JP5172970B2 - Flux cored arc weld metal part excellent in low temperature CTOD characteristics and steel member having this weld metal part - Google Patents

Flux cored arc weld metal part excellent in low temperature CTOD characteristics and steel member having this weld metal part Download PDF

Info

Publication number
JP5172970B2
JP5172970B2 JP2010540572A JP2010540572A JP5172970B2 JP 5172970 B2 JP5172970 B2 JP 5172970B2 JP 2010540572 A JP2010540572 A JP 2010540572A JP 2010540572 A JP2010540572 A JP 2010540572A JP 5172970 B2 JP5172970 B2 JP 5172970B2
Authority
JP
Japan
Prior art keywords
weld metal
metal part
content
fcaw
low temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010540572A
Other languages
Japanese (ja)
Other versions
JP2011507707A (en
Inventor
ホン−チュル ジョン、
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Co Ltd
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2011507707A publication Critical patent/JP2011507707A/en
Application granted granted Critical
Publication of JP5172970B2 publication Critical patent/JP5172970B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • B23K35/0266Rods, electrodes, wires flux-cored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Description

本発明は、船舶、建築、橋梁、海洋構造物、鋼管、ラインパイプなどの溶接構造物に使用されるフラックスコアードアーク溶接(Flux Cored Arc Welding;FCAW)を行った際の溶接金属部及びこの溶接金属部を有する鋼部材に関し、より詳細には、低温CTOD特性に優れたフラックスコアードアーク溶接金属部及びこの溶接金属部を有する鋼部材に関する。   The present invention relates to a weld metal part when performing flux cored arc welding (FCAW) used for welded structures such as ships, buildings, bridges, offshore structures, steel pipes, line pipes, and the like. More specifically, the present invention relates to a flux cored arc weld metal part having excellent low-temperature CTOD characteristics and a steel member having the weld metal part.

最近、油価などの持続的な上昇によって海洋構造物がなお寒冷地などに建設されて使用されており、用いられる鋼材は、高強度化及び低温CTOD特性が要求されている。   Recently, offshore structures are still being constructed and used in cold regions due to continuous rises in oil prices and the like, and the steel materials used are required to have high strength and low temperature CTOD characteristics.

このような海洋構造物の安定性確保のためには、海洋構造物の溶接部CTOD特性は最も重要な要素の一つである。   In order to ensure the stability of such an offshore structure, the weld zone CTOD characteristic of the offshore structure is one of the most important factors.

一般的に、海洋構造物のフラックスコアード溶接の場合、入熱範囲が、おおよそ7−25kJ/cmの入熱量を使っている。   Generally, in the case of flux cored welding of offshore structures, the heat input range uses a heat input amount of approximately 7-25 kJ / cm.

一般的に溶接時に形成される溶接金属(Weld Metal)は、凝固しながら粗大な柱状晶組織が形成され、粗大な結晶粒内にオーステナイト結晶粒界によって粗大な粒界フェライト及びWidmanstatten フェライトなどが形成される。すなわち、溶接金属部は、溶接部でCTOD特性が最も劣化する部位である。   In general, a weld metal (weld metal) formed during welding forms a coarse columnar crystal structure while solidifying, and coarse grain boundary ferrite and Widmanstatten ferrite are formed in the coarse crystal grain by an austenite grain boundary. Is done. That is, the weld metal part is a part where the CTOD characteristic is most deteriorated in the weld part.

従って、溶接構造物の安定性を確保するためには、溶接金属部の微細組織を制御して、溶接金属部のCTOD特性を確保する必要がある。これを解決するための手段としては、溶接材料の成分を規定した技術が提案されている。そのような技術の例は、日本特許公開公報平11−170085号に開示されている。しかしながら、この技術は溶接金属の微細組織、粒径の制御については不明であり、前記文献に記載の溶接材料では十分な溶接金属部の靭性が得難い。   Therefore, in order to ensure the stability of the welded structure, it is necessary to control the microstructure of the weld metal part to ensure the CTOD characteristic of the weld metal part. As a means for solving this problem, a technique that defines the components of the welding material has been proposed. An example of such a technique is disclosed in Japanese Patent Publication No. 11-170085. However, this technique is unclear about the control of the microstructure and particle size of the weld metal, and it is difficult to obtain sufficient toughness of the weld metal part with the welding material described in the above-mentioned document.

また、日本特許公開特許第2005−171300号では、重量%で、C:0.07%以下、Si:0.3%以下、Mn:1.0〜2.0%、P:0.02%以下、Sを0.1%以下、sol.Al:0.04〜0.1%、N:0.0020〜0.01%、Ti:0.005〜0.02%、及びB:0.005〜0.005%を含み、ARM=197−1457C−1140sol.Al+11850N−316(Pcm−C)で定義されるARMが40〜80であることを特徴とする組成物が開示されている。しかしながら、規定されているARMには、溶接部内の酸素含量の制限がないため、SAW大入熱溶接金属部の衝撃靭性を確保し難い。   In Japanese Patent Publication No. 2005-171300, C: 0.07% or less, Si: 0.3% or less, Mn: 1.0 to 2.0%, P: 0.02% by weight. Hereinafter, S is 0.1% or less, sol. Al: 0.04 to 0.1%, N: 0.0020 to 0.01%, Ti: 0.005 to 0.02%, and B: 0.005 to 0.005%, ARM = 197 -1457C-1140sol. A composition is disclosed wherein the ARM defined by Al + 11850N-316 (Pcm-C) is 40-80. However, the specified ARM has no limitation on the oxygen content in the welded part, and therefore it is difficult to ensure the impact toughness of the SAW high heat input welded metal part.

また、日本特許公開公報平成10−180488号では、重量%で、スラグ生成剤:0.5〜3.0%、C:0.04〜0.2%、Si≦0.1%、Mn:1.2〜3.5%、Mg:0.05〜0.3%、Ni:0.5〜4.0%、Mo:0.05〜1.0%、及びB:0.002〜0.015%を含むことにより良好な衝撃靭性を確保しているが、溶接金属内の酸素及び窒素含量に対する記載がない。このため、溶接金属部のCTOD特性を確保し難い。   In Japanese Patent Publication No. Heisei 10-180488, slag generator: 0.5 to 3.0%, C: 0.04 to 0.2%, Si ≦ 0.1%, Mn:% by weight. 1.2-3.5%, Mg: 0.05-0.3%, Ni: 0.5-4.0%, Mo: 0.05-1.0%, and B: 0.002-0 Good impact toughness is ensured by including .015%, but there is no description of the oxygen and nitrogen contents in the weld metal. For this reason, it is difficult to ensure the CTOD characteristics of the weld metal part.

本発明は、TiO酸化物及び固溶Bを用いて、粒内の針状フェライト変態を促進させて、高強度物性を有すると同時に低温CTOD特性に優れたフラックスコアードアーク溶接金属部及びこの溶接金属部を有する鋼部材を提供することを目的とする。   The present invention uses TiO oxide and solute B to promote acicular ferrite transformation in the grains, and has high strength physical properties and at the same time excellent flux low temperature CTOD characteristics, and this welding It aims at providing the steel member which has a metal part.

以下、本発明に対して説明する。   Hereinafter, the present invention will be described.

