KR20090070147A - Flux cored arc weld metal joint having superior ctod in low temperature - Google Patents

Flux cored arc weld metal joint having superior ctod in low temperature Download PDF

Info

Publication number
KR20090070147A
KR20090070147A KR1020070138045A KR20070138045A KR20090070147A KR 20090070147 A KR20090070147 A KR 20090070147A KR 1020070138045 A KR1020070138045 A KR 1020070138045A KR 20070138045 A KR20070138045 A KR 20070138045A KR 20090070147 A KR20090070147 A KR 20090070147A
Authority
KR
South Korea
Prior art keywords
weld metal
metal part
steel
low temperature
oxide
Prior art date
Application number
KR1020070138045A
Other languages
Korean (ko)
Other versions
KR100910493B1 (en
Inventor
정홍철
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020070138045A priority Critical patent/KR100910493B1/en
Priority to JP2010540572A priority patent/JP5172970B2/en
Priority to CN2008801232653A priority patent/CN101909810B/en
Priority to PCT/KR2008/007627 priority patent/WO2009082162A2/en
Publication of KR20090070147A publication Critical patent/KR20090070147A/en
Application granted granted Critical
Publication of KR100910493B1 publication Critical patent/KR100910493B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • B23K35/0266Rods, electrodes, wires flux-cored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Abstract

A flux cored arc weld metal part with a superior low temperature CTOD property is provided to secure the high intensity property by accelerating the acicular ferrite transformation at the welding metal part using TiO oxide and soluble B. A flux cored arc weld metal part with a superior low temperature CTOD property comprises followings. Carbon is added in order to secure the intensity and the welding hardening of the weld metal. Manganese is added in order to improve deoxidation action and intensity of the steel. Titanium is added in order to form minute TiN precipitate and the minute titanium oxide. Nickel is added in order to improve the intensity and toughness of base material.

Description

저온 CTOD특성이 우수한 플럭스 코어드 아크 용접금속부{Flux Cored Arc Weld Metal Joint Having Superior CTOD in Low Temperature}Flux Cored Arc Weld Metal Joint Having Superior CTOD in Low Temperature

본 발명은 선박, 건축, 교량, 해양구조물, 강관, 라인파이프 등의 용접구조물에 사용되는 플럭스 코어드 아크 용접(Flux Cored Arc Welding; FCAW)을 행하였을 때의 용접금속부에 관한 것으로서, 보다 상세하게는, 저온 CTOD특성이 우수한 플럭스 코어드 아크 용접금속부에 관한 것이다.The present invention relates to a weld metal part when performing flux cored arc welding (FCAW) used in welding structures such as ships, buildings, bridges, offshore structures, steel pipes, and line pipes. Preferably, the present invention relates to a flux cored arc welding metal part having excellent low temperature CTOD characteristics.

최근, 유가 등의 지속적인 상승으로 해양구조물이 더욱 한냉지 등에 건설되고 사용되고 있으며 사용되는 강재는 고강도화 및 저온 CTOD특성이 요구되고 있다.Recently, offshore structures are being built and used in more cold conditions due to the continuous rise in oil prices, and the steel materials used are required to have high strength and low temperature CTOD characteristics.

이러한 해양구조물의 안정성 확보를 위해서는 해양구조물의 용접부 CTOD특성이 무엇보다 중요하다.In order to secure the stability of these offshore structures, the CTOD characteristics of the welded part of the offshore structures are of paramount importance.

일반적으로 해양구조물의 플럭수 코어드 용접의 경우 입열범위는 대략 7-25kJ/cm에 해당되는 입열량을 많이 사용하고 있다.In general, in the case of flux-cored welding of offshore structures, the heat input range is about 7-25 kJ / cm.

일반적으로 용접시 형성되는 용접금속(Weld Metal)은 응고하면서 조대한 주상정 조직이 형성되고 조대한 결정입내에 오스테나이트 결정입계를 따라서 조대한 입계 페라이트 및 Widmanstatten ferrite 등이 형성되어 용접금속부가 용접부에서 CTOD특성이 가장 열화되는 부위이다.In general, the weld metal (Weld Metal) formed during welding solidifies coarse columnar structure, and coarse grain boundary ferrite and Widmanstatten ferrite are formed along the austenite grain boundary in the coarse grain, so that the weld metal portion is welded. It is the site where the CTOD characteristics deteriorate most.

따라서, 용접구조물의 안정성을 확보하기 위해서는, 용접금속부의 미세조직을 제어하여 용접금속부의 CTOD특성을 확보할 필요가 있다. 이를 해결하기 위한 수단으로는, 용접재료의 성분을 규정한 기술을 들 수 있는데, 그 예로는, 일본 특허공개공보 (평)11-170085를 들 수 있지만, 용접금속의 미세조직, 입경 등을 제어하는 것이 아니고 이것의 용접재료로는 충분한 용접금속부 인성을 얻기가 어렵다. Therefore, in order to secure the stability of the welded structure, it is necessary to control the microstructure of the weld metal part to secure CTOD characteristics of the weld metal part. As a means to solve this problem, there is a technique that defines the components of the welding material, for example, Japanese Patent Laid-Open No. Hei 11-170085, but the microstructure of the weld metal, particle size, etc. are controlled. It is difficult to obtain sufficient weld metal part toughness with this welding material.

또한, 2005-171300에서는 C:0.07%이하, Si:0.3%이하, Mn:1.0~2.0%, P:0.02%이하, S를 0.1%이하, sol.Al: 0.04~0.1%, N:0.0020~0.01%, Ti:0.005~0.02%, B:0.005~0.005%로 구성되는 조성에서 ARM=197-1457C-1140sol.Al+11850N-316(Pcm-C)로 정의되는 ARM이 40~80인 것을 특징으로 하고 있지만 규정되어 있는 ARM에는 용접부내 산소함량의 제한이 없기 때문에 SAW 대입열 용접금속부의 충격인성을 확보하기 어렵다.In 2005-171300, C: 0.07% or less, Si: 0.3% or less, Mn: 1.0 to 2.0%, P: 0.02% or less, S is 0.1% or less, sol.Al: 0.04 to 0.1%, N: 0.0020 to ARM is defined as ARM = 197-1457C-1140sol.Al + 11850N-316 (Pcm-C) in the composition consisting of 0.01%, Ti: 0.005 ~ 0.02%, B: 0.005 ~ 0.005% However, the specified ARM has no restriction on the oxygen content in the weld, so it is difficult to secure impact toughness of the SAW high heat input weld metal.

또한, 일본 특허공개공보 (평)10-180488에서는 슬래그 생성제: 0.5~3.0%, C: 0.04~0.2%, Si≤0.1%, Mn:1.2~3.5%, Mg:0.05~0.3%, Ni:0.5~4.0%, Mo:0.05~1.0%, B:0.002~0.015%를 포함하여 양호한 충격인성을 확보하고 있지만, 용접금속내 산소 및 질소함량에 대한 기재가 없기 때문에 용접금속부의 CTOD특성을 확보하기 어렵다.In addition, Japanese Patent Laid-Open No. 10-180488 describes slag generating agents: 0.5 to 3.0%, C: 0.04 to 0.2%, Si≤0.1%, Mn: 1.2 to 3.5%, Mg: 0.05 to 0.3%, and Ni: It has good impact toughness, including 0.5 ~ 4.0%, Mo: 0.05 ~ 1.0%, and B: 0.002 ~ 0.015%. However, since there is no description of oxygen and nitrogen content in the weld metal, it is possible to secure CTOD characteristics of the weld metal part. it's difficult.

본 발명은 Ti 산화물 및 soluble B을 이용하여 입내 침상 페라이트 변태를 촉진시켜, 고강도 물성을 가지면서 동시에 저온 CTOD 특성이 우수한 플럭스 코어드 아크 용접금속부를 제공하고자 하는데, 그 목적이 있다.An object of the present invention is to provide a flux cored arc welding metal part having high strength properties and excellent low temperature CTOD properties by promoting intragranular acicular ferrite transformation using Ti oxide and soluble B.

이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.

본 발명은, 중량%로 C:0.01-0.2%, Si:0.1-0.5%, Mn:1.0-3.0%, Ni : 0.5-3.0%, Ti:0.01-0.1%, B : 0.0010-0.01%, Al: 0.005-0.05%, N:0.003-0.006%, P:0.03%이하, S:0.03%이하, O:0.03-0.07%, 0.7≤Ti/O≤1.3, 6≤Ti/N≤12, 7≤O/B≤12, 1.2≤(Ti+4B)/O≤1.9를 만족하고, 나머지 Fe 및 기타 불가피한 불순물로 조성되고, 그 미세조직이 85%이상의 침상 페라이트(acicular ferrite) 및 나머지 베이나이트, 입계 페라이트 및 다각형 페라이트 중의 1종 또는 2종 이상을 포함하는 것을 특징으로 하는 저온 CTOD특성이 우수한 플럭스 코어드 아크 용접금속부에 관한 것이다.In the present invention, C: 0.01-0.2%, Si: 0.1-0.5%, Mn: 1.0-3.0%, Ni: 0.5-3.0%, Ti: 0.01-0.1%, B: 0.0010-0.01%, Al by weight% : 0.005-0.05%, N: 0.003-0.006%, P: 0.03% or less, S: 0.03% or less, O: 0.03-0.07%, 0.7≤Ti / O≤1.3, 6≤Ti / N≤12, 7≤ O / B≤12, 1.2≤ (Ti + 4B) /O≤1.9, and are composed of the remaining Fe and other unavoidable impurities, the microstructure of which is more than 85% acicular ferrite and the remaining bainite, grain boundary The present invention relates to a flux cored arc welded metal part having excellent low-temperature CTOD characteristics, including one or two or more of ferrite and polygonal ferrite.

