JP4311740B2 - Thick steel plate with high heat input welded joint toughness - Google Patents

Thick steel plate with high heat input welded joint toughness Download PDF

Info

Publication number
JP4311740B2
JP4311740B2 JP2004312916A JP2004312916A JP4311740B2 JP 4311740 B2 JP4311740 B2 JP 4311740B2 JP 2004312916 A JP2004312916 A JP 2004312916A JP 2004312916 A JP2004312916 A JP 2004312916A JP 4311740 B2 JP4311740 B2 JP 4311740B2
Authority
JP
Japan
Prior art keywords
toughness
less
haz
steel plate
heat input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004312916A
Other languages
Japanese (ja)
Other versions
JP2006124759A (en
Inventor
喜臣 岡崎
等 畑野
宏行 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004312916A priority Critical patent/JP4311740B2/en
Priority to KR1020050101465A priority patent/KR100712796B1/en
Priority to CNB200510114178XA priority patent/CN100535165C/en
Publication of JP2006124759A publication Critical patent/JP2006124759A/en
Application granted granted Critical
Publication of JP4311740B2 publication Critical patent/JP4311740B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Arc Welding In General (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

本発明は、大入熱溶接継手靭性に優れた厚鋼板に関し、大入熱溶接を行った場合でも、優れた溶接継手靭性を発揮する、590〜780MPa級の高強度厚鋼板に関するものである。   The present invention relates to a thick steel plate excellent in high heat input weld joint toughness, and relates to a high strength thick steel plate of 590 to 780 MPa class that exhibits excellent weld joint toughness even when high heat input welding is performed.

従来より、厚鋼板のHAZ靭性を確保すべく、Tiを含有する酸化物を母材中に分散させ、HAZ部の冷却時に粒内からフェライトを生成させて組織を微細化することで、HAZ靭性を確保することが試みられてきた。   Conventionally, in order to ensure the HAZ toughness of the thick steel plate, an oxide containing Ti is dispersed in the base material, and ferrite is generated from within the grains when the HAZ part is cooled to refine the structure, thereby reducing the HAZ toughness. Attempts have been made to ensure

例えば特許文献1には、0.1〜3.0μmのTi酸化物、あるいはTi酸化物とTi窒化物との複合体のいずれか1種あるいは2種を析出させることによって、HAZ部の粗粒化域における冷却時のγ→α変態を制御して粒内フェライトを生成させ、HAZ靭性を向上させることが記載されている。   For example, in Patent Document 1, coarse particles in the HAZ part are precipitated by precipitating either one or two of a 0.1 to 3.0 μm Ti oxide or a composite of Ti oxide and Ti nitride. It is described that the γ → α transformation during cooling in the chemical conversion region is controlled to produce intragranular ferrite and to improve the HAZ toughness.

また特許文献2や特許文献3には、溶鋼内に生成する粗大な1次脱酸生成物(Al、Ca、REMなど、強脱酸元素による脱酸生成物)の生成を抑制し、かつ弱脱酸元素(Ti、Si、Nb、V、Ta)による脱酸で生成する2次脱酸生成物を均一分散させることによって、溶接熱影響部(HAZ部)の靭性を確保することが示されている。   In Patent Document 2 and Patent Document 3, the production of coarse primary deoxidation products (deoxidation products by strong deoxidation elements such as Al, Ca, and REM) generated in molten steel is suppressed and weak. It is shown that the toughness of the weld heat affected zone (HAZ zone) can be secured by uniformly dispersing the secondary deoxidation product produced by deoxidation with deoxidizing elements (Ti, Si, Nb, V, Ta). ing.

特許文献4には、Ti組成比が5%以上、Al組成比が95%以下で、粒子径が0.01〜1.0μmであるTiとAlとの複合酸化物を、鋼中に均一分散させることによって、溶接時の鋼材のHAZ靭性を向上させることが記載されている。   In Patent Document 4, a composite oxide of Ti and Al having a Ti composition ratio of 5% or more, an Al composition ratio of 95% or less, and a particle diameter of 0.01 to 1.0 μm is uniformly dispersed in steel. It is described that the HAZ toughness of the steel material during welding is improved.

しかし、これらの技術においては、近年、一般的になりつつある入熱のより大きな大入熱溶接を施した場合にまで、優れたHAZ靭性が保証されているとは言い難い。   However, in these techniques, it is difficult to say that excellent HAZ toughness is ensured even when high heat input welding having a larger heat input, which has become common in recent years, is performed.

これに対して、特許文献5、6には、大入熱溶接継手において、HAZ靭性を向上させるために、1400℃以上に加熱されるHAZ領域の高温でのオーステナイト粒の成長(粗大化)を抑制し、再加熱オーステナイト細粒化を促進するために、鋼中に生成する酸化物粒子の組成として、Caを3%以上、Alを1%以上含ませる酸化物を利用することが記載されている。
特公平7−824号公報(特許請求の範囲) 特公平3−67467号公報(特許請求の範囲) 特公平3−59134号公報(特許請求の範囲) 特開平9−3599号公報(特許請求の範囲) 特開2003−313628号公報(特許請求の範囲、段落0031) 特開2003−313628号公報(特許請求の範囲、段落0030)
On the other hand, Patent Documents 5 and 6 describe austenite grain growth (coarsening) at a high temperature in the HAZ region heated to 1400 ° C. or higher in order to improve HAZ toughness in a high heat input welded joint. In order to suppress and promote reheated austenite refinement, it is described that an oxide containing 3% or more of Ca and 1% or more of Al is used as a composition of oxide particles generated in steel. Yes.
Japanese Patent Publication No. 7-824 (Claims) Japanese Patent Publication No. 3-67467 (Claims) Japanese Patent Publication No. 3-59134 (Claims) JP-A-9-3599 (Claims) JP2003-316628A (Claims, paragraph 0031) JP2003-316628A (Claims, paragraph 0030)

しかし、上記特許文献5、6は、50〜60キロ級(590MPa未満)の厚鋼板を対象とするものである。このため、これ以上に高強度な590〜780MPa級の厚鋼板となった場合、特許文献5、6による酸化物手段では、大入熱溶接時にHAZの全域に亙って靭性を確保できない場合が生じる。本発明者らの知見によれば、上記特許文献5、6では、特に、溶融線から3〜5mm近傍の溶接熱影響部の靱性が確保できない。   However, Patent Documents 5 and 6 are intended for thick steel plates of 50 to 60 kilo class (less than 590 MPa). For this reason, when it becomes a 590-780MPa class thick steel plate having higher strength than this, the oxide means according to Patent Documents 5 and 6 may not ensure toughness over the entire area of the HAZ during high heat input welding. Arise. According to the knowledge of the present inventors, in Patent Documents 5 and 6 described above, in particular, the toughness of the weld heat affected zone in the vicinity of 3 to 5 mm from the melt line cannot be ensured.

これは、溶融線から3〜5mm近傍の溶接熱影響部では、γ粒径が比較的微細な領域(粒径10μm程度)では、大入熱溶接時に、焼入れ性が低下してベイナイト組織が粗大化しやすく、粒界生成型ベイナイトの核生成頻度が高いため粒内ベイナイトが形成されない、などによるものと推考される。   This is because, in the weld heat affected zone near 3 to 5 mm from the melt line, in a region where the γ grain size is relatively fine (grain size of about 10 μm), the hardenability is reduced and the bainite structure is coarse during high heat input welding. It is presumed that, because the nucleation frequency of grain boundary generation type bainite is high, intragranular bainite is not formed.

本発明は、この様な事情に鑑みてなされたものであって、その目的は、大入熱溶接を施した場合でも溶接継手靭性(HAZ靭性)に優れた590〜780MPa級の高強度厚鋼板を提供することである。   The present invention has been made in view of such circumstances. The purpose of the present invention is to provide a high-strength thick steel plate of 590 to 780 MPa class that is excellent in weld joint toughness (HAZ toughness) even when subjected to high heat input welding. Is to provide.

この目的を達成するために、本発明の大入熱溶接継手靭性に優れた厚鋼板の要旨は、質量%で、C:0.01〜0.07%、Si:1.0%以下(0%を含まない)、Mn:1.0〜3.0%、Al:0.010%未満(0%を含まない)、Ti:0.005〜0.050%、O:0.0010〜0.0100%、Cu:0.1〜1.5%、Ni:0.1〜2.5%を各々含有し、かつ、20C(%)+1.5Mn(%)+Cu(%)+Ni(%)が4.5〜7.0%であり、残部が鉄および不可避不純物である鋼板であって、平均粒径が0.05〜1μmのTi含有酸化物の平均個数が倍率1000倍で観察したときに10000個/cm2 以上であるとともに、平均粒径2μm以上のTi含有酸化物の平均個数が倍率200倍で観察したときに2000個/cm2 以下であることとする。 In order to achieve this object, the gist of the thick steel plate excellent in the high heat input welded joint toughness of the present invention is mass%, C: 0.01 to 0.07%, Si: 1.0% or less (0 %), Mn: 1.0 to 3.0%, Al: less than 0.010% (not including 0%), Ti: 0.005 to 0.050%, O: 0.0010 to 0 0.0100% , Cu: 0.1-1.5% , Ni: 0.1-2.5%, and 20C (%) + 1.5Mn (%) + Cu (%) + Ni (%) When the average number of Ti-containing oxides having an average particle diameter of 0.05 to 1 μm is observed at a magnification of 1000 times, the steel sheet is 4.5 to 7.0% and the balance is iron and inevitable impurities. in conjunction with at 10000 / cm 2 or more, the average number of average particle size 2μm or more Ti-containing oxides were observed at 200 magnifications 2,000 pieces / cm 2 or less.

なお、本発明において、上記Ti含有酸化物とは、後述する、EPMA装置やFE−SEM/EDX装置などの測定装置を用いて、鋼中の介在物の組成分析を行った際に、Tiを10質量%以上含有する酸化物のことを言う。したがって、鋼中の介在物の内、Ti含有量が10質量%未満の酸化物は、本発明のTi含有酸化物とは言わない。また、上記「平均粒径」とは、Tiを含有する酸化物の円相当粒径をいう。   In the present invention, the Ti-containing oxide refers to Ti when a composition analysis of inclusions in steel is performed using a measuring apparatus such as an EPMA apparatus or an FE-SEM / EDX apparatus, which will be described later. This refers to an oxide containing 10% by mass or more. Therefore, among the inclusions in steel, an oxide having a Ti content of less than 10% by mass is not said to be a Ti-containing oxide of the present invention. The “average particle diameter” refers to the equivalent-circle particle diameter of an oxide containing Ti.