本発明の一態様において、本発明は、優れた低温CTOD特性を有するフラックスコアードアーク溶接金属部であって、前記FCAW溶接金属部は、重量%で、C:0.01−0.2%、Si:0.1−0.5%、Mn:1.0−3.0%、Ni:0.5−3.0%、Ti:0.01−0.1%、B:0.0010−0.01%、Al:0.005−0.05%、N:0.003−0.006%、P:0.03%以下、S:0.03%以下、及びO:0.03−0.07%を含み、前記FCAW溶接金属部は、0.7≦Ti/O≦1.3、6≦Ti/N≦12、7≦O/B≦12、1.2≦(Ti+4B)/O≦1.9の関係を満たし、かつ残部Fe及びその他不可避な不純物を含み、前記FCAW溶接金属部は、85%以上の針状フェライト(acicular ferrite)、及び残部ベイナイト、粒界フェライト及び多角形フェライトのうちの1種以上を含むことを特徴とする微細構造を含む、低温CTOD特性に優れたフラックスコアードアーク溶接金属部を提供する。   In one aspect of the present invention, the present invention is a flux cored arc weld metal part having excellent low temperature CTOD characteristics, wherein the FCAW weld metal part is C: 0.01-0.2% by weight. , Si: 0.1-0.5%, Mn: 1.0-3.0%, Ni: 0.5-3.0%, Ti: 0.01-0.1%, B: 0.0010 -0.01%, Al: 0.005-0.05%, N: 0.003-0.006%, P: 0.03% or less, S: 0.03% or less, and O: 0.03 -0.07%, the FCAW weld metal part is 0.7 ≦ Ti / O ≦ 1.3, 6 ≦ Ti / N ≦ 12, 7 ≦ O / B ≦ 12, 1.2 ≦ (Ti + 4B) /O≦1.9, the balance Fe and other inevitable impurities are included, and the FCAW weld metal part is 85% or more acicular ferrite The present invention provides a flux cored arc weld metal part having excellent low temperature CTOD characteristics, including a fine structure characterized in that it includes one or more of (acicular ferrite) and the balance bainite, grain boundary ferrite and polygonal ferrite. .

前記溶接金属部は、Nb:0.0001〜0.1%、V:0.005〜0.1%、Cu:0.01〜2.0%、Cr:0.05〜1.0%、Mo:0.05〜1.0%、W:0.05〜0.5%、及びZr:0.005〜0.5%からなる群より選択される1種以上、及び/または、Ca:0.0005〜0.005%、REM:0.005〜0.05%からなる群より選択される1種以上の元素をさらに含むことができる。   The weld metal part is Nb: 0.0001 to 0.1%, V: 0.005 to 0.1%, Cu: 0.01 to 2.0%, Cr: 0.05 to 1.0%, One or more selected from the group consisting of Mo: 0.05 to 1.0%, W: 0.05 to 0.5%, and Zr: 0.005 to 0.5%, and / or Ca: One or more elements selected from the group consisting of 0.0005 to 0.005% and REM: 0.005 to 0.05% can be further included.

上記溶接金属部には、0.01〜0.1μm(マイクロメーター)の TiO酸化物が1.0×10個/mm以上分布されることが好ましい。 In the weld metal part, it is preferable that 0.01 to 0.1 μm (micrometer) of TiO oxide is distributed in an amount of 1.0 × 10 7 pieces / mm 3 or more.

また、本発明は、上記の溶接金属部を有する鋼部材に関するものである。   Moreover, this invention relates to the steel member which has said weld metal part.

本発明は、TiO酸化物及び固溶Bを用いることで、溶接金属部で針状フェライト変態を促進させて、高強度物性を有すると同時に優れた低温CTOD特性を有するフラックスコアードアーク溶接金属部及びこの溶接金属部を有する鋼部材を提供することができる。   The present invention promotes acicular ferrite transformation in the weld metal part by using TiO oxide and solute B, and has high strength physical properties and at the same time excellent flux low temperature CTOD characteristics. And the steel member which has this weld metal part can be provided.

以下、本発明を詳しく説明する。   The present invention will be described in detail below.

本発明者らは、溶接入熱量が7〜30kJ/cmであるFCAW溶接において、高強度物性を有すると同時に優れたCTODの確保が可能な溶接金属部を開発するために、溶接金属部のCTODに効果的であると知られていた針状フェライトに及ぼす酸化物の種類及びサイズなどに対して調査した。その結果、TiO及び固溶Bによって溶接金属部の粒界フェライト及び針状フェライトの量が変化し、これにより、溶接金属部のCTOD値が変化するという事実が分かった。   In order to develop a weld metal part having high strength physical properties and capable of securing excellent CTOD in FCAW welding with a welding heat input of 7 to 30 kJ / cm, the present inventors have developed a CTOD of the weld metal part. The type and size of oxides on acicular ferrite, which was known to be effective, were investigated. As a result, it was found that the amount of grain boundary ferrite and needle-like ferrite in the weld metal part was changed by TiO and solute B, thereby changing the CTOD value of the weld metal part.

この研究に基づき、本発明では、
[1]FCAW溶接金属にTiO酸化物を用い、
[2]0.01〜0.1μm(micrometer)の粒径、および1.0×10個/mm以上の酸化物を有する溶接金属部内で、針状フェライトを 85%以上変態させて靭性を向上させ、及び
[3]針状フェライト変態は、TiO及び固溶Bを確保しすることにより促進される。
Based on this research, in the present invention,
[1] TiO oxide is used for FCAW weld metal,
[2] Toughness by transforming acicular ferrite by 85% or more in a weld metal part having a particle size of 0.01 to 0.1 μm (micrometer) and an oxide of 1.0 × 10 7 pieces / mm 3 or more And [3] acicular ferrite transformation is promoted by securing TiO and solute B.

これらの[1]、[2]、[3]をより具体的に説明する。   These [1], [2], and [3] will be described more specifically.

[1]TiO酸化物の管理
本発明者らは、溶接金属内のTi/O、O/Bの比を適切に維持すると、適切な数のTiO酸化物が適切に分布されて、溶接金属の凝固過程でオーステナイト結晶粒の粗大化を防止し、TiO酸化物で針状フェライト変態が促進されるという結果を見出した。
[1] Management of TiO Oxide By properly maintaining the ratio of Ti / O, O / B in the weld metal, the present inventors appropriately distributed a suitable number of TiO oxides, It has been found that the austenite grains are prevented from coarsening during the solidification process, and the TiO oxide promotes acicular ferrite transformation.

本発明者らはまた、TiO酸化物がオーステナイト結晶粒内に適切に分布すると、オーステナイトで温度が減少するにつれて、オーステナイト結晶粒内のTiO酸化物は針状フェライト変態の不均一核生成サイトの役割をするようになり、結晶粒界に形成される粒界フェライトより優先的に結晶粒内にフェライトを形成させることができることを見出した。これにより、溶接金属部のCTOD特性を画期的に改善することができる。   The inventors have also found that when the TiO oxide is properly distributed within the austenite grain, the TiO oxide in the austenite grain plays a role in the heterogeneous nucleation site of the acicular ferrite transformation as the temperature decreases in the austenite grain. It has been found that ferrite can be formed in crystal grains preferentially over grain boundary ferrite formed in crystal grain boundaries. Thereby, the CTOD characteristic of a weld metal part can be remarkably improved.

このためには、TiO酸化物を微細に、かつ均一に分布させることが重要である。また、本発明者らは、Ti/O、O/Bの比によるTiO酸化物のサイズと量、そして分布を調査した結果、Ti/Oが0.2〜0.5、O/Bの比が5〜10である時、0.01〜0.1μm(micrometer)サイズのTiO酸化物が1.0×10個/mm以上得られることを見出した。 For this purpose, it is important to distribute the TiO oxide finely and uniformly. Moreover, as a result of investigating the size, amount, and distribution of the TiO oxide according to the ratio of Ti / O and O / B, the present inventors have found that the ratio of Ti / O is 0.2 to 0.5 and the ratio of O / B. It was found that 0.01 to 0.1 μm (micrometer) size of TiO oxide was obtained at 1.0 × 10 7 pieces / mm 3 or more.

[2]溶接金属部の微細組織
本発明による、Ti/O、O/Bの比によるTiO酸化物のサイズ、量、及び分布を調査した結果より、Ti/Oが0.2〜0.5、かつO/Bが5〜10である時、0.01〜0.1μm(micrometer)サイズのTiO酸化物が1.0×10個/mm以上得られることを確認することができた。
[2] Microstructure of weld metal part From the result of investigating the size, amount, and distribution of TiO oxide according to the ratio of Ti / O and O / B according to the present invention, Ti / O is 0.2 to 0.5. When O / B is 5 to 10, it was confirmed that 0.01 × 0.1 7 (micrometer) size TiO oxide was obtained at 1.0 × 10 7 pieces / mm 3 or more. .

このようなTiO酸化物が溶接金属内に適切に分布すれば、溶接金属部の冷却過程で結晶粒界より先に結晶粒内に針状フェライト変態を促進させて、溶接金属部の針状フェライトの構成比を85%以上確保することができる。   If such TiO oxide is properly distributed in the weld metal, the acicular ferrite transformation is promoted in the crystal grains prior to the grain boundaries in the cooling process of the weld metal parts, and the acicular ferrite in the weld metal parts. 85% or more can be ensured.

[3]溶接金属部内の固溶ホウ素の役割
本発明の研究で明らかになった事実である溶接金属部に均一分散されている酸化物とは別途に固溶されているホウ素は、結晶粒界に拡散されて結晶粒界のエネルギーを低くする。したがって、固溶ホウ素の分散は、結晶粒界で粒界フェライト変態を抑制するため、結晶粒内で針状フェライト変態を促進させる。このように、固溶ホウ素は、結晶粒界で粒界フェライト変態を抑制し、結晶粒内では針状フェライト変態を促進させて溶接金属部のCTOD特性の向上に寄与する。
[3] Role of solute boron in the weld metal part Boron, which is a solid solution separately from the oxide uniformly dispersed in the weld metal part, which is a fact clarified in the study of the present invention, is a grain boundary. To lower the energy of the grain boundaries. Therefore, the dispersion of the solid solution boron suppresses the grain boundary ferrite transformation at the crystal grain boundary, and promotes the acicular ferrite transformation within the crystal grain. Thus, solute boron suppresses the grain boundary ferrite transformation at the crystal grain boundary, promotes the acicular ferrite transformation within the crystal grain, and contributes to the improvement of the CTOD characteristics of the weld metal part.

以下、本発明の溶接金属部の成分を詳しく説明する。   Hereinafter, the components of the weld metal part of the present invention will be described in detail.

[成分]
炭素(C)の含量は、0.01〜0.2%の範囲である。
炭素(C)は、溶接金属の強度及び溶接硬化性を確保するために必須な元素である。しかし、炭素含量が0.2%を超えると、溶接性が大きく低下し、溶接金属部に低温亀裂が発生し易く、大入熱衝撃靭性が顕著に低下する。
[component]
The content of carbon (C) is in the range of 0.01 to 0.2%.
Carbon (C) is an essential element for ensuring the strength and weld curability of the weld metal. However, if the carbon content exceeds 0.2%, the weldability is greatly reduced, low temperature cracks are likely to occur in the weld metal part, and the large heat input impact toughness is significantly reduced.

ケイ素(Si)の含量は、0.1〜0.5%の範囲である。
ケイ素の含量が0.1%未満の場合は、溶接金属内の脱酸効果が不十分であり、溶接金属の流動性が低下する。ケイ素の含量が0.5%を超える場合は、溶接金属内の島状マルテンサイト(M−A constituent)の変態を促進させて低温衝撃靭性を低下させ、溶接亀裂感受性に影響を及ぼす。
The content of silicon (Si) is in the range of 0.1 to 0.5%.
When the silicon content is less than 0.1%, the deoxidation effect in the weld metal is insufficient, and the fluidity of the weld metal is lowered. When the silicon content exceeds 0.5%, the transformation of island martensite (MA constituent) in the weld metal is promoted to lower the low temperature impact toughness and affect the weld crack sensitivity.

マンガン(Mn)の含量は、1.0〜3.0%の範囲である。
Mnは、鋼中で脱酸作用及び強度を向上させ、かつTiO酸化物の周りにMnS形態に析出して、Ti複合酸化物に溶接金属部の靭性改善に有利な針状フェライトの生成を促進させる役割をする。
The content of manganese (Mn) is in the range of 1.0 to 3.0%.
Mn improves deoxidation and strength in steel, and precipitates in the MnS form around TiO oxide, promoting the formation of acicular ferrite that is advantageous for improving the toughness of weld metal in the Ti composite oxide. To play a role.

このようなMnは、マトリックス内に置換型固溶体を形成してマトリックスを固溶強化させて、強度及び靭性を確保する。このためには、Mn含量は1.0%以上が好ましい。しかし、Mn含量が3.0%を超える場合、好ましくない低温変態組織が形成する。   Such Mn secures strength and toughness by forming a substitutional solid solution in the matrix and strengthening the solid solution. For this purpose, the Mn content is preferably 1.0% or more. However, when the Mn content exceeds 3.0%, an undesirable low temperature transformation structure is formed.

チタン(Ti)の含量は、0.01〜0.1%の範囲である。
Tiは、Oと結合して、微細なTiO酸化物及び微細TiN析出物を形成する。このため、Tiは必須不可欠な元素である。このような微細なTiO酸化物及びTiN複合析出物の効果を得るためには、Tiの含量は0.01%以上が好ましい。しかしながら、Tiの含量が0.1%を超えると、好ましくない粗大なTiO酸化物及び粗大なTiN析出物が形成する。
The content of titanium (Ti) is in the range of 0.01 to 0.1%.
Ti combines with O to form fine TiO oxide and fine TiN precipitates. For this reason, Ti is an indispensable element. In order to obtain the effect of such fine TiO oxide and TiN composite precipitates, the Ti content is preferably 0.01% or more. However, when the Ti content exceeds 0.1%, undesirable coarse TiO oxides and coarse TiN precipitates are formed.

ニッケル(Ni)の含量は、0.5〜3.0%の範囲である。
Niは、固溶強化によってマトリックス(matrix)の強度と靭性を向上させる有効な元素である。このような効果を得るためには、Ni含量は0.5%以上が好ましい。しかしながら、Ni含量が3.0%を超える場合は、焼入性を大きく増加させ、高温亀裂を発生させる。
The content of nickel (Ni) is in the range of 0.5 to 3.0%.
Ni is an effective element that improves the strength and toughness of the matrix by solid solution strengthening. In order to obtain such an effect, the Ni content is preferably 0.5% or more. However, if the Ni content exceeds 3.0%, the hardenability is greatly increased and high temperature cracks are generated.

ホウ素の含量は、0.0010−0.01%の範囲である。
Bは、焼入性を向上させる元素である。粒界に偏析されて粒界フェライト変態を抑制するために、Bの含量は0.0010%以上必要である。しかしながら、Bの含量が0.01%以上を超えると、溶接硬化性が大きく増加してマルテンサイト変態を促進させ、溶接低温亀裂の発生及び靭性を低下させる。よって、Bの含量は、0.0010〜0.01%の範囲である。
The boron content is in the range of 0.0010-0.01%.
B is an element that improves hardenability. In order to suppress segregation at the grain boundaries and suppress the grain boundary ferrite transformation, the B content needs to be 0.0010% or more. However, if the content of B exceeds 0.01% or more, the weld hardenability is greatly increased, the martensitic transformation is promoted, and the occurrence of weld cold cracks and toughness are reduced. Therefore, the content of B is in the range of 0.0010 to 0.01%.

窒素(N)の含量は、0.003−0.006%の範囲である。
Nは、TiN析出物などを形成させることに必須不可欠な元素であり、微細TiN析出物の量を増加させる。Nは、TiN析出物のサイズ及び析出物の間隔、析出物の分布、酸化物との複合析出の頻度数、析出物自体の高温安定性などに顕著な影響を及ぼす。このため、Nの含量は、0.003%以上が好ましい。
The content of nitrogen (N) is in the range of 0.003-0.006%.
N is an essential element for forming TiN precipitates and the like, and increases the amount of fine TiN precipitates. N significantly affects the size of TiN precipitates and the interval between the precipitates, the distribution of precipitates, the frequency of complex precipitation with oxides, the high-temperature stability of the precipitates themselves, and the like. For this reason, the content of N is preferably 0.003% or more.

しかし、窒素含量が0.006%を超えると、それ以上の効果は期待できず、溶接金属内に存在する固溶窒素量の増加によって靭性低下をもたらし得る。   However, if the nitrogen content exceeds 0.006%, no further effect can be expected, and the toughness can be reduced by increasing the amount of solid solution nitrogen present in the weld metal.

リン(P)の含量は、0.030%以下である。
Pは、溶接時に高温亀裂を助長する不純元素である。このため、Pの含量は低いほうが好ましい。靭性向上及び亀裂低減のためには、Pの含量は0.03%以下が良い。
The content of phosphorus (P) is 0.030% or less.
P is an impure element that promotes high temperature cracks during welding. For this reason, the one where the content of P is low is preferable. In order to improve toughness and reduce cracks, the P content is preferably 0.03% or less.

アルミニウム(Al)の含量は、0.005−0.05%の範囲である。
Alは、脱酸剤としての役割を担い、かつ溶接金属内の酸素量を減少させるために必要な元素である。また、固溶窒素と結合して微細なAlN析出物を形成させるためには、Alの含量を0.005%以上にする。しかし、Alの含量が0.05%を超えると、粗大なAlを形成させて、靭性改善に必要なTiO酸化物の形成を妨害する。このため、Alの含量を0.05%以下にすること。
The content of aluminum (Al) is in the range of 0.005-0.05%.
Al plays a role as a deoxidizer and is an element necessary for reducing the amount of oxygen in the weld metal. Moreover, in order to combine with solid solution nitrogen and form a fine AlN precipitate, the content of Al is made 0.005% or more. However, if the Al content exceeds 0.05%, coarse Al 2 O 3 is formed, which hinders the formation of TiO oxide necessary for improving toughness. For this reason, the Al content should be 0.05% or less.

硫黄(S)の含量は、0.030%以下に制限する。
Sは、MnS形成のために必要な元素である。MnSの複合析出物を析出させるためには、Sの含量を0.03%以下にする。Sの含量が0.03%以上の場合、FeSなどの低融点化合物を形成させて高温亀裂を誘発させ得る。
The sulfur (S) content is limited to 0.030% or less.
S is an element necessary for forming MnS. In order to precipitate the composite precipitate of MnS, the S content is set to 0.03% or less. When the content of S is 0.03% or more, a low melting point compound such as FeS can be formed to induce high temperature cracking.

酸素(O)の含量は、0.03−0.07%の範囲である。
Oは、溶接金属部の凝固過程でTiと反応してTi酸化物を形成させる元素である。Ti酸化物は、溶接金属内で針状フェライトの変態を促進させる。O含有量が0.03%未満であると、Ti酸化物を溶接金属部に適切に分布させることができない。Oの含量が0.07%を超えると、粗大なTiO酸化物及びその他にFeOなどの酸化物が生成されて溶接金属部に影響を及ぼす。
The content of oxygen (O) is in the range of 0.03-0.07%.
O is an element that reacts with Ti in the solidification process of the weld metal part to form Ti oxide. Ti oxide promotes the transformation of acicular ferrite in the weld metal. If the O content is less than 0.03%, the Ti oxide cannot be properly distributed in the weld metal part. When the content of O exceeds 0.07%, coarse TiO oxide and other oxides such as FeO are generated and affect the weld metal part.

Ti/Oの比は、0.7〜1.3の範囲である。
Ti/O比が0.7未満の場合は、溶接金属内にオーステナイト結晶粒の成長抑制及び針状フェライト変態に要求されるTiO酸化物が不十分である。さらに、TiO酸化物内に含有するTi比率が減少し、TiO酸化物は針状フェライト核生成サイトとしての機能を失い、溶接熱影響部の靭性改善に有効な針状フェライト相の分率が低下される。Ti/Oの比が1.3を超える場合は、溶接金属内のオーステナイト結晶粒の成長をこれ以上抑制することができない。むしろ、酸化物内に含有される合金成分の比率が小さくなって、酸化物は針状フェライトの核生成サイトとしての機能を失う。
The ratio of Ti / O is in the range of 0.7 to 1.3.
When the Ti / O ratio is less than 0.7, the TiO oxide required for suppressing the growth of austenite crystal grains and acicular ferrite transformation is insufficient in the weld metal. Furthermore, the Ti ratio contained in the TiO oxide decreases, the TiO oxide loses its function as an acicular ferrite nucleation site, and the fraction of the acicular ferrite phase effective in improving the toughness of the weld heat affected zone decreases. Is done. When the ratio of Ti / O exceeds 1.3, the growth of austenite crystal grains in the weld metal cannot be further suppressed. Rather, the ratio of the alloy component contained in the oxide is reduced, and the oxide loses its function as a nucleation site of acicular ferrite.

Ti/Nの比は、6〜12の範囲である。
本発明において、Ti/N比が6未満の場合、TiO酸化物に形成されるTiN析出物の量が減少して、靭性改善に効果的な針状フェライト変態に悪い影響を及ぼす。Ti/N比が12を超える場合、それ以上の効果は期待できず、固溶窒素量が増加し、衝撃靭性を低下させる。
The ratio of Ti / N is in the range of 6-12.
In the present invention, when the Ti / N ratio is less than 6, the amount of TiN precipitates formed in the TiO oxide is reduced, which adversely affects the acicular ferrite transformation effective for improving toughness. When the Ti / N ratio exceeds 12, no further effect can be expected, the amount of dissolved nitrogen increases, and the impact toughness decreases.

O/Bの比は、7〜12の範囲である。
本発明において、O/B比が7未満であれば、溶接後に冷却過程中にオーステナイト結晶粒界に拡散して、粒界フェライト変態を抑制する固溶Bの量が不十分となる。O/B比が12を超える場合は、それ以上の効果は期待できず、固溶窒素量が増加して、溶接熱影響部の靭性を低下させる。
The ratio of O / B is in the range of 7-12.
In the present invention, if the O / B ratio is less than 7, the amount of the solid solution B that diffuses into the austenite grain boundary during the cooling process after welding and suppresses the grain boundary ferrite transformation becomes insufficient. When the O / B ratio exceeds 12, no further effect can be expected, the amount of dissolved nitrogen increases, and the toughness of the weld heat affected zone decreases.

(Ti+4B)/Oの比は、1.2〜1.9の範囲である。
本発明において、(Ti+4B)/Oの比が1.2未満の場合は、固溶窒素量が増加するため、溶接金属部の靭性改善に効果的ではない。(Ti+4B)/Oの比が1.9を超える場合、TiN、BN析出物の個数が不十分となる。
The ratio of (Ti + 4B) / O is in the range of 1.2 to 1.9.
In the present invention, when the ratio of (Ti + 4B) / O is less than 1.2, the amount of solute nitrogen increases, which is not effective in improving the toughness of the weld metal part. When the ratio of (Ti + 4B) / O exceeds 1.9, the number of TiN and BN precipitates is insufficient.

本発明においては、機械的性質をより向上させるために、上記のように組成を有する鋼にNb、V、Cu、Mo、Cr、W及びZrからなる群より選択される、1種以上の元素をさらに添加することができる。   In the present invention, in order to further improve the mechanical properties, one or more elements selected from the group consisting of Nb, V, Cu, Mo, Cr, W and Zr are added to the steel having the composition as described above. Can be further added.

銅(Cu)の含量は、0.1〜2.0%の範囲である。
Cuは、マトリックスに固溶されて固溶強化の効果によって強度及び靭性を確保するために有効な元素である。このためには、Cu含量が0.1%以上を必要とする。しかしながら、Cu含量が2.0%を超える場合は、溶接金属部で硬化性を増加させて靭性を低下させ、溶接金属で高温亀裂を助長させる。
The content of copper (Cu) is in the range of 0.1 to 2.0%.
Cu is an element effective for securing strength and toughness by the effect of solid solution strengthening by being dissolved in the matrix. For this purpose, the Cu content needs to be 0.1% or more. However, when the Cu content exceeds 2.0%, the hardenability is increased at the weld metal portion to reduce the toughness, and the hot crack is promoted at the weld metal.

また、CuとNiを複合添加する場合、これらの合計を3.5%未満にする。CuとNiの含量が3.5%を超えると焼入性が大きくなり、靭性及び溶接性に悪影響をもたらす。   Further, when Cu and Ni are added in combination, the total of these is made less than 3.5%. When the content of Cu and Ni exceeds 3.5%, the hardenability is increased, which adversely affects toughness and weldability.

Nbの含量は、0.0001−0.1%の範囲である。
Nbは、焼入性を向上させるための必須元素である。特にAr温度を低くして、冷却速度が低い範囲でもベイナイト生成範囲を広げる効果があり、Nbはベイナイト組織を得るために必要である。
The content of Nb is in the range of 0.0001-0.1%.
Nb is an essential element for improving hardenability. In particular, there is an effect that the Ar 3 temperature is lowered and the bainite generation range is expanded even in a range where the cooling rate is low, and Nb is necessary for obtaining a bainite structure.

強度向上の効果を期待するためには、0.0001%以上のNb含量が必要である。しかし、Nb含量が0.1%を超えると、溶接時に溶接金属部で島状マルテンサイトの形成を促進して、溶接金属部の靭性に悪い影響を及ぼす。   In order to expect the effect of improving the strength, an Nb content of 0.0001% or more is necessary. However, if the Nb content exceeds 0.1%, the formation of island martensite is promoted in the weld metal part during welding, which adversely affects the toughness of the weld metal part.

Vの含量は、0.005−0.1%の範囲である。
Vは、VN析出物を形成させてフェライト変態を促進する元素である。Vの含量は0.005%以上が必要である。しかしながら、Vの含量が0.1%を超えると、溶接金属部に炭化物(Carbide)のような硬化相を形成させて溶接金属部の靭性に悪影響を及ぼす。
The content of V is in the range of 0.005-0.1%.
V is an element that promotes ferrite transformation by forming VN precipitates. The V content should be 0.005% or more. However, if the content of V exceeds 0.1%, a hardened phase such as carbide is formed in the weld metal part, which adversely affects the toughness of the weld metal part.

クロム(Cr)は、0.05〜1.0%の範囲である。
Crは、焼入性および強度を向上させる。Crの含量が0.05%未満の場合は強度が得られない。Crの含量が1.0%を超える場合は溶接金属部の靭性劣化をもたらす。
Chromium (Cr) is in the range of 0.05 to 1.0%.
Cr improves hardenability and strength. If the Cr content is less than 0.05%, strength cannot be obtained. When the Cr content exceeds 1.0%, the toughness of the weld metal part is deteriorated.

モリブデン(Mo)は、0.05〜1.0%の範囲である。
Moも焼入性を増加させると同時に強度を向上させる元素である。Moの含量は、強度確保のために0.05%以上にする。溶接金属部の硬化及び溶接低温亀裂の発生を抑制するためには、Crと同様にMo含量を1.0%以下にする。
Molybdenum (Mo) is in the range of 0.05 to 1.0%.
Mo is an element that increases hardenability and at the same time improves strength. The Mo content is 0.05% or more to ensure strength. In order to suppress the hardening of the weld metal part and the occurrence of welding low temperature cracks, the Mo content is set to 1.0% or less as in the case of Cr.

Wの含量は、0.05−0.5%の範囲である。
Wは、高温強度を向上させるだけでなく析出強化にも効果的な元素である。しかし、Wの含量が0.05%未満だと強度上昇の効果が微弱である。Wの含量が0.5%以上だと溶接金属部の靭性に悪影響を及ぼす。
The content of W is in the range of 0.05-0.5%.
W is an element that is effective not only for improving high-temperature strength but also for precipitation strengthening. However, if the W content is less than 0.05%, the effect of increasing the strength is weak. If the W content is 0.5% or more, the toughness of the weld metal part is adversely affected.

Zrの含量は、0.005−0.5%の範囲である。
Zrは、強度上昇に効果があるため、0.005%以上添加することが好ましい。Zrの含量が0.5%を超える場合、溶接金属部の靭性に悪影響を及ぼす。
The content of Zr is in the range of 0.005-0.5%.
Zr is effective in increasing strength, so 0.005% or more is preferably added. When the content of Zr exceeds 0.5%, the toughness of the weld metal part is adversely affected.

また、本発明では、一次オーステナイトの結晶粒成長の抑制のために、Ca及びREMのうち1種または両方をさらに添加することができる。   Moreover, in this invention, in order to suppress the crystal grain growth of primary austenite, one or both of Ca and REM can be further added.

Ca及びREMは、溶接時にアークを安定させ、溶接金属部で酸化物を形成させるのに好ましい元素である。また、Ca及びREMは、冷却過程でオーステナイト結晶粒の成長を抑制し、粒内のフェライト変態を促進させて溶接金属部の靭性を向上させる。このために、カルシウム(Ca)は0.0005%以上、REMは0.005%以上添加することが良い。しかしながら、Caが0.005%、REMが0.05%を超える場合、大型酸化物を形成して靭性に悪影響を及ぼし得る。REMとしては、1種以上のCe、La、Y及びHfを用いてもよく、いずれも上記の効果を得ることができる。   Ca and REM are preferable elements for stabilizing the arc during welding and forming an oxide in the weld metal part. Further, Ca and REM suppress the growth of austenite crystal grains in the cooling process, promote the ferrite transformation in the grains, and improve the toughness of the weld metal part. For this reason, it is preferable to add 0.0005% or more of calcium (Ca) and 0.005% or more of REM. However, when Ca exceeds 0.005% and REM exceeds 0.05%, a large oxide may be formed to adversely affect toughness. As REM, one or more kinds of Ce, La, Y and Hf may be used, and any of the above effects can be obtained.

[溶接金属部の微細組織]
本発明において、FCAW溶接後に形成される溶接金属部の微細組織は、針状フェライトであり、85%以上の相分率を有する。針状フェライト組織は、高強度と低温CTODを同時に得ることができる。
[Microstructure of weld metal part]
In the present invention, the microstructure of the weld metal part formed after FCAW welding is acicular ferrite and has a phase fraction of 85% or more. The acicular ferrite structure can simultaneously obtain high strength and low temperature CTOD.

残部は、ベイナイト、粒界フェライト及び多角形フェライトのうち1種以上を含む。   The balance includes one or more of bainite, grain boundary ferrite, and polygonal ferrite.

フェライトとベイナイト組織が混合されている場合、CTODには有利であるが、溶接金属部の強度が低くなる。また微細組織がマルテンサイトとベイナイト混合組織である場合は、溶接金属部の強度は高いが、溶接金属部のCTODなどの機械的性質が低下し、低温亀裂感受性が増加する。   When ferrite and a bainite structure are mixed, it is advantageous for CTOD, but the strength of the weld metal part is lowered. Further, when the microstructure is a martensite and bainite mixed structure, the strength of the weld metal part is high, but the mechanical properties such as CTOD of the weld metal part are lowered, and the low temperature crack sensitivity is increased.

[酸化物]
溶接金属部に存在する酸化物は、溶接後の溶接金属部の微細組織の変態に大きな影響を及ぼす。即ち、微細組織の変態は、分布する酸化物の種類、サイズ及びその個数に大きく影響される。
[Oxide]
The oxide present in the weld metal part has a great influence on the transformation of the microstructure of the weld metal part after welding. That is, the transformation of the microstructure is greatly influenced by the kind, size and number of oxides distributed.

特に、FCAW溶接金属部の場合、凝固過程で結晶粒が粗大化され、結晶粒界から粗大な粒界フェライト、Widmanstattenフェライト、ベイナイトなどの組織が形成されて、溶接金属部の物性を低下させる。   In particular, in the case of the FCAW weld metal part, the crystal grains are coarsened during the solidification process, and coarse grain boundary ferrite, Widmanstatten ferrite, bainite, and other structures are formed from the crystal grain boundaries, thereby reducing the physical properties of the weld metal part.

これを防止するためには、溶接金属内にTiO酸化物を0.5μm(micrometer)以下の間隔で、均一に分散させることが重要である。   In order to prevent this, it is important to uniformly disperse the TiO oxide in the weld metal at intervals of 0.5 μm (micrometer) or less.

また、TiO酸化物の粒径は0.01〜0.1μm(micrometer)の範囲であり、かつ臨界個数は1.0×10個/mm以上である。粒径が0.01μm(micrometer)未満では、TiO酸化物はFCAW溶接金属部で針状フェライトの変態を促進させることができない。また、粒径が0.1μm(micrometer)を超える場合は、オーステナイト結晶粒に対するピンニング(pinning、結晶粒成長抑制)の効果が少なくなり、TiO酸化物は粗大な非金属介在物のような挙動をして、溶接金属部のCTOD特性に悪影響を及ぼす。 The particle diameter of the TiO oxide is in the range of 0.01 to 0.1 μm (micrometer), and the critical number is 1.0 × 10 7 pieces / mm 3 or more. When the particle size is less than 0.01 μm (micrometer), the TiO oxide cannot promote the transformation of acicular ferrite in the FCAW weld metal part. In addition, when the particle diameter exceeds 0.1 μm (micrometer), the effect of pinning on the austenite crystal grains is reduced, and the TiO oxide behaves like a coarse non-metallic inclusion. This adversely affects the CTOD characteristics of the weld metal part.

また、本発明は、上記の溶接金属部を有する鋼部材を提供する。   Moreover, this invention provides the steel member which has said weld metal part.

本発明において、FCAW以外の他の溶接方法によっても製造することができる。この時、溶接金属部の冷却速度が速ければ、酸化物は微細分散されて、微細組織が得られる。このため、冷却速度の速い大入熱溶接方法が好ましい。   In this invention, it can manufacture also by other welding methods other than FCAW. At this time, if the cooling rate of the weld metal part is high, the oxide is finely dispersed and a fine structure is obtained. For this reason, a high heat input welding method with a high cooling rate is preferable.

また、同一の理由で、溶接部の冷却速度を向上させるために、鋼材冷却及びCu−バッキング(backing)方法も有利である。   For the same reason, steel cooling and Cu-backing methods are also advantageous to improve the cooling rate of the weld.

しかし、このように公知の技術を本発明に適用しても、これは本発明の単純な変更であり、実質的に本発明の技術思想の範囲内であると解釈することは当然である。   However, even if such a known technique is applied to the present invention, it is a matter of course that this is a simple modification of the present invention and is substantially within the scope of the technical idea of the present invention.

以下、本発明を実施例を通じて具体的に説明する。   Hereinafter, the present invention will be described in detail through examples.

[実施例]
下記の表1及び表2のような成分組成を有する溶接金属部を、7〜30kJ/cm以上の溶接入熱量を適用して、FCAWによって製造した。
[Example]
The weld metal part which has a component composition like the following Table 1 and Table 2 was manufactured by FCAW, applying the welding heat input of 7-30 kJ / cm or more.

上記のように溶接された溶接金属部の中央部から試片を採取して、引張試験及びCTOD試験を行い、その結果を下記表3に示した。   A specimen was taken from the center of the weld metal part welded as described above, and a tensile test and a CTOD test were conducted. The results are shown in Table 3 below.

上記引張試験の試験片は、KS規格(KS B 0801)4号試験片を用いて、引張試験は、クロスヘッドスピード(cross head speed)10mm/分で実施した。   As the test piece for the tensile test, a KS standard (KS B 0801) No. 4 test piece was used, and the tensile test was performed at a cross head speed of 10 mm / min.

上記CTOD試験片は、BS7448−1規格に準じて製造し、疲労亀裂はSAW溶接金属部中央に位置させた。   The CTOD test piece was manufactured according to the BS7448-1 standard, and the fatigue crack was positioned at the center of the SAW weld metal part.

溶接金属部のCTODに重要な影響を及ぼす酸化物のサイズと個数、そして間隔は、画像分析機(image analyzer)と電子顕微鏡を用いたポイントカウンティング(point counting)法で測定し、その結果を、下記表3に示した。   The size and number of oxides having an important influence on the CTOD of the weld metal part, and the interval were measured by a point counting method using an image analyzer and an electron microscope. The results are shown in Table 3 below.

この時、被検面は、100mmを基準として評価した。 At this time, the test surface was evaluated based on 100 mm 2 .

FCAW溶接金属部のCTOD評価は、FCAW溶接後にCTOD試験片で加工して、−10℃でCTOD試験機を通じて評価した。   The CTOD evaluation of the FCAW weld metal part was processed with a CTOD test piece after FCAW welding and evaluated through a CTOD tester at −10 ° C.

Figure 0005172970
Figure 0005172970
Figure 0005172970
Figure 0005172970

Figure 0005172970
Figure 0005172970

Figure 0005172970
Figure 0005172970

上記表3に示したように、本発明によって製造された溶接金属部は、3×10個/mm以上のTiO酸化物であるのに対し、比較鋼の場合は、4.3×10個/mm以下であった。比較鋼と対比した場合、発明鋼が非常に均一でかつ微細な複合析出物のサイズを有し、またその個数も顕著に増加されたことが分かる。 As shown in Table 3 above, the weld metal part manufactured according to the present invention is a TiO oxide of 3 × 10 8 pieces / mm 3 or more, whereas in the case of the comparative steel, 4.3 × 10 8. It was 6 pieces / mm 3 or less. When compared with the comparative steel, it can be seen that the inventive steel has a very uniform and fine composite precipitate size and the number thereof is significantly increased.

一方、本発明鋼の微細組織の場合、も85%以上の高い針状フェライト相分率をふくんでいた。   On the other hand, in the case of the microstructure of the steel of the present invention, a high acicular ferrite phase fraction of 85% or more was included.

従って、FCAW溶接時に、本発明鋼は、粒内に針状フェライト及び多角形フェライトを含んでいた。その中でも、針状フェライトは、85%以上の相分率を有しており、比較鋼と比較した場合、発明鋼は優れた溶接金属部CTOD特性を有していた。   Therefore, during FCAW welding, the steel of the present invention contained acicular ferrite and polygonal ferrite in the grains. Among them, the acicular ferrite has a phase fraction of 85% or more, and the inventive steel has excellent weld metal part CTOD characteristics when compared with the comparative steel.

Claims (6)

低温CTOD特性に優れたフラックスコアードアーク(FCAW)溶接金属部であって、
前記FCAW溶接金属部は、重量%で、C:0.01−0.2%、Si:0.1−0.5%、Mn:1.0−3.0%、Ni:0.5−3.0%、Ti:0.01−0.1%、B:0.0010−0.01%、Al:0.005−0.05%、N:0.003−0.006%、P:0.03%以下、S:0.03%以下、及びO:0.03−0.07%を含み、
前記FCAW溶接金属部は、0.7≦Ti/O≦1.3、6≦Ti/N≦12、7≦O/B≦12、1.2≦(Ti+4B)/O≦1.9の関係を満たし、かつ残部Fe及びその他不可避な不純物を含み、
前記FCAW溶接金属部は、85%以上の針状フェライト(acicular ferrite)、及び残部ベイナイト、粒界フェライト及び多角形フェライトのうち1種以上を含む微細組織を含む
ことを特徴とする、FCAW溶接金属部。
A flux cored arc (FCAW) weld metal part with excellent low temperature CTOD characteristics,
The FCAW weld metal part is, by weight, C: 0.01-0.2%, Si: 0.1-0.5%, Mn: 1.0-3.0%, Ni: 0.5- 3.0%, Ti: 0.01-0.1%, B: 0.0010-0.01%, Al: 0.005-0.05%, N: 0.003-0.006%, P : 0.03% or less, S: 0.03% or less, and O: 0.03-0.07%,
The FCAW weld metal part has a relationship of 0.7 ≦ Ti / O ≦ 1.3, 6 ≦ Ti / N ≦ 12, 7 ≦ O / B ≦ 12, 1.2 ≦ (Ti + 4B) /O≦1.9. And the balance Fe and other inevitable impurities,
The FCAW weld metal includes 85% or more of acicular ferrite and a microstructure containing at least one of bainite, grain boundary ferrite and polygonal ferrite. Department.
Nb:0.0001〜0.1%、V:0.005〜0.1%、Cu:0.01〜2.0%、Cr:0.05〜1.0%、Mo:0.05〜1.0%、W:0.05〜0.5%、Zr:0.005〜0.5%、Ca:0.0005〜0.005%及びREM:0.005〜0.05%からなる群より選択される少なくとも1種がさらに含まれることを特徴とする、請求項1に記載のFCAW溶接金属部。  Nb: 0.0001 to 0.1%, V: 0.005 to 0.1%, Cu: 0.01 to 2.0%, Cr: 0.05 to 1.0%, Mo: 0.05 to 1.0%, W: 0.05-0.5%, Zr: 0.005-0.5%, Ca: 0.0005-0.005% and REM: 0.005-0.05% The FCAW weld metal part according to claim 1, further comprising at least one selected from the group. 前記溶接金属部には、0.01〜0.1μm(micrometer)のTiO酸化物が1.0×10個/mm以上分布されていることを特徴とする、請求項1または2に記載のFCAW溶接金属部。 3. The TiO oxide of 0.01 to 0.1 μm (micrometer) is distributed at 1.0 × 10 7 pieces / mm 3 or more in the weld metal part, according to claim 1 or 2. FCAW weld metal part. 請求項1に記載された低温CTOD特性に優れたフラックスコアードアーク溶接金属部を有する、鋼部材。  A steel member having a flux cored arc weld metal part excellent in low temperature CTOD characteristics according to claim 1. Nb:0.0001〜0.1%、V:0.005〜0.1%、Cu:0.01〜2.0%、Cr:0.05〜1.0%、Mo:0.05〜1.0%、W:0.05〜0.5%、Zr:0.005〜0.5%、Ca:0.0005〜0.005%及びREM:0.005〜0.05%からなる群より選択される少なくとも1種がさらに含まれることを特徴とする、請求項4に記載の鋼部材。  Nb: 0.0001 to 0.1%, V: 0.005 to 0.1%, Cu: 0.01 to 2.0%, Cr: 0.05 to 1.0%, Mo: 0.05 to 1.0%, W: 0.05-0.5%, Zr: 0.005-0.5%, Ca: 0.0005-0.005% and REM: 0.005-0.05% The steel member according to claim 4, further comprising at least one selected from the group. 前記溶接金属部には、0.01〜0.1μm(micrometer)のTiO酸化物が1.0×10個/mm以上分布されていることを特徴とする、請求項4または5に記載の鋼部材。The TiO oxide of 0.01 to 0.1 μm (micrometer) is distributed at 1.0 × 10 7 pieces / mm 3 or more in the weld metal part, according to claim 4 or 5. Steel members.
JP2010540572A 2007-12-26 2008-12-23 Flux cored arc weld metal part excellent in low temperature CTOD characteristics and steel member having this weld metal part Active JP5172970B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020070138045A KR100910493B1 (en) 2007-12-26 2007-12-26 Flux Cored Arc Weld Metal Joint Having Superior CTOD in Low Temperature
KR10-2007-0138045 2007-12-26
PCT/KR2008/007627 WO2009082162A2 (en) 2007-12-26 2008-12-23 Flux cored arc weld metal joint having superior ctod in low temperature and steel member having the weld metal joint

Publications (2)

Publication Number Publication Date
JP2011507707A JP2011507707A (en) 2011-03-10
JP5172970B2 true JP5172970B2 (en) 2013-03-27

Family

ID=40801694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010540572A Active JP5172970B2 (en) 2007-12-26 2008-12-23 Flux cored arc weld metal part excellent in low temperature CTOD characteristics and steel member having this weld metal part

Country Status (4)

Country Link
JP (1) JP5172970B2 (en)
KR (1) KR100910493B1 (en)
CN (1) CN101909810B (en)
WO (1) WO2009082162A2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101665696B1 (en) * 2009-11-20 2016-10-24 주식회사 포스코 High strength flux cored arc weld metal joint having excellent impact toughness
KR101695982B1 (en) * 2009-12-23 2017-01-12 주식회사 포스코 High strength submerged arc weld metal joint having excellent low-temperature impact toughness
KR101220618B1 (en) * 2010-12-27 2013-01-10 주식회사 포스코 Flux cored arc weld wire having excellent workability and low-temperature toughness in weld metal joint and weld metal joint using the same
JP5792050B2 (en) * 2011-01-31 2015-10-07 株式会社神戸製鋼所 Submerged arc welding method for low temperature steel
JP5607002B2 (en) * 2011-02-02 2014-10-15 株式会社神戸製鋼所 Weld metal with excellent resistance to hydrogen embrittlement
KR101271866B1 (en) * 2011-03-31 2013-06-07 주식회사 포스코 High strength flux cored arc weld metal joint having excellent ultra-low temperature impact toughness
JP5846868B2 (en) * 2011-11-16 2016-01-20 日新製鋼株式会社 Manufacturing method of stainless steel diffusion bonding products
JP5798060B2 (en) * 2011-11-21 2015-10-21 株式会社神戸製鋼所 Weld metal with excellent tempering embrittlement resistance
KR101382991B1 (en) * 2012-12-26 2014-04-08 주식회사 포스코 Ultra high strength flux cored arc welded joint having excellent low temperature toughness
US20150034605A1 (en) * 2013-07-08 2015-02-05 Lincoln Global, Inc. High fracture toughness welds in thick workpieces
DE112013007707B4 (en) 2013-12-24 2024-02-01 Posco Co., Ltd Ultra-high strength gas metal arc welding joint with excellent notched impact strength and solid wire to produce the same
CN106181122B (en) * 2016-08-10 2018-12-25 中国船舶重工集团公司第七二五研究所 A kind of seamless submerged arc flux-cored wire for yield strength 550MPa steel
KR101795970B1 (en) * 2016-10-11 2017-11-09 주식회사 포스코 Cold-rolled steel sheet for flux cored wire and manufacturing the same
CN108103393A (en) * 2017-06-01 2018-06-01 海宁瑞奥金属科技有限公司 A kind of weld metal of high-intensity and high-tenacity bridge steel welded joint
CN109136760B (en) * 2018-09-21 2019-10-11 常熟理工学院 It is a kind of can heat resistanceheat resistant processing deposited metal
CN111041346B (en) * 2019-11-19 2021-02-26 河钢股份有限公司承德分公司 Hot-rolled wire rod for 90 kg-grade welding wire and production method thereof
CN111001907A (en) * 2019-12-05 2020-04-14 渤海造船厂集团有限公司 Welding wire for ultra-low carbon martensite high-strength and high-toughness gas metal arc welding
CN111015016A (en) * 2019-12-05 2020-04-17 渤海造船厂集团有限公司 Welding wire for ultra-low carbon martensite non-consumable electrode gas shielded welding
KR102257858B1 (en) * 2020-08-25 2021-05-28 현대제철 주식회사 Flux cored arc welding joint

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3559806B2 (en) * 1995-08-18 2004-09-02 日鐵住金溶接工業株式会社 Basic flux cored wire for low temperature steel
JP3735001B2 (en) * 2000-03-09 2006-01-11 株式会社神戸製鋼所 Weld metal with excellent toughness
JP2002035989A (en) 2000-07-17 2002-02-05 Nippon Steel Corp Highly enriched oxygen filler wire for laser beam welding
JP4311740B2 (en) * 2004-10-27 2009-08-12 株式会社神戸製鋼所 Thick steel plate with high heat input welded joint toughness
JP4255453B2 (en) 2005-03-31 2009-04-15 株式会社神戸製鋼所 Low alloy steel weld metal and flux cored wire
JP4841400B2 (en) * 2005-11-07 2011-12-21 株式会社神戸製鋼所 Gas shielded arc welding flux cored wire for high strength steel
NL1032551C2 (en) 2005-11-07 2007-08-07 Kobe Seiko Sho Kobe Steel Kk Gas-shielded-arc-welding flux cored wire for high tensile steel, contains preset amount of carbon, silicon, manganese, nickel, chromium, molybdenum, titanium, iron and nitrogen

Also Published As

Publication number Publication date
KR100910493B1 (en) 2009-07-31
CN101909810A (en) 2010-12-08
WO2009082162A2 (en) 2009-07-02
WO2009082162A3 (en) 2009-09-24
JP2011507707A (en) 2011-03-10
CN101909810B (en) 2013-03-06
KR20090070147A (en) 2009-07-01

Similar Documents

Publication Publication Date Title
JP5172970B2 (en) Flux cored arc weld metal part excellent in low temperature CTOD characteristics and steel member having this weld metal part
KR101386042B1 (en) Steel material for high heat input welding
JP5397363B2 (en) Thick high-strength steel sheet with excellent low-temperature toughness in the heat affected zone by high heat input welding
JP6576348B2 (en) Super high strength gas metal arc welded joint with excellent impact toughness
JP2005320624A (en) Thick high-strength steel plate having excellent low-temperature toughness in weld heat-affected zone effected by large heat input welding
JP4311740B2 (en) Thick steel plate with high heat input welded joint toughness
JP5842314B2 (en) High heat input welding steel
JP5493659B2 (en) High strength steel with excellent toughness of heat affected zone
KR101143132B1 (en) Flux cored arc welded joint
KR100833048B1 (en) Welding joint having excellent in toughness of high heat input welded zone
JP4041447B2 (en) Thick steel plate with high heat input welded joint toughness
JP5487114B2 (en) Steel for welded structures including welded joints with excellent high heat input shock toughness
JP5303571B2 (en) Steel for welded structures including weld joints with excellent CTOD characteristics
KR101665696B1 (en) High strength flux cored arc weld metal joint having excellent impact toughness
JP4276576B2 (en) Thick high-strength steel sheet with excellent heat input and heat-affected zone toughness
KR100833047B1 (en) High strength welding joint having excellent in toughness of high heat input welded zone
JP2013049894A (en) High toughness steel for heavy heat input welding and method for manufacturing the same
KR101695982B1 (en) High strength submerged arc weld metal joint having excellent low-temperature impact toughness
JP5862592B2 (en) High-tensile steel plate with excellent weld heat-affected zone toughness
JP5126375B2 (en) Steel material for large heat input welding
JP2002371338A (en) Steel superior in toughness at laser weld
WO2013128650A1 (en) Steel material for high-heat-input welding
JP2012188750A (en) High toughness steel for high heat input welding and manufacturing method thereof
JPS621842A (en) Tough, high tension steel having superior toughness in weld zone
JP7205618B2 (en) steel

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121226

R150 Certificate of patent or registration of utility model

Ref document number: 5172970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250