion itself containing REM, Zr, and Ti and the austenite phase It is desired that the consistency is also good. Therefore, the present inventors further studied to improve the consistency between the inclusion containing REM, Zr, and Ti and the austenite phase. If the melting point of the inclusion is controlled, the intragranular α transformation is performed. The knowledge that it can control was obtained. That is, once the inclusions melt in the austenite phase during welding, the affinity between the melted inclusions and the austenite phase becomes good, and the inclusions crystallize while maintaining consistency with the surrounding austenite phase during the cooling process. Is done. As the temperature further decreases, α phase begins to form, but it is preferentially generated from inclusions with good consistency with α, and α generated from inclusions has good consistency with austenite. The α transformation is promoted, and the effect of improving the HAZ toughness due to the refinement of the crystal is enjoyed.

そこで本発明者らは、REM、Zr、およびTiを含有する介在物について、融点が低くなる成分組成領域を見出すために、高温レーザー顕微鏡を用いて介在物の融点挙動を調査した。その結果、REM、Zr、およびTiを含有する介在物の融点は、CaとAlの含有量に影響を受け、これらの元素のモル数換算に基づく(REM+Zr)/(Al+Ca+Ti)比が0.5〜1.2の範囲である場合には、介在物の融点が局所的に低下し、粒内α変態能が高まることが判明した。   Therefore, the present inventors investigated the melting point behavior of inclusions using a high-temperature laser microscope in order to find a component composition region in which the melting point of the inclusions containing REM, Zr, and Ti decreases. As a result, the melting point of the inclusion containing REM, Zr, and Ti is affected by the contents of Ca and Al, and the (REM + Zr) / (Al + Ca + Ti) ratio based on the number of moles of these elements is 0.5. When it was in the range of -1.2, it was found that the melting point of inclusions was locally lowered and the intragranular α-transformation ability was increased.

即ち、(REM+Zr)/(Al+Ca+Ti)比が0.5を下回るか、(REM+Zr)/(Al+Ca+Ti)比が1.2を超える介在物に比べると、(REM+Zr)/(Al+Ca+Ti)が0.5〜1.2を満足している介在物IIは、粒内α変態能に優れているため、HAZにおける金属組織を一段と微細化し、HAZ靱性を向上するのに寄与することが分かった。   That is, when (REM + Zr) / (Al + Ca + Ti) ratio is less than 0.5 or (REM + Zr) / (Al + Ca + Ti) ratio exceeds 1.2, (REM + Zr) / (Al + Ca + Ti) is 0.5 to It was found that inclusion II satisfying 1.2 is excellent in the intragranular α-transformation ability and thus contributes to further refinement of the metal structure in HAZ and improvement of HAZ toughness.

上記鋼材に含まれる介在物の組成は、鋼材の断面を、例えば、EPMAで観察し、観察視野内に認められる介在物の成分組成を定量分析して求めればよく、鋼材に含まれる全介在物の組成を測定した後、全介在物の個数に占める上記介在物Iの個数割合および上記介在物IIの個数割合を求めればよい。なお、本発明の鋼材では、円相当直径が0.1μm以上の介在物についてその組成を定量分析する。円相当直径が0.1μm未満の介在物は、小さ過ぎて精度良く定量分析できないからである。   The composition of inclusions contained in the steel material may be obtained by observing the cross section of the steel material by, for example, EPMA and quantitatively analyzing the component composition of inclusions observed in the observation field. After measuring the composition, the number ratio of the inclusion I and the number ratio of the inclusion II in the total number of inclusions may be obtained. In addition, in the steel material of this invention, the composition is quantitatively analyzed about the inclusion whose circle equivalent diameter is 0.1 micrometer or more. This is because inclusions having an equivalent circle diameter of less than 0.1 μm are too small to be quantitatively analyzed with high accuracy.

次に、本発明の鋼材(母材)における成分組成について説明する。本発明の鋼材は、基本成分として、C:0.02〜0.15%、Si:0.5%以下(0%を含まない)、Mn:2.5%以下(0%を含まない)、P:0.03%以下(0%を含まない)、S:0.02%以下(0%を含まない)、Al:0.050%以下(0%を含まない)、N:0.010%以下(0%を含まない)、Ti:0.005〜0.10%、Zr:0.0005〜0.050%、REM:0.0003〜0.015%、およびCa:0.0003〜0.010%を含有している。こうした範囲を定めた理由は以下の通りである。   Next, the component composition in the steel material (base material) of the present invention will be described. In the steel material of the present invention, C: 0.02 to 0.15%, Si: 0.5% or less (not including 0%), Mn: 2.5% or less (not including 0%) as basic components , P: 0.03% or less (not including 0%), S: 0.02% or less (not including 0%), Al: 0.050% or less (not including 0%), N: 0.0. 010% or less (excluding 0%), Ti: 0.005 to 0.10%, Zr: 0.0005 to 0.050%, REM: 0.0003 to 0.015%, and Ca: 0.0003 -0.010% is contained. The reasons for setting these ranges are as follows.

Cは、鋼材(母材)の強度を確保するために欠くことのできない元素であり、0.02%以上含有させる必要がある。C量は、好ましくは0.04%以上、より好ましくは0.05%以上とする。しかしC量が0.15%を超えると、溶接時にHAZに島状マルテンサイト(MA)が多く生成してHAZの靱性劣化を招くばかりでなく、溶接性にも悪影響を及ぼす。従ってC量は0.15%以下、好ましくは0.10%以下、より好ましくは0.08%以下とする。   C is an element indispensable for securing the strength of the steel material (base material), and needs to be contained by 0.02% or more. The C amount is preferably 0.04% or more, more preferably 0.05% or more. However, if the amount of C exceeds 0.15%, a large amount of island martensite (MA) is generated in the HAZ at the time of welding and not only causes deterioration of the toughness of the HAZ, but also adversely affects the weldability. Therefore, the C content is 0.15% or less, preferably 0.10% or less, more preferably 0.08% or less.

Siは、脱酸作用を有すると共に、固溶強化により鋼材(母材)の強度向上に寄与する元素である。こうした作用を有効に発揮させるには、Siは、0.01%以上含有させることが好ましい。Siは、より好ましくは0.05%以上、更に好ましくは0.1%以上含有させるのがよい。しかしSi量が0.5%を超えると、鋼材の溶接性や靱性が劣化するため、Si量は0.5%以下に抑える必要がある。Si量は、好ましくは0.3%以下、より好ましくは0.25%以下、更に好ましくは0.21%以下とする。   Si is an element that has a deoxidizing action and contributes to improving the strength of the steel (base material) by solid solution strengthening. In order to exhibit such an action effectively, Si is preferably contained in an amount of 0.01% or more. Si is preferably contained in an amount of 0.05% or more, more preferably 0.1% or more. However, if the Si content exceeds 0.5%, the weldability and toughness of the steel material deteriorate, so the Si content must be suppressed to 0.5% or less. The amount of Si is preferably 0.3% or less, more preferably 0.25% or less, and still more preferably 0.21% or less.

Mnは、鋼材(母材)の強度向上に寄与する元素である。しかしMn量が2.5%を超えると、鋼材(母材)の溶接性を劣化させる。従ってMn量は、2.5%以下に抑える必要がある。Mn量は、好ましくは2.30%以下、より好ましくは2.0%以下とする。なお、上述した効果を有効に発揮させるには、Mnは、0.2%以上含有させることが好ましい。Mn量は、より好ましくは0.40%以上、更に好ましくは0.60%以上、特に好ましくは0.8%以上とする。   Mn is an element that contributes to improving the strength of the steel material (base material). However, if the amount of Mn exceeds 2.5%, the weldability of the steel material (base material) is deteriorated. Therefore, the amount of Mn needs to be suppressed to 2.5% or less. The amount of Mn is preferably 2.30% or less, more preferably 2.0% or less. In addition, in order to exhibit the effect mentioned above effectively, it is preferable to contain Mn 0.2% or more. The amount of Mn is more preferably 0.40% or more, further preferably 0.60% or more, and particularly preferably 0.8% or more.

Pは、偏析し易い元素であり、特に鋼材中の結晶粒界に偏析してHAZ靱性を劣化させる。従ってP量は0.03%以下に抑制する必要がある。P量は、好ましくは0.02%以下、より好ましくは0.015%以下とする。なお、Pは、通常、不可避的に0.001%程度含有している。   P is an element that easily segregates, and particularly segregates at a grain boundary in a steel material to deteriorate the HAZ toughness. Therefore, the P amount needs to be suppressed to 0.03% or less. The P amount is preferably 0.02% or less, more preferably 0.015% or less. In general, P is unavoidably contained in an amount of about 0.001%.

Sは、Mnと結合して硫化物(MnS)を生成し、母材の靱性や板厚方向の延性を劣化させる有害な元素である。また、SがLaやCeなどのREMと結合してREMの硫化物(例えば、LaSやCeSなど)を生成すると、REMの酸化物の生成が阻害されるため、HAZ靱性が劣化する。従ってS量は0.02%以下に抑制する必要がある。S量は、好ましくは0.015%以下、より好ましくは0.010%以下、更に好ましくは0.006%以下とする。なお、Sは、通常、不可避的に0.0005%程度含有している。   S is a harmful element that combines with Mn to produce sulfide (MnS) and degrades the toughness of the base material and the ductility in the thickness direction. Further, when S is combined with REM such as La or Ce to generate REM sulfide (for example, LaS or CeS), generation of oxide of REM is inhibited, so that HAZ toughness is deteriorated. Therefore, the S amount needs to be suppressed to 0.02% or less. The amount of S is preferably 0.015% or less, more preferably 0.010% or less, and still more preferably 0.006% or less. Note that S is usually unavoidably contained in an amount of about 0.0005%.

Alは、脱酸剤として作用する元素である。しかし過剰に添加すると酸化物を還元して粗大なAl酸化物を形成し、HAZ靱性が劣化する。従ってAl量は0.050%以下に抑える必要がある。Al量は、好ましくは0.04%以下、より好ましくは0.03%以下、更に好ましくは0.025%以下、特に好ましくは0.010%以下とする。なお、Alは、通常、不可避的に0.0005%程度含有している。   Al is an element that acts as a deoxidizer. However, if added in excess, the oxide is reduced to form a coarse Al oxide, and the HAZ toughness deteriorates. Therefore, the Al amount must be suppressed to 0.050% or less. The Al content is preferably 0.04% or less, more preferably 0.03% or less, still more preferably 0.025% or less, and particularly preferably 0.010% or less. Al is usually unavoidably contained in an amount of about 0.0005%.

Nは、窒化物(例えば、ZrNやTiNなど)を析出する元素であり、該窒化物は、ピン止め効果により、溶接時にHAZに生成するオーステナイト粒の粗大化を防止して粒内α変態を促進し、HAZ靱性の向上に寄与する。Nは多いほど窒化物を形成してオーステナイト粒の微細化を促進するため、HAZの靱性向上に有効に作用する。しかしN量が0.010%を超えると、固溶N量が増大して母材自体の靱性が劣化し、HAZ靱性も低下する。従ってN量は0.010%以下に抑える必要がある。N量は、好ましくは0.0090%以下、より好ましくは0.008%以下とする。なお、上述した効果を有効に発揮させるには、Nは0.003%以上含有させることが好ましい。N量は、より好ましくは0.004%以上、更に好ましくは0.005%以上とする。   N is an element that precipitates nitrides (for example, ZrN and TiN), and the nitrides prevent the austenite grains generated in the HAZ from being coarsened during welding by the pinning effect and cause intragranular α transformation. Promotes and contributes to the improvement of HAZ toughness. As N increases, nitrides are formed to promote the refinement of austenite grains, so that it effectively works to improve the toughness of HAZ. However, when the N amount exceeds 0.010%, the solid solution N amount increases, the toughness of the base metal itself deteriorates, and the HAZ toughness also decreases. Therefore, the N amount needs to be suppressed to 0.010% or less. The N amount is preferably 0.0090% or less, more preferably 0.008% or less. In addition, in order to exhibit the effect mentioned above effectively, it is preferable to contain N 0.003% or more. The N amount is more preferably 0.004% or more, and further preferably 0.005% or more.

Tiは、鋼材中にTiNなどの窒化物や、Tiを含む酸化物を生成し、HAZ靱性の向上に寄与する元素である。こうした効果を発揮させるには、Tiは0.005%以上含有させる必要がある。Ti量は、好ましくは0.007%以上、より好ましくは0.010%以上である。しかし過剰に添加するとTiの固溶強化によって母材自体が硬化し、HAZ靱性の低下に繋がるため、Tiは0.10%以下に抑えるべきである。Ti量は、好ましくは0.07%以下、より好ましくは0.06%以下とする。   Ti is an element that contributes to the improvement of HAZ toughness by generating a nitride such as TiN or an oxide containing Ti in the steel material. In order to exert such effects, it is necessary to contain Ti by 0.005% or more. The amount of Ti is preferably 0.007% or more, more preferably 0.010% or more. However, if added excessively, the base metal itself is hardened by solid solution strengthening of Ti, leading to a decrease in HAZ toughness. Therefore, Ti should be suppressed to 0.10% or less. The Ti content is preferably 0.07% or less, more preferably 0.06% or less.