상기 용접금속부에는 Nb:0.0001~0.1%, V:0.005~0.1%, Cu:0.01~2.0%, Cr:0.05~1.0%, Mo: 0.05~1.0%, W: 0.05∼0.5%, Zr:0.005~0.5%의 그룹에서 선택된 1종 또는 2종 이상 및/또는, Ca:0.0005~0.005%, REM:0.005~0.05%의 그룹에서 선택된 1종 또는 2종이 함유될 수 있다.In the weld metal part, Nb: 0.0001 to 0.1%, V: 0.005 to 0.1%, Cu: 0.01 to 2.0%, Cr: 0.05 to 1.0%, Mo: 0.05 to 1.0%, W: 0.05 to 0.5%, Zr: 0.005 One or two or more selected from the group of ˜0.5% and / or one or two selected from the group of Ca: 0.0005 to 0.005% and REM: 0.005 to 0.05%.

상기 용접금속부에는 0.01~0.1㎛의 TiO산화물이 1.0x107개/mm3 이상 분포되는 것이 바람직하다.In the weld metal part, 0.01 to 0.1 μm of TiO oxide is preferably distributed at 1.0 × 10 7 / mm 3 or more.

본 발명은 TiO산화물 및 soluble B을 이용함으로써 용접금속부에서 침상페라이트 변태를 촉진시켜 고강도 물성을 가지면서 동시에 우수한 저온 CTOD특성을 갖는 플럭스 코어드 아크 용접금속부를 제공할 수 있는 것이다.  The present invention can provide a flux cored arc welding metal part having high strength properties and excellent low temperature CTOD properties by promoting the acicular ferrite transformation in the weld metal part by using TiO oxide and soluble B.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명자들은 용접입열량이 7~30kJ/cm인 FCAW용접에 있어서 고강도 물성을 가지면서 동시에 우수한 CTOD의 확보가 가능한 용접금속부를 개발하기 위하여 용접금속부의 CTOD에 효과적이라고 알려진 침상페라이트에 미치는 산화물의 종류 및 크기 등에 대해 조사한 결과, TiO 및 soluble B등에 따라 용접금속부의 입계 페라이트 및 침상페라이트의 양이 변화하고 이에 따라 용접금속부의 CTOD값이 변화한다는 사실을 알게 되었다.In order to develop a weld metal part having high strength properties and excellent CTOD in FCAW welding having a welding heat input of 7 to 30 kJ / cm, the present inventors have described the type of oxide that affects acicular ferrite known to be effective for CTOD of a weld metal part. As a result of the investigation on the size and the size, it was found that the amount of grain boundary ferrite and acicular ferrite of the weld metal portion changes according to TiO and soluble B, and the CTOD value of the weld metal portion changes accordingly.

이러한 연구에 기초하여, 본 발명에서는,Based on these studies, in the present invention,

[1] FCAW 용접금속에 TiO 산화물을 이용하는 것과 함께,[1] With the use of TiO oxides in FCAW weld metals,

[2] 산화물 개수 1.0 X107개/mm3 이상이고 크기가 0.01~0.1㎛인 용접금속부에서 침상페라이트를 85%이상 변태 시켜 인성을 향상시킨다는 것.[2] Oxide number 1.0 X10 7 / mm 3 or more in the weld metal part of 0.01 ~ 0.1㎛ size to improve the toughness by transforming the needle-like ferrite more than 85%.

[3] TiO 및 soluble B을 확보하여 침상 페라이트 변태를 촉진할 수 있다는 것이다.[3] It is possible to promote needle ferrite transformation by securing TiO and soluble B.

이들 [1][2][3]을 보다 구체적으로 설명한다.These [1] [2] [3] are demonstrated in more detail.

[1] TiO 산화물 관리[1] TiO oxide management

본 발명자들은 용접금속내에 Ti/O, O/B의 비를 적절히 유지하면 적절한 수의 TiO 산화물이 적절히 분포되어 용접금속의 응고과정에서 오스테나이트 결정립의 조대화를 방지하고 TiO산화물에서 침상페라이트 변태가 촉진된다는 결과를 밝혀내었다.When the ratio of Ti / O and O / B is properly maintained in the weld metal, the present inventors properly distribute the appropriate number of TiO oxides to prevent coarsening of austenite grains in the solidification process of the weld metal, and to prevent acicular ferrite transformation from TiO oxide. It was found to be accelerated.

TiO산화물이 오스테나이트 결정입내에 적절히 분포하면 오스테나이트에서 온도가 감소함에 따라 오스테나이트 결정입내의 TiO산화물은 침상 페라이트 변태의 불균일 핵생성 자리의 역할을 하게 되어 결정입계에 형성되는 입계 페라이트보다 우선적으로 페라이트를 형성시킬 수 있다는 사실을 알게 되었다. 이로 인해 용접금속부 CTOD특성을 획기적으로 개선할 수 있는 것이다. If the TiO oxide is properly distributed in the austenite grains, as the temperature decreases in the austenite grains, the TiO oxides in the austenite grains act as heterogeneous nucleation sites of the acicular ferrite transformation, and thus preferentially over the grain boundary ferrites formed at the grain boundaries. It turns out that ferrite can be formed. This significantly improves the CTOD characteristics of the weld metal part.

이를 위해서는 TiO 산화물을 미세하고 균일하게 분포시키는 것이 중요하다. 또한, 발명자들은 Ti/O, O/B의 비에 따른 TiO 산화물의 크기와 양 그리고, 분포를 조사한 결과, Ti/O가 0.2~0.5, O/B의 비가 5~10일 때 0.01-0.1㎛ 크기의 TiO 산화물이 1.0x107개/mm3 이상으로 얻어지는 것을 확인할 수 있었다.For this purpose, it is important to distribute TiO oxide finely and uniformly. In addition, the inventors examined the size, amount, and distribution of TiO oxides according to the ratios of Ti / O and O / B. As a result, when Ti / O is 0.2 to 0.5 and the ratio of O / B is 5 to 10, the thickness is 0.01-0.1 μm. It was confirmed that the TiO oxide of the size is obtained at 1.0x10 7 / mm 3 or more.

[2] 용접금속부 미세조직[2] microstructure, welded metal

본 발명의 연구로부터 밝혀진 사실은, Ti/O, O/B의 비에 따른 TiO 산화물의 크기와 양 그리고, 분포를 조사한 결과, Ti/O가 0.2~0.5, O/B가 5~10일 때 0.01-0.1㎛ 크기의 TiO산화물이 1.0x107개/mm3 이상으로 얻어지는 것을 확인할 수 있었다.The facts of the present invention revealed that when Ti / O is 0.2 to 0.5 and O / B is 5 to 10, the size and amount of TiO oxide and the distribution of Ti / O and O / B are examined. It was confirmed that the TiO oxide having a size of 0.01-0.1 μm was obtained at 1.0 × 10 7 / mm 3 or more.

이러한 TiO 산화물이 용접금속내에 적절히 분포되면 용접금속부의 냉각과정에서 결정입계보다는 우선적으로 결정입내에 침상페라이트 변태를 촉진시켜 용접금속부의 침상페라이트의 구성비를 85%이상 확보할 수 있다는 것이다. If the TiO oxide is properly distributed in the weld metal, it is possible to secure the composition ratio of the acicular ferrite in the weld metal part by promoting needle transformation of the acicular ferrite in the crystal grain preferentially rather than the grain boundary during the cooling process of the weld metal part.

[3] 용접금속부내 soluble boron(고용 보론) 역할[3] soluble boron role in welded metal parts

본 발명의 연구에서 밝혀진 사실은, 용접금속부에 균일 분산되어 있는 산화물과는 별도로 고용되어 있는 보론은 결정입계로 확산되어 결정입계의 에너지를 낮게하여 결정입계에서 입계 페라이트 변태를 억제하는 역할을 하여 결정입내에 침상 페라이트 변태를 촉진시키는 역할을 한다. 이렇게 결정입계에서 입계페라이트 변태를 억제하여 결정입내에서는 침상 페라이트변태를 촉진을 통하여 용접금속부의 CTOD 향상에 기여한다.In fact, in the study of the present invention, boron, which is separately dissolved in the oxide uniformly dispersed in the weld metal part, diffuses into the grain boundary and lowers the energy of the grain boundary, thereby suppressing the grain boundary ferrite transformation at the grain boundary. It plays a role in promoting needle ferrite transformation in the grain. In this way, the grain boundary ferrite transformation is suppressed at the grain boundaries, and the needle grain ferrite transformation is promoted in the grains, thereby contributing to the improvement of the CTOD of the weld metal part.

이하, 본 발명을 용접금속부의 성분을 상세히 설명한다.Hereinafter, the present invention will be described in detail the components of the weld metal portion.

[성분]  [ingredient]

탄소(C)의 함량은 0.01~0.2%로 하는 것이 바람직하다.  It is preferable to make content of carbon (C) into 0.01 to 0.2%.

탄소(C)는 용접금속의 강도를 확보하고 용접경화성을 확보하기 위하여 필수적인 원소이다. 그러나 탄소함량이 0.2%를 초과하게 되면 용접성이 크게 저하하고 용접금속부에 저온균열이 발생하기 쉽고 대입열 충격인성이 크게 저하한다.Carbon (C) is an essential element in order to secure the strength of the weld metal and to secure weld hardenability. However, when the carbon content exceeds 0.2%, weldability is greatly decreased, and low-temperature cracking is likely to occur in the weld metal part, and the thermal shock toughness is greatly reduced.

실리콘(Si)의 함량은 0.1~0.5%로 제한하는 것이 바람직하다.   The content of silicon (Si) is preferably limited to 0.1 ~ 0.5%.

실리콘의 함량이 0.1% 미만인 경우에는 용접금속내의 탈산효과가 불충분하고 용접금속의 유동성을 저하시키며, 0.5%를 초과하는 경우에는 용접금속내의 도상 마르텐사이트(M-A constituent)의 변태를 촉진시켜 저온 충격인성을 저하시키고 용접균열감수성에 영향을 미치기 때문에 바람직하지 못하다.If the silicon content is less than 0.1%, the deoxidation effect in the weld metal is insufficient and the fluidity of the weld metal is insufficient. If the content of the silicon is more than 0.5%, the low temperature impact toughness is promoted by promoting the transformation of MA constituent in the weld metal. It is not preferable because it lowers the pressure and affects the weld cracking susceptibility.

망간(Mn)의 함량은 1.0~3.0%로 제한하는 것이 바람직하다.   The content of manganese (Mn) is preferably limited to 1.0 ~ 3.0%.

Mn은 강중에서 탈산작용 및 강도를 향상시키는 유효한 작용과 함께, TiO산화물 주위에 MnS형태로 석출하여 Ti복합산화물로 하여금 용접금속부 인성개선에 유리한 침상 페라이트의 생성을 촉진시키는 역할을 한다. Mn, along with the effective effect of improving the deoxidation and strength in steel, precipitates in the form of MnS around the TiO oxide to play a role in promoting the formation of acicular ferrite, which is advantageous for improving the toughness of the weld metal part by the Ti complex oxide.

이러한 Mn은 기지조직내에 치환형 고용체를 형성하여 기지를 고용 강화시켜 강도 및 인성을 확보하는데, 이를 위해서는 1.0%이상 함유되는 것이 바람직하다. 그러나, 3.0%를 초과할 경우 저온변태조직을 생성시키기 때문에 바람직하지 못하다.Such Mn forms a solid solution to form a solid solution in the matrix structure to strengthen the matrix to secure the strength and toughness, for this purpose it is preferably contained 1.0% or more. However, if it exceeds 3.0%, it is not preferable because it generates low temperature metamorphic tissue.

티타늄(Ti)의 함량은 0.01~0.1%로 제한하는 것이 바람직하다.  The content of titanium (Ti) is preferably limited to 0.01 ~ 0.1%.

Ti는 O와 결합하여 미세한 Ti산화물을 형성시킬 뿐만 아니라 미세 TiN석출물을 형성시키기 때문에 본 발명에서는 필수불가결한 원소이다. 이러한 미세한 TiO산화물 및 TiN복합석출물 효과를 얻기 위해서는 Ti을 0.01%이상 첨가하는 것이 바람직하나, 0.1%를 초과하면 조대한 TiO산화물 및 조대한 TiN석출물이 형성되어 바람직하지 못하다.Ti is indispensable in the present invention because it combines with O to form a fine Ti oxide as well as to form a fine TiN precipitate. In order to obtain such a fine TiO oxide and TiN composite precipitate effect, it is preferable to add Ti or more than 0.01%, but when it exceeds 0.1%, coarse TiO oxide and coarse TiN precipitate are formed, which is not preferable.

니켈(Ni)의 함량은 0.5~3.0%로 제한하는 것이 바람직하다.The content of nickel (Ni) is preferably limited to 0.5 ~ 3.0%.

Ni은 고용강화에 의해 기지(matrix)의 강도와 인성을 향상시키는 유효한 원소이다. 이러한 효과를 얻기 위해서는 Ni함유량이 0.5%이상 함유되는 것이 바람직하지만, 3.0%를 초과하는 경우에는 소입성을 크게 증가시키고 고온균열의 발생 가능성이 있기 때문에 바람직하지 못하다. Ni is an effective element which improves the strength and toughness of the matrix by solid solution strengthening. In order to obtain such an effect, it is preferable to contain Ni content of 0.5% or more, but when it exceeds 3.0%, it is not preferable because it greatly increases the hardenability and there is a possibility of hot cracking.

붕소(보론, B)의 함량은 0.0010-0.01%로 제한하는 것이 바람직하다.   The content of boron (boron, B) is preferably limited to 0.0010-0.01%.

B은 소입성 향상시키는 원소로서 입계에 편석되어 입계 페라이트 변태를 억제하기 위해서는 0.0010%이상은 필요하지만, 0.01%이상을 초과하면 그 효과가 포화되고 용접경화성이 크게 증가하여 마르텐사이트 변태를 촉진시켜 용접 저온균열 발생 및 인성을 저하시키기 때문에 바람직하지 못하다. 따라서 B함량은 0.0010~0.01%로 한정한다. B is an element that improves the quenching property, and segregation at grain boundaries is required at least 0.0010% to suppress grain boundary ferrite transformation, but when it exceeds 0.01%, the effect is saturated and weld hardenability is greatly increased to promote martensite transformation. It is not preferable because it causes low temperature crack generation and toughness. Therefore, the B content is limited to 0.0010% to 0.01%.

질소(N)의 함량은 0.003-0.006%로 제한하는 것이 바람직하다.   The content of nitrogen (N) is preferably limited to 0.003-0.006%.

N은 TiN 석출물 등을 형성시키는데 필수불가결한 원소로, 미세 TiN 석출물의 양을 증가시킨다. 특히 TiN 석출물 크기 및 석출물 간격, 석출물 분포, 산화물과의 복합석출 빈도수, 석출물 자체의 고온 안정성 등에 현저한 영향을 미치기 때문에, 그 함량은 0.003%이상으로 설정하는 것이 바람직하다. N is an indispensable element for forming TiN precipitates and the like, and increases the amount of fine TiN precipitates. In particular, since the TiN precipitate size and precipitate spacing, precipitate distribution, complex precipitation frequency with oxide, high temperature stability of the precipitate itself, etc. have a significant influence, the content is preferably set to 0.003% or more.

하지만, 질소함량이 0.006%를 초과하면 그 효과가 포화되며, 용접금속내에 존재하는 고용질소량의 증가로 인해 인성저하를 초래할 수 있다.   However, if the nitrogen content exceeds 0.006%, the effect is saturated, and the toughness may be reduced due to the increase in the amount of solid solution nitrogen present in the weld metal.

인(P)의 함량은 0.030%이하로 제한하는 것이 바람직하다.   The content of phosphorus (P) is preferably limited to 0.030% or less.

P는 용접시 고온균열을 조장하는 불순원소이기 때문에 가능한 한 낮게 관리하는 것이 바람직하다. 인성 향상 및 균열 저감을 위해서는 0.03%이하로 관리하는 것이 좋다.   P is preferably as low as possible because it is an impurity element that promotes high temperature cracking during welding. In order to improve toughness and reduce cracking, it is recommended to manage it to 0.03% or less.

알루미늄(Al)의 함량은 0.005-0.05%로 제한하는 것이 바람직하다.   The content of aluminum (Al) is preferably limited to 0.005-0.05%.

Al은 탈산제로서 용접금속내에 산소량을 감소시키기 때문에 필요한 원소이다. 또한 고용질소와 결합하여 미세한 AlN석출물을 형성시키기 위해서는 Al함유량을 0.005%이상으로 하는 것이 좋다. 그러나, 0.05%를 초과하면 조대한 Al2O3를 형성시켜 인성개선에 필요한 TiO산화물의 형성을 방해하므로 0.05%이하로 하는 것이 바람직하다.Al is a necessary element because it reduces the amount of oxygen in the weld metal as a deoxidizer. In addition, in order to form fine AlN precipitates in combination with solid solution nitrogen, the Al content is preferably 0.005% or more. However, if it exceeds 0.05%, coarse Al 2 O 3 is formed, which hinders formation of TiO oxide necessary for toughness improvement.

황(S)의 함량은 0.030%이하로 제한하는 것이 바람직하다.The content of sulfur (S) is preferably limited to 0.030% or less.

S는 MnS 형성을 위하여 필요한 원소이다. MnS의 복합석출물의 석출을 위해서는 0.03%이하로 하는 것이 바람직하다. 그 이상이 존재하는 경우 FeS 등의 저융점화합물을 형성시켜 고온균열을 유발시킬 수 있기 때문에 바람직하디 못하다.S is an element necessary for MnS formation. In order to precipitate the composite precipitate of MnS, it is preferable to be 0.03% or less. If more than this is present, it is not preferable because it may cause a high temperature crack by forming a low melting point compound such as FeS.

산소(O)의 함량은 0.03-0.07% 이하로 제한하는 것이 바람직하다.   The content of oxygen (O) is preferably limited to 0.03-0.07% or less.

O는 용접금속부 응고 과정에서 Ti와 반응하여 Ti산화물을 형성시키는 원소로, Ti산화물은 용접금속내에서 침상페라이트의 변태를 촉진시킨다. O함유량이 0.03% 미만이면 Ti산화물을 용접금속부에 적절히 분포시키지 못하며, 0.07%를 초과하면 조대한 Ti산화물 및 기타 FeO 등의 산화물이 생성되어 용접금속부에 영향을 미치기 때문에 바람직하지 않다.O is an element that forms Ti oxide by reacting with Ti during the solidification process of the weld metal, and Ti oxide promotes the transformation of acicular ferrite in the weld metal. If the O content is less than 0.03%, the Ti oxide is not properly distributed in the weld metal part. If the O content is more than 0.07%, coarse Ti oxide and other oxides such as FeO are formed, which is not preferable because it affects the weld metal part.

Ti/O의 비는 0.7~1.3으로 하는 것이 바람직하다. It is preferable to make ratio of Ti / O into 0.7-1.3.

Ti/O비가 0.7 미만의 경우에는 용접금속내에 오스테나이트 결정립 성장억제 및 침상페라이트변태에 요구되는 TiO산화물 개수가 불충분하며, TiO산화물내에 함유하는 Ti비율이 작아져서 침상 페라이트 핵생성 자리로서의 기능을 상실하여 용접열영향부의 인성개선에 유효한 침상페라이트 상 분율이 저하된다. Ti/O의 비가 1.3을 초과의 경우에는 용접금속내 오스테나이트 결정립성정억제 효과가 포화되며, 산화물내에 함유되는 합금성분의 비율이 오히려 작아져서 침상 페라이트의 핵생성 자리로서의 기능을 상실한다.If the Ti / O ratio is less than 0.7, the number of TiO oxides required for austenite grain growth inhibition and acicular ferrite transformation in the weld metal is insufficient, and the Ti ratio contained in the TiO oxide becomes small, thus losing its function as acicular ferrite nucleation site. As a result, the acicular ferrite phase fraction effective for improving the toughness of the weld heat affected zone is lowered. When the ratio of Ti / O exceeds 1.3, the austenite grain restraining effect in the weld metal is saturated, and the proportion of the alloying components contained in the oxide is rather small, thus losing the function of nucleation sites of the needle-like ferrite.

Ti/N의 비는 6~12로 하는 것이 바람직하다.It is preferable to make ratio of Ti / N into 6-12.

본 발명에서 Ti/N비를 6 미만인 경우 TiO산화물에 형성되는 TiN석출물양이 감소하여 인성개선에 효과적인 침상 페라이트 변태에 나쁜 영향을 미치기 때문에 바람직하지 못하며 또한 12를 초과하는 경우 그 효과가 포화되고 고용질소양이 증가하여 충격인성을 저하시키기 때문에 바람직하지 못하다.In the present invention, when the Ti / N ratio is less than 6, the amount of TiN precipitates formed in the TiO oxide is reduced, which is not preferable because it adversely affects the needle ferrite transformation, which is effective for improving toughness. It is not preferable because the amount of nitrogen increases and the impact toughness is lowered.

O/B의 비는 7~12으로 하는 것이 바람직하다.It is preferable to make ratio of O / B into 7-12.

본 발명에서 O/B비가 7 미만이면 용접후 냉각과정중에 오스테나이트 결정입계로 확산되어 입계 페라이트 변태를 억제하는 고용 B의 양이 불충분하며, O/B비가 12를 초과하는 경우에는 그 효과가 포화되며 고용질소량이 증가하여 용접열영향부의 인성을 저하시키게 된다.In the present invention, when the O / B ratio is less than 7, the amount of solid solution B that diffuses into the austenite grain boundary during the post-welding cooling process to suppress grain boundary ferrite transformation is insufficient, and when the O / B ratio exceeds 12, the effect is saturated. In addition, the amount of nitrogen dissolved in the solution increases the toughness of the weld heat affected zone.

(Ti+4B)/O의 비는 1.2~1.9로 하는 것이 바람직하다.  It is preferable to make ratio of (Ti + 4B) / O into 1.2-1.9.

본 발명에서 (Ti+4B)/O의 비가 1.2 미만의 경우에는 고용질소량이 증가하여 용접금속부의 인성개선에 효과적이지 못하고 1.9를 초과할 경우 TiN, BN 석출물의 개수가 불충분하기 때문에 바람직하지 못하다. In the present invention, when the ratio of (Ti + 4B) / O is less than 1.2, it is not preferable because the amount of solid solution is not effective to improve the toughness of the weld metal part, and when it exceeds 1.9, the number of TiN and BN precipitates is insufficient.

본 발명에서는 기계적 성질을 보다 향상시키기 위하여, 상기와 같이 조성되는 강에 Nb, V, Cu, Mo, Cr, W 및 Zr의 그룹에서 선택된 1종 또는 2종 이상을 추가로 첨가할 수 있다.In the present invention, in order to further improve the mechanical properties, one or two or more selected from the group of Nb, V, Cu, Mo, Cr, W and Zr may be further added to the steel formed as described above.

구리(Cu)의 함량은 0.1~2.0%로 제한하는 것이 바람직하다.The content of copper (Cu) is preferably limited to 0.1 ~ 2.0%.

Cu는 기지에 고용되어 고용강화 효과로 인하여 강도 및 인성을 확보하기 위해서 유효한 원소이다. 이를 위해서는 Cu함유량이 0.1%이상 함유되어야 하지만, 2.0%를 초과하는 경우에는 용접금속부에서 경화성을 증가시켜 인성을 저하시키며 용접금속에서 고온균열을 조장시키기 때문에 바람직하지 못하다. Cu is an element that is effective to secure strength and toughness due to solid solution at the base. To this end, the Cu content should be contained 0.1% or more, but when it exceeds 2.0% is not preferable because it increases the hardenability in the weld metal portion to reduce toughness and promote high temperature cracking in the weld metal.

또한, Cu와 Ni을 복합첨가하는 경우 이들의 합계는 3.5%미만으로 하는 것이 바람직하다. 그 이유는 3.5%미만의 경우에 소입성이 커져서 인성 및 용접성에 악영향을 초래하기 때문이다.In addition, when adding Cu and Ni compositely, it is preferable to make these sum total less than 3.5%. The reason is that less than 3.5% of the hardenability increases, which adversely affects the toughness and weldability.

Nb의 함량은 0.0001-0.1%로 제한하는 것이 바람직하다.The content of Nb is preferably limited to 0.0001-0.1%.

Nb는 소입성을 향상시키기 위한 필수원소로서 특히 Ar3온도를 낮추고 냉각속도가 낮은 범위에서도 베이나이트 생성범위를 넓히는 효과가 있어 베이나이트 조직을 얻기 위하여 필요하다. Nb is an essential element for improving the hardenability, and in particular, it is necessary to obtain bainite structure because it has an effect of lowering the Ar 3 temperature and widening the bainite formation range even in a low cooling rate range.

강도 향상 효과를 기대하기 위해서는 0.0001%이상이 필요하다. 그러나 0.1%를 초과하면 용접시 용접금속부에서 도상 마르텐사이트 형성을 촉진하여 용접금속부의 인성에 나쁜 영향을 미치기 때문에 바람직하지 못하다.In order to expect the effect of improving strength, 0.0001% or more is required. However, if the content exceeds 0.1%, it is not preferable because it promotes the formation of phase martensite in the weld metal part during welding, which adversely affects the toughness of the weld metal part.

V의 함량은 0.005-0.1%로 제한하는 것이 바람직하다.The content of V is preferably limited to 0.005-0.1%.

V는 VN석출물을 형성시켜 페라이트 변태를 촉진하는 원소로서 0.005%이상 이 필요하나 0.1%를 초과하면 용접금속부에 탄화물(Carbide)과 같은 경화상을 형성시켜 용접금속부의 인성에 나쁜 영향을 미치기 때문에 바람직하지 못하다.V is an element that promotes ferrite transformation by forming VN precipitates, but it requires 0.005% or more, but when it exceeds 0.1%, it forms a hardened phase such as carbide in the weld metal, which adversely affects the toughness of the weld metal. Not desirable

크롬(Cr)은 0.05~1.0%로 하는 것이 바람직하다.   It is preferable to make chromium (Cr) into 0.05 to 1.0%.

Cr은 소입성을 증가시키고 또한 강도를 향상시키는데, 그 함유량이 0.05%미만인 경우에는 강도를 얻을 수 없고 1.0%를 초과하는 경우에는 용접금속부 인성열화를 초래한다.   Cr increases the hardenability and also improves the strength. If the content is less than 0.05%, the strength cannot be obtained and if the content exceeds 1.0%, the toughness of the weld metal portion is degraded.

몰리브덴(Mo)은 0.05~1.0%로 하는 것이 바람직하다.   Molybdenum (Mo) is preferably made 0.05 to 1.0%.

Mo도 소입성을 증가시키고 동시에 강도를 향상시키는 원소로, 그 함량은 강도확보를 위하여 0.05%이상으로 하지만, 용접금속부의 경화 및 용접 저온균열 발생을 억제하기 위해서는 Cr과 마찬가지로 상한을 1.0%로 한다. Mo is an element that increases the hardenability and improves the strength at the same time, the content is 0.05% or more to secure the strength, but in order to suppress the hardening of the weld metal and the occurrence of welding low temperature cracks, the upper limit is 1.0% as in Cr. .

W의 함량은 0.05-0.5%로 제한하는 것이 바람직하다.The content of W is preferably limited to 0.05-0.5%.

W은 고온강도를 향상시키고 석출강화에 효과적인 원소이다. 그러나 0.05%미만에서는 강도상승효과가 미약하기 때문에 바람직하지 못하고 0.5%이상에서는 용접금속부 인성에 나쁜 영향을 미치기 때문에 바람직하지 못하다.W is an effective element for improving high temperature strength and strengthening precipitation. However, less than 0.05% is not preferable because the strength increase effect is weak, and at 0.5% or more, it is not preferable because it adversely affects the weld metal part toughness.

Zr의 함량은 0.005-0.5%로 제한하는 것이 바람직하다The content of Zr is preferably limited to 0.005-0.5%.

Zr은 강도상승에 효과가 있기 때문에 0.005%이상 첨가하는 것이 바람직하며, 0.5%를 초과할 경우 용접금속부 인성에 나쁜 영향을 미치기 때문에 바람직하지 못하다.Since Zr is effective in increasing the strength, it is preferable to add 0.005% or more, and when it exceeds 0.5%, it is not preferable because it adversely affects the toughness of the weld metal part.

또한, 본 발명에서는 구 오스테나이트의 결정립 성장 억제를 위해 Ca 및 REM중의 1종 또는 2종을 추가로 첨가할 수 있다.In the present invention, one or two of Ca and REM may be further added to suppress grain growth of the old austenite.

Ca 및 REM은 용접시 아크를 안정시키고 용접금속부에서 산화물을 형성시키기 때문에 바람직한 원소이다. 또한 냉각과정에서 오스테나이트 결정립 성장을 억제하고 입내 페라이트변태를 촉진시켜 용접금속부의 인성을 향상시킨다. 이를 위해, 칼슘(Ca)은 0.0005%이상, REM은 0.005%이상 첨가하는 것이 좋으나, Ca이 0.05%, REM이 0.05%를 초과하는 경우 대형 산화물을 형성하여 인성에 나쁜 영향을 미칠 수 있다. REM으로서는 Ce, La, Y 및 Hf등의 1종 또는 2종이상을 사용하여도 무방하고 어느 것도 상기 효과를 얻을 수 있다.  Ca and REM are preferred elements because they stabilize the arc during welding and form oxides in the weld metal portion. In addition, it suppresses austenite grain growth during cooling and promotes ferrite transformation in the mouth, thereby improving the toughness of the weld metal part. To this end, it is preferable to add more than 0.0005% of calcium (Ca) and more than 0.005% of REM. However, when Ca is 0.05% and REM is more than 0.05%, a large oxide may be formed to adversely affect toughness. As REM, 1 type, or 2 or more types, such as Ce, La, Y, and Hf, may be used, and any of the above effects can be obtained.

[용접금속부의 미세조직][Microstructure of Welding Metal Part]

본 발명에서 FCAW 용접후 형성되는 용접금속부의 미세조직은 침상페라이트이고, 그 상분율은 85%이상인 것이 바람직하다. 그 이유는 침상페라이트 조직은 고강도와 저온 CTOD를 동시에 얻을 수 있는 조직이기 때문이다. In the present invention, the microstructure of the weld metal formed after FCAW welding is acicular ferrite, and its phase fraction is preferably 85% or more. The reason is that needle-like ferrite tissue is a tissue that can simultaneously obtain high strength and low temperature CTOD.

나머지는 베이나이트, 입계 페라이트 및 다각형 페라이트 중의 1종 또는 2종 이상을 포함한다.The remainder includes one or two or more of bainite, grain boundary ferrite and polygonal ferrite.

페라이트와 베이나이트 조직이 혼합되어 있는 경우는 CTOD에는 유리하지만 용접금속부 강도가 낮고, 또한 미세조직이 마르텐사이트와 베이나이트 혼합조직인 경우에는 용접금속부의 강도는 높지만 용접금속부의 CTOD 등의 기계적 성질이 저하하고 저온균열감수성이 증가하기 때문에 바람직하지 못하다. When ferrite and bainite structures are mixed, it is advantageous for CTOD, but the strength of weld metal part is low, and when the microstructure is martensite and bainite structure, the strength of weld metal part is high but mechanical properties such as CTOD of welding metal part are high. It is not preferable because it decreases and the low temperature crack susceptibility increases.

[산화물][oxide]

용접금속부에 존재하는 산화물은 용접후 용접금속부의 미세조직 변태에 큰 영향을 미친다. 즉 분포하는 산화물의 종류, 크기 및 그 개수에 크게 영향을 받게 된다.Oxides present in the weld metal part have a great influence on the microstructure transformation of the weld metal part after welding. That is, the type, size, and number of oxides to be distributed are greatly affected.

특히, FCAW 용접금속부의 경우 응고과정에서 결정립이 조대화되고 결정입계로부터 조대한 입계 페라이트, Widmanstatten 페라이트, 베이나이트 등의 조직이 형성되어 용접금속부의 물성을 저하시킨다.In particular, in the FCAW weld metal part, grains are coarsened during solidification and coarse grain boundary ferrite, Widmanstatten ferrite, and bainite are formed from the grain boundary, thereby deteriorating the properties of the weld metal part.

이를 방지하기 위해서는 용접금속내에 TiO 산화물을 0.5㎛이하의 간격으로 균일하게 분산시키는 것이 중요하다. In order to prevent this, it is important to uniformly disperse the TiO oxide in the weld metal at intervals of 0.5 mu m or less.

또한, TiO산화물의 입경 및 임계 갯수를 각각 0.01~0.1㎛ 및 1mm3당 1.0x107개 이상으로 한정하는 것이 바람직하다. 그 이유는 0.01㎛미만에서는 FCAW용접금속부에서 침상페라이트의 변태를 촉진시키는 역할을 하지 못하며, 또한 0.1㎛을 초과하는 경우에는 오스테나이트 결정립에 대한 피닝(pinning, 결정립 성장억제)효과가 적어지고 조대한 비금속개재물과 같은 거동을 하여 용접금속부의 CTOD특성에 좋지 않은 영향을 미치기 때문이다. In addition, it is preferable to limit the particle diameter and the critical number of the TiO oxide to 0.01 to 0.1 mu m and 1.0 x 10 7 or more per 1 mm 3 , respectively. The reason is that if it is less than 0.01㎛, it does not play a role of promoting the transformation of acicular ferrite in the FCAW welded metal part, and if it exceeds 0.1㎛, the effect of pinning on grains of austenite grains decreases and This is because the same behavior as the non-metallic inclusions on the metal adversely affects the CTOD characteristics of the weld metal.

본 발명에서 FCAW이외의 다른 용접방법(Process)에 의해서도 제조할 수 있다. 이 때 용접금속부의 냉각속도가 빠르면 산화물을 미세분산시키고 조직이 미세하기 때문에 냉각속도가 빠른 대입열 용접방법(process)이 바람직하다. In the present invention can also be produced by other welding process (Process) other than FCAW. In this case, if the cooling rate of the weld metal part is high, a high heat input welding process having a high cooling rate is preferable because the oxide is finely dispersed and the structure is fine.

또한, 같은 이유로 용접부의 냉각속도를 향상시키기 위하여 강재 냉각 및 Cu-백킹(backing)방법도 유리하다.For the same reason, steel cooling and Cu-backing methods are also advantageous in order to improve the cooling rate of the weld.

그러나, 이와 같이 공지의 기술들을 본 발명에 적용하더라도 이는 본 발명의 단순한 변경으로서 실질적으로 본 발명의 기술사상의 범위내라고 해석하는 것은 당연하다.However, even if the well-known techniques are applied to the present invention, it is natural that they are interpreted to be substantially within the technical scope of the present invention as a simple change of the present invention.

이하, 본 발명을 실시예를 통하여 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

[실시예]  EXAMPLE

하기 표 1 및 표 2와 같은 성분 조성을 갖는 용접금속부를, 7~30kJ/cm이상의 용접입열량을 적용하여 FCAW에 의해 제조하였다.The weld metal parts having the composition shown in Table 1 and Table 2 were prepared by FCAW by applying a welding heat input of 7 to 30 kJ / cm or more.

상기와 같이 용접된 용접금속부의 중앙부에서 시편을 채취하여 인장시험 및 CTOD시험을 행하고 그 결과를 하기 표 3에 나타내었다.The specimen was taken from the center of the welded metal part welded as described above, and subjected to tensile test and CTOD test. The results are shown in Table 3 below.

상기 인장시험의 시험편은 KS규격(KS B 0801) 4호 시험편을 이용하였으며 인장시험은 크로스 헤드 스피드(cross head speed) 10mm/mim에서 실시하였다. The test piece of the tensile test was used KS standard (KS B 0801) No. 4 test piece and the tensile test was carried out at a cross head speed (10 mm / mim).

상기 CTOD시험편은 BS7448-1규격에 준하여 제조하였고 피로 균열은 SAW 용접금속부 중앙에 위치시켰다.   The CTOD test piece was manufactured according to the BS7448-1 standard and the fatigue crack was located at the center of the SAW weld metal part.

용접금속부의 CTOD에 중요한 영향을 미치는 산화물의 크기와 갯수 그리고 간격은 화상분석기(image analyzer)와 전자현미경을 이용한 포인트 카운팅(point counting)법으로 측정하고, 그 결과를 하기 표 3에 나타내었다.The size, number, and spacing of oxides, which have a significant effect on the CTOD of the weld metal, were measured by a point counting method using an image analyzer and an electron microscope, and the results are shown in Table 3 below.

이때, 피검면은 100mm2을 기준으로 하여 평가하였다.    At this time, the test surface was evaluated based on 100 mm 2 .

FCAW 용접금속부의 CTOD 평가는 FCAW 용접후 CTOD시험편으로 가공하여 -10℃에서 CTOD시험기를 통하여 평가하였다.  The CTOD evaluation of the FCAW weld metal part was processed by CTOD test piece after FCAW welding and evaluated by CTOD tester at -10 ° C.

시편 No.Psalm No. 화학조성(중량%)Chemical composition (% by weight) CC SiSi MnMn PP SS NiNi MoMo TiTi B (ppm)B (ppm) N(ppm)N (ppm) CuCu AlAl CrCr NbNb VV CaCa REMREM O (ppm)O (ppm) 발명강1Inventive Steel 1 0.060.06 0.190.19 1.541.54 0.0100.010 0.0050.005 1.541.54 0.140.14 0.0340.034 5050 4545 -- 0.0010.001 -- -- -- -- -- 380380 발명강2Inventive Steel 2 0.070.07 0.320.32 1.501.50 0.0120.012 0.0050.005 1.441.44 0.150.15 0.0360.036 4545 5454 -- 0.0050.005 -- -- -- -- -- 440440 발명강3Invention Steel 3 0.080.08 0.250.25 1.481.48 0.0110.011 0.0040.004 1.651.65 0.150.15 0.0380.038 5252 5353 0.050.05 0.0040.004 -- -- -- -- -- 480480 발명강4Inventive Steel 4 0.080.08 0.220.22 1.481.48 0.0080.008 0.0050.005 1.541.54 0.120.12 0.0320.032 5050 5050 -- 0.0030.003 -- -- -- -- -- 450450 발명강5Inventive Steel 5 0.070.07 0.160.16 1.601.60 0.0110.011 0.0040.004 1.501.50 0.100.10 0.0350.035 4545 5050 -- 0.0010.001 -- -- -- -- -- 450450 발명강6Inventive Steel 6 0.070.07 0.140.14 1.501.50 0.090.09 0.0050.005 1.651.65 0.120.12 0.0400.040 4242 4545 -- 0.0020.002 -- 0.10.1 -- -- -- 480480 발명강7Inventive Steel 7 0.100.10 0.250.25 1.481.48 0.0110.011 0.0050.005 1.451.45 0.150.15 0.0380.038 4545 5555 0.040.04 0.0020.002 -- -- -- -- -- 460460 발명강8Inventive Steel 8 0.110.11 0.350.35 1.521.52 0.0120.012 0.0060.006 1.551.55 0.180.18 0.0440.044 4646 4040 -- 0.0010.001 -- -- 0.0010.001 -- -- 440440 발명강9Inventive Steel 9 0.090.09 0.280.28 1.501.50 0.0100.010 0.0050.005 1.481.48 0.200.20 0.0460.046 4545 5252 -- 0.0010.001 0.10.1 -- -- 0.0010.001 -- 500500 발명강10Inventive Steel 10 0.070.07 0.180.18 1.551.55 0.0090.009 0.0060.006 1.501.50 0.250.25 0.0420.042 4343 5050 -- 0.0010.001 -- -- -- -- 0.0050.005 320320 비교강1Comparative Steel 1 0.030.03 0.060.06 1.251.25 0.0110.011 0.0060.006 2.602.60 0.190.19 0.010.01 2929 9292 0.020.02 0.0050.005 -- -- -- -- -- 150150 비교강2Comparative Steel 2 0.050.05 0.130.13 1.931.93 0.0110.011 0.0040.004 1.711.71 0.200.20 0.0250.025 6969 110110 0.040.04 0.0010.001 -- -- -- -- -- 120120 비교강3Comparative Steel 3 0.060.06 0.060.06 1.251.25 0.0100.010 0.0070.007 1.611.61 0.0100.010 0.0140.014 2121 7474 -- 0.0070.007 -- -- -- -- -- 150150 비교강4Comparative Steel 4 0.040.04 0.190.19 2.02.0 0.0080.008 0.0040.004 1.751.75 0.150.15 0.020.02 105105 5656 0.020.02 -- -- -- -- -- -- 300300 비교강5Comparative Steel 5 0.060.06 0.280.28 1.561.56 0.0130.013 0.0080.008 1.461.46 0.140.14 0.0580.058 5858 7171 0.0120.012 -- -- -- -- -- -- 170170 비교강6Comparative Steel 6 0.060.06 0.260.26 1.531.53 0.0120.012 0.0070.007 1.501.50 0.160.16 0.0570.057 5252 140140 0.030.03 0.0120.012 -- -- -- -- -- 240240 비교강7Comparative Steel 7 0.050.05 0.220.22 1.581.58 0.0150.015 0.0080.008 1.511.51 0.120.12 0.040.04 4141 270270 0.030.03 0.010.01 -- -- -- -- -- 260260 비교강8Comparative Steel 8 0.070.07 0.140.14 1.561.56 0.0110.011 0.0060.006 1.521.52 0.110.11 0.0240.024 4242 180180 0.320.32 0.030.03 -- -- 0.0130.013 -- -- 200200 비교강9Comparative Steel 9 0.060.06 0.370.37 1.741.74 0.0150.015 0.0100.010 1.441.44 0.170.17 0.0810.081 1111 100100 0.030.03 0.020.02 -- -- -- -- -- 140140 비교강1`0Comparative Steel 1`0 0.050.05 0.260.26 1.661.66 0.0090.009 0.0040.004 0.050.05 0.150.15 0.0420.042 4545 130130 -- 0.0060.006 -- -- -- -- -- 250250 비교강11Comparative Steel 11 0.060.06 0.230.23 1.721.72 0.0080.008 0.0040.004 1.301.30 0.140.14 0.030.03 5252 230230 0.050.05 0.010.01 -- -- -- -- -- 290290

시편 No.Psalm No. Ti, O, N, B의 구성비Composition ratio of Ti, O, N, B Ti/OTi / O Ti/NTi / N O/BO / B (Ti+4B)/O(Ti + 4B) / O 발명강1Inventive Steel 1 0.90.9 7.67.6 7.67.6 1.41.4 발명강2Inventive Steel 2 0.80.8 6.76.7 9.89.8 1.21.2 발명강3Invention Steel 3 0.80.8 7.27.2 9.29.2 1.21.2 발명강4Inventive Steel 4 0.70.7 6.46.4 9.09.0 1.21.2 발명강5Inventive Steel 5 0.80.8 7.07.0 10.010.0 1.21.2 발명강6Inventive Steel 6 0.80.8 8.98.9 11.411.4 1.21.2 발명강7Inventive Steel 7 1.01.0 6.96.9 10.210.2 1.21.2 발명강8Inventive Steel 8 0.90.9 11.011.0 9.69.6 1.41.4 발명강9Inventive Steel 9 0..90..9 8.88.8 11.111.1 1.31.3 발명강10Inventive Steel 10 1.31.3 8.48.4 7.47.4 1.91.9 비교강1Comparative Steel 1 0.70.7 1.11.1 5.25.2 1.41.4 비교강2Comparative Steel 2 2.02.0 2.32.3 1.71.7 4.44.4 비교강3Comparative Steel 3 0.90.9 1.91.9 7.17.1 1.51.5 비교강4Comparative Steel 4 0.70.7 3.63.6 2.92.9 2.12.1 비교강5Comparative Steel 5 3.43.4 8.28.2 2.92.9 4.84.8 비교강6Comparative Steel 6 2.42.4 4.14.1 4.64.6 3.23.2 비교강7Comparative Steel 7 1.51.5 1.51.5 6.36.3 2.22.2 비교강8Comparative Steel 8 1.21.2 1.31.3 4.84.8 2.02.0 비교강9Comparative Steel 9 5.85.8 8.18.1 12.712.7 6.16.1 비교강10Comparative Steel 10 1.61.6 3.23.2 5.65.6 2.42.4 비교강11Comparative Steel 11 1.01.0 1.31.3 5.65.6 1.81.8

시편 No.Psalm No. 용접방법 및 입열량Welding method and heat input TiO 산화물TiO oxide 용접금속부 침상 페라이트 분율(%)Needle Ferrite Fraction of Welding Metal Part (%) 용접금속부 기계적 성질Mechanical Properties of Welded Metal Parts 용접 방법welding method 용접입열량 (kJ/cm)Welding heat input (kJ / cm) 개수 (개/mm3)Number (pcs / mm 3 ) 평균크기 (㎛)Average size (㎛) 인장강도 (MPa)Tensile Strength (MPa) CTOD (mm, -10℃)CTOD (mm, -10 ℃) 발명강1Inventive Steel 1 FCAWFCAW 2020 3.3X108 3.3 X 10 8 0.0160.016 8989 640640 1.11.1 발명강2Inventive Steel 2 FCAWFCAW 2525 4.6X108 4.6 X 10 8 0.0170.017 8989 630630 1.01.0 발명강3Invention Steel 3 FCAWFCAW 2222 3.7X108 3.7 X 10 8 0.0120.012 8787 660660 0.80.8 발명강4Inventive Steel 4 FCAWFCAW 2020 4.6X108 4.6 X 10 8 0.0160.016 8888 640640 0.90.9 발명강5Inventive Steel 5 FCAWFCAW 1818 6.4X108 6.4 X 10 8 0.0180.018 8787 650650 1.21.2 발명강6Inventive Steel 6 FCAWFCAW 1919 5.3X108 5.3 X 10 8 0.0250.025 8989 630630 1.11.1 발명강7Inventive Steel 7 FCAWFCAW 2222 3.6X108 3.6X10 8 0.0130.013 9090 640640 1.31.3 발명강8Inventive Steel 8 FCAWFCAW 3030 3.3X108 3.3 X 10 8 0.0260.026 9191 660660 1.01.0 발명강9Inventive Steel 9 FCAWFCAW 3030 5.6X108 5.6 X 10 8 0.0240.024 8888 665665 1.21.2 발명강10Inventive Steel 10 FCAWFCAW 2525 5.3X108 5.3 X 10 8 0.0140.014 8585 620620 1.21.2 비교강1Comparative Steel 1 FCAWFCAW 2020 3.0X106 3.0 X 10 6 0.0450.045 4646 650650 0.20.2 비교강2Comparative Steel 2 FCAWFCAW 2020 4.3X106 4.3X10 6 0.0510.051 5252 640640 0.30.3 비교강3Comparative Steel 3 FCAWFCAW 2020 2.5X106 2.5 X 10 6 0.0540.054 4444 650650 0.30.3 비교강4Comparative Steel 4 FCAWFCAW 2020 3.0X106 3.0 X 10 6 0.0640.064 4545 660660 0.30.3 비교강5Comparative Steel 5 FCAWFCAW 2020 2.5X105 2.5 X 10 5 0.0370.037 3737 650650 0.20.2 비교강6Comparative Steel 6 FCAWFCAW 3030 2.5X106 2.5 X 10 6 0.0560.056 4242 680680 0.10.1 비교강7Comparative Steel 7 FCAWFCAW 3030 3.0X106 3.0 X 10 6 0.0430.043 4444 665665 0.30.3 비교강8Comparative Steel 8 FCAWFCAW 2020 4.1X105 4.1 X 10 5 0.0460.046 5252 610610 0.20.2 비교강9Comparative Steel 9 FCAWFCAW 3030 2.8X105 2.8X10 5 0.0410.041 5959 610610 0.40.4 비교강10Comparative Steel 10 FCAWFCAW 2020 3.4X105 3.4 X 10 5 0.0460.046 5252 620620 0.30.3 비교강11Comparative Steel 11 FCAWFCAW 2525 2.6X106 2.6 X 10 6 0.0430.043 4141 625625 0.30.3

상기 표 3에 나타낸 바와 같이, 본 발명에 의해 제조된 용접금속부는 TiO 산화물의 개수는 3X108개/mm3이상의 범위를 가짐에 반하여, 비교강의 경우는 4.3X10 6개/mm3이하의 범위를 보이고 있어 비교강 대비 발명강이 상당히 균일하면서도 미세한 복합석출물 크기를 갖고 또한 그 개수 또한 현저히 증가 되었음을 잘 알 수 있다.As shown in Table 3, the number of TiO oxides produced by the present invention has a range of 3 × 10 8 / mm 3 or more, whereas in the case of comparative steel 4.3 × 10 6 / mm 3 or less It can be seen that the inventive steel compared to the comparative steel has a fairly uniform and fine composite precipitate size and the number thereof is also significantly increased.

한편, 본 발명강의 미세조직의 경우 침상 페라이트 상분율도 모두 85%이상의 높은 분율로 구성되어 있다.  On the other hand, in the case of the microstructure of the present invention, both the acicular ferrite phase fraction is composed of a high fraction of 85% or more.

따라서 FCAW 용접시 본 발명강은 입내 침상페라이트 및 다각형 페라이트로 구성되며 그 중 침상 페라이트의 상분율은 85%이상으로 구성되어 있으며 비교강 대비 우수한 용접금속부 CTOD특성을 보이고 있다.Therefore, in FCAW welding, the present invention steel is composed of intragranular acicular ferrite and polygonal ferrite. Among them, the acicular ferrite phase ratio is more than 85% and shows excellent CTOD characteristics of welded metal parts compared to the comparative steel.

Claims (3)

중량%로 C:0.01-0.2%, Si:0.1-0.5%, Mn:1.0-3.0%, Ni : 0.5-3.0%, Ti:0.01-0.1%, B : 0.0010-0.01%, Al: 0.005-0.05%, N:0.003-0.006%, P:0.03%이하, S:0.03%이하, O:0.03-0.07%, 0.7≤Ti/O≤1.3, 6≤Ti/N≤12, 7≤O/B≤12, 1.2≤(Ti+4B)/O≤1.9를 만족하고, 나머지 Fe 및 기타 불가피한 불순물로 조성되고, 그 미세조직이 85%이상의 침상 페라이트(acicular ferrite) 및 나머지 베이나이트, 입계 페라이트 및 다각형 페라이트 중의 1종 또는 2종 이상을 포함하는 것을 특징으로 하는 저온 CTOD특성이 우수한 플럭스 코어드 아크 용접금속부By weight% C: 0.01-0.2%, Si: 0.1-0.5%, Mn: 1.0-3.0%, Ni: 0.5-3.0%, Ti: 0.01-0.1%, B: 0.0010-0.01%, Al: 0.005-0.05 %, N: 0.003-0.006%, P: 0.03% or less, S: 0.03% or less, O: 0.03-0.07%, 0.7≤Ti / O≤1.3, 6≤Ti / N≤12, 7≤O / B≤ 12, 1.2? Flux cored arc welding metal part having excellent low temperature CTOD characteristics, characterized by including one or two or more of them 제1항에 있어서, 상기 용접금속부에, Nb:0.0001~0.1%, V:0.005~0.1%,The method of claim 1, wherein Nb: 0.0001 to 0.1%, V: 0.005 to 0.1%, Cu:0.01~2.0%, Cr:0.05~1.0%, Mo: 0.05~1.0%, W: 0.05∼0.5%, Zr:0.005~0.5%, Ca:0.0005~0.005% 및 REM:0.005~0.05%으로 이루어진 그룹에서 선택된 1종 또는 2종이 추가로 함유되는 것을 특징으로 하는 저온 CTOD특성이 우수한 플럭스 코어드 아크 용접금속부Cu: 0.01% to 2.0%, Cr: 0.05% to 1.0%, Mo: 0.05% to 1.0%, W: 0.05% to 0.5%, Zr: 0.005% to 0.5%, Ca: 0.0005% to 0.005%, and REM: 0.005% to 0.05% Flux cored arc welding metal part having excellent low temperature CTOD characteristics, characterized by further containing one or two selected from the group. 제1항 또는 제2항에 있어서, 상기 용접금속부에는 0.01~0.1㎛의 TiO산화물이 1.0x107개/mm3 이상 분포되어 있는 것을 특징으로 하는 저온 CTOD특성이 우수한 플럭스 코어드 아크 용접금속부The flux cored arc welding metal part having excellent low temperature CTOD characteristics according to claim 1 or 2, wherein the weld metal part has a TiO oxide of 0.01 to 0.1 μm of 1.0 × 10 7 / mm 3 or more.
KR1020070138045A 2007-12-26 2007-12-26 Flux Cored Arc Weld Metal Joint Having Superior CTOD in Low Temperature KR100910493B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020070138045A KR100910493B1 (en) 2007-12-26 2007-12-26 Flux Cored Arc Weld Metal Joint Having Superior CTOD in Low Temperature
JP2010540572A JP5172970B2 (en) 2007-12-26 2008-12-23 Flux cored arc weld metal part excellent in low temperature CTOD characteristics and steel member having this weld metal part
CN2008801232653A CN101909810B (en) 2007-12-26 2008-12-23 Flux cored arc weld metal joint having superior CTOD in low temperature and steel member having the weld metal joint
PCT/KR2008/007627 WO2009082162A2 (en) 2007-12-26 2008-12-23 Flux cored arc weld metal joint having superior ctod in low temperature and steel member having the weld metal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070138045A KR100910493B1 (en) 2007-12-26 2007-12-26 Flux Cored Arc Weld Metal Joint Having Superior CTOD in Low Temperature

Publications (2)

Publication Number Publication Date
KR20090070147A true KR20090070147A (en) 2009-07-01
KR100910493B1 KR100910493B1 (en) 2009-07-31

Family

ID=40801694

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070138045A KR100910493B1 (en) 2007-12-26 2007-12-26 Flux Cored Arc Weld Metal Joint Having Superior CTOD in Low Temperature

Country Status (4)

Country Link
JP (1) JP5172970B2 (en)
KR (1) KR100910493B1 (en)
CN (1) CN101909810B (en)
WO (1) WO2009082162A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110055880A (en) * 2009-11-20 2011-05-26 주식회사 포스코 High strength flux cored arc weld metal joint having excellent impact toughness
KR20110072608A (en) * 2009-12-23 2011-06-29 주식회사 포스코 High strength submerged arc weld metal joint having excellent low-temperature impact toughness
KR101271866B1 (en) * 2011-03-31 2013-06-07 주식회사 포스코 High strength flux cored arc weld metal joint having excellent ultra-low temperature impact toughness
WO2015099219A1 (en) * 2013-12-24 2015-07-02 주식회사 포스코 Ultrahigh-strength gas metal arc welded joint having excellent impact toughness, and solid wire for producing same
CN109804092A (en) * 2016-10-11 2019-05-24 Posco公司 Flux-cored wire cold-rolled steel sheet and its manufacturing method
KR102257858B1 (en) * 2020-08-25 2021-05-28 현대제철 주식회사 Flux cored arc welding joint

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101220618B1 (en) 2010-12-27 2013-01-10 주식회사 포스코 Flux cored arc weld wire having excellent workability and low-temperature toughness in weld metal joint and weld metal joint using the same
JP5792050B2 (en) * 2011-01-31 2015-10-07 株式会社神戸製鋼所 Submerged arc welding method for low temperature steel
JP5607002B2 (en) * 2011-02-02 2014-10-15 株式会社神戸製鋼所 Weld metal with excellent resistance to hydrogen embrittlement
JP5846868B2 (en) * 2011-11-16 2016-01-20 日新製鋼株式会社 Manufacturing method of stainless steel diffusion bonding products
JP5798060B2 (en) * 2011-11-21 2015-10-21 株式会社神戸製鋼所 Weld metal with excellent tempering embrittlement resistance
KR101382991B1 (en) * 2012-12-26 2014-04-08 주식회사 포스코 Ultra high strength flux cored arc welded joint having excellent low temperature toughness
US20150034605A1 (en) * 2013-07-08 2015-02-05 Lincoln Global, Inc. High fracture toughness welds in thick workpieces
CN106181122B (en) * 2016-08-10 2018-12-25 中国船舶重工集团公司第七二五研究所 A kind of seamless submerged arc flux-cored wire for yield strength 550MPa steel
CN108103393A (en) * 2017-06-01 2018-06-01 海宁瑞奥金属科技有限公司 A kind of weld metal of high-intensity and high-tenacity bridge steel welded joint
CN109136760B (en) * 2018-09-21 2019-10-11 常熟理工学院 It is a kind of can heat resistanceheat resistant processing deposited metal
CN111041346B (en) * 2019-11-19 2021-02-26 河钢股份有限公司承德分公司 Hot-rolled wire rod for 90 kg-grade welding wire and production method thereof
CN111001907A (en) * 2019-12-05 2020-04-14 渤海造船厂集团有限公司 Welding wire for ultra-low carbon martensite high-strength and high-toughness gas metal arc welding
CN111015016A (en) * 2019-12-05 2020-04-17 渤海造船厂集团有限公司 Welding wire for ultra-low carbon martensite non-consumable electrode gas shielded welding

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3559806B2 (en) * 1995-08-18 2004-09-02 日鐵住金溶接工業株式会社 Basic flux cored wire for low temperature steel
JP3735001B2 (en) * 2000-03-09 2006-01-11 株式会社神戸製鋼所 Weld metal with excellent toughness
JP2002035989A (en) 2000-07-17 2002-02-05 Nippon Steel Corp Highly enriched oxygen filler wire for laser beam welding
JP4311740B2 (en) * 2004-10-27 2009-08-12 株式会社神戸製鋼所 Thick steel plate with high heat input welded joint toughness
JP4255453B2 (en) 2005-03-31 2009-04-15 株式会社神戸製鋼所 Low alloy steel weld metal and flux cored wire
NL1032551C2 (en) 2005-11-07 2007-08-07 Kobe Seiko Sho Kobe Steel Kk Gas-shielded-arc-welding flux cored wire for high tensile steel, contains preset amount of carbon, silicon, manganese, nickel, chromium, molybdenum, titanium, iron and nitrogen
JP4841400B2 (en) * 2005-11-07 2011-12-21 株式会社神戸製鋼所 Gas shielded arc welding flux cored wire for high strength steel

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110055880A (en) * 2009-11-20 2011-05-26 주식회사 포스코 High strength flux cored arc weld metal joint having excellent impact toughness
KR20110072608A (en) * 2009-12-23 2011-06-29 주식회사 포스코 High strength submerged arc weld metal joint having excellent low-temperature impact toughness
KR101271866B1 (en) * 2011-03-31 2013-06-07 주식회사 포스코 High strength flux cored arc weld metal joint having excellent ultra-low temperature impact toughness
WO2015099219A1 (en) * 2013-12-24 2015-07-02 주식회사 포스코 Ultrahigh-strength gas metal arc welded joint having excellent impact toughness, and solid wire for producing same
US10266929B2 (en) 2013-12-24 2019-04-23 Posco Ultrahigh-strength gas metal arc welded joint having excellent impact toughness, and solid wire for producing same
CN109804092A (en) * 2016-10-11 2019-05-24 Posco公司 Flux-cored wire cold-rolled steel sheet and its manufacturing method
CN109804092B (en) * 2016-10-11 2020-10-20 Posco公司 Cold-rolled steel sheet for flux-cored wire and method for manufacturing same
KR102257858B1 (en) * 2020-08-25 2021-05-28 현대제철 주식회사 Flux cored arc welding joint

Also Published As

Publication number Publication date
CN101909810A (en) 2010-12-08
WO2009082162A3 (en) 2009-09-24
WO2009082162A2 (en) 2009-07-02
JP5172970B2 (en) 2013-03-27
JP2011507707A (en) 2011-03-10
CN101909810B (en) 2013-03-06
KR100910493B1 (en) 2009-07-31

Similar Documents

Publication Publication Date Title
KR100910493B1 (en) Flux Cored Arc Weld Metal Joint Having Superior CTOD in Low Temperature
KR101271866B1 (en) High strength flux cored arc weld metal joint having excellent ultra-low temperature impact toughness
KR20060049390A (en) A thick steel plate having superior roughness in high input heat welding joint
JP5842314B2 (en) High heat input welding steel
KR100833048B1 (en) Welding joint having excellent in toughness of high heat input welded zone
KR101143132B1 (en) Flux cored arc welded joint
KR20140084654A (en) Ultra high strength flux cored arc welded joint having excellent impact toughness
KR20130127189A (en) High strength and weather resistance flux cored arc weld metal joint having excellent ultra-low temperature impact toughness
KR100957940B1 (en) High strength Steel Plate for High Heat Input Welding having Welded Joint with Superior Impact Toughness in Weld Heat Affected Zone
KR20120074152A (en) Flux cored arc weld wire having excellent workability and low-temperature toughness in weld metal joint and weld metal joint using the same
KR101665696B1 (en) High strength flux cored arc weld metal joint having excellent impact toughness
KR100957982B1 (en) Steel for Welding Structure having Welded Joint with Superior CTOD Properties in Weld Heat Affected Zone
KR100833047B1 (en) High strength welding joint having excellent in toughness of high heat input welded zone
KR101695982B1 (en) High strength submerged arc weld metal joint having excellent low-temperature impact toughness
KR101439698B1 (en) High strength gas metal arc weld metal joint having excellent ultra-low temperature impact toughness
KR100362680B1 (en) High strength steel plate having superior toughness in weld heat-affected zone and Method for manufacturing the same, welding fabric using the same
KR100940667B1 (en) High strength steel plate with superior HAZ toughness for high heat input welding and method for manufacturing the same
JPS621842A (en) Tough, high tension steel having superior toughness in weld zone
KR20020041535A (en) Method for manufacturing high strength steel plate having superior toughness in weld heat-affected zone by recrystallization controlled rolling
KR20120073467A (en) High strength steel plate for welding structure with superior haz toughness for high heat input welding and method for manufacturing the same
KR20100050039A (en) High heat input arc weld metal joint having excellent low temperature impact toughness
KR100470650B1 (en) Method for manufacturing high strength steel plate having superior toughness in weld heat-affected zone by nitriding treatment and controlled rolling at two phase regions
KR101568516B1 (en) Ultra-high strength gas-metal arc welded joint having excellent impact toughness
KR20040057240A (en) Ultra low carbon bainite steel plate with superior HAZ toughness for high heat input welding and method for manufacturing the same
KR100482215B1 (en) Method for manufacturing high strength steel plate having superior toughness in weld heat-affected zone by nitriding treatment

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120614

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20130701

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140728

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150713

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160726

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170727

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190724

Year of fee payment: 11