JP2005307261A - Thick high strength steel plate having large heat input weld heat affected zone toughness - Google Patents

Thick high strength steel plate having large heat input weld heat affected zone toughness Download PDF

Info

Publication number
JP2005307261A
JP2005307261A JP2004124866A JP2004124866A JP2005307261A JP 2005307261 A JP2005307261 A JP 2005307261A JP 2004124866 A JP2004124866 A JP 2004124866A JP 2004124866 A JP2004124866 A JP 2004124866A JP 2005307261 A JP2005307261 A JP 2005307261A
Authority
JP
Japan
Prior art keywords
toughness
steel
heat input
haz
ceq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004124866A
Other languages
Japanese (ja)
Other versions
JP4276576B2 (en
Inventor
Minoru Ito
実 伊藤
Akihiko Kojima
明彦 児島
Yoichi Tanaka
洋一 田中
Masanori Minagawa
昌紀 皆川
Jun Otani
潤 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004124866A priority Critical patent/JP4276576B2/en
Publication of JP2005307261A publication Critical patent/JP2005307261A/en
Application granted granted Critical
Publication of JP4276576B2 publication Critical patent/JP4276576B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thick high strength steel plate having a Ceq of 0.35 to 0.40, and, e.g., having a plate thickness of 50 to 80 mm and a tensile strength in a class of 490 to 620 MPa, and having excellent HAZ (heat affected zone) toughness in high heat input welding at 20 to 100 kJ/mm. <P>SOLUTION: The steel plate has a composition comprising, by mass, 0.03 to 0.14% C, 0.01 to 0.30% Si, 0.8 to 2.0% Mn, ≤0.02% P, ≤0.005% S, 0.003 to 0.050% Nb, 0.005 to 0.040% Al, 0.005 to 0.030% Ti, 0.0010 to 0.0050% B, 0.0030 to 0.0080% N, and 0.0010 to 0.0050% O, and in which the Ceq in formula (1) is 0.35 to 0.40, and also, Nb, Ti, N, and B satisfy expression (2), and further comprising one or more kinds selected from 0.0005 to 0.0030% Ca, 0.0005 to 0.0050% Mg, and 0.005 to 0.030% rare earth metals, and comprising multiple oxides with a diameter of the equivalent circle of 0.005 to 0.5 μm by 100 to 3,000 pieces/mm<SP>2</SP>; formula (1): Ceq=C+Mn/6+(Ni+Cu)/15+(Cr+Mo+V)/5, and expression (2): 0.29Ti+1.3B≤N≤0.29Ti+1.3B+0.15Nb. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、船舶、海洋構造物、中高層ビル、橋梁などに使用される溶接熱影響部(Heat Affected Zone、以下、HAZと称す。)の低温靭性に優れた厚手高強度鋼板に関するもので、特に、板厚50mm以上、母材引張強度490〜620MPa級の鋼板で、溶接入熱が20〜100kJ/mmの優れた低温HAZ靭性を有する鋼板に関するものである。   The present invention relates to a thick high-strength steel sheet excellent in low-temperature toughness of a welded heat affected zone (hereinafter referred to as HAZ) used for ships, offshore structures, middle-high-rise buildings, bridges, and the like. Further, the present invention relates to a steel plate having a thickness of 50 mm or more and a base metal tensile strength of 490 to 620 MPa class and having excellent low temperature HAZ toughness with a welding heat input of 20 to 100 kJ / mm.

近年、船舶、海洋構造物、中高層ビル、橋梁などの大型構造物に使用される溶接用鋼材の材質特性に対する要望は厳しさを増している。特に、これら構造物においては、板厚50mm超える厚手で、母材の引張強度が570MPa級である鋼板の使用も多くなってきている。   In recent years, demands for material properties of steel materials for welding used in large structures such as ships, offshore structures, high-rise buildings, and bridges have increased. In particular, in these structures, the use of steel plates having a thickness exceeding 50 mm and whose base material has a tensile strength of 570 MPa has been increasing.

また、溶接の効率化を促進するため、このような厚手高強度鋼板の溶接には、エレクトロガス溶接法、エレクトロスラグ溶接法などに代表されるような大入熱溶接法による1パス溶接が検討されており、母材そのものの靭性と同様に、HAZ靭性の要求も厳しさを増している。   Also, in order to promote the efficiency of welding, one-pass welding by high heat input welding methods such as electrogas welding method and electroslag welding method is considered for welding such thick high strength steel plates. As with the toughness of the base material itself, the demand for HAZ toughness is becoming stricter.

大入熱溶接法が適用される鋼材のHAZ靭性に注目した提案は、これまで数多くなされてきた。例えば、特許文献1では、Ti窒化物とMnSとの複合析出物をフェライトの変態核として活用し、フェライトの生成サイトを増やすことによりHAZ組織を微細化しHAZ靭性を向上させる方法が提案されている。さらに、特許文献2では、Ti窒化物とB窒化物との複合析出物を粒界フェライトの析出核として活用し、HAZ靭性を向上させる方法が提案されている。但し、鋼材の要求強度が高い場合では、焼入性が向上するため十分に機能しない。   Many proposals that focus on the HAZ toughness of steel materials to which the high heat input welding method is applied have been made so far. For example, Patent Document 1 proposes a method in which composite precipitates of Ti nitride and MnS are utilized as ferrite transformation nuclei, and the HAZ structure is refined by increasing the ferrite generation sites to improve the HAZ toughness. . Further, Patent Document 2 proposes a method of improving HAZ toughness by utilizing a composite precipitate of Ti nitride and B nitride as a precipitation nucleus of grain boundary ferrite. However, when the required strength of the steel material is high, the hardenability is improved and the steel material does not function sufficiently.

また、特許文献3等に開示されるように、溶接時に粒成長し粗大化するオーステナイト粒を、鋼中に微細分散させたTi窒化物によりピンニングさせ抑制し、靭性を向上させる方法もある。しかしながら、Ti窒化物は、HAZのうち最高到達温度が1400℃を超える溶接金属との境界(以下、溶接ボンド部とも称する。)近傍ではほとんど固溶してしまうので、靭性向上効果が低下するという問題がある。そのため、このようなTi窒化物をオーステナイト粒の粗大化抑制に利用した鋼材は、近年のHAZ靭性に対する厳しい要求や、超大入熱溶接におけるHAZ靭性の必要特性を達成することが困難である。   Further, as disclosed in Patent Document 3 and the like, there is also a method of improving toughness by pinning and suppressing austenite grains that grow and coarsen during welding with Ti nitride finely dispersed in steel. However, Ti nitride is almost dissolved in the vicinity of the boundary (hereinafter also referred to as a weld bond portion) with a weld metal having a maximum ultimate temperature exceeding 1400 ° C. of HAZ, so that the effect of improving toughness is reduced. There's a problem. Therefore, it is difficult for steel materials using such Ti nitrides to suppress the coarsening of austenite grains to achieve the strict requirements for HAZ toughness in recent years and the required characteristics of HAZ toughness in super-high heat input welding.

この溶接ボンド部近傍の靭性を改善する方法として、Ti酸化物を含有した鋼が厚板、形鋼などの様々な分野で使用されている。例えば、厚板分野では特許文献4や特許文献5に例示されているように、Ti酸化物を含有した鋼は大入熱溶接部靭性向上に非常に有効であり、高張力鋼への適用が有望である。この原理は、鋼の融点においても安定なTi酸化物をサイトとして、溶接後の温度低下途中にTi窒化物、MnS等が析出し、さらにそれらをサイトとして微細フェライトが生成し、その結果、靭性に有害な粗大フェライトの生成が抑制されて、靭性の劣化が防止できるというものである。   As a method for improving the toughness in the vicinity of the weld bond portion, steel containing Ti oxide is used in various fields such as thick plates and section steel. For example, as exemplified in Patent Document 4 and Patent Document 5 in the thick plate field, steel containing Ti oxide is very effective in improving the toughness of a high heat input weld, and is applicable to high-tensile steel. Promising. This principle is based on Ti oxide, which is stable even at the melting point of steel, and Ti nitride, MnS, etc. are precipitated in the middle of the temperature drop after welding, and fine ferrite is formed using these as sites, resulting in toughness. The generation of coarse ferrite that is harmful to steel is suppressed, and deterioration of toughness can be prevented.

しかしながら、このようなTi酸化物は、鋼中へ分散される個数をあまり多くすることができないという問題がある。その原因は、Ti酸化物の粗大化や凝集合体であり、Ti酸化物の個数を増加させようとすれば5μm以上の粗大なTi酸化物、いわゆる介在物が増加してしまうためと考えられる。この5μm以上の介在物は、構造物の破壊の起点となったり、靭性の低下を引き起こしたりして、有害であるため回避すべきものである。そのため、さらなるHAZ靭性の向上を達成するためには、粗大化や凝集合体が起こりにくく、Ti酸化物よりも微細に分散する酸化物を活用する必要があった。   However, such a Ti oxide has a problem that the number dispersed in steel cannot be increased too much. The cause is considered to be coarsening or aggregation of Ti oxides, and if the number of Ti oxides is increased, coarse Ti oxides of 5 μm or more, so-called inclusions are increased. This inclusion of 5 μm or more should be avoided because it is harmful because it becomes a starting point of destruction of the structure or causes a decrease in toughness. Therefore, in order to achieve further improvement in HAZ toughness, it is necessary to utilize an oxide that is less likely to be coarsened or aggregated and is more finely dispersed than Ti oxide.

また、このようなTi酸化物の鋼中への分散方法としては、Al等の強脱酸元素を実質的に含まない溶鋼中へのTi添加によるものが多い。しかしながら、単に溶鋼中にTiを添加するだけでは鋼中のTi酸化物の個数、分散度を制御することは困難であり、さらには、TiN,MnS等の析出物の個数、分散度を制御することも困難である。そのため、Ti脱酸のみによってTi酸化物を分散させた鋼においては、例えば、Ti酸化物の個数が充分に得られない、あるいは、厚板の板厚方向の靭性が変動するといった問題があった。   Further, as a method of dispersing such Ti oxide in steel, there are many methods by adding Ti to molten steel which does not substantially contain a strong deoxidizing element such as Al. However, it is difficult to control the number and dispersion of Ti oxides in the steel simply by adding Ti to the molten steel. Furthermore, the number and dispersion of precipitates such as TiN and MnS are controlled. It is also difficult. Therefore, in steel in which Ti oxide is dispersed only by Ti deoxidation, for example, the number of Ti oxides cannot be obtained sufficiently, or the toughness in the thickness direction of the thick plate varies. .

さらに、上記特許文献4などの方法では、Ti酸化物を生成しやすくするために、Al量の上限を、0.007%という非常に少ない量で制限している。そのため、鋼材中のAl量が少ない場合、AlN析出物量の不足などの原因により、母材の靭性が低下することがあった。また、通常使用されている溶接材料を用いてAl量の少ない鋼板を溶接した場合、溶接金属の靭性が低下することがあった。   Furthermore, in the method disclosed in Patent Document 4 and the like, the upper limit of the Al amount is limited to a very small amount of 0.007% in order to easily generate a Ti oxide. Therefore, when the amount of Al in the steel material is small, the toughness of the base material may be lowered due to a shortage of the AlN precipitate amount. Further, when a steel sheet having a small Al amount is welded using a commonly used welding material, the toughness of the weld metal may be lowered.

このような問題に対して、特許文献6や特許文献7において、Ti添加直後のAl添加、あるいはAl,Ca複合添加で、生成するTi−Al複合酸化物やTi,Al,Caの複合酸化物を活用する技術が提案されている。このような技術により、大入熱溶接HAZ靭性を大幅に向上させることが可能となった。
特開平03−264614号公報 特開平04−143246号公報 特公昭55−026164号公報 特開昭61−079745号公報 特開昭62−103344号公報 特開平06−293937号公報 特開平10−183295号公報
With respect to such a problem, in Patent Document 6 and Patent Document 7, Ti—Al composite oxide or composite oxide of Ti, Al, and Ca that is generated by Al addition immediately after Ti addition or Al / Ca composite addition is disclosed. A technology that utilizes the above has been proposed. Such a technique makes it possible to greatly improve the high heat input welding HAZ toughness.
Japanese Patent Laid-Open No. 03-264614 Japanese Patent Laid-Open No. 04-143246 Japanese Patent Publication No. 55-026164 JP 61-079745 A JP-A-62-103344 Japanese Patent Laid-Open No. 06-293937 JP-A-10-183295

近年、特に造船業界において、板厚50〜80mm、母材強度が引張強度で490〜620MPa級の鋼板が適用されている。この厚手高強度鋼板を現行の製造方法で製造する場合、強度確保の点から合金元素を増量して焼入性を向上させる必要がある。この合金元素の増量よる焼入性を、鋼材の溶接性と同時に化学成分的な焼入性を示す炭素当量(Ceq)で示した場合、強度確保にはCeqで0.35以上が必要となる。このCeqの値は溶接HAZの硬さと関係しており、この値が高れば高いほど溶接HAZも硬くなる。   In recent years, particularly in the shipbuilding industry, steel plates having a plate thickness of 50 to 80 mm and a base material strength of 490 to 620 MPa in terms of tensile strength have been applied. When manufacturing this thick high-strength steel sheet by the current manufacturing method, it is necessary to increase hardenability by increasing the amount of alloy elements from the viewpoint of securing strength. When the hardenability due to the increase of the alloy element is expressed by the carbon equivalent (Ceq) indicating the hardenability of the chemical component as well as the weldability of the steel material, 0.35 or more in Ceq is required to secure the strength. . The value of Ceq is related to the hardness of the welded HAZ, and the higher this value, the harder the welded HAZ.

また、このような厚手鋼板の溶接では、作業の効率性から入熱20〜100kJ/mmの大入熱溶接が適用される。従来は、Ceqがそれほど高くなかったため、上記の特許文献5〜7記載の従来手法を適用することによりHAZ靭性は改善された。しかし、このようにCeqが0.35以上と高い場合では、焼入性が向上してHAZ硬さも高くなるため、従来手法の適用では、特に溶接ボンド部近傍で十分なHAZ靭性が得られない。   Moreover, in welding of such thick steel plates, large heat input welding with a heat input of 20 to 100 kJ / mm is applied in view of work efficiency. Conventionally, since Ceq was not so high, the HAZ toughness was improved by applying the conventional methods described in Patent Documents 5 to 7. However, when Ceq is as high as 0.35 or higher, the hardenability is improved and the HAZ hardness is also increased. Therefore, in the application of the conventional method, sufficient HAZ toughness cannot be obtained particularly in the vicinity of the weld bond portion. .

そこで、本発明は、Ceqが0.35〜0.40で、例えば、板厚50〜80mm、引張強度490〜620MPa級の鋼板であって、入熱20〜100kJ/mmの大入熱溶接において優れたHAZ靭性を有する厚手高強度鋼板を提供することを目的とするものである。   Therefore, the present invention is a steel plate having a Ceq of 0.35 to 0.40, for example, a plate thickness of 50 to 80 mm and a tensile strength of 490 to 620 MPa, and a large heat input welding with a heat input of 20 to 100 kJ / mm. The object is to provide a thick high-strength steel sheet having excellent HAZ toughness.

これまでHAZ靭性の向上手段として、前述のとおり、フェライト変態核の生成によるHAZ組織の微細化や高温でのオーステナイト粒の成長を抑制することが考えられてきた。その中でも、酸化物の微細分散によるオーステナイト粒の粗大化の抑制は、上記のように入熱20〜100kJ/mmの大入熱溶接で溶接ボンド部が1400℃の高温に長時間されされる場合においても機能し、有効である。しかし、オーステナイト粒の粗大化が抑制されても、Ceqが0.35〜0.40の鋼材では大入熱溶接後のHAZの硬さが高くなるため十分な靭性が得られない。HAZ硬さが高くなるのは、Ceqが高いためにHAZの焼入性が高くなり、HAZ組織に占める粒界フェライトの量が少ないのに加え、オーステナイト粒内が上部ベイナイト主体の組織となるためである。   As described above, as a means for improving the HAZ toughness, it has been considered that the HAZ structure is refined due to the formation of ferrite transformation nuclei and the growth of austenite grains at a high temperature is suppressed as described above. Among them, the suppression of coarsening of austenite grains due to fine dispersion of oxide is the case where the weld bond is heated to a high temperature of 1400 ° C. for a long time by high heat input welding with a heat input of 20 to 100 kJ / mm as described above. Also works and is effective. However, even if the austenite grain coarsening is suppressed, a steel material having a Ceq of 0.35 to 0.40 cannot obtain sufficient toughness because the hardness of the HAZ after high heat input welding is increased. The HAZ hardness is high because the hardenability of HAZ is high because Ceq is high, and the amount of intergranular ferrite occupying the HAZ structure is small, and the austenite grains are mainly composed of upper bainite. It is.

そこで、発明者らは、オーステナイト粒内にフェライト生成核を多数生成させ、HAZ硬さの上昇抑制と組織微細化によりHAZ靭性を改善させる方法を鋭意検討した。まず、粒内フェライト生成核になり得る析出物を調査するため、Ceqが0.35以上0.40以下である種々の鋼材を用いて、図1に示す大入熱溶接を模擬した熱サイクルを付与し、得られた再現HAZ組織中に粒内フェライトが生成するものを調査した。その結果、B添加鋼の一部で、このようなCeqが高い条件においても粒内にフェライトを生成させていることを確認した。   Therefore, the inventors diligently studied a method for improving the HAZ toughness by generating a large number of ferrite forming nuclei in the austenite grains and suppressing the increase in the HAZ hardness and refining the structure. First, in order to investigate precipitates that can become intragranular ferrite formation nuclei, a thermal cycle simulating the high heat input welding shown in FIG. 1 was used using various steel materials having Ceq of 0.35 to 0.40. And the formation of intragranular ferrite in the reproduced HAZ structure was investigated. As a result, it was confirmed that in some of the B-added steel, ferrite was generated in the grains even under such a high Ceq condition.

続いて、上記知見に基づき、粒内フェライトが生成する鋼材の粒内フェライトの生成核をTEM観察により調査した。その結果、その多くがTiの一部がNbに置換されたTi窒化物(以下、Ti(Nb)窒化物と記載)を核として析出していることを確認した。さらに、このTi(Nb)窒化物についてさらに調査した結果、Ti(Nb)窒化物は、単独で析出するものだけでなく、サブミクロンサイズ以下のAlやCaを主体とする微細複合酸化物をサイトとして析出していることを確認した。そして、フェライトを生成させるB窒化物は、これらのTi(Nb)窒化物、複合酸化物とTi(Nb)窒化物の複合物を囲む形で外周部に多結晶の状態で析出する、サブミクロンサイズのものが主体であることを確認した。   Then, based on the said knowledge, the production | generation nucleus of the intragranular ferrite of the steel material which intragranular ferrite produces | generates was investigated by TEM observation. As a result, it was confirmed that most of them were precipitated with Ti nitride (hereinafter referred to as Ti (Nb) nitride) in which a part of Ti was substituted with Nb as nuclei. Furthermore, as a result of further investigation on the Ti (Nb) nitride, the Ti (Nb) nitride is not only precipitated alone, but also contains fine composite oxides mainly composed of submicron-sized Al or Ca. It was confirmed that it was precipitated. The B nitride that forms ferrite is deposited in a polycrystalline state on the outer periphery so as to surround these Ti (Nb) nitride and composite oxide and Ti (Nb) nitride composites. It was confirmed that the size was the main thing.

そこで、フェライト生成核を多数生成させるため、このB窒化物を多数析出させる条件を鋭意調査した。
まず、Ti(Nb)窒化物の析出サイトとなる複合酸化物について検討した。その結果、複合酸化物の大きさは0.5μm以下であり、Al,Caを主体とする酸化物のほか、これらにMg,REMを含む複合酸化物においてもTi(Nb)窒化物が生成することを確認した。
Therefore, in order to generate a large number of ferrite-forming nuclei, the inventors studied diligently on conditions for depositing a large number of B nitrides.
First, a composite oxide serving as a Ti (Nb) nitride precipitation site was examined. As a result, the size of the composite oxide is 0.5 μm or less, and Ti (Nb) nitride is generated not only in oxides mainly composed of Al and Ca but also in composite oxides containing Mg and REM. It was confirmed.

次に、これらの複合酸化物を多数生成させる条件を検討した。まず、酸化物を多く析出させるためにこれら酸化物を構成する元素の量を増やす方法であるが、単に量を増やすだけではミクロンサイズの粗大な酸化物を形成させる一方で数を増やすことが難しい。   Next, conditions for generating a large number of these complex oxides were examined. First, in order to deposit a large amount of oxide, it is a method of increasing the amount of elements constituting these oxides, but it is difficult to increase the number while forming a coarse oxide of micron size simply by increasing the amount. .

そこで、酸化物を微細化させることで酸化物の個数を増やす方法について検討を行った。この方法は、酸素濃度を酸化物の粗大化を防ぐために低く調整し、その後、脱酸力の比較的弱い脱酸元素から強い脱酸元素へ順に脱酸元素を投入するものであるため、酸素濃度調整のもと複数の脱酸元素を脱酸力の弱い順に投与することから微細な酸化物を多数生成させることが可能となる。   Therefore, a method for increasing the number of oxides by miniaturizing oxides was studied. In this method, the oxygen concentration is adjusted to be low in order to prevent coarsening of the oxide, and then the deoxidizing element is introduced in order from the deoxidizing element having a relatively weak deoxidizing power to the strong deoxidizing element. Since a plurality of deoxidizing elements are administered in order of decreasing deoxidizing power under the concentration adjustment, a large number of fine oxides can be generated.

そして、この考えのもと脱酸方法を検討した結果、溶鋼時の脱酸過程でCもしくはSiの脱酸元素を用いて溶鋼中の酸素濃度を0.0010〜0.0050%に制御し、その後,Tiのような弱脱酸元素で脱酸し、さらにAlで脱酸後、強脱酸元素であるCa,Mg,REMを1鋼種以上添加することを行い、円相当径が0.005〜0.5μmの複合酸化物(例えば、Al酸化物等、この他、Ca,Mg,REMの添加により、Ca−Al酸化物、Ti−Mg酸化物、REM酸化物やその複合酸化物も生成される)を、100〜3000個/mm含有させることできることが判明した。なお、酸素濃度が0.0050%を超えると粗大な酸化物が生成し、酸化物の個数が激減する場合がある。 And, as a result of examining the deoxidation method based on this idea, the oxygen concentration in the molten steel was controlled to 0.0010 to 0.0050% using a deoxidizing element of C or Si in the deoxidizing process at the time of molten steel, Then, after deoxidizing with a weak deoxidizing element such as Ti, and further deoxidizing with Al, one or more steel types of strong deoxidizing elements Ca, Mg, and REM are added, and the equivalent circle diameter is 0.005. -0.5 μm composite oxide (for example, Al oxide, etc. In addition, Ca—Mg oxide, Ti—Mg oxide, REM oxide and composite oxides thereof are also produced by adding Ca, Mg, REM. It was found that 100-3000 / mm 2 can be contained. Note that when the oxygen concentration exceeds 0.0050%, coarse oxides are generated, and the number of oxides may be drastically reduced.

次に、Ti(Nb)窒化物とB窒化物の構成元素であるTi,NおよびBのバランスに関して詳細検討した。まず、Nの量をB窒化物生成の点からBの量と化学量論的に等しくなるように調整した。この場合、再現HAZ組織中のオーステナイト粒内はベイナイト主体の組織となり、粒内フェライトは殆ど確認できなった。そこでさらにNの量を増やし、BとTiの量の総和と化学量論的にほぼ等しい場合では、オーステナイト粒内に多数のフェライトの生成が確認された。さらにN量を増やした場合も同様にオーステナイト粒内に多数のフェライトの生成が確認された。   Next, detailed examination was made on the balance of Ti, N, and B, which are constituent elements of Ti (Nb) nitride and B nitride. First, the amount of N was adjusted to be stoichiometrically equal to the amount of B from the point of B nitride formation. In this case, the austenite grains in the reproduced HAZ structure became a bainite-based structure, and almost no intragranular ferrite could be confirmed. Therefore, when the amount of N was further increased and stoichiometrically approximately equal to the sum of the amounts of B and Ti, the formation of a large number of ferrite was confirmed in the austenite grains. Further, when the amount of N was further increased, the formation of a large number of ferrite was confirmed in the austenite grains.

そこで、これらの再現HAZ組織を有するものの靭性を調査した結果、オーステナイト粒内に多数フェライトが生成するものは、ベイナイト主体のものに比較しても優れた靭性を有することが判明した。さらに粒内フェライトを生成するものの中でも、Nの量がBとTiの量の総和と化学量論的に等しい場合よりも多く添加されている場合の方が優位であることが判明した。但し、過剰に添加されると逆に靭性が低下する。   Therefore, as a result of investigating the toughness of those having a reproducible HAZ structure, it has been found that those in which a large number of ferrites are formed in the austenite grains have excellent toughness even when compared with those containing bainite. Further, it has been found that among those producing intragranular ferrite, the case where N is added in a larger amount than the case where the amount of N is stoichiometrically equal to the total amount of B and Ti is found to be superior. However, if added excessively, the toughness decreases.

Nの量の増加により靭性が変化する理由について、析出するTi窒化物のTiの一部がNbに置換されているという事実をもとに、Nの量がBとTiとNbの量の総和に化学量論的に多いものと少ないものとに分けて再現HAZ靭性の優劣を比較し検討した。その結果、Nの量がBとTiとNbの量の総和より化学量論的に多い場合では、再現HAZ靭性が大きく低下することが判明した。   The reason for the change in toughness due to the increase in the amount of N is that the amount of N is the sum of the amounts of B, Ti, and Nb, based on the fact that a portion of Ti in the deposited Ti nitride is replaced by Nb. The reproducibility of HAZ toughness was compared and examined by dividing it into a stoichiometrically large and a small amount. As a result, it was found that when the amount of N is stoichiometrically greater than the total amount of B, Ti, and Nb, the reproduced HAZ toughness is greatly reduced.

以上の検討結果から、鋼中のNb,Ti,N,Bの量は〔2〕式を満たすことがHAZ靭性を向上させるための必要条件であることを見出した。即ち、Nの量が化学量論的にTiとBの量より多く、NbとTiとBの量より少ない条件であれば、靭性低下を引起す固溶Bや固溶Nを殆ど残さずに、粒内フェライト生成に必要なTi(Nb)窒化物とB窒化物を生成することができ、靭性を向上させることができることを見出した。
0.29Ti+1.3B≦N≦0.29Ti+1.3B+0.15Nb・・・〔2〕式
From the above examination results, it was found that the amounts of Nb, Ti, N, and B in the steel satisfy the formula [2] is a necessary condition for improving the HAZ toughness. That is, if the amount of N is stoichiometrically larger than the amounts of Ti and B and less than the amounts of Nb, Ti and B, there is hardly any solid solution B or solid solution N that causes a decrease in toughness. It has been found that Ti (Nb) nitride and B nitride necessary for the formation of intragranular ferrite can be generated and toughness can be improved.
0.29Ti + 1.3B ≦ N ≦ 0.29Ti + 1.3B + 0.15Nb [2] Formula

さらに、鋼中に含まれる添加する成分に関しては、強度確保や耐食性の向上の観点から、Ni,Cu,Cr,Mo,Vを添加した場合でのHAZ靭性も検討した。その結果、〔1〕式で表されるCeqの値が0.35以上0.40以下の条件で、それぞれ、0.1〜3.0%、0.1〜0.6%、0.1〜0.5%、0.03〜0.2%、0.005〜0.050%の範囲での添加であれば、HAZ靭性を大きく低下しないことが判明した。   Furthermore, regarding the components to be added contained in the steel, the HAZ toughness when Ni, Cu, Cr, Mo, V was added was also examined from the viewpoint of securing strength and improving corrosion resistance. As a result, the Ceq value represented by the formula [1] is 0.15 to 3.0%, 0.1 to 0.6%, 0.1 It has been found that HAZ toughness is not significantly reduced if the addition is in the range of -0.5%, 0.03-0.2%, 0.005-0.050%.

なお、この発明の鋼板の製造方法は、特に制限されることはなく、公知の方法に従って製造すれば良い。例えば、上記の好適成分組成に調整した溶鋼を連続鋳造法でスラブとしたのち、1000〜1250℃に加熱してから、熱間圧延を施せばよい。   In addition, the manufacturing method of the steel plate of this invention is not restrict | limited in particular, What is necessary is just to manufacture according to a well-known method. For example, after the molten steel adjusted to the above-mentioned preferred component composition is made into a slab by a continuous casting method, it is heated to 1000 to 1250 ° C. and then hot rolled.

本発明は、上記した知見に基づき完成されたものである。すなわち、本発明は、下記を要旨とする。
(1)質量%で、
C :0.03〜0.14%、 Si:0.01〜0.30%、
Mn:0.8〜2.0%、 P :0.02%以下、
S :0.005%以下、 Nb:0.003〜0.050%、
Al:0.005〜0.040%、 Ti:0.005〜0.030%、
B :0.0010〜0.0050%、 N :0.0030〜0.0080%、
O :0.0010〜0.0050%
を含有し、
〔1〕式で表されるCeqの値が0.35〜0.40であり、かつ、
Nb,Ti,NおよびBの質量関係が〔2〕式を満たし、
さらに、質量%で、
Ca:0.0005〜0.0030%、 Mg:0.0005〜0.0050%、
REM:0.005〜0.030%
のうち1種または2種以上を含有し、円相当径が0.005〜0.5μmの複合酸化物を、100〜3000個/mm含有することを特徴とする、大入熱溶接熱影響部靭性に優れた厚手高強度鋼板。
Ceq=C+Mn/6+(Ni+Cu)/15+(Cr+Mo+V)/5・・〔1〕式 0.29Ti+1.3B≦N≦0.29Ti+1.3B+0.15Nb・・・〔2〕式
The present invention has been completed based on the above findings. That is, the gist of the present invention is as follows.
(1) In mass%,
C: 0.03-0.14%, Si: 0.01-0.30%,
Mn: 0.8 to 2.0%, P: 0.02% or less,
S: 0.005% or less, Nb: 0.003-0.050%,
Al: 0.005-0.040%, Ti: 0.005-0.030%,
B: 0.0010 to 0.0050%, N: 0.0030 to 0.0080%,
O: 0.0010 to 0.0050%
Containing
[1] The value of Ceq represented by the formula is 0.35 to 0.40, and
The mass relationship of Nb, Ti, N and B satisfies the formula [2],
Furthermore, in mass%,
Ca: 0.0005 to 0.0030%, Mg: 0.0005 to 0.0050%,
REM: 0.005-0.030%
Of high heat input welding, characterized in that it contains 100-3000 pieces / mm 2 of complex oxide containing one or more of them and having an equivalent circle diameter of 0.005-0.5 μm. Thick high-strength steel sheet with excellent toughness.
Ceq = C + Mn / 6 + (Ni + Cu) / 15 + (Cr + Mo + V) / 5 .. [1] Formula 0.29Ti + 1.3B ≦ N ≦ 0.29Ti + 1.3B + 0.15Nb (2) Formula

(2)さらに、質量%で、
Ni:0.1〜3.0%、 Cu:0.1〜0.6%、
Cr:0.1〜0.5%、 Mo:0.03〜0.2%、
V :0.005〜0.050%
を1種または2種以上含有することを特徴とする、上記(1)に記載の大入熱溶接熱影響部靭性に優れた厚手高強度鋼板。
(2) Furthermore, in mass%,
Ni: 0.1-3.0%, Cu: 0.1-0.6%,
Cr: 0.1-0.5%, Mo: 0.03-0.2%,
V: 0.005 to 0.050%
Thick high-strength steel sheet having excellent high heat input welding heat-affected zone toughness as described in (1) above.

本発明は、船舶、海洋構造物、中高層ビルなどの破壊に対する厳しい靭性要求を満足する鋼板を供給するものであり、この種の産業分野にもたらす効果は極めて大きく、さらに構造物の安全性の意味から社会に対する貢献も非常に大きい。   The present invention supplies steel sheets that satisfy severe toughness requirements for the destruction of ships, offshore structures, mid-to-high-rise buildings, etc., and has an extremely large effect on this type of industrial field. Further, it means the safety of structures. The contribution to society is very large.

本発明で使用する鋼素材の組成限定理由について説明する。以下、組成における質量%は単に%で記す。
Cは、鋼の強度を向上させる有効な成分として下限を0.03%とし、また過剰の添加は、炭化物やMAを多量に生成し、HAZ靭性を著しく低下させるので、上限を0.14%とした。
The reason for limiting the composition of the steel material used in the present invention will be described. Hereinafter, the mass% in the composition is simply expressed as%.
C is an effective component for improving the strength of steel. The lower limit is 0.03%, and excessive addition produces a large amount of carbides and MA, and the HAZ toughness is remarkably reduced. Therefore, the upper limit is 0.14%. It was.

Siは、母材の強度確保、脱酸などに必要な成分であり、0.01%以上添加するが、HAZの硬化により靭性が低下するのを防止するため、上限を0.30%とした。   Si is a component necessary for securing the strength of the base material, deoxidation, and the like, and is added in an amount of 0.01% or more. .

Mnは、母材の強度、靭性の確保に有効な成分として0.8%以上の添加が必要であるが、溶接部の靭性、割れ性などの許容できる範囲で上限を2.0%とした。   Mn needs to be added in an amount of 0.8% or more as an effective component for securing the strength and toughness of the base material, but the upper limit is set to 2.0% within an allowable range such as toughness and crackability of the welded portion. .

Pは、含有量が少ないほど望ましいが、これを工業的に低減させるためには多大なコストがかかることから、含有範囲を0.02%以下とした。   P is more desirable as the content is smaller, but in order to reduce this industrially, it takes a great deal of cost, so the content range was set to 0.02% or less.

Sは、含有量が少ないほど望ましいが、これを工業的に低減させるためには多大なコストがかかることから、含有範囲を0.005%以下とした。   The content of S is preferably as small as possible. However, since it takes a great deal of cost to reduce this industrially, the content range is set to 0.005% or less.

Nbは、焼き入れ性を向上させることにより母材の強度を向上させるために有効な元素であり、また本発明においては、大入熱溶接でのHAZ組織中に粒内フェライト生成させるための核となるBNの析出サイトであるTi(Nb)窒化物を生成させるために必要である。但し、母材強度向上には0.003%未満の添加では十分な強度上昇が得られず、また0.050%を超える過剰な添加は母材の靭性を著しく低下させることから、Nbの添加範囲は0.003%以上0.050%以下とした。   Nb is an element effective for improving the strength of the base material by improving the hardenability. In the present invention, Nb is a nucleus for generating intragranular ferrite in the HAZ structure in high heat input welding. This is necessary to produce Ti (Nb) nitride, which is a BN precipitation site. However, in order to improve the strength of the base material, the addition of less than 0.003% does not provide a sufficient increase in strength, and excessive addition exceeding 0.050% significantly reduces the toughness of the base material. The range was 0.003% to 0.050%.

Alは、重要な脱酸元素であることから0.005%以上添加するが、多量に存在すると鋳片の表面品位劣化や粗大な酸化物の生成が生じることから、上限を0.040%とした。   Al is an important deoxidizing element, so 0.005% or more is added. However, if it is present in a large amount, the surface quality of the slab is deteriorated and coarse oxides are generated. did.

Tiは、重要な脱酸元素であると同時に、本発明においては、大入熱溶接でのHAZ組織中に粒内フェライト生成させるための核となるBNの析出サイトであるTi(Nb)窒化物を生成させるために必要であるため、0.005%以上添加する。しかし、過剰の添加は粗大な酸化物の生成を招くことから、0.030%を上限とした。   Ti is an important deoxidizing element, and at the same time, in the present invention, Ti (Nb) nitride, which is a BN precipitation site serving as a nucleus for generating intragranular ferrite in the HAZ structure in high heat input welding. In order to produce the above, 0.005% or more is added. However, excessive addition leads to the formation of coarse oxides, so 0.030% was made the upper limit.

Bは、B窒化物を生成させるために0.0010%以上添加する。しかし、過剰の添加は母材の靭性を劣化させるため、0.0050%を上限とした。   B is added in an amount of 0.0010% or more in order to form B nitride. However, excessive addition degrades the toughness of the base metal, so 0.0050% was made the upper limit.

Nは、B窒化物およびTi(Nb)窒化物を生成させるために必要である。その量は、Nb,Ti,Bの添加量と〔2〕式の関係が成立つ量添加することが必要であるため、0.0030%以上の添加が必要であるが、過剰の添加は粗大なTiNを生成することから、0.0080%を上限とした。   N is necessary to produce B nitride and Ti (Nb) nitride. The amount of Nb, Ti, and B need to be added in an amount that satisfies the relationship of the formula [2]. Therefore, 0.0030% or more must be added, but excessive addition is coarse. In this case, 0.0080% was made the upper limit.

Oは、鋼中に微細酸化物を生成させるために0.0050%以下に抑える必要があるが
、0.0010%以下では十分な酸化物が得られないため、その範囲を0.0010%以上0.0050%以下とした。
O needs to be suppressed to 0.0050% or less in order to generate fine oxides in the steel, but a sufficient oxide cannot be obtained at 0.0010% or less, so the range is 0.0010% or more. 0.0050% or less.

Ca,Mg,REMは、鋼中の酸化物の個数を増加させるために、Ti,Alの脱酸後にいずれか1種類以上添加する必要であるが、Ca,Mg,REMのいずれか単独の過剰添加は粗大な介在物を生成させることを考慮し、それぞれの範囲をCa:0.0005〜0.0030%、Mg:0.0005〜0.0050%、REM:0.005〜0.030%とした。   In order to increase the number of oxides in the steel, one or more of Ca, Mg, and REM must be added after deoxidation of Ti and Al. In consideration of the generation of coarse inclusions, the respective ranges are Ca: 0.0005 to 0.0030%, Mg: 0.0005 to 0.0050%, REM: 0.005 to 0.030%. It was.

Niは、鋼材の強度および耐食性を向上させるために、必要に応じて0.1%以上添加するが、経済性から3.0%を上限とした。   Ni is added in an amount of 0.1% or more as necessary in order to improve the strength and corrosion resistance of the steel material, but the upper limit is set to 3.0% in view of economy.

Cuは、鋼材の強度および耐食性を向上させるために、必要に応じて0.1%以上添加するが、0.6%を超えるとMAが生成しやすくなりHAZ靭性が低下することから、0.6%を上限とした。   Cu is added in an amount of 0.1% or more as necessary in order to improve the strength and corrosion resistance of the steel material. However, if it exceeds 0.6%, MA tends to be formed and the HAZ toughness is lowered. The upper limit was 6%.

Crは、鋼材の耐食性を向上させるために必要に応じて0.1%以上添加するが、過剰の添加はMA生成によるHAZ靭性の低下を招くことから、0.5%を上限とした。   Cr is added in an amount of 0.1% or more as necessary in order to improve the corrosion resistance of the steel material, but excessive addition causes a reduction in HAZ toughness due to MA formation, so 0.5% was made the upper limit.

Moは、母材の強度および耐食性を向上させるために有効な元素であり必要に応じて0.03%添加するが、過剰の添加はMA生成によるHAZ靭性の低下を招くことから、0.2%を上限とした。   Mo is an effective element for improving the strength and corrosion resistance of the base metal, and is added in an amount of 0.03% as necessary. However, excessive addition causes a decrease in HAZ toughness due to MA formation. % Was the upper limit.

Vは、母材の強度を向上させるために有効な元素であり必要に応じて0.005%添加するが、過剰の添加はMA生成によるHAZ靭性の低下を招くことから、0.050%を上限とした。   V is an element effective for improving the strength of the base metal and is added as required in an amount of 0.005%. However, excessive addition causes a decrease in HAZ toughness due to MA formation, so 0.050% is added. The upper limit.

表1に示した化学成分の溶鋼を連続鋳造して綱片を作製した。脱酸方法は、C5以外のものは、Ti投入前に溶鋼の溶存酸素をSiで0.0010%〜0.0050%に調整し、その後、まずTiで脱酸し、引き続きAlで脱酸した後、Ca,Mg,REMのうち1種以上添加し脱酸した。C5はAlで脱酸後のCa,Mg,REMのいずれも添加していない。これらを1100〜1250℃で再加熱したあと、以下の2種類の圧延方法により板厚50〜80mmの鋼板を製造した。一つは、表面温度が750〜900℃の温度範囲で圧延したあと、水冷後の板表面の温度が200〜400℃の温度範囲内で復熱するまで水冷する方法(表2ではTMCPと記載)であり、もう1つは、熱間圧延したのち室温まで水冷し、500〜600℃の範囲で焼戻す製造方法(表2ではDQ−Tと記載)である。   A steel piece having a chemical composition shown in Table 1 was continuously cast to produce a rope piece. As for the deoxidation method, for those other than C5, the dissolved oxygen of the molten steel was adjusted to 0.0010% to 0.0050% with Si before introducing Ti, and then deoxidized with Ti first and subsequently deoxidized with Al. Thereafter, one or more of Ca, Mg, and REM were added for deoxidation. C5 is Al, and none of Ca, Mg, and REM after deoxidation is added. After reheating these at 1100 to 1250 ° C., steel plates having a thickness of 50 to 80 mm were manufactured by the following two types of rolling methods. One is a method in which the surface temperature is rolled in a temperature range of 750 to 900 ° C., and then the plate surface after water cooling is cooled in water until it is reheated within a temperature range of 200 to 400 ° C. (described as TMCP in Table 2). The other is a manufacturing method (indicated as DQ-T in Table 2) after hot rolling, water cooling to room temperature, and tempering in the range of 500-600 ° C.

表2に鋼板の製造条件、板厚、機械的性質を示す。表2には鋼板の任意の箇所において測定した、円相当径0.005〜0.5μmの微細酸化物の個数を併記した。酸化物の個数は、鋼板の任意の箇所から抽出レプリカを作製し、それを電子顕微鏡にて10000倍で100視野以上(観察面積にして10000μm以上)を観察し、観察される0.005〜0.5μm径の各粒子において元素分析を行い、酸化物であるものカウントすることにより求めた。C5以外の鋼材は、円相当径で0.01〜0.5μmの微細酸化物が本発明範囲の100〜3000個/mm分散させている。 Table 2 shows the manufacturing conditions, plate thickness, and mechanical properties of the steel plate. Table 2 also shows the number of fine oxides having an equivalent circle diameter of 0.005 to 0.5 μm, measured at an arbitrary location on the steel sheet. The number of oxides is observed by producing an extraction replica from an arbitrary part of the steel sheet, and observing it with an electron microscope at a magnification of 10,000 at 100 fields or more (observation area of 10,000 μm 2 or more). Elemental analysis was performed on each particle having a diameter of 0.5 μm, and the number of oxides was counted. In steel materials other than C5, a fine oxide having an equivalent circle diameter of 0.01 to 0.5 μm is dispersed in an amount of 100 to 3000 / mm 2 within the range of the present invention.

これら鋼板に、溶接入熱量が20〜100kJ/mmであるエレクトロガス溶接(EGW)あるいはエレクトロスラグ溶接(ESW)を用いて、鋼板を突き合せて立て向き1パス溶接を行った。そして、板厚中央部(t/2)に位置するHAZにおいて、FLから1mm離れたHAZとFLの2箇所にノッチを入れ、−40℃でシャルピー衝撃試験を行った。表2に溶接条件とHAZ靭性を示す。ここでのシャルピー衝撃試験では、JIS4号の2mmVノッチのフルサイズ試験片を用いた。   These steel plates were subjected to vertical one-pass welding by facing the steel plates using electrogas welding (EGW) or electroslag welding (ESW) having a welding heat input of 20 to 100 kJ / mm. And in HAZ located in a plate | board thickness center part (t / 2), notch was put into two places, 1 mm away from FL, and the Charpy impact test was done at -40 degreeC. Table 2 shows welding conditions and HAZ toughness. In this Charpy impact test, a full size test piece of JIS No. 2 mmV notch was used.

D1〜D10は本発明鋼である。鋼の化学成分が適正に制御されているために、所定の母材性能を満たしつつ、−40℃での大入熱HAZ靭性が良好である。また、微細酸化物の個数が100個以上含まれて、かつ、Nb,Ti,N,Bの量が式〔2〕式を満足しているため、−40℃での大入熱HAZ靭性が100Jを超える高い値となっている。   D1 to D10 are steels of the present invention. Since the chemical composition of steel is appropriately controlled, the high heat input HAZ toughness at −40 ° C. is satisfactory while satisfying a predetermined base material performance. Further, since the number of fine oxides is 100 or more and the amounts of Nb, Ti, N, and B satisfy the formula [2], the high heat input HAZ toughness at −40 ° C. It is a high value exceeding 100J.

一方、比較鋼のC1〜5は、いずれも本発明範囲外であるため、大入熱HAZ靭性が不充分である。即ち、C1,C4はNの量が式〔2〕式を満足しておらず、C2はBが本発明範囲外であり、C3はNbが本発明範囲外であり、C5はCa,Mg,REMのいずれも含有せず、脱酸が適切ではないために微細酸化物の個数が本発明範囲外である。   On the other hand, since C1-5 of the comparative steels are all outside the scope of the present invention, the high heat input HAZ toughness is insufficient. That is, C1 and C4 do not satisfy the formula [2], C2 is outside the scope of the present invention, C3 is outside the scope of the present invention, and C5 is Ca, Mg, Since none of the REMs is contained and deoxidation is not appropriate, the number of fine oxides is outside the scope of the present invention.

Figure 2005307261
Figure 2005307261

Figure 2005307261
Figure 2005307261

Figure 2005307261
Figure 2005307261

45kJ/mm相当の溶接熱サイクルを示す図である。It is a figure which shows the welding thermal cycle equivalent to 45 kJ / mm.

Claims (2)

質量%で、
C :0.03〜0.14%、
Si:0.01〜0.30%、
Mn:0.8〜2.0%、
P :0.02%以下、
S :0.005%以下、
Nb:0.003〜0.050%、
Al:0.005〜0.040%、
Ti:0.005〜0.030%、
B :0.0010〜0.0050%、
N :0.0030〜0.0080%、
O :0.0010〜0.0050%
を含有し、
〔1〕式で表されるCeqの値が0.35〜0.40であり、かつ、
Nb,Ti,NおよびBの質量関係が〔2〕式を満たし、
さらに、質量%で、
Ca:0.0005〜0.0030%、
Mg:0.0005〜0.0050%、
REM:0.005〜0.030%
のうち1種または2種以上を含有し、円相当径が0.005〜0.5μmの複合酸化物を、100〜3000個/mm含有することを特徴とする大入熱溶接熱影響部靭性に優れた厚手高強度鋼板。
Ceq=C+Mn/6+(Ni+Cu)/15+(Cr+Mo+V)/5・・〔1〕式 0.29Ti+1.3B≦N≦0.29Ti+1.3B+0.15Nb・・・〔2〕式
% By mass
C: 0.03-0.14%,
Si: 0.01-0.30%,
Mn: 0.8 to 2.0%,
P: 0.02% or less,
S: 0.005% or less,
Nb: 0.003 to 0.050%,
Al: 0.005 to 0.040%,
Ti: 0.005 to 0.030%,
B: 0.0010 to 0.0050%,
N: 0.0030 to 0.0080%,
O: 0.0010 to 0.0050%
Containing
[1] The value of Ceq represented by the formula is 0.35 to 0.40, and
The mass relation of Nb, Ti, N and B satisfies the formula [2],
Furthermore, in mass%,
Ca: 0.0005 to 0.0030%,
Mg: 0.0005 to 0.0050%,
REM: 0.005-0.030%
High heat input welding heat-affected zone characterized in that it contains 100-3000 pieces / mm 2 of composite oxide containing one or more of them and having an equivalent circle diameter of 0.005-0.5 μm Thick high-strength steel sheet with excellent toughness.
Ceq = C + Mn / 6 + (Ni + Cu) / 15 + (Cr + Mo + V) / 5 .. [1] Formula 0.29Ti + 1.3B ≦ N ≦ 0.29Ti + 1.3B + 0.15Nb (2) Formula
さらに、質量%で、
Ni:0.1〜3.0%、
Cu:0.1〜0.6%、
Cr:0.1〜0.5%、
Mo:0.03〜0.2%、
V :0.005〜0.050%
を1種または2種以上を含有することを特徴とする、請求項1に記載の大入熱溶接熱影響部靭性に優れた厚手高強度鋼板。
Furthermore, in mass%,
Ni: 0.1 to 3.0%,
Cu: 0.1 to 0.6%,
Cr: 0.1 to 0.5%,
Mo: 0.03-0.2%,
V: 0.005 to 0.050%
The thick high-strength steel sheet excellent in high heat input welding heat-affected zone toughness according to claim 1, characterized by containing 1 type or 2 types or more.
JP2004124866A 2004-04-20 2004-04-20 Thick high-strength steel sheet with excellent heat input and heat-affected zone toughness Expired - Lifetime JP4276576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004124866A JP4276576B2 (en) 2004-04-20 2004-04-20 Thick high-strength steel sheet with excellent heat input and heat-affected zone toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004124866A JP4276576B2 (en) 2004-04-20 2004-04-20 Thick high-strength steel sheet with excellent heat input and heat-affected zone toughness

Publications (2)

Publication Number Publication Date
JP2005307261A true JP2005307261A (en) 2005-11-04
JP4276576B2 JP4276576B2 (en) 2009-06-10

Family

ID=35436359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004124866A Expired - Lifetime JP4276576B2 (en) 2004-04-20 2004-04-20 Thick high-strength steel sheet with excellent heat input and heat-affected zone toughness

Country Status (1)

Country Link
JP (1) JP4276576B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010077494A (en) * 2008-09-26 2010-04-08 Jfe Steel Corp Steel for large heat-input welding
JP2011021263A (en) * 2009-07-17 2011-02-03 Kobe Steel Ltd Steel plate excellent in weld heat affected zone toughness
JP2011074403A (en) * 2009-09-16 2011-04-14 Jfe Steel Corp Steel for high heat input welding
JP2011074447A (en) * 2009-09-30 2011-04-14 Jfe Steel Corp High strength steel excellent in toughness in high heat input weld heat-affected zone
EP2594657A1 (en) * 2010-11-22 2013-05-22 Nippon Steel & Sumitomo Metal Corporation Electron beam welded joint, steel material for use in electron beam welded joint, and manufacturing method thereof
EP2644730A1 (en) * 2010-11-22 2013-10-02 Nippon Steel & Sumitomo Metal Corporation Electron beam welded joint, steel material for electron beam welding, and manufacturing method thereof
CN103834870A (en) * 2014-02-24 2014-06-04 内蒙古包钢钢联股份有限公司 Rare earth-containing high-strength steel plate and production technology thereof
CN111647806A (en) * 2020-05-14 2020-09-11 河北普阳钢铁有限公司 Rolling process of Ti-containing low alloy steel
US11041231B2 (en) 2017-03-15 2021-06-22 Nippon Steel Corporation H-section steel and method of producing the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010077494A (en) * 2008-09-26 2010-04-08 Jfe Steel Corp Steel for large heat-input welding
JP2011021263A (en) * 2009-07-17 2011-02-03 Kobe Steel Ltd Steel plate excellent in weld heat affected zone toughness
JP2011074403A (en) * 2009-09-16 2011-04-14 Jfe Steel Corp Steel for high heat input welding
JP2011074447A (en) * 2009-09-30 2011-04-14 Jfe Steel Corp High strength steel excellent in toughness in high heat input weld heat-affected zone
EP2594657A4 (en) * 2010-11-22 2014-04-23 Nippon Steel & Sumitomo Metal Corp Electron beam welded joint, steel material for use in electron beam welded joint, and manufacturing method thereof
EP2644730A1 (en) * 2010-11-22 2013-10-02 Nippon Steel & Sumitomo Metal Corporation Electron beam welded joint, steel material for electron beam welding, and manufacturing method thereof
EP2594657A1 (en) * 2010-11-22 2013-05-22 Nippon Steel & Sumitomo Metal Corporation Electron beam welded joint, steel material for use in electron beam welded joint, and manufacturing method thereof
EP2644730A4 (en) * 2010-11-22 2014-05-07 Nippon Steel & Sumitomo Metal Corp Electron beam welded joint, steel material for electron beam welding, and manufacturing method thereof
CN103834870A (en) * 2014-02-24 2014-06-04 内蒙古包钢钢联股份有限公司 Rare earth-containing high-strength steel plate and production technology thereof
CN103834870B (en) * 2014-02-24 2017-01-04 内蒙古包钢钢联股份有限公司 Production technology containing rare earth high-strength steel plate
US11041231B2 (en) 2017-03-15 2021-06-22 Nippon Steel Corporation H-section steel and method of producing the same
CN111647806A (en) * 2020-05-14 2020-09-11 河北普阳钢铁有限公司 Rolling process of Ti-containing low alloy steel
CN111647806B (en) * 2020-05-14 2021-08-17 河北普阳钢铁有限公司 Rolling process of Ti-containing low alloy steel

Also Published As

Publication number Publication date
JP4276576B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
JP4660250B2 (en) Thick high-strength steel sheet with excellent low-temperature toughness in the heat affected zone by high heat input welding
JP5397363B2 (en) Thick high-strength steel sheet with excellent low-temperature toughness in the heat affected zone by high heat input welding
JP6226542B2 (en) Steel with excellent toughness in weld heat affected zone
WO2010134220A1 (en) Steel material for high heat input welding
JP4515430B2 (en) Steel with excellent toughness and base metal toughness of weld heat affected zone and its manufacturing method
JP2009138255A (en) High tensile strength thick steel plate for welding, having excellent toughness in heat-affected zone at large heat-input welding
JP5842314B2 (en) High heat input welding steel
JP2008163446A (en) Steel member for high heat input welding
JP2012207237A (en) 500 MPa YIELD STRENGTH THICK STEEL PLATE EXCELLENT IN TOUGHNESS IN MULTILAYER WELD ZONE AND PRODUCTION METHOD THEREOF
JP2003213366A (en) Steel having excellent toughness in base metal and large -small heat input weld heat-affected zone
JP5796636B2 (en) Steel material for large heat input welding
JP4276576B2 (en) Thick high-strength steel sheet with excellent heat input and heat-affected zone toughness
JP2007177327A (en) Thick steel plate having excellent toughness and reduced softening in weld heat-affected zone
JP2011021263A (en) Steel plate excellent in weld heat affected zone toughness
JP2009127104A (en) Steel having excellent weld heat-affected zone toughness, and method for producing the same
JP2017053028A (en) Ferrite-martensite two-phase stainless steel and manufacturing method therefor
JP2005060835A (en) Low-yield-ratio high-strength steel sheet excellent in toughness of welding-heat-affected part and its production method
JP4299769B2 (en) High HAZ toughness steel for high heat input welding with heat input of 20-100 kJ / mm
JP2009179844A (en) High tensile strength thick steel plate having excellent toughness in weld heat affected zone
JP2008223062A (en) Thick steel plate excellent in toughness of basic material and weld heat-affected zone
JP6447253B2 (en) High strength steel for welding
JP4332064B2 (en) High HAZ toughness steel for high heat input welding with heat input of 20-100 kJ / mm
JP7243916B2 (en) Steel plate and steel plate manufacturing method
JP7206700B2 (en) steel plate
JP3616609B2 (en) Steel with excellent weld heat-affected zone toughness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090306

R151 Written notification of patent or utility model registration

Ref document number: 4276576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350