Zrは、Zrを含む複合酸化物を生成してHAZ靱性の向上に寄与する元素である。こうした作用を発揮させるには、0.0005%以上含有させる必要がある。Zr量は、好ましくは0.0015%以上、より好ましくは0.0020%以上とする。しかしZrを過剰に添加すると、粗大なZr酸化物(例えば、ZrO2)が多く生成してHAZ靱性が劣化する。従ってZr量は0.050%以下に抑える。Zr量は、好ましくは0.04%以下、より好ましくは0.03%以下、更に好ましくは0.01%以下とする。 Zr is an element that generates a complex oxide containing Zr and contributes to the improvement of HAZ toughness. In order to exert such an effect, it is necessary to contain 0.0005% or more. The Zr amount is preferably 0.0015% or more, more preferably 0.0020% or more. However, when Zr is added excessively, a large amount of coarse Zr oxide (for example, ZrO 2 ) is generated and the HAZ toughness is deteriorated. Therefore, the amount of Zr is suppressed to 0.050% or less. The amount of Zr is preferably 0.04% or less, more preferably 0.03% or less, and still more preferably 0.01% or less.

REM(希土類元素)とCaは、夫々の酸化物を生成させるのに必要な元素である。これらの酸化物を含有することで、酸化物が微細分散し易くなり、この微細分散した酸化物が粒内α変態の核となるため、HAZ靱性の向上に寄与する。   REM (rare earth element) and Ca are elements necessary to form respective oxides. By containing these oxides, it becomes easy to finely disperse the oxides, and the finely dispersed oxides become the nucleus of intragranular α transformation, which contributes to the improvement of HAZ toughness.

REMは、0.0003%以上含有させるべきであり、好ましくは0.001%以上、より好ましくは0.0020%以上とする。しかしREMを過剰に添加すると、固溶REMが生成し、これが偏析することで母材の靱性が劣化する。従ってREM量は0.015%以下に抑えるべきである。REM量は、好ましくは0.010%以下、より好ましくは0.007%以下とする。なお、本発明において、REMとは、ランタノイド元素(LaからLuまでの15元素)およびSc(スカンジウム)とY(イットリウム)を含む意味である。これらの元素のなかでも、La、CeおよびYよりなる群から選ばれる少なくとも1種の元素を含有することが好ましく、より好ましくはLaおよび/またはCeを含有するのがよい。   REM should be contained by 0.0003% or more, preferably 0.001% or more, more preferably 0.0020% or more. However, when REM is added excessively, solid solution REM is generated and segregates to deteriorate the toughness of the base material. Therefore, the amount of REM should be suppressed to 0.015% or less. The REM amount is preferably 0.010% or less, more preferably 0.007% or less. In the present invention, REM means a lanthanoid element (15 elements from La to Lu), Sc (scandium) and Y (yttrium). Among these elements, it is preferable to contain at least one element selected from the group consisting of La, Ce and Y, more preferably La and / or Ce.

Caは、0.0003%以上含有させるべきであり、好ましくは0.0005%以上、より好ましくは0.0008%以上、更に好ましくは0.001%以上とする。しかしCaを過剰に添加すると、粗大なCa硫化物が生成して母材の靱性が劣化する。また、Caを過剰に添加すると、CaOが過剰に生成して高CaO濃度の介在物が生成し、最適介在物組成範囲から逸脱するため、介在物の粒内変態核として作用する効果が弱まり、HAZ靱性が却って劣化する。従ってCa量は、0.010%以下に抑える。Caは、好ましくは0.009%以下、より好ましくは0.008%以下、更に好ましくは0.005%以下とする。   Ca should be contained in an amount of 0.0003% or more, preferably 0.0005% or more, more preferably 0.0008% or more, and still more preferably 0.001% or more. However, when Ca is added excessively, coarse Ca sulfide is generated and the toughness of the base material deteriorates. Further, when Ca is added excessively, CaO is excessively generated and inclusions with a high CaO concentration are generated and deviates from the optimum inclusion composition range, so that the effect of acting as an intragranular transformation nucleus of inclusions is weakened. The HAZ toughness deteriorates instead. Therefore, the Ca content is suppressed to 0.010% or less. Ca is preferably 0.009% or less, more preferably 0.008% or less, and still more preferably 0.005% or less.

本発明の鋼材は、上記元素を必須成分として含有するものであり、O(酸素)量は0.0005〜0.010%である。ここで酸素量は、トータル酸素量を示し、酸化物を形成している酸素と鋼材中に固溶しているフリー酸素の合計量を意味している。鋼材の残部成分は、鉄および不可避不純物(例えば、Mg、As、Seなど)であればよい。   The steel material of this invention contains the said element as an essential component, and O (oxygen) amount is 0.0005 to 0.010%. Here, the amount of oxygen indicates the total amount of oxygen, which means the total amount of oxygen forming oxides and free oxygen dissolved in the steel material. The remaining components of the steel material may be iron and inevitable impurities (for example, Mg, As, Se, etc.).

本発明の鋼材は、更に他の元素として、
[1]Cu:2%以下(0%を含まない)および/またはNi:3.5%以下(0%を含まない)、
[2]Cr:3%以下(0%を含まない)および/またはMo:1%以下(0%を含まない)、
[3]Nb:0.25%以下(0%を含まない)および/またはV:0.1%以下(0%を含まない)、
[4]B:0.005%以下(0%を含まない)、
等の元素を含有することも有効である。こうした範囲を定めた理由は以下の通りである。
The steel material of the present invention is still another element,
[1] Cu: 2% or less (not including 0%) and / or Ni: 3.5% or less (not including 0%),
[2] Cr: 3% or less (not including 0%) and / or Mo: 1% or less (not including 0%),
[3] Nb: 0.25% or less (not including 0%) and / or V: 0.1% or less (not including 0%),
[4] B: 0.005% or less (excluding 0%),
It is also effective to contain such elements. The reasons for setting these ranges are as follows.

《[1]Cuおよび/またはNi》
CuとNiは、いずれも鋼材の強度を高めるのに寄与する元素であり、夫々単独で、或いは複合して添加できる。
<< [1] Cu and / or Ni >>
Cu and Ni are both elements that contribute to increasing the strength of the steel material, and can be added alone or in combination.

しかしCu量が2%を超えると、母材の強度を著しく高め過ぎて母材の靱性を却って劣化させるため、HAZ靱性も低下する。従ってCu量は2%以下とすることが好ましい。Cu量は、より好ましくは1.8%以下、更に好ましくは1.5%以下とする。なお、Cu添加による作用を有効に発揮させるには、0.05%以上含有させることが好ましい。Cu量は、より好ましくは0.1%以上、更に好ましくは0.20%以上とする。   However, if the amount of Cu exceeds 2%, the strength of the base material is remarkably increased and the toughness of the base material is deteriorated, so that the HAZ toughness is also lowered. Accordingly, the Cu content is preferably 2% or less. The amount of Cu is more preferably 1.8% or less, still more preferably 1.5% or less. In addition, in order to exhibit the effect | action by Cu addition effectively, it is preferable to make it contain 0.05% or more. The amount of Cu is more preferably 0.1% or more, and still more preferably 0.20% or more.

Ni量が3.5%を超えると、上記Cuと同様に、母材の強度を著しく高め過ぎて母材の靱性を劣化させるため、HAZ靱性も低下する。従ってNi量は3.5%以下とすることが好ましい。Ni量は、より好ましくは3.0%以下、更に好ましくは2.5%以下とする。なお、Ni添加による作用を有効に発揮させるには、0.05%以上含有させることが好ましい。Ni量は、より好ましくは0.1%以上、更に好ましくは0.2%以上とする。   If the Ni content exceeds 3.5%, the strength of the base material is significantly increased and the toughness of the base material is deteriorated, as in the case of Cu, so that the HAZ toughness is also reduced. Accordingly, the Ni content is preferably 3.5% or less. The amount of Ni is more preferably 3.0% or less, still more preferably 2.5% or less. In order to effectively exhibit the effect of adding Ni, it is preferable to contain 0.05% or more. The amount of Ni is more preferably 0.1% or more, and still more preferably 0.2% or more.

《[2]Crおよび/またはMo》
CrとMoは、いずれも鋼材の強度を高めるのに寄与する元素であり、夫々単独で、或いは複合して添加できる。
<< [2] Cr and / or Mo >>
Cr and Mo are both elements that contribute to increasing the strength of the steel material, and can be added alone or in combination.

しかしCrが3%を超えると、母材の強度を著しく高め過ぎて母材の靱性を劣化させるため、HAZ靱性を低下する。従ってCr量は3%以下が好ましい。Cr量は、より好ましくは2%以下、更に好ましくは1.0%以下とする。なお、Cr添加による作用を有効に発揮させるには、0.05%以上含有させることが好ましい。Cr量は、より好ましくは0.1%以上、更に好ましくは0.15%以上とする。   However, if Cr exceeds 3%, the strength of the base material is remarkably increased and the toughness of the base material is deteriorated, so that the HAZ toughness is lowered. Therefore, the Cr content is preferably 3% or less. The amount of Cr is more preferably 2% or less, still more preferably 1.0% or less. In order to effectively exhibit the effect of addition of Cr, it is preferable to contain 0.05% or more. The amount of Cr is more preferably 0.1% or more, and still more preferably 0.15% or more.

MoもCrと同様に、1%を超えると、母材の強度を著しく高め過ぎて母材の靱性を劣化させるため、HAZ靱性を低下する。従ってMo量は1%以下とすることが好ましい。Mo量は、より好ましくは0.9%以下、更に好ましくは0.8%以下である。なお、Mo添加による作用を有効に発揮させるには、0.05%以上含有させることが好ましい。Mo量は、より好ましくは0.1%以上、更に好ましくは0.15%以上とする。   Similarly to Cr, when Mo exceeds 1%, the strength of the base material is significantly increased and the toughness of the base material is deteriorated, so that the HAZ toughness is lowered. Therefore, the Mo amount is preferably 1% or less. The amount of Mo is more preferably 0.9% or less, and still more preferably 0.8% or less. In addition, in order to exhibit the effect | action by Mo addition effectively, it is preferable to make it contain 0.05% or more. The amount of Mo is more preferably 0.1% or more, and further preferably 0.15% or more.

《[3]Nbおよび/またはV》
NbとVは、いずれも炭窒化物として析出し、該炭窒化物のピン止め効果により、溶接時にオーステナイト粒が粗大化するのを防止し、HAZ靱性を向上させる作用を有する元素である。NbとVは、夫々単独で、或いは複合して添加することができる。
<< [3] Nb and / or V >>
Nb and V are elements having an action of precipitating as carbonitride and preventing the austenite grains from coarsening during welding and improving the HAZ toughness due to the pinning effect of the carbonitride. Nb and V can be added alone or in combination.

しかしNb量が0.25%を超えると、析出する炭窒化物が粗大化し、HAZ靱性を却って劣化させる。従ってNb量は0.25%以下とすることが好ましい。Nb量は、より好ましくは0.2%以下、更に好ましくは0.15%以下とする。なお、Nb添加による作用を有効に発揮させるには、0.002%以上含有させることが好ましい。Nb量は、より好ましくは0.010%以上、更に好ましくは0.02%以上とする。   However, if the Nb content exceeds 0.25%, the precipitated carbonitrides become coarse and deteriorate the HAZ toughness. Accordingly, the Nb content is preferably 0.25% or less. The amount of Nb is more preferably 0.2% or less, still more preferably 0.15% or less. In order to effectively exhibit the effect of Nb addition, it is preferable to contain 0.002% or more. The amount of Nb is more preferably 0.010% or more, and further preferably 0.02% or more.

VもNbと同様に、0.1%を超えると、析出する炭窒化物が粗大化し、HAZ靱性を却って劣化させる。従ってV量は0.1%以下とすることが好ましい。V量は、より好ましくは0.09%以下、更に好ましくは0.08%以下とする。なお、V添加による作用を有効に発揮させるには、0.002%以上含有させることが好ましい。V量は、より好ましくは0.005%以上、更に好ましくは0.01%以上とする。   If V exceeds 0.1% as in Nb, the precipitated carbonitrides become coarse and deteriorate the HAZ toughness. Therefore, the V amount is preferably 0.1% or less. The amount of V is more preferably 0.09% or less, still more preferably 0.08% or less. In order to effectively exhibit the effect of V addition, it is preferable to contain 0.002% or more. V amount is more preferably 0.005% or more, and still more preferably 0.01% or more.

《[4]B(ホウ素)》
Bは、粒界フェライトの生成を抑制して靱性を向上させる元素である。しかしB量が0.005%を超えると、オーステナイト粒界にBNとして析出し、靱性の低下を招く。従ってB量は0.005%以下が好ましい。B量は、より好ましくは0.004%以下、更に好ましくは0.0030%以下とする。なお、B添加による作用を有効に発揮させるには、0.001%以上含有させることが好ましい。B量は、より好ましくは0.0015%以上とする。
<< [4] B (boron) >>
B is an element that suppresses the formation of grain boundary ferrite and improves toughness. However, if the amount of B exceeds 0.005%, it precipitates as BN at the austenite grain boundary, leading to a decrease in toughness. Therefore, the amount of B is preferably 0.005% or less. The amount of B is more preferably 0.004% or less, and still more preferably 0.0030% or less. In addition, in order to exhibit the effect | action by B addition effectively, it is preferable to make it contain 0.001% or more. The amount of B is more preferably 0.0015% or more.

次に、本発明の鋼材を製造するにあたり、好適に採用できる製造方法について説明する。   Next, a manufacturing method that can be suitably employed in manufacturing the steel material of the present invention will be described.