前記した通り、高強度な590〜780MPa級の厚鋼板の場合、特許文献4、5によるCaやAl系の酸化物では、前記した通り、大入熱溶接時にHAZの全域に亙って靭性を確保できない場合が生じる。   As described above, in the case of a high-strength 590-780 MPa thick steel plate, the Ca and Al-based oxides according to Patent Documents 4 and 5 have toughness over the entire area of the HAZ during large heat input welding as described above. There are cases where it cannot be secured.

これに対して、本発明では、鋼中に存在する、Tiを含有する酸化物の内で、粗大な酸化物の数を抑えた上で、微細な酸化物を多数生成させる。このように微細な酸化物の生成数が多数となれば、大入熱溶接後の冷却時にHAZ部で粒内ベイナイトが生成し易くなる。この結果、高強度な590〜780MPa級の厚鋼板の場合でも、特に靱性が低下しやすい、前記した溶融線から3〜5mm近傍の溶接熱影響部を含めて、大入熱溶接時のHAZ全域の靭性を大幅に改善することができる。   On the other hand, in this invention, many oxides are produced | generated after suppressing the number of coarse oxides among the oxides containing Ti which exist in steel. When the number of fine oxides generated is large in this way, intragranular bainite is likely to be generated in the HAZ part during cooling after high heat input welding. As a result, even in the case of a high-strength 590-780 MPa class thick steel plate, the toughness is particularly likely to decrease, and the entire HAZ during high heat input welding including the weld heat affected zone in the vicinity of 3-5 mm from the above-described melting line. Can significantly improve the toughness.

更に、本発明では、溶融線近傍だけではなく、HAZ全域に亙って靭性を良好に確保するために、オーステナイトを安定化させる元素(焼入れ性を高める元素)である、C、Mn、Cu、Niの含有量を合計で制御する。   Furthermore, in the present invention, C, Mn, Cu, elements that stabilize austenite (elements that enhance hardenability) in order to ensure good toughness not only in the vicinity of the melting line but also in the entire HAZ region. The Ni content is controlled in total.

したがって、本発明の厚鋼板は、強度が590〜780MPa級の、船舶、海洋構造物、橋梁、建築構造物などの溶接構造物等に最適であり、該溶接構造物として用いる場合に大入熱で溶接を行っても、優れた溶接継手靭性を発揮する。   Therefore, the steel plate of the present invention is optimal for welded structures such as ships, offshore structures, bridges, and building structures having a strength of 590 to 780 MPa, and has a large heat input when used as the welded structures. Exhibits excellent welded joint toughness even when welding with.

(Ti含有酸化物)
先ず、本発明における厚鋼板組織中のTiを含有する酸化物の意義について、以下に説明する。本発明では、前記した通り、Ti含有酸化物の内で、粗大な酸化物の数を抑えた上で、微細な酸化物を多数生成させる。具体的には、平均粒径が0.05〜1μmの微細なTi含有酸化物の平均個数が、倍率1000倍で観察したときに10000個/cm2 以上とする。その一方で、平均粒径2μm以上の粗大なTi含有酸化物の平均個数が、倍率200倍で観察したときに2000個/cm2 以下とする。
(Ti-containing oxide)
First, the significance of the oxide containing Ti in the steel plate structure in the present invention will be described below. In the present invention, as described above, a large number of fine oxides are generated while suppressing the number of coarse oxides among the Ti-containing oxides. Specifically, the average number of average particle size of 0.05~1μm fine Ti-containing oxides, and 10,000 / cm 2 or more when observed at a magnification 1000 times. On the other hand, when the average number of coarse Ti-containing oxides having an average particle diameter of 2 μm or more is observed at a magnification of 200 times, the average number is set to 2000 pieces / cm 2 or less.

本発明において、上記Ti含有酸化物とは、前記した通り、Tiを10質量%以上含有する酸化物のことを言う。Ti含有量が10質量%未満である、Ti含有量が少ない酸化物には、微細Ti含有酸化物の、大入熱溶接時のHAZ粒内からベイナイトを形成する効果や、粗大Ti含有酸化物の、フェライトの生成核となって有用なベイナイトの生成を抑制する作用は無い。   In the present invention, the Ti-containing oxide refers to an oxide containing 10% by mass or more of Ti as described above. For oxides with a Ti content of less than 10% by mass and a low Ti content, the effect of forming bainite from within the HAZ grains during large heat input welding of a fine Ti-containing oxide, and a coarse Ti-containing oxide There is no effect of suppressing the formation of useful bainite as a ferrite nucleus.

前記した従来技術の様に、大入熱溶接時のHAZ粒内からフェライトを成長させるのではなく、本発明においては、大入熱溶接時のHAZ粒内からベイナイトを形成させる。このために、本発明では、鋼中に、予め、前記微細なTi含有酸化物を多数存在させる。   In the present invention, bainite is formed from within the HAZ grains during large heat input welding, instead of growing ferrite from within the HAZ grains during large heat input welding as in the prior art described above. For this reason, in this invention, many said fine Ti containing oxides exist beforehand in steel.

本発明のように、大入熱溶接時のHAZ粒内からベイナイトを形成させることで、γ粒径が比較的微細な溶融線近傍のHAZにおける、大入熱溶接時の焼入れ性低下によるベイナイト組織粗大化や、粒界生成型ベイナイトの核生成を抑制する。そして、高強度な590〜780MPa級の厚鋼板の場合でも、特に靱性が低下しやすい、前記した溶融線から3〜5mm近傍の溶接熱影響部を含めて、大入熱溶接時のHAZ全域の靭性を大幅に改善する。   As in the present invention, by forming bainite from within the HAZ grains during high heat input welding, the bainite structure due to a decrease in hardenability during high heat input welding in the HAZ in the vicinity of the melting line having a relatively fine γ particle diameter Suppresses coarsening and nucleation of grain boundary bainite. And even in the case of a high-strength 590-780 MPa thick steel plate, the toughness is particularly likely to decrease, including the heat affected zone in the vicinity of 3 to 5 mm from the above-mentioned melt line, and the entire HAZ during large heat input welding. Greatly improve toughness.

同時に、この微細なTi含有酸化物の存在数を保障し、併せて、粒内からのベイナイト形成を阻害させないために、本発明では、予め、前記粗大なTi含有酸化物を抑制する。より具体的には、2μm以上の粗大なTi含有酸化物は、フェライトの生成能が強いため、大入熱溶接時のような高温でフェライトの生成核となりやすく、有用なベイナイトの生成を抑制してしまう。また、この様な粗大なTi含有酸化物は、微細なベイナイト組織における破壊の起点となりやすく、ベイナイトによる微細化効果を阻害する役割も果たす。   At the same time, in order to ensure the number of the fine Ti-containing oxides and not to inhibit the formation of bainite from the grains, the present invention suppresses the coarse Ti-containing oxides in advance. More specifically, a coarse Ti-containing oxide of 2 μm or more has a strong ability to produce ferrite, so it tends to form ferrite nuclei at high temperatures, such as during high heat input welding, and suppresses the formation of useful bainite. End up. In addition, such a coarse Ti-containing oxide is likely to be a starting point of destruction in a fine bainite structure, and also plays a role of inhibiting the refinement effect by bainite.

上記作用効果を確実に発揮させて優れた溶接継手靭性を得るために、本発明では、平均粒径0.05〜1μmの微細なTi含有酸化物と、2μm以上の粗大なTi含有酸化物の存在数を、上記最適な平均個数範囲にする。したがって、いずれのTi含有酸化物も、上記最適な平均個数範囲から外れた場合、高強度な590〜780MPa級の厚鋼板の場合、特に、靱性が低下しやすい溶融線から3〜5mm近傍の溶接熱影響部を含めて、大入熱溶接時のHAZ全域の靭性を改善することができなくなる。   In order to reliably exhibit the above-mentioned effects and obtain excellent weld joint toughness, in the present invention, a fine Ti-containing oxide having an average particle diameter of 0.05 to 1 μm and a coarse Ti-containing oxide of 2 μm or more are used. The existence number is set to the optimum average number range. Therefore, when any Ti-containing oxide deviates from the above-mentioned optimum average number range, in the case of a high strength 590-780 MPa class thick steel plate, especially in the vicinity of 3-5 mm from the melt wire where the toughness tends to decrease. It becomes impossible to improve the toughness of the entire HAZ during high heat input welding including the heat affected zone.

上記微細なTi含有酸化物は、個数が多いほど粒内ベイナイトの生成を促進するため、望ましくは20000個/cm2 以上、より望ましくは40000個/cm2 以上存在させるのがよい。上記作用効果の観点からすると、微細なTi含有酸化物の個数に上限はないが、通常の厚板製造工程において析出が可能な微細なTi含有酸化物の個数は1×108 個/cm2 程度が上限と考えられる。 Since the fine Ti-containing oxide promotes the formation of intragranular bainite as the number increases, it is desirably 20000 / cm 2 or more, more desirably 40000 / cm 2 or more. From the viewpoint of the above effects, there is no upper limit to the number of fine Ti-containing oxides, but the number of fine Ti-containing oxides that can be precipitated in a normal plate manufacturing process is 1 × 10 8 / cm 2. The degree is considered the upper limit.

上記微細なTi含有酸化物には、Ti以外の合金元素としてSi、Ca、Mg等が含まれていてもよい。この中でも、特に、MnがTiと共に含まれる元素として好適である。より好ましくは、酸化物を構成する全合金元素に占めるTi+Mnが60%以上(更に好ましくは70%以上)のものがよい。   The fine Ti-containing oxide may contain Si, Ca, Mg or the like as an alloy element other than Ti. Among these, Mn is particularly suitable as an element contained together with Ti. More preferably, Ti + Mn occupying 60% or more (more preferably 70% or more) of all alloy elements constituting the oxide is preferable.

一方、上記粗大なTi含有酸化物は、フェライトの生成を抑制するためなど、上記抑制効果を達成するためには、個数が少ないほど良く、好ましくは1000個/cm2 以下であり、更に好ましくは500個/cm2 以下とする。 On the other hand, the above-mentioned coarse Ti-containing oxide has a smaller number, preferably 1000 pieces / cm 2 or less, more preferably, in order to achieve the above-mentioned suppressing effect, such as to suppress the formation of ferrite. 500 pieces / cm 2 or less.

この様に、粗大なTi含有酸化物の数を抑えた上で、微細なTi系介在物を多数生成させれば、溶接後の冷却時にHAZ部で粒内ベイナイトが生成し易くなり、HAZ靭性を大幅に改善することができる。尚、本発明の鋼板は、上記の通り、溶接後の冷却時にHAZ部で粒内ベイナイトが優先的に生成すればよいのであって、該冷却時に粒界からベイナイトやフェライトが多少生成する場合もあり、HAZ靭性改善を阻害しない範囲での、これらベイナイトやフェライトの生成は許容する。   In this way, if a large number of fine Ti-based inclusions are generated while suppressing the number of coarse Ti-containing oxides, intragranular bainite is likely to be generated in the HAZ part during cooling after welding, greatly increasing HAZ toughness. Can be improved. In the steel sheet of the present invention, as described above, intragranular bainite may be preferentially produced in the HAZ part during cooling after welding, and some bainite and ferrite may be produced from the grain boundary during the cooling. Yes, the generation of these bainite and ferrite is allowed in a range that does not inhibit the improvement of HAZ toughness.

(Ti含有酸化物の計測)
上記規定の倍率でのTi含有酸化物の観察には、電界放射型走査電子顕微鏡(FE−SEM)、または走査型電子顕微鏡(SEM)、またはEPMA(electron probe microanalyzer)装置などが適用できる。また、FE−SEMに、鋼マトリックス相と各Ti含有酸化物とのより明確な区別を行なうために、EDX(Kevex社製、Sigmaエネルギー分散型X線検出器:energy dispersive X- ray spectrometer)を付加して分析を行っても良い(FE−SEM/EDX)。
(Measurement of Ti-containing oxide)
A field emission scanning electron microscope (FE-SEM), a scanning electron microscope (SEM), an EPMA (electron probe microanalyzer) apparatus, or the like can be applied to the observation of the Ti-containing oxide at the specified magnification. In addition, EDX (manufactured by Kevex, Sigma energy dispersive X-ray spectrometer) is used for FE-SEM to more clearly distinguish between the steel matrix phase and each Ti-containing oxide. Additional analysis may be performed (FE-SEM / EDX).

この内、倍率200倍での平均粒径2μm以上の粗大なTi含有酸化物観察には、好適には、EPMA装置にて行う。また、倍率1000倍での平均粒径が0.05〜1μmの微細なTi含有酸化物観察には、好適には、電界放射型走査電子顕微鏡(FE−SEM)を用いる。このように、本発明では、Ti含有酸化物個数測定の精度と再現性を高めるために、Ti含有酸化物の大きさに応じて倍率を変える。   Among these, observation of a coarse Ti-containing oxide having an average particle diameter of 2 μm or more at a magnification of 200 is preferably performed with an EPMA apparatus. In addition, a field emission scanning electron microscope (FE-SEM) is preferably used for observing a fine Ti-containing oxide having an average particle size of 0.05 to 1 μm at a magnification of 1000 times. Thus, in this invention, in order to improve the precision and reproducibility of Ti-containing oxide number measurement, the magnification is changed according to the size of the Ti-containing oxide.

例えば、微細なTi含有酸化物観察に、FE−SEM/EDXを用いる場合、先ず、鋼中に存在する平均粒径0.05〜1.0μmの介在物の組成分析を行い、Tiを10質量%以上含有するTi含有酸化物の介在物に対する割合を求める。次に、0.1mm2 の領域において、1000倍の反射電子像を用いて、0.01mm2 の任意の例えば10視野を撮影し、画像解析のソフトウェアとして、MEDIACYBERNETICS社製Image−ProPlusなどを用いた画像解析装置により、平均粒径0.05〜1.0μmの介在物の個数の測定を行う。そして、この10視野の合計個数に前記Ti含有酸化物の割合を乗し、更に1000倍することで、1cm2 当たりの平均粒径0.05〜1.0μmのTi含有酸化物の数を求める。 For example, when FE-SEM / EDX is used for observation of fine Ti-containing oxides, first, composition analysis of inclusions having an average particle diameter of 0.05 to 1.0 μm present in steel is performed, and 10 mass of Ti is obtained. The ratio with respect to the inclusion of the Ti-containing oxide containing at least% is obtained. Use Next, in the region of 0.1 mm 2, using a 1000-fold reflection electron image, by photographing an arbitrary example 10 fields of 0.01 mm 2, as a software image analysis, etc. MEDIACYBERNETICS Ltd. Image-ProPlus The number of inclusions having an average particle diameter of 0.05 to 1.0 μm is measured using an image analysis apparatus. Then, the number of Ti-containing oxides having an average particle diameter of 0.05 to 1.0 μm per 1 cm 2 is obtained by multiplying the total number of these 10 visual fields by the ratio of the Ti-containing oxide and further multiplying by 1000.

(厚鋼板の組成)
本発明厚鋼板の組成(単位:質量%)について、各元素の限定理由を含めて、以下に説明する。本発明厚鋼板の上記組織(微細なTi系介在物と粗大介在物の個数)を制御して、大入熱溶接時のHAZ靭性を高めるとともに、高強度等の母材特性を得る前提として、本発明厚鋼板の組成は、下記に示す範囲内とし、規定の方法で製造することが有効である。
(Composition of thick steel plate)
The composition (unit:% by mass) of the thick steel plate of the present invention will be described below including the reasons for limiting each element. As a premise of controlling the structure of the steel plate of the present invention (the number of fine Ti-based inclusions and coarse inclusions) to increase the HAZ toughness during large heat input welding and obtaining the base material characteristics such as high strength, The composition of the steel plate of the present invention is within the range shown below, and it is effective to manufacture it by a prescribed method.

即ち、C:0.01〜0.07%、Si:1.0%以下(0%を含まない)、Mn:1.0〜3.0%、Al:0.010%未満(0%を含まない)、Ti:0.005〜0.050%、O:0.0010〜0.0100%、Cu:0.1〜1.5%、Ni:0.1〜2.5%を各々含有し、かつ、20C(%)+1.5Mn(%)+Cu(%)+Ni(%)が4.5〜7.0%であり、残部が鉄および不可避不純物である鋼板とする。 That is, C: 0.01 to 0.07%, Si: 1.0% or less (not including 0%), Mn: 1.0 to 3.0%, Al: less than 0.010% (0% Not included), Ti: 0.005 to 0.050% , O: 0.0010 to 0.0100% , Cu: 0.1 to 1.5%, Ni: 0.1 to 2.5%, respectively And 20C (%) + 1.5Mn (%) + Cu (%) + Ni (%) is 4.5 to 7.0%, and the balance is iron and inevitable impurities.

このような厚鋼板組成としたのは、特に、溶接後の冷却時にHAZ部で粒内ベイナイトを生成させるには、母材成分を調整することが重要であるためである。具体的には、上記組成では、C量を相対的に高めて、粒内ベイナイトが生成しやすくしている。   The reason why such a thick steel plate composition is used is that, in particular, in order to generate intragranular bainite at the HAZ part during cooling after welding, it is important to adjust the base material component. Specifically, in the above composition, the amount of C is relatively increased so that intragranular bainite is easily generated.

大入熱溶接では、HAZ部の冷却速度が遅くなるためフェライトが生成しやすく、またフェライトの生成を抑えたとしても粒界からベイナイトが生成しやすくなる。ところが、HAZ部のC量を相対的に高めると、フェライトの生成が抑えられると共に粒界からのベイナイト生成も抑えられ、粒内からのベイナイト生成が促進されると推考される。   In high heat input welding, the cooling rate of the HAZ part is slow, so that ferrite is easily generated, and even if the generation of ferrite is suppressed, bainite is easily generated from the grain boundary. However, when the C content in the HAZ part is relatively increased, it is presumed that the generation of ferrite is suppressed and the bainite generation from the grain boundary is also suppressed, and the bainite generation from within the grains is promoted.

なお、上記粒界からのベイナイト生成抑制のためには、NbやVの如き炭化物生成能の強い合金元素の選択的な含有も有効である。NbやVは、Ti酸化物の周囲に偏析して、Ti酸化物を核にベイナイトが生成するのを阻む。   In order to suppress the formation of bainite from the grain boundaries, it is also effective to selectively contain an alloy element having a strong carbide generating ability such as Nb or V. Nb and V segregate around the Ti oxide and prevent bainite from being formed using the Ti oxide as a nucleus.

更に、本発明では、粒内ベイナイトが生成溶融線近傍だけではなく、HAZ全域に亙って靭性を良好に確保するために、オーステナイトを安定化させる元素(焼入れ性を高める元素)である、上記のように、C、Mn、Cu、Niの含有量を、下記パラメータのように、合計量で制御する。これらの元素の合計含有量の制御によって、大入熱溶接でHAZ部の冷却速度が遅くなっても、焼入れ性が高くなって、粒内から生成するベイナイトを微細化することができる。   Furthermore, in the present invention, the intragranular bainite is an element that stabilizes austenite (an element that enhances hardenability) in order to ensure good toughness not only in the vicinity of the generated melting line but also throughout the HAZ, As described above, the contents of C, Mn, Cu, and Ni are controlled by the total amount as in the following parameters. By controlling the total content of these elements, even if the cooling rate of the HAZ part is slowed down by high heat input welding, the hardenability is improved and the bainite generated from within the grains can be refined.

以下、各元素量を規定した理由について詳述する。
C:0.01〜0.07%。
C(炭素)は母材の強度確保に必要な元素であり、少なくとも0.01%必要とである。また、C量を高めると、粒内ベイナイトの生成が促進される。これらの効果は0.01%以上、好ましくは0.02%以上で発揮される。一方、C量が過剰になると、却って、耐溶接割れ性およびHAZ靭性が劣化するので、0.07%以下、好ましくは0.05%未満に抑える。したがって、C含有量は0.01〜0.07%、好ましくは、0.02〜0.05%未満、の範囲とする。
Hereinafter, the reason for defining the amount of each element will be described in detail.
C: 0.01 to 0.07%.
C (carbon) is an element necessary for ensuring the strength of the base material, and is required to be at least 0.01%. Moreover, when the amount of C is increased, the generation of intragranular bainite is promoted. These effects are exhibited at 0.01% or more, preferably 0.02% or more. On the other hand, if the amount of C is excessive, the weld crack resistance and the HAZ toughness deteriorate, on the other hand, it is limited to 0.07% or less, preferably less than 0.05%. Therefore, the C content is in the range of 0.01 to 0.07%, preferably 0.02 to less than 0.05%.

Si:1.0%以下(0%を含まない)。
Siは、固溶強化し母材強度の確保に寄与する。また、予備脱酸剤として有用な元素である。これの効果は、好ましくは0.05%以上の含有で発揮される。一方、1.0%を超えて、より厳しくは0.5%を超えて、過剰に含まれると、母材靭性とHAZ靭性がともに低下するため、Siの上限は1.0%、好ましくは0.5%とする。また、Si含有量の範囲は、好ましくは0.05〜1.0%、より好ましくは0.05〜0.5%とする。
Si: 1.0% or less (excluding 0%).
Si strengthens the solid solution and contributes to securing the strength of the base material. Moreover, it is an element useful as a preliminary deoxidizer. This effect is preferably exhibited when the content is 0.05% or more. On the other hand, if it exceeds 1.0%, more strictly exceeds 0.5%, and excessively contained, both the base metal toughness and the HAZ toughness are lowered, so the upper limit of Si is 1.0%, preferably 0.5%. Further, the range of the Si content is preferably 0.05 to 1.0%, more preferably 0.05 to 0.5%.

Mn:1.0〜3.0%。
Mnは、鋼の焼入れ性を改善する作用を有するとともに、粒内ベイナイトの生成を促進してHAZ靭性を改善する効果も有する。この様な効果を有効に発揮させるには、1.0%以上、好ましくは1.2%以上の含有が必要である。一方、過剰に含有させると、HAZ靭性が劣化するので、上限は3.0%、好ましくは2.5%以下とする。したがって、Mn含有量の範囲は1.0〜3.0%、好ましくは1.2〜2.5%の範囲とする。
Mn: 1.0 to 3.0%.
Mn has the effect of improving the hardenability of the steel and also has the effect of improving the HAZ toughness by promoting the formation of intragranular bainite. In order to exhibit such an effect effectively, it is necessary to contain 1.0% or more, preferably 1.2% or more. On the other hand, since an HAZ toughness will deteriorate if it is contained excessively, the upper limit is made 3.0%, preferably 2.5% or less. Therefore, the range of Mn content is 1.0 to 3.0%, preferably 1.2 to 2.5%.

Al:0.010%未満(0%を含まない)。
Alは強力な脱酸元素として必要であり、好ましくは0.001%以上、より好ましくは0.002%以上含有させる。一方、Alが0.010%以上、厳しくは0.005%を超えて過剰に含まれていると、Ti含有酸化物中のAlの割合が増大して、粒内ベイナイトの生成促進効果が低減する。このため、Al含有量は、0.010%未満、好ましくは0.001〜0.010%、より好ましくは0.002〜0.005%、の範囲とする。
Al: Less than 0.010% (excluding 0%).
Al is necessary as a strong deoxidizing element, and is preferably contained in an amount of 0.001% or more, more preferably 0.002% or more. On the other hand, if Al is contained in excess of 0.010% or more, strictly exceeding 0.005%, the proportion of Al in the Ti-containing oxide increases and the effect of promoting the formation of intragranular bainite is reduced. To do. For this reason, the Al content is set to a range of less than 0.010%, preferably 0.001 to 0.010%, more preferably 0.002 to 0.005%.

Ti(total 量):0.005〜0.050%。
Tiは、前記した通り、微細なTi含有酸化物(一部は窒化物)を形成して、粒内ベイナイトの生成を促進してHAZ靭性を改善する効果も有する重要元素である。この様な効果を有効に発揮させるには、0.005%以上、好ましくは0.008%以上含有させるのがよい。一方、Ti量が過剰になると、Ti含有酸化物が粗大となって、あるいはTi含有酸化物が過多となって、却って、HAZ靭性と母材靭性がともに劣化するので、0.05%以下、好ましくは0.030%以下、に抑える。したがって、全Ti含有量は、0.005〜0.050%の範囲、好ましくは0.008〜0.030%の範囲とする。
Ti (total amount): 0.005 to 0.050%.
As described above, Ti is an important element that also has an effect of improving the HAZ toughness by forming fine Ti-containing oxides (partially nitrides), promoting the formation of intragranular bainite. In order to exhibit such an effect effectively, it is 0.005% or more, preferably 0.008% or more. On the other hand, when the amount of Ti becomes excessive, the Ti-containing oxide becomes coarse, or the Ti-containing oxide becomes excessive. On the other hand, both the HAZ toughness and the base material toughness deteriorate, so 0.05% or less, Preferably, it is suppressed to 0.030% or less. Therefore, the total Ti content is in the range of 0.005 to 0.050%, preferably in the range of 0.008 to 0.030%.

Cu:0.1〜1.5%、Ni:0.1〜2.5%。
CuとNiは、ともに焼入れ性を向上させ、マトリックスを強靭化するとともに、HAZ組織を微細化させ、母材靭性とHAZ靭性の向上に寄与する。これらの効果を発揮させるには、CuとNiを0.1%以上、好ましくは0.2%以上含有させる。一方、CuとNiを過剰に含有させると、HAZの硬化が著しくなり、却ってHAZ靭性を低下させる。このため、Cuの上限は1.5%、好ましくは1.2%、Niの上限は2.5%、好ましくは2.2%とする。
Cu: 0.1 to 1.5%, Ni: 0.1 to 2.5 %.
Both Cu and Ni improve the hardenability, strengthen the matrix, refine the HAZ structure, and contribute to the improvement of the base metal toughness and the HAZ toughness. In order to exert these effects, Cu and Ni are contained in an amount of 0.1% or more, preferably 0.2% or more. On the other hand, when Cu and Ni are contained excessively, the hardening of HAZ becomes remarkable, and on the contrary, the HAZ toughness is lowered. Therefore, the upper limit of Cu is 1.5%, preferably 1.2%, and the upper limit of Ni is 2.5%, preferably 2.2%.

また、0.5%を超えるCuを含有する場合には、圧延中の熱間割れを防止する観点から、Cu含有量(質量%)の半分以上のNiを含有することが好ましく、より好ましくは化学等量以上のNiを含有することが推奨される。   Moreover, when it contains Cu exceeding 0.5%, it is preferable to contain Ni more than half of Cu content (mass%) from a viewpoint of preventing the hot cracking during rolling, More preferably It is recommended to contain more than a chemical equivalent of Ni.

O:0.0010〜0.0100%。
O(酸素)は、Ti含有酸化物を形成し、上記の通り、HAZの粒内ベイナイトの生成を促進するのに有効な元素である。この様な効果を発揮させるには、0.0010%以上含有させるのがよく、好ましくは0.0015%以上、より好ましくは0.0020%以上である。一方、酸素含有量が過剰になると、粗大なTi含有酸化物が生成し易くなり、かえってHAZ靭性を劣化させる。よって酸素含有量は、0.0100%以下に抑える必要があり、好ましくは0.0030%以下とする。
O: 0.0010 to 0.0100%.
O (oxygen) is an element that forms a Ti-containing oxide and is effective for promoting the formation of HAZ intragranular bainite as described above. In order to exhibit such an effect, the content is preferably 0.0010% or more, preferably 0.0015% or more, and more preferably 0.0020% or more. On the other hand, when the oxygen content is excessive, a coarse Ti-containing oxide is easily generated, and the HAZ toughness is deteriorated. Therefore, the oxygen content needs to be suppressed to 0.0100% or less, preferably 0.0030% or less.

20C(%)+1.5Mn(%)+Cu(%)+Ni(%)=4.5〜7.0%。
更に、本発明では、以上説明したC、Mn、Cu、Niについて、溶融線近傍だけではなく、HAZ全域に亙って靭性を良好に確保するために、上記特定パラメータのように、合計量で制御する。オーステナイトを安定化させる元素(焼入れ性を高める元素)である、C、Mn、Cu、Niの含有量を、上記特定パラメータのように制御することによって、大入熱溶接でHAZ部の冷却速度が遅くなっても、焼入れ性が高くなって、粒内から生成するベイナイトを微細化することができる。
20C (%) + 1.5Mn (%) + Cu (%) + Ni (%) = 4.5-7.0%.
Furthermore, in the present invention, for the above-described C, Mn, Cu, and Ni, in order to ensure good toughness not only in the vicinity of the melting line but also in the entire HAZ region, as in the above specific parameter, the total amount Control. By controlling the content of C, Mn, Cu, and Ni, which are elements that stabilize austenite (elements that enhance hardenability) as specified above, the cooling rate of the HAZ part can be increased by high heat input welding. Even if it becomes late, hardenability becomes high and the bainite produced | generated from the inside of a grain | grain can be refined | miniaturized.

上記パラメータが4.5%以上で、焼入れ性増加効果が発揮でき、粒内生成ベイナイト組織を微細化でき、HAZ全域に亙って靭性が改善できる。このパラメータが4.5%未満では、たとえC、Mn、Cu、Niの各々の含有量が規定範囲内だったとしても、上記焼入れ性増加効果が発揮できず、粒内生成ベイナイト組織を微細化できず、HAZ全域に亙って靭性が改善できない。   When the above parameter is 4.5% or more, the effect of increasing hardenability can be exhibited, the intragranular bainite structure can be refined, and the toughness can be improved over the entire HAZ region. If this parameter is less than 4.5%, even if the contents of C, Mn, Cu, and Ni are within the specified range, the effect of increasing the hardenability cannot be exhibited, and the intragranular bainite structure is refined. Toughness cannot be improved over the entire HAZ.

一方、このパラメータが7.0%を超えた場合、たとえC、Mn、Cu、Niの各々の含有量が規定範囲内だったとしても、MAベイナイト組織に形成されるMA(マルテンサイト)量が増加するため、却って、HAZ全域に亙って靭性が低下する可能性が高い。   On the other hand, when this parameter exceeds 7.0%, even if the contents of C, Mn, Cu, and Ni are within the specified ranges, the amount of MA (martensite) formed in the MA bainite structure is small. On the contrary, there is a high possibility that the toughness is lowered over the entire HAZ.

以下に、選択的に含有させる元素について説明する。
Cr:0.1〜2.0%、Mo:0.1〜1.0%、Nb:0.10%以下(0%を含まない)、V:0.10%以下(0%を含まない)のいずれか一種または二種以上。
Cr、Mo、Nb、Vは、ともに焼入れ性を向上させ、母材強度を高める。また、Crは、焼入れ性を高めてHAZ組織を微細化させ、HAZ靭性の向上に寄与する効果もある。Nb、Vは、焼戻し軟化抵抗を高め、母材強度を高める効果もある。これらの効果を発揮させるには、Cr:0.1%以上、Mo:0.1%以上、Nb:好ましくは0.01%以上、V:好ましくは0.01%以上、いずれか一種または二種以上を選択的に含有させる。
Hereinafter, elements to be selectively contained will be described.
Cr: 0.1 to 2.0%, Mo: 0.1 to 1.0%, Nb: 0.10% or less (not including 0%), V: 0.10% or less (not including 0%) ) Any one kind or two kinds or more.
Cr, Mo, Nb, and V all improve the hardenability and increase the strength of the base material. Cr also has the effect of enhancing the hardenability, making the HAZ structure finer, and contributing to the improvement of HAZ toughness. Nb and V also have the effect of increasing the temper softening resistance and increasing the base material strength. In order to exert these effects, Cr: 0.1% or more, Mo: 0.1% or more, Nb: preferably 0.01% or more, V: preferably 0.01% or more, either one or two A seed or more is selectively contained.

一方、これらを過剰に含有させると、各々、却ってHAZ靭性を低下させる。Crは、マルテンサイトの増加を招きHAZ靭性を低下させる。Moは、HAZの硬化が著しくなりHAZ靭性を低下させる。Nb、Vは、粒内ベイナイトの形成が抑制され、HAZ靭性を劣化させる。したがって、各々上限は、Cr:2.0%、Mo:1.0%、Nb:0.10%、V:0.10%とする。   On the other hand, if these are excessively contained, the HAZ toughness is lowered on the contrary. Cr causes an increase in martensite and decreases the HAZ toughness. Mo significantly hardens the HAZ and lowers the HAZ toughness. Nb and V suppress the formation of intragranular bainite and degrade the HAZ toughness. Accordingly, the upper limits are set to Cr: 2.0%, Mo: 1.0%, Nb: 0.10%, and V: 0.10%, respectively.

B:0.0005〜0.0050%。
Bは、鋼中に固溶して焼入れ性を改善する作用を有する。またHAZ部において、粒界からのフェライト生成を抑制して粒内からのベイナイト生成を促進させる効果も発揮する。この様な効果を発揮させるには、0.0005%以上、選択的に含有させる。一方、B含有量が多すぎると、かえって焼入れ性を低下させるとともに、粒内ベイナイトの形成が抑制され、HAZ靭性を劣化させる。よってB量は、0.0005〜0.0050%、好ましくは0.0005〜0.0030%とする。
B: 0.0005 to 0.0050%.
B has an effect of improving the hardenability by dissolving in steel. Moreover, in the HAZ part, the effect of suppressing the formation of ferrite from grain boundaries and promoting the formation of bainite from within the grains is also exhibited. In order to exert such an effect, 0.0005% or more is selectively contained. On the other hand, when there is too much B content, while hardenability will fall rather, formation of an intragranular bainite will be suppressed and HAZ toughness will deteriorate. Therefore, the B amount is 0.0005 to 0.0050%, preferably 0.0005 to 0.0030%.

Zr:0.05%以下(0%を含まない)、Mg:0.0050%以下(0%を含まない)、Ca:0.0050%以下(0%を含まない)、REM:0.0050%以下(0%を含まない)、のいずれか一種または二種以上。
Zr、Mg、Ca、REMは、HAZ靭性を改善する効果を有するが、各々過剰に含有されると、却ってHAZ靭性を劣化させる。
Zr: 0.05% or less (not including 0%), Mg: 0.0050% or less (not including 0%), Ca: 0.0050% or less (not including 0%), REM: 0.0050 % Or less (excluding 0%), one kind or two kinds or more.
Zr, Mg, Ca, and REM have an effect of improving the HAZ toughness, but if they are contained excessively, the HAZ toughness is deteriorated.

例えば、Zrは窒素を固定することによりHAZ靭性を改善する。CaはMnS等の硫化物などの介在物を球状化して、介在物形状の異方性を低減させ、HAZ靭性を改善する。Mg、REMは、MnS等の硫化物などの介在物を微細化させてHAZ靭性を改善する。しかし、これらCa、Mg、REMは、各々過剰に含有されると、Ti含有酸化物を粗大化させるために、却ってHAZ靭性を劣化させる。   For example, Zr improves HAZ toughness by fixing nitrogen. Ca spheroidizes inclusions such as sulfides such as MnS, reduces the anisotropy of the inclusion shape, and improves the HAZ toughness. Mg and REM improve HAZ toughness by refining inclusions such as sulfides such as MnS. However, when these Ca, Mg, and REM are each contained excessively, the Ti-containing oxide is coarsened, so that the HAZ toughness is deteriorated.

このため、いずれか一種または二種以上、選択的に含有させる場合には、各々、Zr:0.05%以下、好ましくは0.005〜0.03%、Mg:0.0050%以下、好ましくは0.0040%以下、Ca:0.0050%以下、好ましくは0.0040%以下、REM:0.0050%以下、好ましくは0.0040%以下、と各々する。   For this reason, when one or more kinds are selectively contained, Zr: 0.05% or less, preferably 0.005 to 0.03%, Mg: 0.0050% or less, preferably Is 0.0040% or less, Ca: 0.0050% or less, preferably 0.0040% or less, and REM: 0.0050% or less, preferably 0.0040% or less.

次ぎに、不純物について、以下に説明する。
N(窒素)は、母材靭性とHAZ靭性をともに劣化させるため、本発明では不純物である。ただ、Nには、Tiと窒化物を形成して粒内ベイナイトの生成を促進させ、HAZ靭性を改善する効果もあり、Nは0.0090%までの含有は許容する。
Next, impurities will be described below.
N (nitrogen) is an impurity in the present invention because it degrades both the base metal toughness and the HAZ toughness. However, N also has the effect of forming Ti and nitrides to promote the formation of intragranular bainite and improving the HAZ toughness, and N is allowed to contain up to 0.0090%.

P(りん)やS(硫黄)も不可避不純物として存在する元素であり、溶接性や母材靭性を低下させる等の悪影響を及ぼす。よってPは0.020%以下(好ましくは0.010%以下)、Sは0.010%以下(好ましくは0.005%以下)に抑えるのがよい。   P (phosphorus) and S (sulfur) are elements present as inevitable impurities, and have an adverse effect such as lowering weldability and base metal toughness. Therefore, it is preferable to suppress P to 0.020% or less (preferably 0.010% or less) and S to 0.010% or less (preferably 0.005% or less).

(製造方法)
本発明厚鋼板は、工程自体は常法にて製造することができる。但し、上記の様に微細なTi含有酸化物と粗大なTi含有酸化物の個数を制御するための、好ましい製造条件を含めて、以下に説明する。
(Production method)
The thick steel plate of the present invention can be produced by a conventional method. However, a description will be given below including preferable manufacturing conditions for controlling the number of fine Ti-containing oxides and coarse Ti-containing oxides as described above.

前掲の特許文献2や特許文献3では、酸化物のサイズや個数を制御する方法として、鋳込み前に溶存酸素量等を制御したり、凝固時の冷却速度等を制御することが示されている。しかし、本発明で注目する2μm以上の粗大なTi含有酸化物を低減することはできない。また、溶鋼中の酸素量を低減するだけでは、本発明で定める微細なTi含有酸化物の数を確保することができない。   In Patent Document 2 and Patent Document 3 described above, as a method for controlling the size and number of oxides, it is shown that the amount of dissolved oxygen or the like is controlled before casting, or the cooling rate or the like during solidification is controlled. . However, it is not possible to reduce the coarse Ti-containing oxide of 2 μm or more, which is noticed in the present invention. In addition, the number of fine Ti-containing oxides defined in the present invention cannot be ensured only by reducing the amount of oxygen in the molten steel.

本発明でも、転炉等の通常の溶製法で溶製し、ついで連続鋳造法等の通常の鋳造法で所定寸法の鋼素材(スラブ)とするが、微細なTi含有酸化物の数を増大しつつ、粗大介在物をTi含有酸化物を低減するためには、この溶製段階において、Ti添加前の鋼の溶存酸素量と、Ti添加後から鋳造するまでの保持時間を厳密に管理することが好ましい。   Even in the present invention, the steel material (slab) having a predetermined size is produced by a normal casting method such as a continuous casting method after being melted by a normal melting method such as a converter, while increasing the number of fine Ti-containing oxides. In order to reduce Ti-containing oxides in coarse inclusions, it is necessary to strictly manage the amount of dissolved oxygen in the steel before the addition of Ti and the holding time after the addition of Ti until casting in this melting stage. preferable.

具体的には、溶製段階で、Tiを添加する際に、まず溶鋼中の溶存酸素量を20〜100ppmの範囲内に制御する。この様に溶存酸素量を制御することで、上記微細なTi含有酸化物を生成させることができ、本発明で規定する量の微細なTi含有酸化物を確保できる。   Specifically, when adding Ti at the melting stage, first, the amount of dissolved oxygen in the molten steel is controlled within a range of 20 to 100 ppm. By controlling the amount of dissolved oxygen in this way, the fine Ti-containing oxide can be generated, and the amount of fine Ti-containing oxide specified in the present invention can be ensured.

微細なTi含有酸化物をより多く生成させるために、溶鋼中の溶存酸素量は20ppm以上とするのがよく、より好ましくは25ppm以上である。一方、Ti添加前の溶鋼中の溶存酸素量が過剰であると、粗大なTi含有酸化物やその他の酸化物が生成しやすくなるので好ましくない。よって、溶鋼中の溶存酸素量を100ppm以下に抑えてからTiを添加する。好ましくは溶鋼中の溶存酸素量を70ppm以下に抑えてからTiを添加する。上記の通り溶製段階で溶鋼中の溶存酸素量を制御するには、Mn添加による脱酸、真空C(カーボン)脱酸、Si添加による脱酸を単独でもしくは適宜組み合わせて行えばよい。   In order to produce more fine Ti-containing oxides, the dissolved oxygen content in the molten steel is preferably 20 ppm or more, and more preferably 25 ppm or more. On the other hand, if the amount of dissolved oxygen in the molten steel before the addition of Ti is excessive, coarse Ti-containing oxides and other oxides are likely to be generated, which is not preferable. Therefore, Ti is added after suppressing the amount of dissolved oxygen in molten steel to 100 ppm or less. Preferably, Ti is added after the amount of dissolved oxygen in the molten steel is suppressed to 70 ppm or less. As described above, in order to control the amount of dissolved oxygen in the molten steel at the melting stage, deoxidation by adding Mn, vacuum C (carbon) deoxidation, and deoxidation by adding Si may be performed alone or in combination as appropriate.

また、Ti添加後は、静止状態で10〜50分間保持する。この様にTi添加後に保持することで、粒内ベイナイトの生成核として有効に作用する好適サイズの微細なTi含有酸化物を確保しつつ、粒内フェライトの生成核となりやすい2μm以上のTi含有酸化物を浮上分離させて除去することができる。上記粗大Ti含有酸化物を確実に除去するには、10分間以上保持するのがよく、好ましくは15分間以上、さらに好ましくは20分間以上である。   Moreover, after adding Ti, it is kept for 10 to 50 minutes in a stationary state. In this way, by holding after addition of Ti, a Ti-containing oxide having a thickness of 2 μm or more, which tends to be a formation nucleus of intragranular ferrite, while ensuring a fine Ti-containing oxide of a suitable size that effectively acts as a formation nucleus of intragranular bainite. Objects can be removed by floating. In order to reliably remove the coarse Ti-containing oxide, it is preferable to hold for 10 minutes or more, preferably 15 minutes or more, and more preferably 20 minutes or more.

尚、上記保持は、通常の溶製で行われている通り、約1550〜1650℃の間で保持することをいう。   In addition, the said holding means holding between about 1550-1650 degreeC as it is performed by normal melting.

一方、この保持時間が長すぎると、微細な介在物が凝集して粗大化し、本発明で定める量の微細なTi含有酸化物を確保できなくなるので好ましくない。よって、保持時間は50分間以下とする。好ましくは40分間以下である。   On the other hand, if the holding time is too long, fine inclusions aggregate and become coarse, and it is not preferable because a fine Ti-containing oxide in an amount defined by the present invention cannot be secured. Accordingly, the holding time is 50 minutes or less. Preferably it is 40 minutes or less.

実際の操業においては、Ti,Si,MnおよびCを最終成分量となるよう同時に添加してから上記の通り保持し、その後に鋳込めばよい。   In actual operation, Ti, Si, Mn and C may be added at the same time so as to have the final component amount, then held as described above, and then cast.

この様な方法で溶製することによって、本発明で定める適正量の微細なTi含有酸化物を確保しつつ、粗大なTi含有酸化物を低減させることができる。   By melting by such a method, coarse Ti-containing oxides can be reduced while securing an appropriate amount of fine Ti-containing oxides defined in the present invention.

鋼素材(スラブ)は、通常の厚鋼板の製造方法通り、加熱後、熱間圧延を行ない、圧延方向に沿う集合組織の発達を阻止して、熱間圧延終了時において再結晶させた組織とする。熱間圧延終了後の鋼板は水焼き入れを施す。その後、鋼板の焼戻しを行ない、製品厚鋼板とする。   The steel material (slab) is a structure that is recrystallized at the end of the hot rolling by performing hot rolling after heating, preventing the development of the texture along the rolling direction, in accordance with the normal method for producing thick steel plates. To do. The steel sheet after hot rolling is subjected to water quenching. Thereafter, the steel plate is tempered to obtain a product thick steel plate.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより、下記実施例によって制限を受けるものではなく、前記、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and the present invention is not limited to the following examples. Of course, it is also possible to implement them, and they are all included in the technical scope of the present invention.

表1(発明例)および表2(比較例)に示す化学成分組成の鋼を、表3(発明例)および表4(比較例)に示す、溶製段階におけるTi添加前の溶存酸素量とTi添加後の静止状態での保持時間とを種々変えて溶製し、鋳造してスラブを得た。得られたスラブを1100℃に加熱した後、圧延、冷却を行って板厚50mmの鋼板を得た。また、母材の強度や靭性を調整するため、500〜650℃までの焼戻し処理を施した。   Steels having chemical composition shown in Table 1 (Invention Example) and Table 2 (Comparative Example) are shown in Table 3 (Invention Example) and Table 4 (Comparative Example). The slab was obtained by melting and casting variously with the holding time in the stationary state after adding Ti. After heating the obtained slab to 1100 ° C., rolling and cooling were performed to obtain a steel plate having a thickness of 50 mm. Moreover, in order to adjust the intensity | strength and toughness of a base material, the tempering process to 500-650 degreeC was performed.

この様にして得た鋼板から試料を採取し、母材特性、HAZ靭性、母材に存在するTi含有酸化物のサイズを測定した。これらの結果を表3および表4に示す。   A sample was collected from the steel sheet thus obtained, and the base material characteristics, HAZ toughness, and the size of the Ti-containing oxide present in the base material were measured. These results are shown in Tables 3 and 4.

(母材特性)
上記製造された各鋼板からJIS4号試験片を採取して、JISZ2241に準じた引張試験を行い鋼板の引張強度、およびJISZ2242に準じたシャルピー衝撃試験を行い鋼板の靱性(vE-20 )を測定した。
(Base material characteristics)
A JIS No. 4 test piece was collected from each of the manufactured steel sheets, subjected to a tensile test according to JISZ2241, and subjected to a tensile strength of the steel sheet, and a Charpy impact test according to JISZ2242, to measure the toughness (vE-20) of the steel sheet. .

ここで、引張強度が590MPa以上で、かつシャルピー衝撃値が150J以上であるものは、高強度で高靱性な、優れた母材特性を有していると評価し、この様に優れた母材特性が確保されているものについて、下記の通り、HAZ靭性の評価を行った。   Here, those having a tensile strength of 590 MPa or more and a Charpy impact value of 150 J or more were evaluated as having excellent base material properties such as high strength and high toughness, and thus excellent base materials. About the thing with which the characteristic was ensured, HAZ toughness was evaluated as follows.

(溶接継手靭性)
上記製造された各鋼板から切り出した試験片(サイズ12.5mm×32mm×55mm)を、100kJ/mmの大入熱でSAW溶接したときの溶融線近傍(+0.5mm)のHAZの熱履歴に相当する熱サイクルを施した。即ち、1400℃に加熱し、この温度で5秒間保持した後、800℃から500℃までを730秒間で冷却する熱サイクルを施した。また、上記大入熱溶接時の、溶融線から3〜5mm程度の領域のHAZの熱履歴に相当する熱サイクルも施した。即ち、1200℃に加熱し、この温度で5秒間保持した後、800℃から500℃までを730秒間で冷却する熱サイクルを施した。これら各試験片から、各々シャルピー試験片を採取してvE0 (1400℃と1200℃)を測定した。そして各々vE0 が150J以上の場合を溶接継手靭性に優れていると評価した。
(Welded joint toughness)
In the heat history of the HAZ near the melting line (+0.5 mm) when the specimen (size 12.5 mm × 32 mm × 55 mm) cut out from each of the manufactured steel plates was subjected to SAW welding with a large heat input of 100 kJ / mm The corresponding thermal cycle was applied. That is, it was heated to 1400 ° C., held at this temperature for 5 seconds, and then subjected to a heat cycle of cooling from 800 ° C. to 500 ° C. in 730 seconds. Further, a thermal cycle corresponding to the thermal history of the HAZ in the region of about 3 to 5 mm from the melt line during the high heat input welding was also performed. That is, the sample was heated to 1200 ° C., held at this temperature for 5 seconds, and then subjected to a heat cycle of cooling from 800 ° C. to 500 ° C. in 730 seconds. From these test pieces, Charpy test pieces were collected and vE0 (1400 ° C. and 1200 ° C.) was measured. Each case where vE0 was 150 J or more was evaluated as having excellent weld joint toughness.

(Ti含有酸化物)
母材中に存在するTi含有酸化物のサイズを以下の手法で測定した。
<測定位置(試料の採取位置)>
板厚の1/4の位置において、圧延方向に平行な断面が観察できるように試料を採取した。得られた試料を用いて、下記の通り、平均粒径2μm以上の粗大なTi含有酸化物、および平均粒径0.05〜1.0μmの微細なTi含有酸化物の個数を各々測定した。
(Ti-containing oxide)
The size of the Ti-containing oxide present in the base material was measured by the following method.
<Measurement position (sample collection position)>
A sample was taken so that a cross section parallel to the rolling direction could be observed at a position of 1/4 of the plate thickness. Using the obtained samples, the number of coarse Ti-containing oxides having an average particle diameter of 2 μm or more and fine Ti-containing oxides having an average particle diameter of 0.05 to 1.0 μm were measured as follows.

<平均粒径2μm以上の粗大なTi含有酸化物の個数測定>
前記したEPMA装置を用いて100mm2 (10mm×10mm)の領域を倍率200倍で観察して、平均粒径2μm以上の粗大なTi含有酸化物の個数を測定した。尚、Ti含有酸化物のサイズは、円相当粒径を求めて平均粒径値とした(以下同じ)。
<Measurement of the number of coarse Ti-containing oxides having an average particle size of 2 μm or more>
An area of 100 mm 2 (10 mm × 10 mm) was observed at a magnification of 200 times using the EPMA apparatus described above, and the number of coarse Ti-containing oxides having an average particle diameter of 2 μm or more was measured. In addition, the size of the Ti-containing oxide was determined as the average particle size by obtaining the equivalent particle size (hereinafter the same).

<平均粒径0.05〜1.0μmの微細なTi含有酸化物の個数測定>
前記したFE−SEM/EDX装置を用いて、平均粒径0.05〜1.0μmの介在物20個の組成分析を行い、Tiを10質量%以上含有するTi含有酸化物の割合を求めた。次に0.1mm2 の領域において、1000倍の反射電子像を用いて0.01mm2 の任意の10視野を撮影し、画像解析装置により、平均粒径0.05〜1.0μmの介在物の個数の測定を行い、該10視野の合計個数に前記Ti含有酸化物の割合を乗し、更に1000倍することで、1cm2 当たりの平均粒径0.05〜1.0μmのTi含有酸化物の数を求めた。これらの結果も表3および表4に示す。
<Measurement of the number of fine Ti-containing oxides having an average particle size of 0.05 to 1.0 [mu] m>
Using the above-mentioned FE-SEM / EDX apparatus, the composition analysis of 20 inclusions having an average particle diameter of 0.05 to 1.0 μm was performed, and the ratio of Ti-containing oxide containing 10% by mass or more of Ti was obtained. . Next, in the region of 0.1 mm 2, taken any 10 fields of 0.01 mm 2 using a 1000-fold reflection electron image, by an image analyzer, inclusions of an average particle diameter 0.05~1.0μm The total number of the 10 fields of view is multiplied by the ratio of the Ti-containing oxide and further multiplied by 1000 to obtain a Ti-containing oxide having an average particle diameter of 0.05 to 1.0 μm per 1 cm 2. The number of objects was determined. These results are also shown in Tables 3 and 4.

表1、3より明らかな通り、発明例1〜20は、20C(%)+1.5Mn(%)+Cu(%)+Ni(%)のパラメータを含めて、本発明組成を満足するとともに、溶存酸素量と保持時間ともに、好ましい溶製方法で製造されている。   As is apparent from Tables 1 and 3, Invention Examples 1 to 20 satisfy the present invention composition including the parameter of 20 C (%) + 1.5 Mn (%) + Cu (%) + Ni (%), and dissolved oxygen. Both the amount and the holding time are produced by a preferable melting method.

このため、平均粒径が0.05〜1μmのTi含有酸化物の平均個数が、倍率1000倍で観察したときに10000個/cm2 以上であるとともに、平均粒径2μm以上のTi酸化物の平均個数が、倍率200倍で観察したときに2000個/cm2 以下である。この結果、590〜780MPa級の母材強度と、210J以上の母材靱性が得られている。また、熱サイクル特性も、1400℃と1200℃のvE0 ともに、150J以上の靱性が得られている。 For this reason, the average number of Ti-containing oxides having an average particle diameter of 0.05 to 1 μm is 10000 / cm 2 or more when observed at a magnification of 1000 times, and Ti oxides having an average particle diameter of 2 μm or more. The average number is 2000 pieces / cm 2 or less when observed at a magnification of 200 times. As a result, a base material strength of 590 to 780 MPa class and a base material toughness of 210 J or more are obtained. In addition, the thermal cycle characteristics have a toughness of 150 J or more for both 1400 ° C and 1200 ° C vE0.

これらの結果は、高強度な590〜780MPa級の厚鋼板の場合でも、特に靱性が低下しやすい、前記した溶融線から3〜5mm近傍の溶接熱影響部を含めて、大入熱溶接時のHAZ全域の靭性を大幅に改善できることを示している。   These results show that even in the case of a high-strength 590-780 MPa class thick steel plate, the toughness is particularly likely to deteriorate, including the weld heat-affected zone in the vicinity of 3-5 mm from the above-mentioned melting line, during high heat input welding. It shows that the toughness of the entire HAZ can be greatly improved.

これに対して、表2、4より明らかな通り、比較例21〜29、32は、いずれかの元素の成分組成が発明範囲より外れる。   On the other hand, as is clear from Tables 2 and 4, in Comparative Examples 21 to 29 and 32, the component composition of any element is out of the scope of the invention.

また、比較例30〜31は、20C(%)+1.5Mn(%)+Cu(%)+Ni(%)のパラメータが、発明範囲より外れる。   In Comparative Examples 30 to 31, the parameter of 20C (%) + 1.5 Mn (%) + Cu (%) + Ni (%) is out of the scope of the invention.

更に、比較例33〜35は、成分組成は発明範囲内であるものの、溶存酸素量か保持時間が、好ましい溶製方法の条件外で製造されている。   In Comparative Examples 33 to 35, although the component composition is within the range of the invention, the amount of dissolved oxygen or the retention time is manufactured outside the preferable conditions of the melting method.

この結果、比較例は、母材強度や母材靱性が発明例に比して比較的低いか、母材強度や母材靱性が発明例並としても、熱サイクル特性が、1400℃と1200℃のvE0 ともに共通して著しく低い。   As a result, in the comparative example, the base material strength and base material toughness are relatively low as compared with the invention examples, or the base material strength and base material toughness are comparable to those of the invention examples, the thermal cycle characteristics are 1400 ° C. and 1200 ° C. Both vE0 are significantly lower in common.

これらの結果は、本発明範囲より外れるこれら比較例が、高強度な590〜780MPa級の厚鋼板の場合に、特に、溶融線から3〜5mm近傍の溶接熱影響部を含めて、大入熱溶接時のHAZ全域の靭性を改善できないことを示している。   These results show that when these comparative examples that deviate from the scope of the present invention are high-strength 590-780 MPa class thick steel plates, particularly including a heat-affected zone in the vicinity of 3-5 mm from the melting line, a large heat input. It shows that the toughness of the entire HAZ during welding cannot be improved.

例えば、比較例21は、C量が過剰であるため、Ti含有酸化物の規定は満足するものの、熱サイクル特性(HAZ靭性)が著しく低い。   For example, in Comparative Example 21, since the amount of C is excessive, the definition of the Ti-containing oxide is satisfied, but the thermal cycle characteristics (HAZ toughness) are extremely low.

比較例22は、Mn量が不足するため、母材強度を確保できず、Ti含有酸化物の規定は満足するものの、熱サイクル特性(HAZ靭性)にも劣っている。   In Comparative Example 22, since the amount of Mn is insufficient, the strength of the base material cannot be ensured, and the definition of the Ti-containing oxide is satisfied, but the thermal cycle characteristics (HAZ toughness) are also inferior.

比較例23は、Mn量が過剰であるため、Ti含有酸化物の規定は満足するものの、熱サイクル特性(HAZ靭性)が劣っている。   In Comparative Example 23, since the amount of Mn is excessive, the definition of the Ti-containing oxide is satisfied, but the thermal cycle characteristics (HAZ toughness) are inferior.

比較例24は、Al量が過剰であるため、粗大なTi含有酸化物が多くなりすぎ、熱サイクル特性(HAZ靭性)が劣っている。   In Comparative Example 24, since the amount of Al is excessive, the amount of coarse Ti-containing oxide is excessive, and the thermal cycle characteristics (HAZ toughness) are inferior.

比較例25は、Cu量が過剰であるため、Ti含有酸化物の規定は満足するものの、熱サイクル特性(HAZ靭性)が劣っている。   In Comparative Example 25, since the amount of Cu is excessive, the definition of the Ti-containing oxide is satisfied, but the thermal cycle characteristics (HAZ toughness) are inferior.

比較例26は、Ni量が過剰であるため、Ti含有酸化物の規定は満足するものの、熱サイクル特性(HAZ靭性)が劣っている。   In Comparative Example 26, since the amount of Ni is excessive, the definition of the Ti-containing oxide is satisfied, but the thermal cycle characteristics (HAZ toughness) are inferior.

比較例27は、Ti量が過剰であるため、微細なTi含有酸化物が少な過ぎ、熱サイクル特性(HAZ靭性)が劣っている。   In Comparative Example 27, since the amount of Ti is excessive, the amount of fine Ti-containing oxide is too small, and the thermal cycle characteristics (HAZ toughness) are inferior.

比較例28は、酸素量が不足し、溶製の際の溶存酸素量も少ないため、微細なTi含有酸化物が少な過ぎ、熱サイクル特性(HAZ靭性)が劣っている。   In Comparative Example 28, since the amount of oxygen is insufficient and the amount of dissolved oxygen is small at the time of melting, the amount of fine Ti-containing oxide is too small, and the thermal cycle characteristics (HAZ toughness) are inferior.

比較例29は、酸素量が過剰で、溶製の際の溶存酸素量も過剰なため、粗大なTi含有酸化物が多過ぎ、微細なTi含有酸化物も少なくなっており、熱サイクル特性(HAZ靭性)が劣っている。   In Comparative Example 29, the amount of oxygen is excessive, and the amount of dissolved oxygen is excessive at the time of melting, so that there are too many coarse Ti-containing oxides and few fine Ti-containing oxides. HAZ toughness) is inferior.

比較例32は、ボロン量が過剰であるため、Ti含有酸化物の規定は満足するものの、母材靱性と、熱サイクル特性(HAZ靭性)が劣っている。   In Comparative Example 32, since the boron amount is excessive, the provision of the Ti-containing oxide is satisfied, but the base material toughness and the thermal cycle characteristics (HAZ toughness) are inferior.

比較例30は、20C(%)+1.5Mn(%)+Cu(%)+Ni(%)のパラメータが、4.5%未満で発明範囲より外れる。このため、C、Mn、Cu、Niを各々規定量範囲内で含有しているにもかかわらず、1200℃での熱サイクル特性が劣り、HAZ3〜5mm部分の靭性が改善できていない。これは、C、Mn、Cu、Niの上記焼入れ性増加効果が発揮できず、粒内生成ベイナイト組織を微細化できていないためである。   In Comparative Example 30, the parameter of 20C (%) + 1.5 Mn (%) + Cu (%) + Ni (%) is less than 4.5% and is out of the scope of the invention. For this reason, in spite of containing C, Mn, Cu, and Ni within the specified amount ranges, the thermal cycle characteristics at 1200 ° C. are inferior, and the toughness of the HAZ 3-5 mm portion cannot be improved. This is because the hardenability increasing effect of C, Mn, Cu, and Ni cannot be exhibited, and the intragranular bainite structure cannot be refined.

比較例31は、上記パラメータが7.0%を超え、発明範囲より外れる。このため、C、Mn、Cu、Niを各々規定量範囲内で含有しているにもかかわらず、1200℃での熱サイクル特性が劣り、HAZ3〜5mm部分の靭性が改善できていない。これは、MAベイナイト組織に形成されるMA(マルテンサイト)量が増加するため、却って、HAZ全域に亙って靭性が低下しているためである。   In Comparative Example 31, the above parameter exceeds 7.0%, which is out of the scope of the invention. For this reason, in spite of containing C, Mn, Cu, and Ni within the specified amount ranges, the thermal cycle characteristics at 1200 ° C. are inferior, and the toughness of the HAZ 3-5 mm portion cannot be improved. This is because the amount of MA (martensite) formed in the MA bainite structure increases, and on the contrary, the toughness is reduced over the entire HAZ.

比較例33は、溶製段階におけるTi添加前の溶存酸素量が多過ぎるため、粗大なTi含有酸化物数が多く析出して、規定個数を超えている。このため、熱サイクル特性が1400℃のvE0 で102J程度と、著しく靱性が低い。   In Comparative Example 33, since the amount of dissolved oxygen before addition of Ti in the melting stage is too large, a large number of coarse Ti-containing oxides are precipitated and exceed the specified number. For this reason, the thermal cycle characteristic is remarkably low, about 102 J at vE0 of 1400 ° C.

比較例34は、溶製段階におけるTi添加後の静止状態での保持時間が短過ぎるため、粗大なTi含有酸化物が多く析出して規定個数を超え、一方で微細なTi含有酸化物が比較的少ない。このため、熱サイクル特性が1400℃のvE0 で85J程度と、著しく靱性が低い。   In Comparative Example 34, since the holding time in a stationary state after addition of Ti in the melting stage is too short, a large amount of coarse Ti-containing oxide precipitates and exceeds the specified number, while a fine Ti-containing oxide is compared. Less. For this reason, the thermal cycle characteristic is remarkably low, about 85 J at vE0 of 1400 ° C.

比較例35は、溶製段階におけるTi添加後の静止状態での保持時間が長過ぎるため、粗大なTi含有酸化物が多く析出して規定個数を超え、一方で微細なTi含有酸化物が比較的少ない。このため、熱サイクル特性が1400℃のvE0 で99J程度と、著しく靱性が低い。   In Comparative Example 35, since the holding time in a stationary state after addition of Ti in the melting stage is too long, a large amount of coarse Ti-containing oxide is precipitated and exceeds the prescribed number, while the fine Ti-containing oxide is compared. Less. For this reason, the thermal cycle characteristic is about 99J at vE0 of 1400 ° C., and the toughness is remarkably low.

以上の結果から、本発明の成分組成と、Ti含有酸化物の規定の、高強度な590〜780MPa級の厚鋼板の場合に、特に、溶融線から3〜5mm近傍の溶接熱影響部を含めた、大入熱溶接時のHAZ全域の靭性改善の臨界的な意義が裏付けられる。   From the above results, in the case of a high-strength 590-780 MPa class thick steel plate as defined by the component composition of the present invention and the Ti-containing oxide, particularly including a weld heat affected zone in the vicinity of 3-5 mm from the melting line. In addition, the critical significance of improving the toughness of the entire HAZ during high heat input welding is supported.

Figure 0004311740
Figure 0004311740

Figure 0004311740
Figure 0004311740

Figure 0004311740
Figure 0004311740

Figure 0004311740
Figure 0004311740

以上説明したように、本発明によれば、大入熱溶接を施した場合でも溶接継手靭性(HAZ靭性)に優れた590〜780MPa級の厚鋼板を提供することができる。このため、本発明厚鋼板は、船舶、海洋構造物、橋梁、建築構造物などの高強度の溶接構造物用に適用できる。
As described above, according to the present invention, it is possible to provide a 590-780 MPa class thick steel plate excellent in weld joint toughness (HAZ toughness) even when high heat input welding is performed. For this reason, this invention steel plate is applicable for high-strength welded structures, such as a ship, a marine structure, a bridge, and a building structure.

Claims (4)

質量%で、C:0.01〜0.07%、Si:1.0%以下(0%を含まない)、Mn:1.0〜3.0%、Al:0.010%未満(0%を含まない)、Ti:0.005〜0.050%、O:0.0010〜0.0100%、Cu:0.1〜1.5%、Ni:0.1〜2.5%を各々含有し、かつ、20C(%)+1.5Mn(%)+Cu(%)+Ni(%)が4.5〜7.0%であり、残部が鉄および不可避不純物である鋼板であって、平均粒径が0.05〜1μmのTi含有酸化物の平均個数が倍率1000倍で観察したときに10000個/cm2 以上であるとともに、平均粒径2μm以上のTi含有酸化物の平均個数が倍率200倍で観察したときに2000個/cm2 以下であることを特徴とする大入熱溶接継手靭性に優れた厚鋼板。 In mass%, C: 0.01 to 0.07%, Si: 1.0% or less (excluding 0%), Mn: 1.0 to 3.0%, Al: less than 0.010% (0 %), Ti: 0.005 to 0.050% , O: 0.0010 to 0.0100% , Cu: 0.1 to 1.5%, Ni: 0.1 to 2.5% Steel sheets each containing 20C (%) + 1.5 Mn (%) + Cu (%) + Ni (%) is 4.5 to 7.0%, the balance being iron and inevitable impurities, with a particle diameter of 10,000 pieces / cm 2 or more when the average number of Ti-containing oxide 0.05~1μm was observed at a magnification 1,000 times, the average number of average particle size 2μm or more Ti-containing oxide ratio excellent thickness in high heat input welded joint toughness, characterized in that when observed at 2000 / cm 2 or less at 200-fold Plate. 前記厚鋼板が、更に、Cr:0.1〜2.0%、Mo:0.1〜1.0%、Nb:0.10%以下(0%を含まない)、V:0.10%以下(0%を含まない)、のいずれか一種または二種以上を含有する請求項1に記載の大入熱溶接継手靭性に優れた厚鋼板。   The thick steel plate is further Cr: 0.1-2.0%, Mo: 0.1-1.0%, Nb: 0.10% or less (excluding 0%), V: 0.10% The thick steel plate excellent in toughness of the high heat input welded joint according to claim 1, comprising any one or more of the following (not including 0%): 前記厚鋼板が、更に、B:0.0005〜0.0050%を含有する請求項1また2に記載の大入熱溶接継手靭性に優れた厚鋼板。   The thick steel plate excellent in the high heat input weld joint toughness according to claim 1 or 2, wherein the thick steel plate further contains B: 0.0005 to 0.0050%. 前記厚鋼板が、更に、Zr:0.05%以下(0%を含まない)、Mg:0.0050%以下(0%を含まない)、Ca:0.0050%以下(0%を含まない)、REM:0.0050%以下(0%を含まない)、のいずれか一種または二種以上を含有する請求項1乃至3のいずれか1項に記載の大入熱溶接継手靭性に優れた厚鋼板。   The thick steel plate is further Zr: 0.05% or less (not including 0%), Mg: 0.0050% or less (not including 0%), Ca: 0.0050% or less (not including 0%) ), REM: 0.0050% or less (excluding 0%), which is excellent in high heat input welded joint toughness according to any one of claims 1 to 3 Thick steel plate.
JP2004312916A 2004-10-27 2004-10-27 Thick steel plate with high heat input welded joint toughness Expired - Fee Related JP4311740B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004312916A JP4311740B2 (en) 2004-10-27 2004-10-27 Thick steel plate with high heat input welded joint toughness
KR1020050101465A KR100712796B1 (en) 2004-10-27 2005-10-26 A thick steel plate having superior toughness in high input heat welding joint
CNB200510114178XA CN100535165C (en) 2004-10-27 2005-10-26 Large volume heat inputing in the welding tie-in tenacity excellent thick steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004312916A JP4311740B2 (en) 2004-10-27 2004-10-27 Thick steel plate with high heat input welded joint toughness

Publications (2)

Publication Number Publication Date
JP2006124759A JP2006124759A (en) 2006-05-18
JP4311740B2 true JP4311740B2 (en) 2009-08-12

Family

ID=36719779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004312916A Expired - Fee Related JP4311740B2 (en) 2004-10-27 2004-10-27 Thick steel plate with high heat input welded joint toughness

Country Status (3)

Country Link
JP (1) JP4311740B2 (en)
KR (1) KR100712796B1 (en)
CN (1) CN100535165C (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO343351B1 (en) * 2006-12-20 2019-02-04 Nippon Steel Corp Steel with excellent toughness in welding heat affected welding zone and method of manufacture thereof
WO2008075443A1 (en) * 2006-12-20 2008-06-26 Nippon Steel Corporation Steel excelling in toughness at region affected by welding heat
JP4976906B2 (en) * 2007-04-09 2012-07-18 株式会社神戸製鋼所 Thick steel plate with excellent HAZ toughness, base material toughness, elongation, and strength-elongation balance
JP4891836B2 (en) * 2007-05-09 2012-03-07 株式会社神戸製鋼所 Steel plate with excellent toughness of weld heat affected zone in high heat input welding
JP5201665B2 (en) * 2007-11-13 2013-06-05 株式会社神戸製鋼所 High strength thick steel plate for welding with excellent toughness of heat affected zone during high heat input welding
KR100957940B1 (en) * 2007-12-13 2010-05-13 주식회사 포스코 High strength Steel Plate for High Heat Input Welding having Welded Joint with Superior Impact Toughness in Weld Heat Affected Zone
KR100957982B1 (en) * 2007-12-24 2010-05-17 주식회사 포스코 Steel for Welding Structure having Welded Joint with Superior CTOD Properties in Weld Heat Affected Zone
KR100910493B1 (en) * 2007-12-26 2009-07-31 주식회사 포스코 Flux Cored Arc Weld Metal Joint Having Superior CTOD in Low Temperature
JP4547044B2 (en) * 2008-07-30 2010-09-22 新日本製鐵株式会社 High-strength thick steel material excellent in toughness and weldability, high-strength extra-thick H-shaped steel, and methods for producing them
KR101151577B1 (en) * 2008-12-22 2012-05-31 가부시키가이샤 고베 세이코쇼 Steel plate
JP5493557B2 (en) * 2009-07-31 2014-05-14 Jfeスチール株式会社 Steel material for large heat input welding
JP5630322B2 (en) * 2011-02-24 2014-11-26 Jfeスチール株式会社 High-tensile steel plate with excellent toughness and manufacturing method thereof
US9403242B2 (en) 2011-03-24 2016-08-02 Nippon Steel & Sumitomo Metal Corporation Steel for welding
JP5824434B2 (en) * 2011-11-14 2015-11-25 株式会社神戸製鋼所 Thick steel plate with excellent toughness in weld heat affected zone
BR112014012265B1 (en) * 2011-11-25 2018-12-18 Nippon Steel & Sumitomo Metal Corporation welding steel
JP5811044B2 (en) * 2012-06-13 2015-11-11 新日鐵住金株式会社 Thick high-strength steel sheet excellent in weldability and weld heat-affected zone toughness and method for producing the same
WO2014199488A1 (en) * 2013-06-13 2014-12-18 新日鐵住金株式会社 Ultrahigh-tensile-strength steel plate for welding
CN103741079A (en) * 2014-01-09 2014-04-23 鞍钢股份有限公司 Ultrahigh-strength steel plate for ocean engineering and production method thereof
JP7248896B2 (en) * 2019-06-17 2023-03-30 日本製鉄株式会社 High strength steel plate for high heat input welding
CN112501488B (en) * 2020-10-22 2021-10-26 福建三宝钢铁有限公司 Preparation process of H08A steel
CN112281065B (en) * 2020-10-28 2022-03-29 龙岩学院 780 MPa-grade high-heat-input welding steel for improving toughness of heat affected zone and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3233743B2 (en) * 1993-06-28 2001-11-26 株式会社神戸製鋼所 High strength hot rolled steel sheet with excellent stretch flangeability
JP4022019B2 (en) * 1998-07-16 2007-12-12 新日本製鐵株式会社 High-strength cold-rolled steel sheet with excellent formability after welding and difficult to soften weld heat-affected zone
AU2003284496A1 (en) * 2002-12-24 2004-07-22 Nippon Steel Corporation High strength steel sheet exhibiting good burring workability and excellent resistance to softening in heat-affected zone and method for production thereof

Also Published As

Publication number Publication date
KR20060049390A (en) 2006-05-18
JP2006124759A (en) 2006-05-18
CN1766148A (en) 2006-05-03
KR100712796B1 (en) 2007-04-30
CN100535165C (en) 2009-09-02

Similar Documents

Publication Publication Date Title
JP4311740B2 (en) Thick steel plate with high heat input welded joint toughness
JP5124988B2 (en) High-tensile steel plate with excellent delayed fracture resistance and tensile strength of 900 MPa or more and method for producing the same
JP5172970B2 (en) Flux cored arc weld metal part excellent in low temperature CTOD characteristics and steel member having this weld metal part
WO2011155620A1 (en) Ultra high-strength welded joint and method for producing same
JP5439973B2 (en) High-strength thick steel plate having excellent productivity and weldability and excellent drop weight characteristics after PWHT, and method for producing the same
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
WO2018105510A1 (en) High mn steel sheet and method for producing same
JP5842314B2 (en) High heat input welding steel
JP2021507989A (en) High-strength steel for polar environment with excellent fracture resistance at low temperature and its manufacturing method
JP2003213366A (en) Steel having excellent toughness in base metal and large -small heat input weld heat-affected zone
KR20160127808A (en) High-tensile-strength steel plate and process for producing same
JP4041447B2 (en) Thick steel plate with high heat input welded joint toughness
CN111788325B (en) High Mn steel and method for producing same
JPH08158006A (en) High strength steel excellent in toughness in weld heat-affected zone
JP5151693B2 (en) Manufacturing method of high-strength steel
JP4998708B2 (en) Steel material with small material anisotropy and excellent fatigue crack propagation characteristics and method for producing the same
KR101971772B1 (en) Method of manufacturing steel plate for high-heat input welding
JP5223706B2 (en) Steel material excellent in toughness of heat-affected zone with high heat input and manufacturing method thereof
JP2011021263A (en) Steel plate excellent in weld heat affected zone toughness
JP4924047B2 (en) Manufacturing method of steel material having excellent fatigue crack propagation characteristics with absolute value of surface residual stress of 150 N / mm 2 or less
WO2007020683A1 (en) Thick steel plate excelling in toughness of large heat input welded joint
JP2005232515A (en) Thick steel plate having excellent high heat input welded join toughness
JP2004323917A (en) High strength high toughness steel sheet
JP2009242852A (en) Steel member for high-heat input welding
JP2688312B2 (en) High strength and high toughness steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090511

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4311740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120522

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130522

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140522

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees