JP4903107B2 - Welded joint - Google Patents

Welded joint Download PDF

Info

Publication number
JP4903107B2
JP4903107B2 JP2007254421A JP2007254421A JP4903107B2 JP 4903107 B2 JP4903107 B2 JP 4903107B2 JP 2007254421 A JP2007254421 A JP 2007254421A JP 2007254421 A JP2007254421 A JP 2007254421A JP 4903107 B2 JP4903107 B2 JP 4903107B2
Authority
JP
Japan
Prior art keywords
mass
weld metal
strength
less
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007254421A
Other languages
Japanese (ja)
Other versions
JP2009082948A (en
Inventor
博幸 角
圭人 石▲崎▼
哲哉 橋本
利彦 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Kobe Steel Ltd
Original Assignee
JFE Steel Corp
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Kobe Steel Ltd filed Critical JFE Steel Corp
Priority to JP2007254421A priority Critical patent/JP4903107B2/en
Publication of JP2009082948A publication Critical patent/JP2009082948A/en
Application granted granted Critical
Publication of JP4903107B2 publication Critical patent/JP4903107B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

本発明は、YP460鋼等の降伏強度が460N/mm以上の鋼材をエレクトロガスアーク溶接法により溶接した溶接継手に関する。 The present invention relates to a welded joint in which a steel material having a yield strength of 460 N / mm 2 or more such as YP460 steel is welded by an electrogas arc welding method.

エレクトロガスアーク溶接は、高能率立向溶接方法として、船舶、石油貯蔵タンク及び橋梁等の幅広い分野に適用されている。近時、中国・東アジア諸国の経済、産業の発展が著しく、物流量の増加に伴い、コンテナ貨物の効率的な輸送を目的に、コンテナ船の大型化が急速に進んでいる。   Electrogas arc welding is applied to a wide range of fields such as ships, oil storage tanks and bridges as a highly efficient vertical welding method. In recent years, the economic and industrial development of China and East Asian countries has been remarkable, and with the increase of goods flow, the size of container ships has been increasing rapidly for the purpose of efficient transportation of container cargo.

コンテナ船の大型化に伴い、船側外板又はハッチコーミング等の厚肉化が進んでおり、コンテナ積載数が8000TEUの場合、降伏強度が390N/mmの鋼材を使用すると、適用板厚は80mm程度となる。一方で、鋼材の降伏強度を460N/mm以上とすることで、適用板厚は60mm程度に薄くすることができ、船体の軽量化が可能である。これにより、燃費効率が向上するうえ、溶接施工能率も向上する。 Along with the increase in size of container ships, thickening of ship side shells or hatch coaming is progressing. When the number of containers loaded is 8000 TEU, when steel material with a yield strength of 390 N / mm 2 is used, the applicable plate thickness is 80 mm. It will be about. On the other hand, by setting the yield strength of the steel material to 460 N / mm 2 or more, the applicable plate thickness can be reduced to about 60 mm, and the weight of the hull can be reduced. As a result, fuel efficiency is improved and welding construction efficiency is also improved.

従来から、降伏強度が460N/mm以上の鋼材に対するエレクトロガスアーク溶接の適用に関する検討がなされている。例えば、特許文献1はワイヤの化学組成及び溶接金属の化学組成を規定することにより、耐脆性破壊特性を向上させたエレクトロガスアーク溶接方法を提案している。 Conventionally, studies on the application of electrogas arc welding to steel materials having a yield strength of 460 N / mm 2 or more have been made. For example, Patent Document 1 proposes an electrogas arc welding method in which the brittle fracture resistance is improved by defining the chemical composition of the wire and the chemical composition of the weld metal.

しかし、このような高強度の鋼材を適用するためには、溶接継手強度の確保が重要であり、エレクトロガスアーク溶接のような大入熱溶接の場合には、鋼材の熱影響部の幅が大きいため、熱影響による鋼材の軟化幅も増大し、十分な継手強度が確保できないという問題点がある。   However, in order to apply such a high-strength steel material, it is important to ensure the strength of the welded joint. In the case of high heat input welding such as electrogas arc welding, the width of the heat-affected zone of the steel material is large. For this reason, there is a problem that the softening width of the steel material due to the heat effect increases, and sufficient joint strength cannot be secured.

そこで、このような課題の解決のため、溶接金属の強度を従来よりも高めて、熱影響部の塑性変形を拘束し、継手強度の確保を図ることが提案された。   Therefore, in order to solve such a problem, it has been proposed to increase the strength of the weld metal as compared with the prior art to restrain the plastic deformation of the heat-affected zone and secure the joint strength.

特開2005−329460号公報JP 2005-329460 A

しかし、単純に、従来ワイヤより更に合金成分を添加して、溶接金属の強度を高めただけでは、衝撃性能が劣化してしまうという問題点がある。   However, simply adding an alloy component further than the conventional wire to increase the strength of the weld metal has a problem that the impact performance deteriorates.

本発明はかかる問題点に鑑みてなされたものであって、降伏強度が460N/mm以上の鋼材のエレクトロガスアーク溶接において、継手強度及び衝撃性能がいずれも優れた溶接継手を提供することを目的とする。 The present invention has been made in view of such a problem, and an object of the present invention is to provide a welded joint having excellent joint strength and impact performance in electrogas arc welding of a steel material having a yield strength of 460 N / mm 2 or more. And

本発明に係る溶接継手は、降伏強度が460N/mm以上の鋼材をエレクトロガスアーク溶接した溶接継手であって、
溶接金属の化学組成が、
C:0.05乃至0.07質量%
Si:0.10乃至0.30質量%
Mn:1.40乃至1.80質量%
Ni:0.9乃至1.3質量%
Mo:0.4乃至0.6質量%
Ti:0.03乃至0.06質量%
B:0.002乃至0.006質量%
を含有し、
P:0.02質量%以下
S:0.02質量%以下
Cu:0.2質量%以下
Cr:0.05質量%以下
Al:0.02質量%以下
O:0.04質量%以下
N:0.0075質量%以下
に規制し、
残部がFe及び不可避的不純物からなるものであり、
かつ溶接金属の硬さがビッカース硬度でHv:220乃至235であることを特徴とする。
The welded joint according to the present invention is a welded joint obtained by electrogas arc welding of a steel material having a yield strength of 460 N / mm 2 or more,
The chemical composition of the weld metal
C: 0.05 to 0.07% by mass
Si: 0.10 to 0.30 mass%
Mn: 1.40 to 1.80 mass%
Ni: 0.9 to 1.3% by mass
Mo: 0.4 to 0.6% by mass
Ti: 0.03 to 0.06 mass%
B: 0.002 to 0.006 mass%
Containing
P: 0.02 mass% or less S: 0.02 mass% or less Cu: 0.2 mass% or less Cr: 0.05 mass% or less Al: 0.02 mass% or less O: 0.04 mass% or less N: Restricted to 0.0075 mass% or less,
The balance consists of Fe and inevitable impurities,
The weld metal has a Vickers hardness of Hv: 220 to 235.

本発明によれば、溶接金属の組成及び硬さを適切に規定することにより、継手強度が高く、かつ衝撃性能が優れた溶接継手を得ることができる。   According to the present invention, a weld joint having high joint strength and excellent impact performance can be obtained by appropriately defining the composition and hardness of the weld metal.

以下、本発明の実施の形態について、具体的に説明する。1電極エレクトロガスアーク溶接において、本発明者らが鋭意検討した結果、溶接金属の化学組成範囲を細かく適切に規定することと、溶接金属の硬さの範囲を規定することにより、溶接継手の強度及び衝撃性能を高めることができることを見出した。   Hereinafter, embodiments of the present invention will be specifically described. In the one-electrode electrogas arc welding, as a result of intensive studies by the present inventors, the chemical composition range of the weld metal is finely and appropriately defined, and the hardness range of the weld metal is defined, whereby the strength of the weld joint and It has been found that impact performance can be enhanced.

従来、被溶接鋼板の厚肉化に伴う溶接入熱の増大による溶接金属の強度低下及び靱性劣化に対して、主に、靱性を安定化させる効果があるNiの添加による改善を図ってきた。従って、板厚60mmのエレクトロガスアーク溶接金属は、Niを2質量%以上含有する場合も認められた。しかし、このようにNiが主体の成分系で継手強度を確保するために合金成分を添加して強度を高めると、靭性が劣化する傾向が認められた。   Conventionally, improvement in weld metal strength and toughness deterioration due to increased welding heat input accompanying the increase in the thickness of the welded steel sheet has been attempted mainly by addition of Ni, which has the effect of stabilizing toughness. Therefore, an electrogas arc weld metal having a plate thickness of 60 mm was recognized even when Ni contained 2% by mass or more. However, when the alloy component is added to increase the strength in order to ensure the joint strength in such a component system mainly composed of Ni, the tendency to deteriorate the toughness was recognized.

そこで、本発明者らは、合金成分量が少なくても、強度低下及び靭性劣化を防止できる成分系の溶接金属を開発すべく鋭意検討した結果、従来の溶接金属よりもNi量を減らし、Moを添加することで、組織の微細化が可能となり、厚板における強度及び靭性の確保が可能となることを見出した。但し、Niを過度に減らすと、遷移温度を低下させる効果がなくなり、低温での靱性が劣化する。一方、Mo量が過大となると、焼入れ効果が高いため、強度が高くなり過ぎ、靱性が劣化する傾向となる。   Therefore, the present inventors have intensively studied to develop a component-based weld metal that can prevent strength reduction and toughness deterioration even when the alloy component amount is small. It has been found that the addition of can make the microstructure finer and ensure the strength and toughness of the thick plate. However, if Ni is excessively reduced, the effect of lowering the transition temperature is lost, and the toughness at low temperatures deteriorates. On the other hand, if the amount of Mo is excessive, the quenching effect is high, so the strength becomes too high and the toughness tends to deteriorate.

このように、溶接金属の強度を高めると靭性が劣化するため、強度を低くする方が望ましいが、エレクトロガスアーク溶接のような大入熱溶接の場合、鋼材の熱影響部が軟化し、溶接金属の強度を低くすると、継手強度の確保が難しくなる。   As described above, increasing the strength of the weld metal degrades the toughness, so lowering the strength is desirable. However, in the case of high heat input welding such as electrogas arc welding, the heat-affected zone of the steel material is softened and the weld metal is reduced. When the strength of the steel is lowered, it is difficult to ensure the strength of the joint.

そこで、本発明においては、溶接金属のビッカース硬さHvを220以上とすることにより、板厚が40mm以上の鋼材のエレクトロガスアーク溶接においても、十分な継手強度を確保することを可能とした。   Therefore, in the present invention, by setting the Vickers hardness Hv of the weld metal to 220 or more, it is possible to ensure sufficient joint strength even in electrogas arc welding of a steel material having a plate thickness of 40 mm or more.

以下、本発明の溶接金属の組成規定理由について、説明する。   Hereinafter, the reason for defining the composition of the weld metal of the present invention will be described.

「C:0.05乃至0.07質量%」
Cは溶接金属の強度を確保するためには欠かせない元素である。Cの質量が0.05質量%未満では、溶接金属の強度が低下し、継手引張強度を確保できない。一方、Cが0.07質量%を超えると、溶接金属の強度が高くなり過ぎ、靱性が劣化する。
“C: 0.05 to 0.07 mass%”
C is an element indispensable for ensuring the strength of the weld metal. If the mass of C is less than 0.05% by mass, the strength of the weld metal decreases, and the joint tensile strength cannot be ensured. On the other hand, when C exceeds 0.07 mass%, the strength of the weld metal becomes too high and the toughness deteriorates.

「Si:0.10乃至0.30質量%」
Siは脱酸剤として溶接金属の酸素量を低減し、靭性を向上させる。Siの質量が0.10質量%未満では、溶接金属の靭性が劣化する。一方、Siの質量が0.30質量%を超えると、強度が高くなり、靱性が劣化する。
“Si: 0.10 to 0.30 mass%”
Si acts as a deoxidizer to reduce the oxygen content of the weld metal and improve toughness. When the mass of Si is less than 0.10% by mass, the toughness of the weld metal deteriorates. On the other hand, when the mass of Si exceeds 0.30 mass%, the strength increases and the toughness deteriorates.

「Mn:1.40乃至1.80質量%」
Mnは脱酸剤として溶接金属の酸素量を低減し、靭性を向上させると共に、溶接金属の強度を確保するにためにも有効な元素である。Mnの質量が1.40質量%未満では、溶接金属の強度が低下し、継手引張強度が確保できない。一方、Mnの質量が1.80質量%を超えると、溶接金属の強度が高くなり過ぎ、靱性が劣化する。
“Mn: 1.40 to 1.80 mass%”
Mn is an effective element for reducing the oxygen content of the weld metal as a deoxidizer, improving toughness, and ensuring the strength of the weld metal. If the mass of Mn is less than 1.40 mass%, the strength of the weld metal is lowered, and the joint tensile strength cannot be ensured. On the other hand, when the mass of Mn exceeds 1.80 mass%, the strength of the weld metal becomes too high and the toughness deteriorates.

「Ni:0.9乃至1.3質量%」
Niはオーステナイト形成元素であり、前述したとおり、溶接金属の靭性を安定化させる効果がある。Niの質量が0.9質量%未満では、溶接金属の靱性が劣化する。一方、Niが1.3質量%を超えると、強度が高くなり過ぎ、靱性が劣化する。
“Ni: 0.9 to 1.3 mass%”
Ni is an austenite forming element and has the effect of stabilizing the toughness of the weld metal as described above. When the mass of Ni is less than 0.9% by mass, the toughness of the weld metal deteriorates. On the other hand, if Ni exceeds 1.3% by mass, the strength becomes too high and the toughness deteriorates.

「Mo:0.4乃至0.6質量%」
Moはフェライト形成元素であり、溶接金属の焼入れ性を高める効果があり、凝固組織の微細化に有効な元素である。従って、靭性を向上させ、更には少量のMo添加でも、溶接金属の強度を高めることができる。Moの質量が0.4質量%未満では、溶接金属の強度が低下し、継手強度を確保できない。一方、Moが0.6質量%を超えると、溶接金属の強度が高くなり、靭性が劣化する。
“Mo: 0.4 to 0.6 mass%”
Mo is a ferrite-forming element, has an effect of improving the hardenability of the weld metal, and is an element effective for refinement of a solidified structure. Therefore, the toughness can be improved, and even the addition of a small amount of Mo can increase the strength of the weld metal. If the mass of Mo is less than 0.4% by mass, the strength of the weld metal decreases, and the joint strength cannot be ensured. On the other hand, when Mo exceeds 0.6 mass%, the strength of the weld metal increases and the toughness deteriorates.

このように、Moは溶接金属の焼入れ性を高める効果があり、組織微細化に有効であるが、Moを過度に添加すると、強度が高くなり過ぎ、靱性が劣化する。一方で、Niは靭性の安定化に有効であるが、Niを過度に添加すると、オーステナイト凝固となり、靭性が劣化する。本発明のNi,Moの含有量範囲においては、オーステナイト形成元素のNiを添加して靱性の安定化を図り、フェライト形成元素であるMoを添加することによりオーステナイト凝固を抑制しつつ組織の微細化を行う。これにより、継手強度確保のための溶接金属強度を維持しつつ、溶接金属強度の上昇による靭性劣化を抑制することができ、本発明は、強度及び靭性が共に優れた溶接金属を得ることができる組成範囲を開示したものである。   Thus, Mo has the effect of improving the hardenability of the weld metal and is effective for refining the structure. However, when Mo is added excessively, the strength becomes too high and the toughness deteriorates. On the other hand, Ni is effective in stabilizing toughness, but if Ni is added excessively, austenite solidification occurs and the toughness deteriorates. In the Ni and Mo content range of the present invention, the austenite forming element Ni is added to stabilize the toughness, and the ferrite forming element Mo is added to suppress the austenite solidification and refine the structure. I do. Thereby, while maintaining the weld metal strength for securing the joint strength, it is possible to suppress toughness deterioration due to an increase in weld metal strength, and the present invention can obtain a weld metal having both excellent strength and toughness. The composition range is disclosed.

「Ti:0.03乃至0.06質量%」
TiはBとの相乗効果により溶接金属組織を微細化し、靱性を向上させる効果がある。Tiの質量が0.03質量%未満では、組織の微細化効果が得られず、溶接金属の靱性が劣化する。一方、Tiが0.06質量%を超えると、溶接金属中にTiが過剰となり、靭性が劣化する。
“Ti: 0.03 to 0.06 mass%”
Ti has the effect of refining the weld metal structure and improving toughness by a synergistic effect with B. When the mass of Ti is less than 0.03% by mass, the effect of refining the structure cannot be obtained, and the toughness of the weld metal deteriorates. On the other hand, when Ti exceeds 0.06 mass%, Ti becomes excessive in the weld metal and the toughness deteriorates.

「B:0.002乃至0.006質量%」
Bは少量の添加でTiとの相乗効果により溶接金属組織を微細化し、靭性を向上させる効果がある。Bの質量が0.002質量%未満では、組織の微細化効果が得られず、溶接金属の靭性が劣化する。一方、Bが0.006質量%を超えると、溶接金属中にBが過剰となり、強度が高くなり過ぎ靱性が劣化する。
“B: 0.002 to 0.006 mass%”
B has the effect of refining the weld metal structure and improving toughness by a synergistic effect with Ti with a small amount of addition. If the mass of B is less than 0.002 mass%, the effect of refining the structure cannot be obtained, and the toughness of the weld metal deteriorates. On the other hand, if B exceeds 0.006% by mass, B becomes excessive in the weld metal, the strength becomes too high, and the toughness deteriorates.

「O:0.04質量%以下」
溶接金属のO量が高いと、靭性は劣化するので、Oを0.04質量%以下に規制する。
“O: 0.04 mass% or less”
When the amount of O of the weld metal is high, toughness deteriorates, so O is regulated to 0.04 mass% or less.

「N:0.0075質量%以下」
溶接金属のN量が高いと、靱性は劣化するので、Nを0.0075質量%以下に規制する。
“N: 0.0075 mass% or less”
If the N amount of the weld metal is high, toughness deteriorates, so N is regulated to 0.0075 mass% or less.

「Al:0.02質量%以下」
溶接金属のAl量が高いと、Ti酸化物による組織微細化効果が抑制され、靱性は劣化するので、Alは0.02質量%以下に規制する。
“Al: 0.02 mass% or less”
When the Al content of the weld metal is high, the effect of refining the structure due to the Ti oxide is suppressed and the toughness deteriorates, so Al is restricted to 0.02% by mass or less.

「P:0.02質量%以下」
溶接金属のP量が高いと高温割れが発生しやすくなるので、Pは0.02質量%以下に規制する。
“P: 0.02 mass% or less”
If the P content of the weld metal is high, hot cracking is likely to occur, so P is restricted to 0.02 mass% or less.

「S:0.02質量%以下」
溶接金属のS量が高いと、高温割れが発生しやすくなるので、Sは0.02質量%以下に規制する。
“S: 0.02 mass% or less”
If the amount of S in the weld metal is high, hot cracking is likely to occur, so S is restricted to 0.02 mass% or less.

「Cu:0.2質量%以下」
溶接金属のCuは、強度を高める効果はあるものの、過度に添加すると強度が高くなり過ぎ、靱性が劣化するため、意図的には添加しない。但し、鋼材の希釈及びワイヤのメッキにより、不可避的に0.2質量%以下は含まれることがあり、この程度は許容される。
“Cu: 0.2% by mass or less”
Although there is an effect of increasing the strength, Cu of the weld metal is not intentionally added because excessively added strength results in excessively high strength and deteriorates toughness. However, 0.2% by mass or less may be inevitably included due to dilution of the steel material and plating of the wire, and this degree is allowed.

「Cr:0.05質量%以下」
溶接金属のCrはフェライト形成元素であり、溶接金属の焼入れ性を高める効果があるが、その効果はMoと比較して小さく、このため、Crは意図的には添加しない。但し、鋼材の希釈により、Crが不可避的に0.05質量%以下含まれることがあり、この程度は許容される。
“Cr: 0.05% by mass or less”
Cr in the weld metal is a ferrite-forming element and has the effect of improving the hardenability of the weld metal, but the effect is small compared to Mo, and therefore Cr is not added intentionally. However, due to dilution of the steel material, Cr may inevitably be contained in an amount of 0.05% by mass or less, and this degree is allowed.

「ビッカース硬度Hv:220乃至235」
溶接金属の強度が低いと、継手の強度を確保できない。本発明者らが鋭意検討した結果、溶接金属の硬さHvが220未満であると、板厚が40mm以上の鋼材をエレクトロガスアーク溶接した場合、熱影響部が軟化し、継手強度を確保できない。溶接金属の硬さがHv220以上であると、溶接金属部の拘束力により、熱影響部の塑性変形が抑制され、継手強度が目標の570N/mm以上を満足する。一方、溶接金属の硬さHvが235を超えると、溶接金属の組織がベイナイト+マルテンサイト組織となるため、継手強度は目標を満足するが、溶接金属の強度が高くなり過ぎ、靱性が劣化する。
“Vickers hardness Hv: 220 to 235”
If the strength of the weld metal is low, the strength of the joint cannot be secured. As a result of intensive studies by the present inventors, when the hardness Hv of the weld metal is less than 220, when a steel material having a plate thickness of 40 mm or more is electrogas arc welded, the heat-affected zone is softened and the joint strength cannot be ensured. When the hardness of the weld metal is Hv 220 or more, the plastic deformation of the heat-affected zone is suppressed by the binding force of the weld metal portion, and the joint strength satisfies the target of 570 N / mm 2 or more. On the other hand, when the hardness Hv of the weld metal exceeds 235, the weld metal structure becomes a bainite + martensite structure, so the joint strength satisfies the target, but the weld metal strength becomes too high and the toughness deteriorates. .

なお、溶接金属の硬さは、溶接金属の成分濃度から決まるパラメータPCMを、0.200乃至0.350の範囲内に規定することと、溶接入熱を200kJ/cm乃至460kJ/cmの範囲に調整して溶接施工することにより制御する。即ち、溶接金属中の化学成分の含有量から、下記数式PCMの値を算出する。   The hardness of the weld metal is determined by defining the parameter PCM determined from the component concentration of the weld metal within the range of 0.200 to 0.350 and the welding heat input within the range of 200 kJ / cm to 460 kJ / cm. Control by adjusting and welding. That is, the value of the following mathematical formula PCM is calculated from the content of chemical components in the weld metal.

Figure 0004903107
Figure 0004903107

溶接金属の残部としては、Fe及び母材の希釈により混入するNb,Vの他、不可避的不純物がある。なお、残部のうち、Feは90質量%以上含有されている。   As the balance of the weld metal, there are unavoidable impurities in addition to Nb and V mixed by dilution of Fe and the base material. In addition, 90 mass% or more of Fe is contained among remainders.

一般的に、鋼材をエレクトロガスアーク溶接する場合、鋼材希釈率が20乃至30質量%程度であるため、本発明の溶接金属化学成分範囲に制御するには、460N/mm以上の鋼材成分及びエレクトロガスアーク溶接用ワイヤの成分で調整を行う。 Generally, when steel material is electrogas arc welded, the steel material dilution ratio is about 20 to 30% by mass. Therefore, in order to control the range of the weld metal chemical component of the present invention, the steel material component of 460 N / mm 2 or more and electro Adjustments are made with the components of the gas arc welding wire.

以下、本発明の実施例について、本発明の範囲から外れる比較例と比較して説明する。下記表1は供試鋼板の組成(質量%)を示す。この供試鋼板は、降伏強度が460N/mm以上であり、板厚は40〜60mm、幅は500mm、長さは1000mmの大きさを有する。そして、下記表2(試験条件)及び表3(溶接施工条件)に示す条件で、1パス溶接を行った。なお、ワイヤ径は1.6mmである。 Examples of the present invention will be described below in comparison with comparative examples that are out of the scope of the present invention. Table 1 below shows the composition (mass%) of the test steel sheet. This test steel plate has a yield strength of 460 N / mm 2 or more, a plate thickness of 40 to 60 mm, a width of 500 mm, and a length of 1000 mm. And 1 pass welding was performed on the conditions shown in the following Table 2 (test conditions) and Table 3 (welding construction conditions). The wire diameter is 1.6 mm.

Figure 0004903107
Figure 0004903107

Figure 0004903107
Figure 0004903107

Figure 0004903107
開先形状:V開先
Figure 0004903107
Groove shape: V groove

溶接金属の衝撃試験については、JIS Z 3128に規定されている方法により、−20℃における衝撃値を測定し、3本の衝撃値の平均値が53J以上のものを、衝撃性能が良好と判断した。溶接金属の硬さは、図1に示すように、溶接金属1の中央部の位置で矢印2に示すように、板厚方向に2mm間隔でビッカース硬さを測定し、その平均値をビッカース硬さとした。なお、符号3は溶接母材である。板厚が40mmの場合は21点、50mmの場合は26点、55mmの場合は28点、60mmの場合は31点の夫々について測定した。溶接継手引張試験片は、NKU2A号試験片を用い、継手強度が570N/mm以上を良好とした。 For the weld metal impact test, the impact value at −20 ° C. is measured by the method specified in JIS Z 3128, and the impact performance is judged to be good if the average value of the three impact values is 53 J or more. did. As shown in FIG. 1, the hardness of the weld metal is measured at 2 mm intervals in the plate thickness direction as indicated by an arrow 2 at the center of the weld metal 1, and the average value is calculated as Vickers hardness. Say it. Reference numeral 3 denotes a welding base material. The measurement was performed at 21 points when the plate thickness was 40 mm, 26 points when the plate was 50 mm, 28 points when the plate was 55 mm, and 31 points when the plate was 60 mm. As the welded joint tensile test piece, an NKU2A test piece was used, and a joint strength of 570 N / mm 2 or more was considered good.

下記表4(表4−1、表4−2)はワイヤの化学組成(質量%)を示す。表4に示す組成のワイヤ1〜21と、表1に示す板厚の供試鋼板とを種々組合せてエレクトロガスアーク溶接を行った。下記表5(表5-1,表5−2)は、溶接金属の化学組成(質量%)を示す。更に、下記表6は、実施例及び比較例の機械的性能を示す。   The following Table 4 (Table 4-1 and Table 4-2) shows the chemical composition (mass%) of the wire. Electrogas arc welding was performed by variously combining the wires 1 to 21 having the compositions shown in Table 4 and the test steel plates having the thicknesses shown in Table 1. Table 5 below (Tables 5-1 and 5-2) shows the chemical composition (mass%) of the weld metal. Furthermore, Table 6 below shows the mechanical performance of the examples and comparative examples.

本発明の実施例1〜14では、溶接金属の強度は適正範囲内でかつ機械的性能を満足した。比較例15では、溶接金属のC量が0.05質量%未満、Si量が0.10質量%未満、Ti量が0.03質量%未満であり、ビッカース硬さがHv220未満であり、継手強度が低く、靭性も劣化した。比較例16では、溶接金属のC量が0.07質量%を超え、Si量が0.30質量%を超え、Mn量が1.80質量%を超えており、強度が高くなり過ぎ靱性が劣化した。比較例17では、溶接金属のNi量が1.3質量%を超え、Mo量が0.6質量%を超えており、強度が高くなり過ぎ靭性が劣化した。比較例18では、溶接金属のTi量が0.06質量%を超え、B量が0.006質量%を超えており、Ti,B量が過剰となり靱性が劣化した。比較例19では、溶接金属のB量が0.002質量%未満であり、靭性が劣化した。比較例20では、溶接金属のNi量が0.9質量%未満であり、靭性が劣化した。比較例21では、溶接金属のMn量が1.40質量%未満であり、Mo量が0.4質量%未満であり、ビッカース硬さがHv220未満であり、継手強度が低くなった。   In Examples 1 to 14 of the present invention, the strength of the weld metal was within an appropriate range and satisfied the mechanical performance. In Comparative Example 15, the C amount of the weld metal is less than 0.05% by mass, the Si amount is less than 0.10% by mass, the Ti amount is less than 0.03% by mass, the Vickers hardness is less than Hv220, Low strength and toughness deteriorated. In Comparative Example 16, the C amount of the weld metal exceeds 0.07 mass%, the Si amount exceeds 0.30 mass%, the Mn amount exceeds 1.80 mass%, the strength becomes too high and the toughness is too high. Deteriorated. In Comparative Example 17, the amount of Ni in the weld metal exceeded 1.3% by mass, the amount of Mo exceeded 0.6% by mass, the strength became too high, and the toughness deteriorated. In Comparative Example 18, the Ti amount of the weld metal exceeded 0.06 mass%, the B amount exceeded 0.006 mass%, the Ti and B amounts became excessive, and the toughness deteriorated. In Comparative Example 19, the B amount of the weld metal was less than 0.002% by mass, and toughness deteriorated. In Comparative Example 20, the amount of Ni in the weld metal was less than 0.9% by mass, and the toughness was deteriorated. In Comparative Example 21, the Mn content of the weld metal was less than 1.40 mass%, the Mo content was less than 0.4 mass%, the Vickers hardness was less than Hv220, and the joint strength was low.

Figure 0004903107
Figure 0004903107

Figure 0004903107
Figure 0004903107

Figure 0004903107
Figure 0004903107

Figure 0004903107
Figure 0004903107

Figure 0004903107
Figure 0004903107

ビッカース硬さの測定位置を示す図である。It is a figure which shows the measurement position of Vickers hardness.

符号の説明Explanation of symbols

1:溶接金属
2:矢印
3:溶接母材
1: Weld metal 2: Arrow 3: Welding base material

Claims (1)

降伏強度が460N/mm以上の鋼材をエレクトロガスアーク溶接した溶接継手であって、
溶接金属の化学組成が、
C:0.05乃至0.07質量%
Si:0.10乃至0.30質量%
Mn:1.40乃至1.80質量%
Ni:0.9乃至1.3質量%
Mo:0.4乃至0.6質量%
Ti:0.03乃至0.06質量%
B:0.002乃至0.006質量%
を含有し、
P:0.02質量%以下
S:0.02質量%以下
Cu:0.2質量%以下
Cr:0.05質量%以下
Al:0.02質量%以下
O:0.04質量%以下
N:0.0075質量%以下
に規制し、
残部がFe及び不可避的不純物からなるものであり、
かつ溶接金属の硬さがビッカース硬度でHv:220乃至235であることを特徴とする溶接継手。
A welded joint obtained by electrogas arc welding of a steel material having a yield strength of 460 N / mm 2 or more,
The chemical composition of the weld metal
C: 0.05 to 0.07% by mass
Si: 0.10 to 0.30 mass%
Mn: 1.40 to 1.80 mass%
Ni: 0.9 to 1.3% by mass
Mo: 0.4 to 0.6% by mass
Ti: 0.03 to 0.06 mass%
B: 0.002 to 0.006 mass%
Containing
P: 0.02 mass% or less S: 0.02 mass% or less Cu: 0.2 mass% or less Cr: 0.05 mass% or less Al: 0.02 mass% or less O: 0.04 mass% or less N: Restricted to 0.0075 mass% or less,
The balance consists of Fe and inevitable impurities,
The weld joint has a Vickers hardness of Hv: 220 to 235.
JP2007254421A 2007-09-28 2007-09-28 Welded joint Active JP4903107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007254421A JP4903107B2 (en) 2007-09-28 2007-09-28 Welded joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007254421A JP4903107B2 (en) 2007-09-28 2007-09-28 Welded joint

Publications (2)

Publication Number Publication Date
JP2009082948A JP2009082948A (en) 2009-04-23
JP4903107B2 true JP4903107B2 (en) 2012-03-28

Family

ID=40657100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007254421A Active JP4903107B2 (en) 2007-09-28 2007-09-28 Welded joint

Country Status (1)

Country Link
JP (1) JP4903107B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100957940B1 (en) * 2007-12-13 2010-05-13 주식회사 포스코 High strength Steel Plate for High Heat Input Welding having Welded Joint with Superior Impact Toughness in Weld Heat Affected Zone
JP2016084489A (en) * 2014-10-23 2016-05-19 株式会社神戸製鋼所 Weld joint for ship excellent in corrosion resistance
JP7006576B2 (en) * 2017-12-19 2022-02-10 日本製鉄株式会社 Solid wire for gas shielded arc welding

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03294096A (en) * 1990-04-10 1991-12-25 Nippon Steel Corp Combined wire for electrogas arc welding
JP3718323B2 (en) * 1997-06-26 2005-11-24 新日本製鐵株式会社 Flux-cored wire for multi-electrode vertical electrogas arc welding for extra heavy steel
JP3722044B2 (en) * 2001-10-31 2005-11-30 Jfeスチール株式会社 Welded joint
JP4319886B2 (en) * 2003-10-22 2009-08-26 新日本製鐵株式会社 Large heat input butt weld joint with brittle fracture resistance
JP2005305498A (en) * 2004-04-21 2005-11-04 Nippon Steel & Sumikin Welding Co Ltd Flux-cored wire for electrogas arc welding
JP4486529B2 (en) * 2004-04-22 2010-06-23 新日本製鐵株式会社 Electrogas welding joint with excellent toughness

Also Published As

Publication number Publication date
JP2009082948A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
JP4776508B2 (en) Flux-cored wire for electrogas arc welding
EP3037205B1 (en) Wire for gas shield arc welding
JPS61130462A (en) High-touchness extra high tension steel having superior stress corrosion cracking resistance as well as yield stress of 110kgf/mm2 and above
KR20190134703A (en) Arc welding method and welding wire
KR20210136132A (en) Manufacturing method of high strength welded joint for cryogenic use
KR20140117547A (en) Base metal for high-toughness clad steel plate giving weld with excellent toughness, and process for producing said clad steel plate
US20190352749A1 (en) Steel material for high heat input welding
JP5005395B2 (en) Welding wire for high strength and toughness steel
KR20230042371A (en) Welded joints and manufacturing methods of welded joints
JP2007136547A (en) Method for producing metallic flux cored wire with little slag and welded joint having high fatigue strength
EP2803741A1 (en) Low alloy steel
JP4903107B2 (en) Welded joint
JP4441372B2 (en) High strength and high toughness gas shielded arc welding wire
CN111788325B (en) High Mn steel and method for producing same
JP2009127104A (en) Steel having excellent weld heat-affected zone toughness, and method for producing the same
KR101937005B1 (en) Weld joint
JP6829111B2 (en) Filling material for TIG welding
KR101687687B1 (en) Thick steel sheet having superior fatigue resistance properties in direction of sheet thickness, method for producing same, and fillet welded joint using said thick steel sheet
US20210292876A1 (en) Austenitic Heat Resistant Alloy and Welded Joint Including the Same
JP2007126724A (en) High tensile strength steel plate having excellent low temperature toughness in weld heat-affected zone
KR20210035050A (en) High chromium creep resistant weld metal for arc welding of thick walled steel members
KR20210035051A (en) High chromium creep resistant weld metal for arc welding of thin walled steel members
JP6447253B2 (en) High strength steel for welding
JP6181947B2 (en) Weld metal
WO2020189672A1 (en) Base material for clad steel, clad steel, and method for manufacturing clad steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120104

R150 Certificate of patent or registration of utility model

Ref document number: 4903107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250