本発明の鋼材を製造するには、
(1)溶存酸素量QOfを0.0003〜0.01質量%の範囲に調整した溶鋼にREMを添加するにあたり、前記溶鋼の溶存酸素量QOfとREMの添加量QREMが下記(1)式を満足する量のREMを添加する必要がある。
2logQREM+3logQOf≦−12.00 ・・・(1)
To produce the steel material of the present invention,
(1) Upon the addition of REM to molten steel having an adjusted dissolved oxygen content Q Of the range of 0.0003 to 0.01 mass%, the addition amount Q REM of dissolved oxygen Q Of the REM of the molten steel below (1 It is necessary to add an amount of REM that satisfies the formula.
2logQ REM + 3logQ Of ≤-12.00 (1)

また、上記範囲に溶存酸素量QOfを調整した溶鋼に、REM、Zr、Ti、Ca、およびAlを添加するにあたり、REMおよびZrをa群元素、Ti、Ca、およびAlをb群元素としたとき、各元素の添加条件が下記(2)および/または下記(3)を満足することも重要である。
(2)前記a群元素について、REMとZrを同時に添加するか、またはREMとZrのうち一方の元素を添加してから5分以内に他方の元素を添加する。
(3)前記a群元素の添加前および/または添加後に前記b群元素を添加することとし、前記a群元素の添加前に前記b群元素を添加する場合について、前記b群元素のうち最初の元素の添加開始時点から前記a群元素のうち最初の元素の添加開始時点までの時間をt1(分)、前記a群元素の添加後に前記b群元素を添加する場合について、前記a群元素のうち最後の元素の添加開始時点から前記b群元素のうち最初の元素の添加開始時点までの時間をt2(分)とし、前記t1と前記t2の合計を3分以上とする。(0≦t1、0≦t2、但し、t1およびt2は0ではない。)
以下、詳細に説明する。
In addition, when adding REM, Zr, Ti, Ca, and Al to the molten steel with the dissolved oxygen amount Q Of adjusted to the above range, REM and Zr are group a elements, and Ti, Ca, and Al are group b elements. In addition, it is also important that the addition conditions of each element satisfy the following (2) and / or the following (3).
(2) About the said a group element, REM and Zr are added simultaneously, or the other element is added within 5 minutes after adding one element among REM and Zr.
(3) The case where the b group element is added before and / or after the addition of the a group element, and the b group element is added before the addition of the a group element. T1 (minutes) from the start of addition of the first element to the start of addition of the first element among the a group elements, and when the b group element is added after the addition of the a group element, the a group element The time from the start of addition of the last element to the start of addition of the first element among the group b elements is t2 (minutes), and the sum of t1 and t2 is 3 minutes or more. (0 ≦ t1, 0 ≦ t2, where t1 and t2 are not 0.)
Details will be described below.

[(1)溶鋼の溶存酸素量とREMの添加量との関係について]
上記(1)式は、本発明で規定する所望のHAZ靱性を確保するために設定されたものであり、上記(1)式に基づき、溶鋼の溶存酸素量QOfに応じてREMの添加量QREMを適切に添加すれば所望のHAZ靱性を確保できる(後記する実施例を参照)。
[(1) Relationship between dissolved oxygen content of molten steel and added amount of REM]
The above formula (1) is set in order to ensure the desired HAZ toughness defined in the present invention. Based on the above formula (1), the amount of REM added according to the dissolved oxygen amount Q Of of the molten steel Appropriate addition of Q REM can ensure the desired HAZ toughness (see Examples below).

なお、上記(1)式の左辺の係数は、下記(2)式で示される溶鋼中におけるREMの酸化物の生成反応式に基づく値である。
2REM+3O=REM23 ・・・(2)
In addition, the coefficient on the left side of the above formula (1) is a value based on the REM oxide generation reaction formula in the molten steel represented by the following formula (2).
2REM + 3O = REM 2 O 3 (2)

溶鋼の溶存酸素量QOfとREMの添加量QREMが上記(1)式を満足するということは、REMの酸化物の生成に関与するREMの添加量QREMを少なく設定したことを意味する。その結果、生成するREMの酸化物の個数も少なくなるため、結果的に、粗大・超粗大な酸化物の個数が本発明の範囲内に低減されることになり、所望のHAZ靱性が確保されるものと思料される。 The fact that the dissolved oxygen amount Q Of of the molten steel and the REM addition amount Q REM satisfy the above equation (1) means that the REM addition amount Q REM involved in the generation of the REM oxide is set to be small. . As a result, the number of oxides of REM to be generated is reduced, and as a result, the number of coarse and super coarse oxides is reduced within the scope of the present invention, and the desired HAZ toughness is ensured. It is thought to be.

上記Z値が−12.00を超えると、溶鋼の溶存酸素量QOfとREMの添加量QREMのバランスが悪くなり、REMの添加量QREMが多くなって粗大なREMの酸化物が生成する。その結果、HAZ靱性が低下する。従って、上記Z値を−12.00以下とする。Z値は、好ましくは−12.25以下、より好ましくは−12.50以下、更に好ましくは−12.75以下である。Z値の下限は特に限定されないが、鋼中のREM量などを考慮すると、おおむね、−15程度である。 When the Z value exceeds -12.00, the balance between the dissolved oxygen amount Q Of of the molten steel and the REM addition amount Q REM becomes poor, and the REM addition amount Q REM increases, resulting in the formation of coarse REM oxides. To do. As a result, the HAZ toughness decreases. Therefore, the Z value is set to -12.00 or less. Z value becomes like this. Preferably it is -12.25 or less, More preferably, it is -12.50 or less, More preferably, it is -12.75 or less. The lower limit of the Z value is not particularly limited, but is generally about −15 in consideration of the amount of REM in the steel.

なお、上記特許文献4では、上記(1)式について全く留意していない。そのため、(1)式の関係を満足せず、(1)式の左辺の値(Z値)が−12.00を超えるようにREMの添加量QREMを多くしている場合があった。また、前述した特許文献5〜7には、溶存酸素量QOfを調整した溶鋼にREMを添加することが記載されているもののREMの添加量QREMを溶存酸素量QOfに応じて決定して添加する点については全く考慮されていない。また、上記特許文献5〜7では、REMと、ZrおよびCaを併用することについては記載されていないため、本発明で規定するようにHAZ靱性向上作用を有するZr、REM、およびCaを含有する酸化物(Zr・REM・Ca系酸化物)がそもそも得られていない。 In Patent Document 4, no consideration is given to the above formula (1). Therefore, there is a case that a lot of amount Q REM of REM (1) does not satisfy the relationship of expression, as (1) of the value of the left-hand side (Z value) exceeds -12.00. Further, although Patent Documents 5 to 7 described above describe adding REM to molten steel in which the dissolved oxygen amount Q Of is adjusted, the REM addition amount Q REM is determined according to the dissolved oxygen amount Q Of. The points to be added are not considered at all. Moreover, in the said patent documents 5-7, since it is not described about using REM, Zr, and Ca together, it contains Zr, REM, and Ca which have a HAZ toughness improvement effect | action as prescribed | regulated by this invention. An oxide (Zr / REM / Ca-based oxide) has not been obtained in the first place.

次に、上記(1)式を構成するREMの添加量QREMと溶存酸素量QOfについて説明する。 Next, the REM addition amount Q REM and the dissolved oxygen amount Q Of constituting the equation (1) will be described.

まず、上記REMの添加量QREMは、上記の通り、溶存酸素量QOfに応じて適宜添加すれば良い。なお、REMの添加量QREMは、本発明鋼材中に含まれるREM量に比べて多く設定している。これは、鋳造前に添加したREM量は、鋳造過程などで揮発したり、スラグ中に分散するなどし、鋼材中に含まれるREM量が少なくなるからである。 First, the REM addition amount Q REM may be appropriately added according to the dissolved oxygen amount Q Of as described above. The amount of REM added Q REM is set larger than the amount of REM contained in the steel material of the present invention. This is because the amount of REM added before casting is volatilized in the casting process or dispersed in the slag, and the amount of REM contained in the steel material is reduced.

また、溶鋼の溶存酸素量QOfは0.0003〜0.01質量%の範囲とする。溶存酸素とは、酸化物を形成しておらず、溶鋼中に存在するフリーな状態の酸素を意味する。即ち、本発明の鋼材を製造するには、まず前提条件として、溶鋼の溶存酸素量QOfを0.0003〜0.01質量%の範囲に調整する。溶鋼の溶存酸素量QOfが0.0003質量%未満では、溶鋼の溶存酸素量QOfが不足するため、粒内α変態の核となるZr・REM・Ca系酸化物を所定量確保できず、HAZ靱性を改善できない。また、溶存酸素量QOfが不足すると、酸化物を形成できなかったZrが炭化物を形成したり、REMやCaが硫化物を形成するため、母材自体の靱性を劣化させる原因となる。従って上記溶存酸素量QOfは、0.0003質量%以上とする。上記溶存酸素量QOfは、好ましくは0.001質量%以上、より好ましくは0.0020質量%以上である。 Further, the dissolved oxygen amount Q Of of the molten steel is set to a range of 0.0003 to 0.01% by mass. Dissolved oxygen means oxygen in a free state that does not form an oxide and exists in molten steel. That is, in order to manufacture the steel material of the present invention, first, as a precondition, the dissolved oxygen amount Q Of of the molten steel is adjusted to a range of 0.0003 to 0.01% by mass. If the dissolved oxygen amount Q Of of the molten steel is less than 0.0003 mass%, the dissolved oxygen amount Q Of of the molten steel is insufficient, so that a predetermined amount of Zr, REM, and Ca-based oxides that are the core of intragranular α transformation cannot be secured. , HAZ toughness cannot be improved. Further, when the dissolved oxygen amount Q Of is insufficient, Zr, which could not form an oxide, forms a carbide, or REM or Ca forms a sulfide, which causes the toughness of the base material itself to deteriorate. Therefore, the dissolved oxygen amount Q Of is set to 0.0003 mass% or more. The dissolved oxygen amount Q Of is preferably 0.001% by mass or more, more preferably 0.0020% by mass or more.

一方、上記溶存酸素量QOfが0.01質量%を超えると、溶鋼の溶存酸素量が多過ぎるため、溶鋼中の酸素と上記元素の反応が激しくなって溶製作業上好ましくないばかりか、粗大な酸化物や超粗大な酸化物を生成してHAZ靱性を却って劣化させる。従って上記溶存酸素量QOfは0.01質量%以下に抑えるべきである。上記溶存酸素量QOfは、好ましくは0.008質量%以下、より好ましくは0.007質量%以下とする。 On the other hand, when the amount of dissolved oxygen Q Of exceeds 0.01% by mass, the amount of dissolved oxygen in the molten steel is too large, and the reaction between oxygen in the molten steel and the above elements becomes violent, which is not preferable for the melting operation. A coarse oxide or a super coarse oxide is produced to deteriorate the HAZ toughness. Therefore, the dissolved oxygen amount Q Of should be suppressed to 0.01% by mass or less. The dissolved oxygen amount Q Of is preferably 0.008% by mass or less, more preferably 0.007% by mass or less.

ところで、転炉や電気炉で一次精錬された溶鋼中の溶存酸素量QOfは、通常0.01質量%を超えている。そこで本発明の製造方法では、溶鋼の溶存酸素量QOfを何らかの方法で上記範囲に調整する必要がある。 By the way, the dissolved oxygen amount Q Of in the molten steel primarily refined in the converter or electric furnace usually exceeds 0.01% by mass. Therefore, in the production method of the present invention, it is necessary to adjust the dissolved oxygen amount Q Of of the molten steel to the above range by some method.

溶鋼の溶存酸素量QOfを調整する方法としては、例えばRH式脱ガス精錬装置を用いて真空脱酸する方法や、Si、Mn、Ti、Alなどの脱酸性元素を添加する方法などが挙げられ、これらの方法を適宜組み合わせて溶存酸素量QOfを調整すれば良い。また、RH式脱ガス精錬装置の代わりに、取鍋加熱式精錬装置や簡易式溶鋼処理設備などを用いて溶存酸素量QOfを調整しても良い。この場合、真空脱酸による溶存酸素量QOfの調整はできないため、溶存酸素量QOfの調整にはSi等の脱酸性元素を添加する方法を採用すれば良い。Si等の脱酸性元素を添加する方法を採用するときは、転炉から取鍋へ出鋼する際に脱酸性元素を添加しても構わない。 Examples of the method for adjusting the dissolved oxygen amount Q Of of the molten steel include a method of vacuum deoxidation using an RH type degassing refining device, a method of adding a deacidifying element such as Si, Mn, Ti, Al and the like. The amount of dissolved oxygen Q Of may be adjusted by appropriately combining these methods. Further, the dissolved oxygen amount Q Of may be adjusted using a ladle heating type refining device or a simple molten steel processing facility instead of the RH type degassing refining device. In this case, since the amount of dissolved oxygen Q Of cannot be adjusted by vacuum deoxidation, a method of adding a deacidifying element such as Si may be adopted to adjust the amount of dissolved oxygen Q Of . When employing a method of adding a deoxidizing element such as Si, the deoxidizing element may be added when steel is removed from the converter to the ladle.

[(2、3)REM、Zr、Ti、Ca、およびAlの添加順序について]
上記のように溶鋼の溶存酸素量QOfを上記範囲に調整した後は、上記介在物Iの個数割合を前述した(c−1)に規定するように30%以上とするには、REMとZrの添加条件が上記(2)の要件を満足することが重要であり、上記介在物IIの個数割合を前述した(c−2)に規定するように40%以上とするには、REM、Zr、Ti、Ca、およびAlの添加条件が上記(3)の要件を満足することが重要である。従って、添加順序は少なくともいずれか一方を満足していれば良いが、上記介在物Iの個数割合を30%以上とし、上記介在物IIの個数割合を40%以上とするには、上記(2)と(3)の要件を両方満足することが重要である。
[Addition order of (2, 3) REM, Zr, Ti, Ca, and Al]
After adjusting the dissolved oxygen amount Q Of of the molten steel to the above range as described above, the number ratio of the inclusion I is set to 30% or more as defined in the above (c-1). It is important that the addition condition of Zr satisfies the requirement (2) above. To make the number ratio of the inclusions II 40% or more as defined in the above (c-2), REM, It is important that the addition conditions of Zr, Ti, Ca, and Al satisfy the requirement (3). Therefore, the order of addition is only required to satisfy at least one of them, but in order to set the number ratio of inclusions I to 30% or more and the number ratio of inclusions II to 40% or more, (2 It is important to satisfy both requirements) and (3).

[(2)REMとZrの添加順序について]
(2)では、a群元素(REM、Zr)の添加順序のみを規定したものであり、これにより介在物Iの個数割合を調整できる。
[(2) Order of addition of REM and Zr]
In (2), only the order of addition of the group a elements (REM, Zr) is defined, whereby the number ratio of inclusions I can be adjusted.

全介在物の個数に対する上記介在物Iの個数割合を増加させるには、溶存酸素量QOfを調整した溶鋼に対して、REMとZrを同時、またはほぼ同時(5分間以内)に添加する必要がある。 In order to increase the number ratio of the inclusion I to the total number of inclusions, it is necessary to add REM and Zr simultaneously or almost simultaneously (within 5 minutes) to the molten steel with the dissolved oxygen amount Q Of adjusted. There is.

REMとZrを別々に添加する場合は、REMを添加してからZrを添加してもよいし、Zrを添加してからREMを添加してもよく、いずれの場合でもREM(またはZr)を添加してからZr(またはREM)を添加するまでの間隔を5分間以内とすることが必要である。この間隔は、好ましくは4分間以内であり、より好ましくは3分間以内である。   When adding REM and Zr separately, Zr may be added after adding REM, or REM may be added after adding Zr. In either case, REM (or Zr) is added. It is necessary to set the interval from the addition to the addition of Zr (or REM) within 5 minutes. This interval is preferably within 4 minutes, more preferably within 3 minutes.

なお、Zr・REM・Ca系酸化物によるHAZ靱性の更なる向上を目的として、b群元素(Ti、Ca、Al)の添加順序にも留意することが好ましい。例えば、Caは、REMおよびZrの後に添加することが推奨される。   Note that it is preferable to pay attention to the order of addition of the b group element (Ti, Ca, Al) for the purpose of further improving the HAZ toughness by the Zr / REM / Ca-based oxide. For example, Ca is recommended to be added after REM and Zr.

また、Ti酸化物の微細化によるHAZ靱性の更なる向上を目的として、例えば、Tiは、REMを添加する前に溶鋼に添加することが好ましい。Ti酸化物は、Zr・REM・Ca系酸化物に比べて溶鋼との界面エネルギーが小さいため、溶鋼にZr、REM、およびCaを添加する前にTiを添加することで、Ti酸化物を微細化でき、結果的に、HAZ靱性に寄与する微細な酸化物を生成させることができる。そしてTiを添加した後に、Zr、REM、およびCaを上記のように添加することで、所望とする粒内α変態の核となるZr・REM・Ca系酸化物が得られる。   Moreover, for the purpose of further improving the HAZ toughness due to the refinement of Ti oxide, for example, Ti is preferably added to the molten steel before REM is added. Ti oxide has a smaller interfacial energy with molten steel than Zr, REM, and Ca-based oxides, so adding Ti before adding Zr, REM, and Ca to the molten steel makes the Ti oxide finer. As a result, fine oxides contributing to HAZ toughness can be generated. Then, after adding Ti, Zr, REM, and Ca are added as described above to obtain a Zr / REM / Ca-based oxide that becomes the nucleus of the desired intragranular α-transformation.

溶存酸素量QOfを調整した溶鋼にTiを添加してからREMを添加した場合でも、後述するように、溶鋼の溶存酸素量QOfに応じてREMの添加量QREMが上記(1)式を満足するようにREMを添加すれば、酸化物の大きさと密度を適切に制御できる。REMより先にTiを添加すると溶鋼の溶存酸素はTiと結合して酸化物を形成するため減少するが、Tiは、REMと比べると酸素と結合し難く、且つTi酸化物は溶鋼との界面エネルギーが小さいため、円相当直径が3μmを超える粗大な酸化物を形成し難いからである。また、TiよりもREMおよびZrの方が、酸素と結合しやすいため、REMおよびZrよりTiを先に添加しても上記介在物を生成させることができる。 Even when REM is added after adding Ti to the molten steel with the dissolved oxygen amount Q Of adjusted, the REM addition amount Q REM is expressed by the above equation (1) according to the dissolved oxygen amount Q Of of the molten steel, as will be described later. If REM is added so as to satisfy the above, the size and density of the oxide can be appropriately controlled. When Ti is added prior to REM, the dissolved oxygen in the molten steel is reduced by bonding with Ti to form an oxide, but Ti is less likely to bond with oxygen than REM, and Ti oxide is an interface with the molten steel. This is because the energy is small and it is difficult to form a coarse oxide having an equivalent circle diameter exceeding 3 μm. In addition, since REM and Zr are more easily bonded to oxygen than Ti, the inclusions can be generated even if Ti is added before REM and Zr.

[(3)a群元素(REM、Zr)とb群元素(Ti、Ca、およびAl)の添加順序について]
(3)はa群元素とb群元素の添加条件を規定したものであり、これにより介在物IIの個数割合を調整できる。
[(3) Order of addition of group a elements (REM, Zr) and group b elements (Ti, Ca, and Al)]
(3) defines the addition conditions of the a-group element and the b-group element, whereby the number ratio of inclusions II can be adjusted.

全介在物の個数に対する上記介在物IIの個数割合を増加させるには、溶存酸素量QOfを調整した溶鋼に対して添加するREM、Zr、Ti、Ca、およびAlの添加条件を適切に制御する必要がある。具体的には、REMおよびZrをa群元素、Ti、Ca、およびAlをb群元素としたとき、a群元素の添加前および/または添加後にb群元素を添加する必要がある。即ち、a群元素とb群元素は同時に添加せず、時間差を付けて添加する必要がある。 In order to increase the number ratio of the inclusions II to the total number of inclusions, the addition conditions of REM, Zr, Ti, Ca, and Al added to the molten steel with adjusted dissolved oxygen amount Q Of are appropriately controlled. There is a need to. Specifically, when REM and Zr are a group elements and Ti, Ca, and Al are b group elements, it is necessary to add the b group elements before and / or after the addition of the a group elements. That is, the a group element and the b group element should not be added at the same time but should be added with a time difference.

また、上記a群元素と上記b群元素の添加間隔時間を適切に制御する必要がある。即ち、a群元素の添加前にb群元素を添加する場合について、b群元素のうち最初の元素の添加開始時点からa群元素のうち最初の元素の添加開始時点までの時間をt1(分)、a群元素の添加後にb群元素を添加する場合について、a群元素のうち最後の元素の添加開始時点からb群元素のうち最初の元素(a群元素添加後に最初に添加するb群元素)の添加開始時点までの時間をt2(分)としたとき、t1とt2の合計を3分以上とする必要がある。   Moreover, it is necessary to appropriately control the addition interval time of the a group element and the b group element. That is, in the case where the b group element is added before the addition of the a group element, the time from the start of addition of the first element of the b group elements to the start of addition of the first element of the a group elements is defined as t1 (minutes). ), In the case where the b group element is added after the addition of the a group element, the first element of the b group elements from the start of addition of the last element of the a group elements (the b group added first after the addition of the a group element) When the time until the start of the addition of (element) is t2 (minutes), the total of t1 and t2 needs to be 3 minutes or more.

上記t1を算出するにあたり、a群元素のうち最初の元素の添加開始時点までの時間とは、第1のa群元素を添加する時点までの時間を意味する。例えば、REMとZrを同時に添加する場合は、同時添加する時点までの時間であるし、REMを添加してからZrを添加する場合は、REM(a群元素のうち最初に添加した元素)を添加する時点までの時間を意味する。   In calculating the t1, the time until the start of addition of the first element among the group a elements means the time until the first group a element is added. For example, when adding REM and Zr at the same time, it is the time until the simultaneous addition, and when adding REM after adding REM, REM (element added first among group a elements) is added. It means the time until the point of addition.

また、上記t2を算出するにあたり、a群元素のうち最後の元素の添加開始時点までの時間とは、全てのa群元素を添加する最後の時点を意味する。例えば、REMとZrを同時に添加する場合は、同時添加する時点であるし、REMを添加してからZrを添加する場合は、Zr(a群元素のうち最後に添加した元素)を添加する時点までの時間を意味する。   In calculating t2, the time until the start of the addition of the last element among the a group elements means the last time when all the a group elements are added. For example, when REM and Zr are added at the same time, it is the time when they are added simultaneously. When Zr is added after REM is added, the time when Zr (the element added last among the group a elements) is added. Means the time until.

ここで、上記a群元素と上記b群元素の添加間隔時間と、上記a群元素とb群元素の添加順序について、図面を用いて説明する。図1は、a群元素の添加前後においてb群元素を添加したときの元素の添加順の一例を示している。図1において、a1とa2はa群元素を示しており、◆は夫々の元素の添加開始時点を示している。また、b1〜b4はb群元素を示しており、●は夫々の元素の添加開始時点を示している。 Here, the addition interval time of the a group element and the b group element, and the addition order of the a group element and the b group element will be described with reference to the drawings. FIG. 1 shows an example of the order of addition of elements when the b group element is added before and after the addition of the a group element. In FIG. 1, a 1 and a 2 indicate a group element, and ♦ indicates the start time of addition of each element. Further, b 1 to b 4 represent b group elements, and ● represents the start of addition of each element.

図1では、b1→b2→a1→a2→b3→b4の順に元素を添加しており、a群元素のうち最初に添加する元素がa1、a群元素のうち最後に添加する元素がa2、b群元素のうち最初に添加する元素がb1、a群元素を添加してから最初に添加するb群元素がb3である。上記t1とは、b群元素のうち最初の元素の添加開始時点からa群元素のうち最初の元素の添加開始時点までの時間であるから、図1では、b1の添加開始時点からa2の添加開始時点までの時間がt1となる。また、上記t2とは、a群元素のうち最後の元素の添加開始時点からb群元素のうち最初の元素の添加開始時点までの時間であるから、図1では、a2の添加開始時点からb3の添加開始時点までの時間がt2となる。 In FIG. 1, elements are added in the order of b 1 → b 2 → a 1 → a 2 → b 3 → b 4 , and the first element added among the a group elements is a 1 and the last of the a group elements. The element to be added is a 2 , the first element added among b group elements is b 1 , and the b group element added first after adding the a group element is b 3 . The above t1, because the time from the start of addition time of the first element of the b-group element to the start of the addition time of the first element of a group element, FIG. 1, a 2 start of the addition time of the b 1 The time until the start of addition is t1. In addition, since t2 is the time from the start of addition of the last element of the a group element to the start of addition of the first element of the b group element, in FIG. 1, from the start of addition of a 2 in FIG. The time until the start of addition of b 3 is t2.

図1において、a群元素を同時に添加する場合は、a1とa2を同時に添加すればよく、この場合は、a群元素のうち最初の元素の添加開始時点とa群元素のうち最後の元素の添加開始時点が同じになる。 In FIG. 1, when a group element is added simultaneously, a 1 and a 2 may be added simultaneously. In this case, the addition start time of the first element of the a group element and the last of the a group elements are added. The starting point of element addition is the same.

上記a群元素と上記b群元素の添加間隔時間について、具体例を挙げてより詳細に説明する。   The addition interval time of the group a element and the group b element will be described in more detail with a specific example.

まず、第1の例として、Al→Ti→REM→Zr→Caの順で添加する場合について説明する。この場合は、上記t1とは、Al(最初に添加するb群元素)の添加開始時点からREM(最初に添加するa群元素)の添加開始時点までの時間であり、上記t2とは、Zr(最後に添加したa群元素)の添加開始時点からCa(残りのb群元素について最初に添加するb群元素)の添加開始時点までの時間を意味している。   First, the case where it adds in order of Al-> Ti-> REM-> Zr-> Ca is demonstrated as a 1st example. In this case, t1 is the time from the start of addition of Al (b group element added first) to the start of addition of REM (a group element added first), and t2 is Zr. It means the time from the start of addition of (the last added a group element) to the start of addition of Ca (the first b group element added for the remaining b group elements).

また、第2の例として、Al→Ti→REMとZrを同時→Caの順で添加する場合について説明する。この場合は、上記t1とは、Al(最初に添加するb群元素)の添加開始時点からREMとZrの添加開始時点までの時間であり、上記t2とは、REMとZrの添加開始時点からCa(残りのb群元素について最初に添加するb群元素)の添加開始時点までの時間を意味している。   As a second example, a case where Al → Ti → REM and Zr are added in the order of simultaneous → Ca will be described. In this case, t1 is the time from the start of addition of Al (group b element added first) to the start of addition of REM and Zr, and t2 is from the start of addition of REM and Zr. It means the time until the start of addition of Ca (b group element added first for the remaining b group elements).

上記t1とt2の合計は、3分以上とする。t1とt2の合計を3分以上とすることによって、REMとZrを含み、適量のAl、Ca、およびTiを含有する介在物を生成させることができる。上記t1とt2の合計は、5分以上とすることが好ましく、より好ましくは7分以上である。t1とt2の合計の上限は特に限定されないが、時間が長過ぎると生産性が低下するため、上限は概ね20分程度である。   The total of the above t1 and t2 is 3 minutes or more. By setting the total of t1 and t2 to 3 minutes or more, inclusions containing REM and Zr and containing appropriate amounts of Al, Ca, and Ti can be generated. The total of t1 and t2 is preferably 5 minutes or more, more preferably 7 minutes or more. The upper limit of the total of t1 and t2 is not particularly limited, but if the time is too long, the productivity is lowered, so the upper limit is about 20 minutes.

なお、b群元素を添加する前にa群元素を添加しない場合や、b群元素を添加した後にa群元素を添加しない場合は、t1またはt2を0分として計算すればよい。但し、t1=t2=0は除く。   When the a group element is not added before the b group element is added, or when the a group element is not added after the b group element is added, t1 or t2 may be calculated as 0 minutes. However, t1 = t2 = 0 is excluded.

上記a群元素とb群元素の添加順序については、a群元素を添加してからb群元素を添加してもよいし、b群元素を添加してからa群元素を添加してもよい。また、b群元素を添加してからa群元素を添加し、次いでb群元素を添加してもよい。a群元素を添加する前後の両方でb群元素を添加する場合は、a群元素の添加前後ですべてのb群元素の種類および含有量が制御されていればよい。例えば、b群元素の一部を添加した後、a群元素を添加し、次いでb群元素の残りを添加してもよいし、a群元素を添加する前後で同じ元素を重複して添加してもよい。   Regarding the addition order of the a group element and the b group element, the b group element may be added after the a group element is added, or the a group element may be added after the b group element is added. . Alternatively, the a-group element may be added after the b-group element is added, and then the b-group element may be added. When the b group element is added both before and after the addition of the a group element, the type and content of all the b group elements may be controlled before and after the addition of the a group element. For example, after adding a part of the b group element, the a group element may be added, and then the rest of the b group element may be added, or the same element may be added repeatedly before and after the a group element is added. May be.

上記a群元素と上記b群元素は、上記(b−2)の要件を満足する範囲内において夫々同時に添加してもよいし、別々に添加してもよい。   The a-group element and the b-group element may be added simultaneously within a range that satisfies the requirement (b-2), or may be added separately.

また、上記b群元素を添加するにあたり、REMとZrの添加条件が上記(b−1)の要件を満足するように添加すれば、上記介在物Iの個数割合を30%以上に制御でき、HAZ靱性を向上できる。   Further, when adding the b group element, if the addition condition of REM and Zr satisfies the requirement (b-1), the number ratio of the inclusion I can be controlled to 30% or more, HAZ toughness can be improved.

溶鋼へ添加するREM、Ca、Zr、およびTiの形態は特に限定されず、例えば、REMとして、純La、純Ce、純Yなど、或いは純Ca、純Zr、純Ti、更にはFe−Si−La合金、Fe−Si−Ce合金、Fe−Si−Ca合金、Fe−Si−La−Ce合金、Fe−Ca合金、Fe−Zr合金、Fe−Ti合金、Ni−Ca合金などを添加すればよい。また、溶鋼へミッシュメタルを添加してもよい。ミッシュメタルとは、希土類元素の混合物であり、具体的には、Ceを40〜50%程度、Laを20〜40%程度含有している。但し、ミッシュメタルには不純物としてCaを含むことが多いので、ミッシュメタルがCaを含む場合は本発明で規定する範囲を満足する必要がある。   The form of REM, Ca, Zr, and Ti added to the molten steel is not particularly limited. For example, as REM, pure La, pure Ce, pure Y, or pure Ca, pure Zr, pure Ti, and further Fe-Si. -La alloy, Fe-Si-Ce alloy, Fe-Si-Ca alloy, Fe-Si-La-Ce alloy, Fe-Ca alloy, Fe-Zr alloy, Fe-Ti alloy, Ni-Ca alloy, etc. That's fine. Moreover, you may add misch metal to molten steel. Misch metal is a mixture of rare earth elements, and specifically contains about 40 to 50% Ce and about 20 to 40% La. However, since misch metal often contains Ca as an impurity, when the misch metal contains Ca, the range specified in the present invention must be satisfied.

こうして成分調整して得られた溶鋼は、常法に従って連続鋳造してスラブとした後、常法に従って熱間圧延すればよい。   The molten steel obtained by adjusting the components in this manner may be continuously cast according to a conventional method to form a slab, and then hot rolled according to a conventional method.

本発明の鋼材は、1450℃で5秒間保持した後、800℃から500℃への冷却時間を400秒として冷却する熱履歴を与えた場合(入熱条件:1450℃×5秒、冷却時間Tc=400秒)であっても、−40℃における吸収エネルギー(vE-40)で130J以上を確保できる。そのため、本発明に係る鋼材は、例えば橋梁や高層建造物、船舶などの構造物の材料として使用でき、小〜中入熱溶接はもとより、入熱量が50kJ/mm以上の大入熱溶接においても溶接熱影響部の靱性劣化を防ぐことができる。本発明の鋼材は、板厚が約3.0mm以上の厚鋼板などを対象としている。 When the steel material of the present invention is held at 1450 ° C. for 5 seconds and then has a heat history of cooling from 800 ° C. to 500 ° C. for 400 seconds (heat input condition: 1450 ° C. × 5 seconds, cooling time Tc = 400 seconds), it is possible to secure 130 J or more in absorbed energy (vE -40 ) at -40 ° C. Therefore, the steel material according to the present invention can be used as a material for structures such as bridges, high-rise buildings, and ships, for example, in small to medium heat input welding as well as in large heat input welding with a heat input of 50 kJ / mm or more. It is possible to prevent toughness deterioration of the weld heat affected zone. The steel material of the present invention is intended for a thick steel plate having a thickness of about 3.0 mm or more.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

真空溶解炉(容量150kg)を用い、下記表1、表2に示す条件で、下記表3、表4に示す成分組成(質量%)の供試鋼(残部は鉄および不可避不純物)を溶製し、150kgのインゴットに鋳造して冷却した。その後、加熱、圧延を行い、厚鋼板を製造した。なお、下記表3、表4に示す供試鋼のうち、本発明で規定する要件を満足する供試鋼のトータルO量は0.0005〜0.010%の範囲であることを確認している。   Using a vacuum melting furnace (capacity 150 kg), under the conditions shown in Tables 1 and 2 below, the test steels with the composition (mass%) shown in Tables 3 and 4 below (the balance being iron and inevitable impurities) were melted Then, it was cast into a 150 kg ingot and cooled. Thereafter, heating and rolling were performed to produce a thick steel plate. Of the test steels shown in Tables 3 and 4 below, it was confirmed that the total O content of the test steels satisfying the requirements specified in the present invention was in the range of 0.0005 to 0.010%. Yes.

上記供試鋼を真空溶解炉で溶製するに当っては、Ti、Zr、REM、およびCa以外の元素について成分調整すると共に、C、Si、Mn、およびAlから選ばれる少なくとも1種の元素を用いて脱酸して溶鋼の溶存酸素量QOfを調整した。調整後の溶存酸素量QOfを下記表1に示す。 In melting the test steel in a vacuum melting furnace, the components other than Ti, Zr, REM, and Ca are adjusted, and at least one element selected from C, Si, Mn, and Al is used. Was used to adjust the dissolved oxygen amount Q Of of the molten steel. Table 1 below shows the dissolved oxygen amount Q Of after the adjustment.

溶存酸素量QOfを調整した溶鋼に、Tiを添加した後、ZrおよびREMを添加してからCaを添加した。ZrおよびREMの添加順序を下記表1、表2に示す。このとき、REMを添加してからZrを添加するか、Zrを添加してからREMを添加した場合には、一方の元素を添加してから他方の元素を添加するまでに要した時間(添加間隔時間)を下記表1、表2に示す。a群元素(REMおよびZr)とb群元素(Ti、Ca、およびAl)との添加間隔時間の総和(t1+t2)を下記表1、表2に示す。 After adding Ti to the molten steel in which the dissolved oxygen amount Q Of was adjusted, Ca was added after adding Zr and REM. The order of addition of Zr and REM is shown in Tables 1 and 2 below. At this time, when Zr is added after adding REM, or when REM is added after adding Zr, the time (addition) required from adding one element to adding the other element Table 1 and Table 2 below show the (interval time). Tables 1 and 2 below show the total addition interval time (t1 + t2) of the group a elements (REM and Zr) and the group b elements (Ti, Ca, and Al).

また、REMの添加量をQREMとし、この値を下記表1、表2に示す。更に、上記溶存酸素量QOfとREMの添加量QREMの値を下記(1)’式に代入して算出したZ値を下記表1、表2に併せて示す。
Z=2logQREM+3logQOf ・・・(1)’
Further, the amount of REM added is Q REM, and this value is shown in Tables 1 and 2 below. Further, Z values calculated by substituting the values of the dissolved oxygen amount Q Of and the REM addition amount Q REM into the following equation (1) ′ are shown in Tables 1 and 2 below.
Z = 2logQ REM + 3logQ Of (1) '

なお、TiはFe−Ti合金の形態で、ZrはFe−Zr合金の形態で、REMはLaを約25%とCeを約50%含有するミッシュメタルの形態で、CaはNi−Ca合金の形態で、夫々添加した。但し、下記表3のNo.12、下記表4のNo.39、41は、ミッシュメタルの形態ではなく、Ceのみを添加した。   Ti is in the form of an Fe-Ti alloy, Zr is in the form of an Fe-Zr alloy, REM is in the form of a misch metal containing about 25% La and about 50% Ce, and Ca is a Ni-Ca alloy. Each was added in form. However, no. 12, No. 4 in Table 4 below. 39 and 41 were not in the form of misch metal, but only Ce was added.

上記元素を添加した後、インゴットに鋳造して冷却した。得られたインゴットを熱間圧延し、厚さが30〜80mmの厚鋼板を製造した。得られた厚鋼板のt/4(但し、tは鋼板の厚み)位置における横断面からサンプルを切り出し、該サンプルに含まれる全酸化物系介在物の成分組成を測定し、単独酸化物として質量換算して酸化物の平均組成を算出した。   After adding the above elements, it was cast into an ingot and cooled. The obtained ingot was hot-rolled to produce a thick steel plate having a thickness of 30 to 80 mm. A sample was cut out from the cross section at t / 4 (where t is the thickness of the steel plate) of the resulting thick steel plate, the component composition of all oxide inclusions contained in the sample was measured, and the mass as a single oxide The average composition of the oxide was calculated in terms of conversion.

全酸化物系介在物の成分組成は、次の手順で測定した。切り出されたサンプル表面を、日本電子データム製の電子線マイクロプローブX線分析計(EPMA;「JXA−8500F(装置名)」)を用いて観察し、円相当直径が0.1μm以上の介在物について成分組成を定量分析した。観察条件は、加速電圧を20kV、試料電流を0.01μA、分析個数を100個以上とし、介在物の中央部での成分組成を特性X線の波長分散分光により定量分析した。分析対象元素は、Si、Mn、S、Al、Ti、Zr、La、Ce、Ca、およびO(酸素)とし、既知物質を用いて各元素のX線強度と元素濃度の関係を予め検量線として求めておき、分析対象とする上記介在物から得られたX線強度と上記検量線からその介在物に含まれる元素量を定量した。   The component composition of all oxide inclusions was measured by the following procedure. The cut sample surface was observed using an electron beam microprobe X-ray analyzer (EPMA; “JXA-8500F (device name)”) manufactured by JEOL Datum, and an inclusion with an equivalent circle diameter of 0.1 μm or more. The component composition was quantitatively analyzed. The observation conditions were an acceleration voltage of 20 kV, a sample current of 0.01 μA, and an analysis number of 100 or more, and the component composition at the center of the inclusion was quantitatively analyzed by wavelength dispersion spectroscopy of characteristic X-rays. The analysis target elements are Si, Mn, S, Al, Ti, Zr, La, Ce, Ca, and O (oxygen), and using a known substance, the relationship between the X-ray intensity and the element concentration of each element is pre-calibrated. The amount of elements contained in the inclusions was quantified from the X-ray intensity obtained from the inclusions to be analyzed and the calibration curve.

得られた定量結果のうち酸素含量が5質量%以上の介在物を酸化物とした。このとき、一つの介在物から複数の元素が観測された場合には、それらの元素の存在を示すX線強度の比から各元素の単独酸化物に質量換算して酸化物の組成を算出した。本発明では、このように単独酸化物として質量換算し、平均したものを酸化物の平均組成とした。酸化物のうち、ZrO2、REMの酸化物、およびCaOの平均組成を下記表5、表6に示す。なお、REMの酸化物は、金属元素をMで表すと、鋼材中にM23、M35、またはMO2の形態で存在するが、全ての酸化物をM23に換算して組成を算出した。また、下記表5、表6に示した「その他」とは、ZrO2、REMの酸化物、およびCaO以外の酸化物(例えば、Al23、MnO、SiO2など)である。 Of the obtained quantitative results, inclusions having an oxygen content of 5% by mass or more were defined as oxides. At this time, when a plurality of elements were observed from one inclusion, the oxide composition was calculated by converting the mass of each element into a single oxide from the ratio of X-ray intensity indicating the presence of these elements. . In the present invention, mass conversion is performed as the single oxide in this way, and the average is obtained as the average composition of the oxide. Of the oxides, the average compositions of ZrO 2 , REM oxide, and CaO are shown in Tables 5 and 6 below. REM oxides, when the metal element is represented by M, exist in the form of M 2 O 3 , M 3 O 5 or MO 2 in the steel material, but all oxides are converted to M 2 O 3 The composition was calculated. “Others” shown in Tables 5 and 6 below are oxides other than ZrO 2 , REM oxide, and CaO (for example, Al 2 O 3 , MnO, SiO 2, etc.).

次に、定量した介在物についてSEM観察により円相当直径を測定し、円相当直径(粒径)が0.1〜2.0μmの介在物の個数を測定した。下記表5、表6に測定結果を観察視野面積1mm2あたりに換算した個数を示す。 Next, the circle-equivalent diameter of the quantified inclusions was measured by SEM observation, and the number of inclusions having a circle-equivalent diameter (particle diameter) of 0.1 to 2.0 μm was measured. Tables 5 and 6 below show the numbers obtained by converting the measurement results per 1 mm 2 of the observation visual field area.

また、得られた定量結果のうち酸素含量が5質量%以上である酸化物の円相当直径をSEM観察により測定し、円相当直径(粒径)が3μmを超える酸化物の個数と、円相当直径(粒径)が5μmを超える酸化物の個数を測定した。下記表5、表6に酸化物の個数を観察視野面積1mm2あたりに換算した値を示す。 In addition, among the obtained quantitative results, the equivalent circle diameter of an oxide having an oxygen content of 5% by mass or more was measured by SEM observation, and the number of oxides having an equivalent circle diameter (particle diameter) exceeding 3 μm and the equivalent of the circle were measured. The number of oxides having a diameter (particle diameter) exceeding 5 μm was measured. Tables 5 and 6 below show values obtained by converting the number of oxides per 1 mm 2 observation field area.

図2に、上記Z値と円相当直径が3μmを超える酸化物の観察視野面積1mm2あたりの個数との関係を示す。図2には、下記表5、表6に示すNo.1〜32の結果(図2の○)とNo.35〜40、53、54、61の結果(図2の●)のうち、Z値の臨界的意義を示すために、Z値が−12.50〜−11.50の範囲にあるものをプロットした。 FIG. 2 shows the relationship between the Z value and the number of oxides with an equivalent circle diameter exceeding 3 μm per 1 mm 2 observation field area. FIG. 2 shows the numbers shown in Tables 5 and 6 below. 1 to 32 (circles in FIG. 2) and No. Of the results of 35-40, 53, 54, 61 (circles in FIG. 2), in order to show the critical significance of the Z value, plot the Z value in the range of -12.50 to -11.50 did.

図2から明らかなように、溶鋼の溶存酸素量QOfに応じて上記(1)式を満足するようにREMを添加すれば、円相当直径が3μmを超える酸化物の生成が抑えられることが分かる。 As is apparent from FIG. 2, if REM is added so as to satisfy the above equation (1) according to the dissolved oxygen amount Q Of of the molten steel, the generation of oxides having an equivalent circle diameter exceeding 3 μm can be suppressed. I understand.

次に、定量した介在物のうちREMおよびZrを含有する介在物について、REMとZrのモル比を算出し、全介在物の個数に対して、REM/Zr比が0.6〜1.4の範囲を満足するREMおよびZr含有介在物Iの個数割合(介在物Iの個数割合)を算出し、結果を下記表5、表6に示す。定量した介在物のうちREM、Zr、Ti、Ca、およびAlを含有する介在物について、REMとZrの合計モル数と、AlとCaとTiの合計モル数との比[(REM+Zr)/(Al+Ca+Ti)]を算出し、全介在物の個数に対して、(REM+Zr)/(Al+Ca+Ti)比が0.5〜1.2の範囲を満足するREM、Zr、Al、Ca、およびTi含有介在物IIの個数割合(介在物IIの個数割合)を算出し、結果を下記表5、表6に示す。   Next, for the inclusions containing REM and Zr among the quantified inclusions, the molar ratio of REM and Zr is calculated, and the REM / Zr ratio is 0.6 to 1.4 with respect to the number of all inclusions. The number ratio of REM and Zr-containing inclusions I satisfying the above range (number ratio of inclusions I) was calculated, and the results are shown in Tables 5 and 6 below. Of the quantified inclusions, for inclusions containing REM, Zr, Ti, Ca, and Al, the ratio between the total number of moles of REM and Zr and the total number of moles of Al, Ca, and Ti [(REM + Zr) / ( Al + Ca + Ti)], and REM, Zr, Al, Ca, and Ti-containing inclusions satisfying the range of (REM + Zr) / (Al + Ca + Ti) ratio of 0.5 to 1.2 with respect to the number of all inclusions The number ratio of II (number ratio of inclusion II) was calculated, and the results are shown in Tables 5 and 6 below.

次に、溶接時に熱影響を受けるHAZの靱性を評価するために、大入熱溶接を模擬して下記に示す溶接再現試験を行なった。溶接再現試験は、厚鋼板のt/4位置(但し、tは板厚)から切り出したサンプルが1450℃になる様に加熱し、この温度で5秒間保持した後、冷却する熱サイクルを与えた。冷却速度は、800℃から500℃への冷却時間が400秒となるように調整した(入熱条件:1450℃×5秒、冷却時間Tc=400秒)。   Next, in order to evaluate the toughness of the HAZ that is affected by heat during welding, the following welding reproduction test was performed by simulating high heat input welding. In the welding reproduction test, the sample cut from the t / 4 position (where t is the plate thickness) of the thick steel plate was heated to 1450 ° C., held at this temperature for 5 seconds, and then given a heat cycle for cooling. . The cooling rate was adjusted so that the cooling time from 800 ° C. to 500 ° C. was 400 seconds (heat input condition: 1450 ° C. × 5 seconds, cooling time Tc = 400 seconds).

冷却後のサンプルの衝撃特性は、上記熱サイクルを与えた後のサンプルから圧延方向にVノッチシャルピー試験片を3本採取し、JIS Z2242に従って衝撃試験を行なって評価した。衝撃試験では、−40℃における吸収エネルギー(vE-40)を測定し、3回の平均値を算出した。本発明では、vE-40の平均値が130J以上のものを合格(HAZ靱性良好)とする。測定結果を下記表5、表6に示す。 The impact characteristics of the sample after cooling were evaluated by taking three V-notch Charpy test pieces in the rolling direction from the sample after applying the thermal cycle and conducting an impact test according to JIS Z2242. In the impact test, the absorbed energy (vE -40 ) at -40 ° C was measured, and the average value of three times was calculated. In the present invention, a sample having an average value of vE- 40 of 130 J or more is considered acceptable (haz toughness is good). The measurement results are shown in Tables 5 and 6 below.

下記表1〜表6から次のように考察できる。No.1〜32は、本発明で規定する要件を満足する例であり、鋼材に含まれる全酸化物系介在物の組成を測定して単独酸化物に質量換算したときに、ZrO2、REMの酸化物、およびCaOを所定量含有するように調整したうえで、円相当直径が3μm超の酸化物と円相当直径が5μm超の酸化物の生成を抑え、且つ円相当直径が0.1〜2μmの介在物を多く生成させており、更に全介在物の個数に対して、上記介在物Iの個数割合が30%以上になっているか、および/または上記介在物IIの個数割合が40%以上になっているため、HAZ靱性が良好な鋼材が得られている。また、Si含有量が高い方がHAZ靱性は良好になる傾向が読み取れる。 The following Table 1 to Table 6 can be considered as follows. No. 1-32 are examples that satisfy the requirements stipulated in the present invention. When the composition of all oxide inclusions contained in the steel material is measured and converted into a single oxide in mass, the oxidation of ZrO 2 and REM And an oxide having an equivalent circle diameter of more than 3 μm and an oxide having an equivalent circle diameter of more than 5 μm, and an equivalent circle diameter of 0.1 to 2 μm. The number ratio of the inclusion I is 30% or more and / or the number ratio of the inclusion II is 40% or more with respect to the total number of inclusions. Therefore, a steel material having good HAZ toughness is obtained. It can also be seen that the higher the Si content, the better the HAZ toughness.

一方、No.33〜64は、本発明で規定するいずれかの要件を外れる例である。これらのうち、No.33、51、52、55〜58、62、64は、REMを添加してからZrを添加までの時間、No.34、60は、Zrを添加してからREMを添加するまでの時間が本発明で規定する要件を満足していないため、上記介在物Iの個数割合が30%を下回っている。従ってHAZ靱性が劣化している。   On the other hand, no. 33 to 64 are examples that do not meet any of the requirements defined in the present invention. Of these, No. 33, 51, 52, 55-58, 62, 64 are the time from the addition of REM to the addition of Zr. In Nos. 34 and 60, since the time from the addition of Zr to the addition of REM does not satisfy the requirement defined in the present invention, the number ratio of inclusion I is less than 30%. Accordingly, the HAZ toughness is deteriorated.

No.35〜40、53、54、61は、溶鋼の溶存酸素量QOfとREMの添加量QREMのバランスが上記(1)式を満足していないため、円相当直径が3μmを超える酸化物(特に、円相当直径が3μmを超え、5μm以下の酸化物)が多く生成している。従ってHAZ靱性が劣化している。No.41は、鋼材に含まれる全酸化物系介在物の組成を測定して単独酸化物に質量換算したときのREMの酸化物量が本発明で規定する範囲を下回っているため、溶接時に粒内α変態の核となる酸化物量が不足し、HAZ靱性が劣化している。 No. 35 to 40, 53, 54 and 61 are oxides having an equivalent circle diameter exceeding 3 μm because the balance between the dissolved oxygen amount Q Of of the molten steel and the addition amount Q REM of the REM does not satisfy the above formula (1). In particular, an oxide having an equivalent circle diameter of more than 3 μm and not more than 5 μm is generated. Accordingly, the HAZ toughness is deteriorated. No. 41, because the amount of oxide of REM when the composition of all oxide inclusions contained in the steel material is measured and converted into a single oxide by mass is less than the range defined in the present invention, The oxide amount serving as the nucleus of transformation is insufficient, and the HAZ toughness is deteriorated.

No.42とNo.59は、鋼材に含まれるREM量が多く、鋼材に含まれる全酸化物系介在物の組成を測定して単独酸化物に質量換算したときのREMの酸化物量が本発明で規定する範囲を上回っているため、酸化物が粗大化し、粒内α変態の核として作用する微細な酸化物の個数が少なくなり、HAZ靱性向上作用が発揮されていない。No.43は、鋼材に含まれるZr量が少な過ぎるため、全酸化物系介在物の組成に占めるZrO2量が少なくなり、粒内α変態の核となるZr・REM・Ca系酸化物量が少なくなっていると考えられる。そのためHAZ靱性が劣化している。No.44とNo.63は、鋼材に含まれるZr量が多過ぎるため、全酸化物の組成に占めるZrO2量が多くなっている。そのため溶接時に粒内α変態の核となる酸化物量が不足し、微細組織が得られずHAZ靱性が劣化している。 No. 42 and no. 59, the amount of REM contained in the steel material is large, and the amount of REM oxide when the composition of all oxide inclusions contained in the steel material is measured and converted into a single oxide by mass exceeds the range specified in the present invention. Therefore, the oxide becomes coarse, the number of fine oxides acting as nuclei for intragranular α transformation decreases, and the HAZ toughness improving effect is not exhibited. No. No. 43, because the amount of Zr contained in the steel material is too small, the amount of ZrO 2 occupying the composition of all oxide inclusions is reduced, and the amount of Zr / REM / Ca oxides that become the core of intragranular α transformation is reduced. It is thought that. Therefore, the HAZ toughness is deteriorated. No. 44 and no. No. 63 has a large amount of ZrO 2 in the composition of all oxides because the amount of Zr contained in the steel material is too large. For this reason, the amount of oxide that becomes the nucleus of intragranular α-transformation is insufficient at the time of welding, and a microstructure cannot be obtained, and the HAZ toughness is deteriorated.

No.45は、鋼材に含まれるCa量が多過ぎるため、全酸化物系介在物の組成に占めるCaO量が多くなっている。そのため溶接時に粒内α変態の核となる酸化物量が不足し、微細組織が得られずHAZ靱性が劣化している。No.46は、鋼材に含まれるCa量が少な過ぎるため、CaO量が生成していない。そのため粒内α変態の核となるZr・REM・Ca系酸化物量が少なくなり、HAZ靱性が劣化している。No.47は、鋼材に含まれるTi量が多過ぎるため、Tiの固溶により母材が固溶強化されたため、結果的にHAZ靱性が劣化している。No.48は、鋼材に含まれるTi量が少な過ぎるため、粒内α変態の核となる円相当直径が0.1〜2μmの介在物の生成量を確保できていない。従ってHAZ靱性が劣化している。No.49は、鋼材に含まれるAl量が多過ぎるため、円相当直径が3μmを超える粗大な酸化物を多く生成し、HAZ靱性が劣化している。No.50は、鋼材に含まれるN量が多過ぎる例であり、鋼材に含まれる固溶N量が過剰となり、HAZ靱性が劣化していると考えられる。   No. In No. 45, since the amount of Ca contained in the steel material is too large, the amount of CaO in the composition of all oxide inclusions is large. For this reason, the amount of oxide that becomes the nucleus of intragranular α-transformation is insufficient at the time of welding, and a microstructure cannot be obtained, and the HAZ toughness is deteriorated. No. Since the amount of Ca contained in the steel material 46 is too small, the amount of CaO is not generated. Therefore, the amount of Zr / REM / Ca-based oxide that becomes the nucleus of the intragranular α transformation is reduced, and the HAZ toughness is deteriorated. No. In No. 47, since the amount of Ti contained in the steel material is too large, the base material was solid-solution strengthened by the solid solution of Ti, and as a result, the HAZ toughness is deteriorated. No. In No. 48, since the amount of Ti contained in the steel material is too small, the amount of inclusions having a circle-equivalent diameter of 0.1 to 2 μm that becomes the nucleus of the intragranular α transformation cannot be secured. Accordingly, the HAZ toughness is deteriorated. No. In No. 49, since the amount of Al contained in the steel material is too large, a large amount of coarse oxide having an equivalent circle diameter exceeding 3 μm is generated, and the HAZ toughness is deteriorated. No. 50 is an example in which the amount of N contained in the steel material is excessive, and the amount of solute N contained in the steel material becomes excessive, and it is considered that the HAZ toughness is deteriorated.

次に、図3に、円相当直径が3μmを超える酸化物の観察視野面積1mm2あたりの個数と−40℃における吸収エネルギー(vE-40)との関係を示す。図3では、下記表5、表6に示すNo.1〜32の結果を○で、No.35〜40、49、53、54、61(比較例のうち5.0個を超える例)の結果を●で示した。 Next, FIG. 3 shows the relationship between the number of oxides with an equivalent circle diameter exceeding 3 μm per 1 mm 2 of the observation visual field area and the absorbed energy (vE −40 ) at −40 ° C. In FIG. 3, the numbers shown in Tables 5 and 6 below are shown. The results of 1-32 are indicated by ○ and No. The results of 35-40, 49, 53, 54, 61 (examples exceeding 5.0 of the comparative examples) are indicated by ●.

図3から明らかなように、円相当直径が3μmを超える酸化物の観察視野面積1mm2あたりの個数が5.0個以下であれば、1450℃で5秒間加熱保持した場合であっても良好なHAZ靱性を示すことが分かる。 As is apparent from FIG. 3, if the number of oxides with an equivalent circle diameter exceeding 3 μm per observation field area of 1 mm 2 is 5.0 or less, it is satisfactory even when heated at 1450 ° C. for 5 seconds. It can be seen that it exhibits excellent HAZ toughness.

次に、下記表5に示したNo.2と下記表6に示したNo.33を取上げて考察する。これらの鋼材は、全介在物の個数に対する上記介在物Iの個数割合が相違する以外は、ほぼ同じ例である(全介在物の個数に対する上記介在物IIの個数割合はいずれも40%を下回っている)。上記介在物Iの個数割合が、全介在物の個数に対して30%を下回る場合(No.33)は、vE-40が130J未満になるのに対し、全介在物の個数に対して30%以上の場合(No.2)は、vE-40が130J以上になり、HAZ靱性を改善できていることが分かる。また、同様の結果が、下記表5に示したNo.23と下記表6に示したNo.62についても得られている。即ち、上記介在物Iの個数割合が、全介在物の個数に対して30%以上の場合(No.23)は、vE-40が130J以上になり、HAZ靱性を改善できた。 Next, No. shown in Table 5 below. 2 and No. 2 shown in Table 6 below. Take 33 and consider. These steel materials are substantially the same except that the number ratio of the inclusion I to the total number of inclusions is different (the number ratio of the inclusion II to the total number of inclusions is less than 40%. ing). When the ratio of the number of inclusions I is less than 30% with respect to the number of all inclusions (No. 33), vE- 40 is less than 130 J, whereas 30% with respect to the number of all inclusions. % (No. 2) shows that vE- 40 is 130 J or more, and the HAZ toughness can be improved. In addition, similar results are shown in No. 1 shown in Table 5 below. 23 and No. shown in Table 6 below. 62 is also obtained. That is, when the number ratio of the inclusion I was 30% or more with respect to the number of all inclusions (No. 23), vE- 40 was 130 J or more, and the HAZ toughness could be improved.

次に、下記表5、表6に示したNo.17とNo.51を取上げて考察する。これらの鋼材は、全介在物の個数に対する上記介在物IIの個数割合が相違する以外は、ほぼ同じ例である(全介在物の個数に対する上記介在物Iの個数割合はいずれも30%を下回っている)。上記介在物IIの個数割合が、全介在物の個数に対して40%を下回る場合(No.51)は、vE-40が130J未満になるのに対し、全介在物の個数に対して40%以上の場合(No.17)は、vE-40が130J以上になり、HAZ靱性を改善できていることが分かる。また、同様の結果が、下記表5に示したNo.26と下記表6に示したNo.64についても得られている。即ち、上記介在物IIの個数割合が、全介在物の個数に対して40%以上の場合(No.26)は、vE-40が130J以上になり、HAZ靱性を改善できた。 Next, No. shown in Table 5 and Table 6 below. 17 and No. Consider 51. These steel materials are substantially the same except that the number ratio of the inclusions II to the total number of inclusions is different (the number ratio of the inclusions I to the total number of inclusions is less than 30%. ing). When the ratio of the number of inclusions II is less than 40% with respect to the number of all inclusions (No. 51), vE- 40 is less than 130 J, whereas 40% with respect to the number of all inclusions. % (No. 17) shows that vE- 40 is 130 J or more, and the HAZ toughness can be improved. In addition, similar results are shown in No. 1 shown in Table 5 below. 26 and No. shown in Table 6 below. 64 is also obtained. That is, when the number ratio of the inclusions II was 40% or more with respect to the number of all inclusions (No. 26), vE- 40 was 130 J or more, and the HAZ toughness could be improved.

Figure 2012162797
Figure 2012162797

Figure 2012162797
Figure 2012162797

Figure 2012162797
Figure 2012162797

Figure 2012162797
Figure 2012162797

Figure 2012162797
Figure 2012162797

Figure 2012162797
Figure 2012162797

Claims (6)

C :0.02〜0.15%(質量%の意味。以下成分について同じ。)、
Si:0.5%以下(0%を含まない)、
Mn:2.5%以下(0%を含まない)、
P :0.03%以下(0%を含まない)、
S :0.02%以下(0%を含まない)、
Al:0.050%以下(0%を含まない)、
N :0.010%以下(0%を含まない)、
Ti:0.005〜0.10%、
Zr:0.0005〜0.050%、
REM:0.0003〜0.015%、
Ca:0.0003〜0.010%、および
O :0.0005〜0.010%を含有し、
残部が鉄および不可避不純物からなる鋼材であって、
(a)前記鋼材に含まれる全酸化物系介在物の組成を測定して単独酸化物に質量換算したとき、平均組成で、
ZrO2:5〜50%、
REMの酸化物(REMをMの記号で表すとM23):5〜50%、および
CaO:50%以下(0%を含まない)を満足し、且つ、
(b)前記鋼材に含まれる全介在物のうち、
円相当直径で0.1〜2μmの介在物が観察視野面積1mm2あたり120個以上で、
円相当直径で3μm超の酸化物が観察視野面積1mm2あたり5.0個以下で、
円相当直径で5μm超の酸化物が観察視野面積1mm2あたり5.0個以下であり、
(c−1)前記鋼材に含まれる全介在物の組成を測定したとき、全介在物の個数に対して、REMとZrのモル比(REM/Zr)が0.6〜1.4を満足するREMおよびZr含有介在物Iの個数割合が30%以上であるか、および/または
(c−2)前記鋼材に含まれる全介在物の組成を測定したとき、全介在物の個数に対して、REMとZrの合計モル数と、AlとCaとTiの合計モル数との比[(REM+Zr)/(Al+Ca+Ti)]が0.5〜1.2を満足するREM、Zr、Al、Ca、およびTi含有介在物IIの個数割合が40%以上
であることを特徴とする溶接熱影響部の靱性に優れた鋼材。
C: 0.02 to 0.15% (meaning mass%, the same applies to the following components),
Si: 0.5% or less (excluding 0%),
Mn: 2.5% or less (excluding 0%),
P: 0.03% or less (excluding 0%),
S: 0.02% or less (excluding 0%),
Al: 0.050% or less (excluding 0%),
N: 0.010% or less (excluding 0%),
Ti: 0.005 to 0.10%,
Zr: 0.0005 to 0.050%,
REM: 0.0003 to 0.015%,
Ca: 0.0003-0.010%, and O: 0.0005-0.010%,
The balance is steel made of iron and inevitable impurities,
(A) When the composition of all oxide inclusions contained in the steel material is measured and converted to a single oxide by mass, the average composition is:
ZrO 2 : 5 to 50%,
REM oxide (REM is represented by M 2 O 3 when M is represented): 5 to 50%, and CaO: 50% or less (not including 0%), and
(B) Of all the inclusions contained in the steel material,
The number of inclusions with a circle equivalent diameter of 0.1 to 2 μm is 120 or more per 1 mm 2 of the observation visual field area.
The number of oxides with an equivalent circle diameter of more than 3 μm is 5.0 or less per 1 mm 2 of the viewing field area
The number of oxides with an equivalent circle diameter of more than 5 μm is 5.0 or less per 1 mm 2 of the viewing field area,
(C-1) When the composition of all inclusions contained in the steel material is measured, the molar ratio of REM to Zr (REM / Zr) satisfies 0.6 to 1.4 with respect to the number of all inclusions. The ratio of the number of inclusions I containing REM and Zr is 30% or more, and / or (c-2) when the composition of all inclusions contained in the steel material is measured, , REM, Zr, Al, Ca, in which the ratio [(REM + Zr) / (Al + Ca + Ti)] of the total number of moles of REM and Zr to the total number of moles of Al, Ca, and Ti satisfies 0.5 to 1.2. And the steel material excellent in the toughness of the heat affected zone of welding, wherein the number ratio of Ti-containing inclusions II is 40% or more.
前記鋼材が、更に他の元素として、
Cu:2%以下(0%を含まない)および/または
Ni:3.5%以下(0%を含まない)を含有する請求項1に記載の鋼材。
The steel material is still another element,
The steel material according to claim 1, containing Cu: 2% or less (not including 0%) and / or Ni: 3.5% or less (not including 0%).
前記鋼材が、更に他の元素として、
Cr:3%以下(0%を含まない)および/または
Mo:1%以下(0%を含まない)を含有する請求項1または2に記載の鋼材。
The steel material is still another element,
The steel material according to claim 1 or 2, containing Cr: 3% or less (not including 0%) and / or Mo: 1% or less (not including 0%).
前記鋼材が、更に他の元素として、
Nb:0.25%以下(0%を含まない)および/または
V :0.1%以下(0%を含まない)を含有する請求項1〜3のいずれかに記載の鋼材。
The steel material is still another element,
The steel material according to any one of claims 1 to 3, containing Nb: not more than 0.25% (not including 0%) and / or V: not more than 0.1% (not including 0%).
前記鋼材が、更に他の元素として、
B:0.005%以下(0%を含まない)を含有する請求項1〜4のいずれかに記載の鋼材。
The steel material is still another element,
B: The steel material in any one of Claims 1-4 containing 0.005% or less (0% is not included).
請求項1〜5のいずれかに記載の鋼材を製造する方法であって、
溶存酸素量QOfを0.0003〜0.01質量%の範囲に調整した溶鋼にREMを添加するにあたり、前記溶鋼の溶存酸素量QOfとREMの添加量QREMが下記(1)式を満足する量のREMを添加すると共に、
上記範囲に溶存酸素量QOfを調整した溶鋼に、REM、Zr、Ti、Ca、およびAlを添加するにあたり、REMおよびZrをa群元素、Ti、Ca、およびAlをb群元素としたとき、各元素の添加条件が下記(2)および/または下記(3)を満足することを特徴とする溶接熱影響部の靱性に優れた鋼材の製造方法。
2logQREM+3logQOf≦−12.00 ・・・(1)
(2)前記a群元素について、REMとZrを同時に添加するか、またはREMとZrのうち一方の元素を添加してから5分以内に他方の元素を添加する。
(3)前記a群元素の添加前および/または添加後に前記b群元素を添加することとし、前記a群元素の添加前に前記b群元素を添加する場合について、前記b群元素のうち最初の元素の添加開始時点から前記a群元素のうち最初の元素の添加開始時点までの時間をt1(分)、前記a群元素の添加後に前記b群元素を添加する場合について、前記a群元素のうち最後の元素の添加開始時点から前記b群元素のうち最初の元素の添加開始時点までの時間をt2(分)とし、前記t1と前記t2の合計を3分以上とする。(0≦t1、0≦t2、但し、t1およびt2は0ではない。)
A method for producing the steel material according to any one of claims 1 to 5,
When adding REM to the molten steel in which the dissolved oxygen amount Q Of is adjusted to the range of 0.0003 to 0.01% by mass, the dissolved oxygen amount Q Of of the molten steel and the added amount Q REM of the REM are expressed by the following formula (1). Adding a satisfactory amount of REM,
When adding REM, Zr, Ti, Ca, and Al to molten steel with the dissolved oxygen amount Q Of adjusted to the above range, when REM and Zr are a group element and Ti, Ca, and Al are b group elements The method for producing a steel material excellent in toughness of the weld heat affected zone, characterized in that the addition condition of each element satisfies the following (2) and / or (3) below.
2logQ REM + 3logQ Of ≤-12.00 (1)
(2) About the said a group element, REM and Zr are added simultaneously, or the other element is added within 5 minutes after adding one element among REM and Zr.
(3) The case where the b group element is added before and / or after the addition of the a group element, and the b group element is added before the addition of the a group element. T1 (minutes) from the start of addition of the first element to the start of addition of the first element among the a group elements, and when the b group element is added after the addition of the a group element, the a group element The time from the start of addition of the last element to the start of addition of the first element among the group b elements is t2 (minutes), and the sum of t1 and t2 is 3 minutes or more. (0 ≦ t1, 0 ≦ t2, where t1 and t2 are not 0.)
JP2011206542A 2011-01-18 2011-09-21 Steel material excellent in toughness of weld heat-affected zone and method for producing the same Expired - Fee Related JP5651090B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011206542A JP5651090B2 (en) 2011-01-18 2011-09-21 Steel material excellent in toughness of weld heat-affected zone and method for producing the same
PCT/JP2012/050852 WO2012099119A1 (en) 2011-01-18 2012-01-17 Steel material having superior toughness of welded heat-affected zone, and method for manufacturing same
CN201280005110.6A CN103328672B (en) 2011-01-18 2012-01-17 Steel material having superior toughness of welded heat-affected zone, and method for manufacturing same
KR20137018728A KR101512257B1 (en) 2011-01-18 2012-01-17 Steel material having superior toughness of welded heat-affected zone, and method for manufacturing same
EP12736520.3A EP2666880A4 (en) 2011-01-18 2012-01-17 Steel material having superior toughness of welded heat-affected zone, and method for manufacturing same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011008258 2011-01-18
JP2011008258 2011-01-18
JP2011206542A JP5651090B2 (en) 2011-01-18 2011-09-21 Steel material excellent in toughness of weld heat-affected zone and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012162797A true JP2012162797A (en) 2012-08-30
JP5651090B2 JP5651090B2 (en) 2015-01-07

Family

ID=46515742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011206542A Expired - Fee Related JP5651090B2 (en) 2011-01-18 2011-09-21 Steel material excellent in toughness of weld heat-affected zone and method for producing the same

Country Status (5)

Country Link
EP (1) EP2666880A4 (en)
JP (1) JP5651090B2 (en)
KR (1) KR101512257B1 (en)
CN (1) CN103328672B (en)
WO (1) WO2012099119A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014141633A1 (en) * 2013-03-12 2014-09-18 Jfeスチール株式会社 Thick steel sheet having excellent ctod properties in multilayer welded joints, and manufacturing method for thick steel sheet
WO2014141632A1 (en) * 2013-03-12 2014-09-18 Jfeスチール株式会社 Thick steel sheet having excellent ctod properties in multilayer welded joints, and manufacturing method for thick steel sheet
WO2014148447A1 (en) * 2013-03-22 2014-09-25 株式会社神戸製鋼所 Steel material having superior toughness at welding heat affected zone
JP2014214371A (en) * 2013-04-30 2014-11-17 株式会社神戸製鋼所 Steel sheet excellent in sour resistance and haz toughness
WO2016059997A1 (en) * 2014-10-17 2016-04-21 株式会社神戸製鋼所 Thick steel plate for tank giving weld heat affected zone with excellent toughness
JP2018016890A (en) * 2017-09-26 2018-02-01 株式会社神戸製鋼所 Thick steel sheet for tank excellent in toughness of hot affected zone
KR20210127736A (en) 2019-06-27 2021-10-22 닛폰세이테츠 가부시키가이샤 Steel and its manufacturing method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102912221B (en) * 2012-10-12 2014-05-21 舞阳钢铁有限责任公司 Large-thickness structural steel plate for high-rise building and production method thereof
WO2015022899A1 (en) 2013-08-16 2015-02-19 新日鐵住金株式会社 Electric-resistance-welded steel pipe with excellent weld quality and method for producing same
JP6193206B2 (en) * 2013-12-11 2017-09-06 株式会社神戸製鋼所 Steel plate and line pipe steel pipe with excellent sour resistance, HAZ toughness and HAZ hardness
CN111321348B (en) * 2020-03-30 2022-01-11 南京钢铁股份有限公司 L-shaped steel of rib plate for LNG ship and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008088488A (en) * 2006-09-29 2008-04-17 Kobe Steel Ltd Steel with excellent toughness in weld heat-affected zone and toughness in base material, and its manufacturing method
JP2009084656A (en) * 2007-10-02 2009-04-23 Kobe Steel Ltd High-tensile-strength thick steel plate to be welded having superior toughness of base metal
JP2009138255A (en) * 2007-11-13 2009-06-25 Kobe Steel Ltd High tensile strength thick steel plate for welding, having excellent toughness in heat-affected zone at large heat-input welding
JP2009179844A (en) * 2008-01-30 2009-08-13 Kobe Steel Ltd High tensile strength thick steel plate having excellent toughness in weld heat affected zone
JP2010209433A (en) * 2009-03-11 2010-09-24 Kobe Steel Ltd Steel material superior in toughness of weld heat-affected zone and fatigue characteristics of base metal, and method for manufacturing the same
JP2011038180A (en) * 2009-07-15 2011-02-24 Kobe Steel Ltd Steel member having excellent toughness in weld heat affected zone, and method for producing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1169992C (en) * 2001-11-15 2004-10-06 住友金属工业株式会社 Steel for mechanical structure
JP2003221643A (en) * 2002-01-31 2003-08-08 Jfe Steel Kk Steel product showing excellent toughness of heat- affected zone in ultra-high heat input welding
JP4950529B2 (en) * 2006-03-16 2012-06-13 株式会社神戸製鋼所 Steel with excellent toughness and base metal toughness of weld heat affected zone and its manufacturing method
JP4950528B2 (en) * 2006-03-16 2012-06-13 株式会社神戸製鋼所 Low yield ratio high strength steel with excellent toughness of heat affected zone and its manufacturing method
JP5231042B2 (en) * 2008-02-20 2013-07-10 株式会社神戸製鋼所 Steel material excellent in toughness of weld heat-affected zone and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008088488A (en) * 2006-09-29 2008-04-17 Kobe Steel Ltd Steel with excellent toughness in weld heat-affected zone and toughness in base material, and its manufacturing method
JP2009084656A (en) * 2007-10-02 2009-04-23 Kobe Steel Ltd High-tensile-strength thick steel plate to be welded having superior toughness of base metal
JP2009138255A (en) * 2007-11-13 2009-06-25 Kobe Steel Ltd High tensile strength thick steel plate for welding, having excellent toughness in heat-affected zone at large heat-input welding
JP2009179844A (en) * 2008-01-30 2009-08-13 Kobe Steel Ltd High tensile strength thick steel plate having excellent toughness in weld heat affected zone
JP2010209433A (en) * 2009-03-11 2010-09-24 Kobe Steel Ltd Steel material superior in toughness of weld heat-affected zone and fatigue characteristics of base metal, and method for manufacturing the same
JP2011038180A (en) * 2009-07-15 2011-02-24 Kobe Steel Ltd Steel member having excellent toughness in weld heat affected zone, and method for producing the same

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105008574A (en) * 2013-03-12 2015-10-28 杰富意钢铁株式会社 Thick steel sheet having excellent CTOD properties in multilayer welded joints, and manufacturing method for thick steel sheet
WO2014141632A1 (en) * 2013-03-12 2014-09-18 Jfeスチール株式会社 Thick steel sheet having excellent ctod properties in multilayer welded joints, and manufacturing method for thick steel sheet
US10036079B2 (en) 2013-03-12 2018-07-31 Jfe Steel Corporation Thick steel sheet having excellent CTOD properties in multilayer welded joints, and manufacturing method for thick steel sheet
US10023946B2 (en) 2013-03-12 2018-07-17 Jfe Steel Corporation Thick steel sheet having excellent CTOD properties in multilayer welded joints, and manufacturing method for thick steel sheet
JP5618037B1 (en) * 2013-03-12 2014-11-05 Jfeスチール株式会社 Thick steel plate excellent in multi-layer welded joint CTOD characteristics and method for producing the same
JP5618036B1 (en) * 2013-03-12 2014-11-05 Jfeスチール株式会社 Thick steel plate excellent in multi-layer welded joint CTOD characteristics and method for producing the same
WO2014141633A1 (en) * 2013-03-12 2014-09-18 Jfeスチール株式会社 Thick steel sheet having excellent ctod properties in multilayer welded joints, and manufacturing method for thick steel sheet
EP2975148A4 (en) * 2013-03-12 2016-04-27 Jfe Steel Corp Thick steel sheet having excellent ctod properties in multilayer welded joints, and manufacturing method for thick steel sheet
KR101718275B1 (en) * 2013-03-22 2017-03-20 가부시키가이샤 고베 세이코쇼 Steel material having superior toughness at welding heat affected zone
CN105051229A (en) * 2013-03-22 2015-11-11 株式会社神户制钢所 Steel material having superior toughness at welding heat affected zone
KR20150119391A (en) * 2013-03-22 2015-10-23 가부시키가이샤 고베 세이코쇼 Steel material having superior toughness at welding heat affected zone
EP2977479A4 (en) * 2013-03-22 2016-11-30 Kobe Steel Ltd Steel material having superior toughness at welding heat affected zone
CN105051229B (en) * 2013-03-22 2017-03-15 株式会社神户制钢所 The steel of the tenacity excellent of welding heat affected zone
JP2014185364A (en) * 2013-03-22 2014-10-02 Kobe Steel Ltd Steel material excellent in toughness of welded heat affected zone
WO2014148447A1 (en) * 2013-03-22 2014-09-25 株式会社神戸製鋼所 Steel material having superior toughness at welding heat affected zone
JP2014214371A (en) * 2013-04-30 2014-11-17 株式会社神戸製鋼所 Steel sheet excellent in sour resistance and haz toughness
WO2016059997A1 (en) * 2014-10-17 2016-04-21 株式会社神戸製鋼所 Thick steel plate for tank giving weld heat affected zone with excellent toughness
JP2016079461A (en) * 2014-10-17 2016-05-16 株式会社神戸製鋼所 Thick steel plate for tank excellent in the toughness of weld heat affected zone
KR20170052654A (en) * 2014-10-17 2017-05-12 가부시키가이샤 고베 세이코쇼 Thick steel plate for tank giving weld heat affected zone with excellent toughness
JP2018016890A (en) * 2017-09-26 2018-02-01 株式会社神戸製鋼所 Thick steel sheet for tank excellent in toughness of hot affected zone
KR20210127736A (en) 2019-06-27 2021-10-22 닛폰세이테츠 가부시키가이샤 Steel and its manufacturing method

Also Published As

Publication number Publication date
CN103328672B (en) 2015-06-03
EP2666880A4 (en) 2015-02-25
KR20130105713A (en) 2013-09-25
WO2012099119A1 (en) 2012-07-26
EP2666880A1 (en) 2013-11-27
JP5651090B2 (en) 2015-01-07
CN103328672A (en) 2013-09-25
KR101512257B1 (en) 2015-04-14

Similar Documents

Publication Publication Date Title
JP5651090B2 (en) Steel material excellent in toughness of weld heat-affected zone and method for producing the same
JP4825057B2 (en) Steel with excellent toughness of weld heat affected zone and its manufacturing method
JP5201665B2 (en) High strength thick steel plate for welding with excellent toughness of heat affected zone during high heat input welding
JP5202031B2 (en) Steel material excellent in toughness of weld heat-affected zone and method for producing the same
JP6226542B2 (en) Steel with excellent toughness in weld heat affected zone
JP5231042B2 (en) Steel material excellent in toughness of weld heat-affected zone and method for producing the same
JP5820341B2 (en) Steel with excellent toughness in weld heat affected zone
JP5394785B2 (en) Thick steel plate with excellent weld heat affected zone toughness and low temperature base metal toughness
JP2011219797A (en) Thick steel plate excellent in toughness of weld heat-affected zone
JP4950529B2 (en) Steel with excellent toughness and base metal toughness of weld heat affected zone and its manufacturing method
JP5576640B2 (en) Steel with excellent toughness in weld heat affected zone
JP5824434B2 (en) Thick steel plate with excellent toughness in weld heat affected zone
JP2003213366A (en) Steel having excellent toughness in base metal and large -small heat input weld heat-affected zone
JP5320274B2 (en) Thick steel plate with excellent toughness and strength uniformity in the heat affected zone
JP5394849B2 (en) Thick steel plate with excellent toughness in weld heat affected zone
JP2011127220A (en) Method for manufacturing steel member excellent in toughness at weld heat-affected zone
JP5818343B2 (en) Thick steel plate with excellent toughness in weld heat affected zone
JP5520105B2 (en) Steel material excellent in toughness of weld heat-affected zone and method for producing the same
JP5340839B2 (en) Steel sheet with excellent toughness of weld heat affected zone
JP5103037B2 (en) Thick steel plate with excellent toughness of base metal and weld heat affected zone
JP5883369B2 (en) Thick steel plate with excellent toughness in weld heat affected zone
JP5723234B2 (en) Thick steel plate with excellent toughness in weld heat affected zone
JP5434437B2 (en) High heat input welding steel
KR20110007050A (en) Steel having excellent toughness in welding heat affected zone, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141114

R150 Certificate of patent or registration of utility model

Ref document number: 5651090

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees