JP2016084489A - Weld joint for ship excellent in corrosion resistance - Google Patents
Weld joint for ship excellent in corrosion resistance Download PDFInfo
- Publication number
- JP2016084489A JP2016084489A JP2014216550A JP2014216550A JP2016084489A JP 2016084489 A JP2016084489 A JP 2016084489A JP 2014216550 A JP2014216550 A JP 2014216550A JP 2014216550 A JP2014216550 A JP 2014216550A JP 2016084489 A JP2016084489 A JP 2016084489A
- Authority
- JP
- Japan
- Prior art keywords
- content
- corrosion
- weld metal
- less
- corrosion resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/3053—Fe as the principal constituent
- B23K35/3073—Fe as the principal constituent with Mn as next major constituent
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Heat Treatment Of Steel (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Arc Welding In General (AREA)
- Butt Welding And Welding Of Specific Article (AREA)
Abstract
Description
本発明は、油タンカー、バラ積み船、自動車運搬船、コンテナ船、LNG船、客船、軍艦等の各種船舶の構造部材として用いられる船舶用溶接継手に関するものであり、特にタンカー原油タンク内やバルカー船倉内など無塗装で使用される部位に用いることができる耐食性に優れた船舶用溶接継手に関するものである。 The present invention relates to a welded joint for ships used as a structural member of various ships such as oil tankers, bulk carriers, car carriers, container ships, LNG ships, passenger ships, warships and the like, and particularly in tanker crude oil tanks and bulker holds. The present invention relates to a marine welded joint that has excellent corrosion resistance and can be used for parts that are used without coating, such as inside.
油タンカー、バラ積み船、自動車運搬船、コンテナ船、LNG船、客船、軍艦等の各種船舶の構造部材としては厚鋼板が用いられることが多く、これら船舶は厚鋼板を溶接することで建造されている。しかし、タンカー原油タンク内やバルカー船の船倉内など無塗装で使用される鋼材も多数あり、原油タンク底の強酸によるピット成長、原油タンク気相部の腐食性ガスによる全面腐食、石炭などを積んだ場合の硫酸によるバルカー船倉の一様腐食など、船舶構造部材の母材および溶接継手は厳しい環境に曝される。また、船舶の構造部材は海水に由来する塩分や昼夜の温度変化に伴う結露といった厳しい腐食性環境に曝されるため、何らかの防食を施す必要がある。 Steel plates are often used as structural members for various types of ships such as oil tankers, bulk carriers, car carriers, container ships, LNG ships, passenger ships, warships, etc., and these ships are built by welding thick steel plates. Yes. However, there are many steel materials that are used unpainted such as in tanker crude oil tanks and in bulks of bulker ships. In such cases, the base metal and welded joints of ship structural members are exposed to harsh environments such as the uniform corrosion of the bulker hold by sulfuric acid. In addition, since ship structural members are exposed to severe corrosive environments such as salt derived from seawater and dew condensation caused by temperature changes during the day and night, some kind of corrosion protection is required.
船舶の防食手段としては、塗装や電気防食を適用することが一般的であり、両者を併用する場合も多い。例えば、海水による塩分と高温多湿環境に曝されるバラストタンク内では、エポキシ樹脂系塗料による塗装が適用される場合が多く、塗装と併用して鋼よりも卑な金属である亜鉛を鋼材と短絡するように設置する電気防食(犠牲防食)が適用される場合が多い。 As anticorrosion means for ships, painting or cathodic protection is generally applied, and both are often used in combination. For example, in ballast tanks that are exposed to salty water and high-temperature and high-humidity environments, painting with epoxy resin paint is often applied, and in combination with painting, zinc, which is a base metal rather than steel, is short-circuited with steel. In many cases, the anti-corrosion (sacrificial anti-corrosion) to be installed is applied.
しかしながら、防食塗装は外的損傷や経年劣化等で塗膜が鋼材から剥離し、露出した厚鋼板の腐食衰耗が進行する場合がある。また、電気防食は海水などの電解質水溶液に浸漬された状態では有効であるが、積荷時のバラストタンク内などのように海水がない状況では、電気防食作用が得られないため、防食性が不十分になる場合があるという問題点がある。 However, in the anticorrosion coating, the coating film may be peeled off from the steel material due to external damage or aging deterioration, and the corrosion and wear of the exposed thick steel plate may progress. Electrocorrosion is effective when immersed in an aqueous electrolyte solution such as seawater.However, in the absence of seawater, such as in a ballast tank at the time of loading, the anticorrosion action cannot be obtained, so the anticorrosion property is not good. There is a problem that it may be sufficient.
厚鋼板は、腐食衰耗がある程度進行すると構造部材としての強度が不十分となることが懸念され、特に局部的に腐食が進行した場合には、穴あきなどによる漏洩事故につながる可能性も考えられる。このようなことから、船舶では定期的な腐食状態の検査や塗装の補修などに多大な時間と費用を費やしているのが実情である。 Thick steel plates are concerned that the strength of structural members will be insufficient if corrosion wear progresses to some extent. In particular, when corrosion progresses locally, there is a possibility that it may lead to leakage accidents due to holes. It is done. For this reason, it is a fact that ships spend a great deal of time and money on periodic inspections of corrosion conditions and painting repairs.
船舶の安全性向上、長寿命化およびメンテナンスコストの削減などの観点で、更に効果的な防食手段が要求されているのが現状で、塗装や電気防食の防食性向上に加えて、鋼材自体の耐食性向上の要望が依然として高いのが現状である。鋼材自体の耐食性向上に関しては、鋼材の化学成分や組織などを調整して腐食を抑制する技術が、例えば、特許文献1として提案されている。 From the viewpoint of improving ship safety, extending the service life and reducing maintenance costs, more effective anti-corrosion measures are currently required. In addition to improving the anti-corrosion properties of coating and cathodic protection, the steel itself There is still a high demand for improvement in corrosion resistance. With respect to improving the corrosion resistance of the steel material itself, for example, Patent Document 1 proposes a technique for suppressing corrosion by adjusting the chemical composition and structure of the steel material.
また、溶接継手部では、使用する厚鋼板と溶接材料の組み合わせによっては、両者の化学成分の違いから、塗装が剥離した場合に顕著な異種金属接触腐食が生じる可能性があり、厚鋼板の本体部分以上に腐食衰耗が促進される場合がある。また、溶接時の凝固偏析でPやSなどの腐食を促進する不可避的不純物元素の濃縮部が溶接金属に形成され、これらの濃縮部を起点とした局部腐食が発生することがあるため、継手自体の耐食性向上が要求される。船舶における溶接継手の耐食性向上については、例えば、特許文献2や特許文献3の技術が公知であるが、それでも継手自体の耐食性はまだ不十分であり、更に効果的な溶接継手の耐食性向上技術が開発されることが望まれている。 In the welded joint, depending on the combination of thick steel plate and welding material used, significant dissimilar metal contact corrosion may occur when the paint is peeled off due to the difference in chemical composition between the two. Corrosion and wear may be accelerated more than the part. In addition, concentrated parts of inevitable impurity elements that promote corrosion such as P and S due to solidification segregation during welding are formed in the weld metal, and local corrosion may occur starting from these concentrated parts. It is required to improve its corrosion resistance. For improving the corrosion resistance of a welded joint in a ship, for example, the techniques of Patent Document 2 and Patent Document 3 are known, but the corrosion resistance of the joint itself is still insufficient, and more effective techniques for improving the corrosion resistance of welded joints are available. It is hoped that it will be developed.
本発明は、上記従来の問題を解決せんとしてなされたもので、油タンカー、バラ積み船、自動車運搬船、コンテナ船、LNG船、客船、軍艦等の各種船舶の構造部材としては勿論のこと、無塗装で使用されることが多い原油タンクやバルカー船倉などの腐食がより厳しい環境において用いても、良好な耐食性を発揮することができる耐食性に優れた船舶用溶接継手を提供することを課題とするものである。 The present invention has been made as a solution to the above-mentioned conventional problems, and as a structural member for various ships such as oil tankers, bulk carriers, car carriers, container ships, LNG ships, passenger ships, warships, etc. It is an object of the present invention to provide a marine welded joint with excellent corrosion resistance that can exhibit good corrosion resistance even when used in more severe environments such as crude oil tanks and bulk tankers that are often used for painting. Is.
本発明は、質量%で、C:0.04〜0.30%、Si:0.05〜1.0%、Mn:0.1〜2.0%、P:0.04%以下(0%を含まない)、S:0.04%以下(0%を含まない)、Al:0.010〜0.10%、Cu:0.10〜1.0%、Cr:0.01〜0.5%、N:0.010%以下(0%を含まない)を含有し、残部がFeおよび不可避的不純物からなる厚鋼板を突き合わせ溶接してなる船舶用溶接継手であって、溶接金属におけるCuおよびCrの含有量が下記式(1)および(2)を満足すると共に、前記溶接金属におけるCu、Cr以外の化学成分含有量が、質量%で、C:0.04〜0.30%、Si:0.05〜1.0%、Mn:0.1〜2.0%、P:0.04%以下(0%を含まない)、S:0.04%以下(0%を含まない)、Al:0.010〜0.10%、N:0.010%以下(0%を含まない)を含有し、残部がFeおよび不可避的不純物であり、更に、溶接された厚鋼板の圧延面と平行な板厚の1/2位置の断面における前記溶接金属の最大幅Wmaxと最小幅Wminの差が下記式(3)を満足することを特徴とする耐食性に優れた船舶用溶接継手である。
[Cu]b×0.5と0.10%のうち大きい方≦[Cu]w≦[Cu]b×1.5・・・式(1)
[Cr]b×0.5と0.01%のうち大きい方≦[Cr]w≦[Cr]b×1.5・・・式(2)
Wmax−Wmin≦5mm・・・式(3)
但し、式(1)において、[Cu]wは溶接金属におけるCuの含有量(質量%)、[Cu]bは母材におけるCuの含有量(質量%)であり、式(2)において、[Cr]wは溶接金属におけるCrの含有量(質量%)、[Cr]bは母材におけるCrの含有量(質量%)である。
In the present invention, by mass, C: 0.04 to 0.30%, Si: 0.05 to 1.0%, Mn: 0.1 to 2.0%, P: 0.04% or less (0 %), S: 0.04% or less (not including 0%), Al: 0.010 to 0.10%, Cu: 0.10 to 1.0%, Cr: 0.01 to 0 .5%, N: 0.010% or less (excluding 0%), a marine welded joint obtained by butt welding a thick steel plate made of Fe and inevitable impurities, The content of Cu and Cr satisfies the following formulas (1) and (2), and the content of chemical components other than Cu and Cr in the weld metal is mass%, and C: 0.04 to 0.30%. , Si: 0.05 to 1.0%, Mn: 0.1 to 2.0%, P: 0.04% or less (excluding 0%), S: 0.04 The following (not including 0%), Al: 0.010 to 0.10%, N: 0.010% or less (not including 0%), the balance being Fe and inevitable impurities, Corrosion resistance is characterized in that the difference between the maximum width Wmax and the minimum width Wmin of the weld metal in the cross section at a half position of the plate thickness parallel to the rolling surface of the welded thick steel plate satisfies the following formula (3). It is an excellent marine weld joint.
The larger of [Cu] b × 0.5 and 0.10% ≦ [Cu] w ≦ [Cu] b × 1.5 (1)
The larger of [Cr] b × 0.5 and 0.01% ≦ [Cr] w ≦ [Cr] b × 1.5 (2)
Wmax−Wmin ≦ 5 mm (3)
However, in Formula (1), [Cu] w is the Cu content (% by mass) in the weld metal, and [Cu] b is the Cu content (% by mass) in the base metal. In Formula (2), [Cr] w is the Cr content (mass%) in the weld metal, and [Cr] b is the Cr content (mass%) in the base metal.
前記厚鋼板が、更に、質量%で、Co:0.01〜1.0%、Ni:0.01〜1.0%、Mo:0.01〜1.0%、W:0.01〜1.0%の1種または2種以上を含有することが好ましい。 The thick steel plate is further in mass%, Co: 0.01 to 1.0%, Ni: 0.01 to 1.0%, Mo: 0.01 to 1.0%, W: 0.01 to It is preferable to contain 1.0% of one kind or two or more kinds.
また、前記厚鋼板が、更に、質量%で、Ti:0.001〜0.05%、Zr:0.001〜0.05%、Nb:0.001〜0.05%の1種または2種以上を含有することが好ましい。 Moreover, the said thick steel plate is 1% or 2 of Ti: 0.001-0.05%, Zr: 0.001-0.05%, Nb: 0.001-0.05% further by the mass%. It is preferable to contain seeds or more.
また、前記厚鋼板が、更に、質量%で、Mg:0.0003〜0.005%、Ca:0.0003〜0.005%の1種または2種を含有することが好ましい。 Moreover, it is preferable that the said thick steel plate contains 1 type or 2 types of Mg: 0.0003-0.005% and Ca: 0.0003-0.005% by the mass% further.
また、前記厚鋼板が、更に、質量%で、Sn:0.005〜0.20%、Sb:0.005〜0.20%、Se:0.005〜0.20%の1種または2種以上を含有することが好ましい。 Moreover, the said thick steel plate is 1 type or 2 of Sn: 0.005-0.20%, Sb: 0.005-0.20%, Se: 0.005-0.20% by mass% further. It is preferable to contain seeds or more.
また、前記厚鋼板が、更に、質量%で、B:0.0001〜0.005%、V:0.001〜0.1%の1種または2種を含有することが好ましい。 Moreover, it is preferable that the said thick steel plate contains 1 type or 2 types of B: 0.0001-0.005% and V: 0.001-0.1% further by the mass%.
本発明の耐食性に優れた船舶用溶接継手によると、油タンカー、バラ積み船、自動車運搬船、コンテナ船、LNG船、客船、軍艦等の各種船舶の構造部材としては勿論のこと、無塗装で使用されることが多い原油タンクやバルカー船倉などの腐食がより厳しい環境において用いても、良好な耐食性を発揮することができる。 According to the marine welded joint with excellent corrosion resistance according to the present invention, it is used as a structural member of various ships such as oil tankers, bulk carriers, car carriers, container ships, LNG ships, passenger ships, warships, etc. Even when used in a more severely corrosive environment such as a crude oil tank or a bulker hold, good corrosion resistance can be exhibited.
また、何らかの要因で防食塗装が剥離して溶接継手部が腐食環境に露出した場合であっても、腐食による板厚衰耗を抑制することができ、溶接継手を含む構造部材の切り替えまでの期間、すなわち構造物としての寿命を延長することができる。 In addition, even if the anticorrosion coating is peeled off due to some reason and the welded joint is exposed to a corrosive environment, plate thickness wear due to corrosion can be suppressed, and the period until switching of structural members including welded joints That is, the lifetime as a structure can be extended.
本発明者は、無塗装で使用されることが多い原油タンクやバルカー船倉などの腐食が厳しい環境において用いても、良好な耐食性を発揮することができる厚鋼板の溶接継手を得るために、鋭意、実験、研究を重ねた。その結果、突き合わせ溶接される厚鋼板の化学成分含有量を適切に調整することに加えて、溶接金属の化学成分のうち特定の元素の含有量を、母材の同じ特定元素の含有量に応じて調整し、更に、溶接金属の幅を規定した条件を満足する幅とすることで、目的とする耐食性に優れた船舶用溶接継手を得ることができることを見出した。 The present inventor has eagerly obtained a welded joint of a thick steel plate that can exhibit good corrosion resistance even when used in a severely corrosive environment such as a crude oil tank or a bulk tanker which is often used without painting. , Repeated experiments and research. As a result, in addition to appropriately adjusting the chemical component content of the thick steel plate to be butt welded, the content of a specific element among the chemical components of the weld metal depends on the content of the same specific element in the base metal. It was found that a marine welded joint having excellent corrosion resistance can be obtained by adjusting the width of the weld metal and satisfying the conditions that define the width of the weld metal.
以下、本発明を実施形態に基づき詳細に説明する。 Hereinafter, the present invention will be described in detail based on embodiments.
<厚鋼板>
本発明の溶接継手の作製に用いる厚鋼板は、船舶の構造部材として用いられることから耐食性に優れることに加えて、構造部材として必要な機械的特性、そして溶接性を満足する必要がある。これらの観点から、各種添加元素の含有量を適切に調整する必要がある。以下に、これら各種添加元素の成分範囲の限定理由について説明する。尚、単位は全て%と記載するが、質量%のことを示す。
<Thick steel plate>
The thick steel plate used for producing the welded joint of the present invention is required to satisfy mechanical properties and weldability required as a structural member in addition to being excellent in corrosion resistance because it is used as a structural member of a ship. From these viewpoints, it is necessary to appropriately adjust the contents of various additive elements. Below, the reason for limitation of the component range of these various additive elements is demonstrated. All units are described as%, but indicate mass%.
(化学成分組成)
・C:0.04〜0.30%
Cは、厚鋼板の強度確保のために必要な基本的添加元素である。厚鋼板として通常要求される強度特性を得るためには、少なくとも0.04%以上含有させる必要がある。しかし、Cを過剰に含有させると、耐食性が劣化することに加えて、靱性も劣化する。このようなCの過剰添加による悪影響を発生させないためには、Cの含有量は多くても0.30%に抑える必要がある。こうしたことから、Cの含有量の範囲は0.04〜0.30%とした。尚、Cの含有量の好ましい下限は0.045%であり、より好ましくは0.05%以上とするのが良い。また、Cの含有量の好ましい上限は0.29%であり、より好ましくは0.28%以下とするのが良い。
(Chemical composition)
・ C: 0.04 to 0.30%
C is a basic additive element necessary for securing the strength of the thick steel plate. In order to obtain the strength characteristics normally required for a thick steel plate, it is necessary to contain at least 0.04% or more. However, when C is contained excessively, in addition to deterioration of corrosion resistance, toughness is also deteriorated. In order not to cause such an adverse effect due to excessive addition of C, the C content needs to be suppressed to 0.30% at most. For these reasons, the C content range is set to 0.04 to 0.30%. In addition, the minimum with preferable content of C is 0.045%, It is good to set it as 0.05% or more more preferably. Moreover, the upper limit with preferable content of C is 0.29%, It is good to set it as 0.28% or less more preferably.
・Si:0.05〜1.0%
Siは、脱酸と強度確保のために必要な元素でもあり、少なくとも0.05%以上含有させないと構造部材としての最低強度を確保できない。しかし、1.0%を超えて過剰に含有させると溶接性が劣化する。尚、Siの含有量の好ましい下限は0.08%であり、より好ましくは0.10%以上とするのが良い。また、Siの含有量の好ましい上限は0.95%であり、より好ましくは0.90%以下とするのが良い。
・ Si: 0.05-1.0%
Si is also an element necessary for deoxidation and securing strength, and the minimum strength as a structural member cannot be secured unless it is contained at least 0.05% or more. However, if the content exceeds 1.0%, weldability deteriorates. In addition, the minimum with preferable content of Si is 0.08%, More preferably, it is good to set it as 0.10% or more. Moreover, the upper limit with preferable content of Si is 0.95%, More preferably, it is good to set it as 0.90% or less.
・Mn:0.1〜2.0%
MnもSiと同様に、脱酸および強度確保のために必要な元素であり、0.1%に満たないと構造部材としての最低強度を確保できない。しかし、2.0%を超えて過剰に含有させると靱性が劣化する。尚、Mnの含有量の好ましい下限は0.15%であり、より好ましくは0.2%以上とするのが良い。また、Mnの含有量の好ましい上限は1.9%であり、より好ましくは1.8%以下とするのが良い。
Mn: 0.1 to 2.0%
Like Si, Mn is an element necessary for deoxidation and securing strength, and if it is less than 0.1%, the minimum strength as a structural member cannot be secured. However, if the content exceeds 2.0%, the toughness deteriorates. In addition, the minimum with preferable content of Mn is 0.15%, More preferably, it is good to set it as 0.2% or more. Moreover, the upper limit with preferable Mn content is 1.9%, More preferably, it is good to set it as 1.8% or less.
・P:0.04%以下(0%を含まない)
Pは、過剰に含有させると靭性や溶接性を劣化させる元素であり、Pの許容される含有量の上限は0.04%である。Pの含有量はできる限り少ない方が好ましく、Pの含有量のより好ましい上限は0.038%であり、更に好ましくは0.035%以下とするのが良い。しかし、工業的に厚鋼板中のPを0%にすることは困難である。
・ P: 0.04% or less (excluding 0%)
P is an element that deteriorates toughness and weldability when contained excessively, and the upper limit of the allowable content of P is 0.04%. The content of P is preferably as small as possible, and the more preferable upper limit of the content of P is 0.038%, and more preferably 0.035% or less. However, it is difficult industrially to make P in a thick steel plate 0%.
・S:0.04%以下(0%を含まない)
SもPと同様に、含有量が多くなると靭性や溶接性を劣化させることに加えて、腐食を促進する元素である。Sの許容される含有量の上限は0.04%である。Sの含有量のより好ましい上限は0.038%であり、更に好ましくは0.035%以下とするのが良い。しかし、工業的に厚鋼板中のSを0%にすることは困難である。
S: 0.04% or less (excluding 0%)
S, like P, is an element that promotes corrosion in addition to degrading toughness and weldability as the content increases. The upper limit of the allowable content of S is 0.04%. The upper limit with more preferable content of S is 0.038%, More preferably, it is good to set it as 0.035% or less. However, it is difficult to make S in a thick steel plate industrially 0%.
・Al:0.010〜0.10%
Alは、酸化物皮膜を表面に形成して耐食性を向上させることに加えて、前記したSi、Mnと同様に脱酸および強度確保という作用も発揮する元素である。こうした作用を有効に発揮させるためには、0.010%以上含有させることが必要である。しかし、0.10%を超えて含有させると溶接性を害するため、Alの含有量の範囲は0.010〜0.10%とした。尚、Alの含有量の好ましい下限は0.011%であり、より好ましくは0.012%以上とするのが良い。また、Alの含有量の好ましい上限は0.095%であり、より好ましくは0.090%以下とするのが良い。
・ Al: 0.010-0.10%
In addition to improving the corrosion resistance by forming an oxide film on the surface, Al is an element that also exhibits the effects of deoxidation and ensuring strength in the same manner as Si and Mn described above. In order to exhibit such an action effectively, it is necessary to contain 0.010% or more. However, if the content exceeds 0.10%, the weldability is impaired, so the range of Al content is set to 0.010 to 0.10%. In addition, the minimum with preferable content of Al is 0.011%, More preferably, it is good to set it as 0.012% or more. Moreover, the upper limit with preferable content of Al is 0.095%, More preferably, it is good to set it as 0.090% or less.
・Cu:0.10〜1.0%
Cuは、腐食が激しい環境において、厚鋼板の表面に緻密な錆皮膜を形成して、腐食反応を低減させる作用を有しており、耐食性向上に必要な元素である。このような作用を有効に発揮させるためには、少なくとも0.10%以上含有させることが必要である。しかし、過剰に含有させると溶接性や熱間加工性を劣化させるので、Cuの含有量は1.0%以下とする必要がある。Cuの含有量の好ましい下限は0.11%であり、より好ましい下限は0.12%である。また、Cuの含有量の好ましい上限は0.95%であり、より好ましい上限は0.90%である。
Cu: 0.10 to 1.0%
Cu is an element necessary for improving corrosion resistance because it has a function of reducing a corrosion reaction by forming a dense rust film on the surface of a thick steel plate in an environment where corrosion is severe. In order to exhibit such an action effectively, it is necessary to contain at least 0.10% or more. However, if contained excessively, weldability and hot workability deteriorate, so the Cu content needs to be 1.0% or less. The minimum with preferable content of Cu is 0.11%, and a more preferable minimum is 0.12%. Moreover, the upper limit with preferable Cu content is 0.95%, and a more preferable upper limit is 0.90%.
・Cr:0.01〜0.5%
Crは、Cuと同様に腐食が激しい環境において、厚鋼板の表面に緻密な錆皮膜を形成して、腐食反応を低減させる作用を有しており、耐食性向上に必要な元素である。このような作用を有効に発揮させるためには、少なくとも0.01%以上含有させることが必要である。しかし、過剰に含有させると腐食先端のpH低下を招いて却って耐食性を劣化させると共に、加えて溶接性や熱間加工性をも劣化させるので、Crの含有量は0.5%以下とする必要がある。Crの含有量の好ましい下限は0.02%であり、より好ましい下限は0.03%である。また、Crの含有量の好ましい上限は0.48%であり、より好ましい上限は0.46%である。
・ Cr: 0.01-0.5%
Cr is an element necessary for improving corrosion resistance by forming a dense rust film on the surface of a thick steel plate and reducing the corrosion reaction in an environment where corrosion is severe like Cu. In order to effectively exhibit such an action, it is necessary to contain at least 0.01% or more. However, if excessively contained, the corrosion resistance is deteriorated due to a decrease in pH at the corrosion tip, and also weldability and hot workability are deteriorated. Therefore, the Cr content needs to be 0.5% or less. There is. A preferable lower limit of the Cr content is 0.02%, and a more preferable lower limit is 0.03%. Moreover, the upper limit with preferable content of Cr is 0.48%, and a more preferable upper limit is 0.46%.
・N:0.01%以下(0%を含まない)
NもPやSと同様に、含有量が多くなると靭性や溶接性を劣化させる元素である。Nの許容される含有量の上限は0.01%である。Nの含有量のより好ましい上限は0.009%であり、更に好ましくは0.008%以下とするのが良い。しかし、工業的に厚鋼板中のNを0%にすることは困難である。
・ N: 0.01% or less (excluding 0%)
N, like P and S, is an element that deteriorates toughness and weldability as the content increases. The upper limit of the allowable content of N is 0.01%. A more preferable upper limit of the N content is 0.009%, and further preferably 0.008% or less. However, it is difficult to make N in a thick steel plate industrially 0%.
以上が、本発明の溶接継手の作製に用いる厚鋼板の必須添加元素の成分範囲の限定理由であり、残部はFeおよび不可避的不純物である。不可避的不純物としては、O、H等を挙げることができ、これらの元素は厚鋼板の諸特性を害さない程度で含有していても構わない。但し、これら不可避的不純物の合計含有量は、0.1%以下、好ましくは0.09%以下に抑えることによって、本発明による耐食性発現効果を極大化することができる。 The above is the reason for limiting the component range of the essential additive elements of the thick steel plate used for producing the welded joint of the present invention, and the balance is Fe and inevitable impurities. Inevitable impurities include O, H, and the like, and these elements may be contained to the extent that they do not impair various properties of the thick steel plate. However, by suppressing the total content of these inevitable impurities to 0.1% or less, preferably 0.09% or less, the corrosion resistance effect according to the present invention can be maximized.
また、本発明の溶接継手の作製に用いる厚鋼板に、以下に示す元素を含有すれば更に有効である。これら元素を含有させる場合の成分範囲の限定理由について次に説明する。 Further, it is more effective if the thick steel plate used for producing the welded joint of the present invention contains the following elements. The reason for limiting the component range when these elements are contained will be described below.
・Co:0.01〜1.0%、Ni:0.01〜1.0%、Mo:0.01〜1.0%、W:0.01〜1.0%の1種または2種以上
Co、Ni、Mo、Wは、いずれも厚鋼板表面に生成する錆の保護性を向上させて、耐食性を向上させる作用を有する元素である。こうした作用は、Co、Ni、Mo、Wの何れかを0.01%以上含有させることによって有効に発揮される。しかしながら、Co、Ni、Mo、Wは何れもが1.0%を超えて含有させると溶接性や熱間加工性を劣化させる。こうしたことから、Co、Ni、Mo、Wを含有させる場合は、何れも0.01〜1.0%の範囲とした。Co、Ni、Mo、Wを含有させる場合のより好ましい下限は夫々0.02%であり、0.03%以上とすることが更に好ましい。一方、Co、Ni、Mo、Wを含有させる場合のより好ましい上限は夫々0.95%であり、0.9%以下とすることが更に好ましい。
One or two types of Co: 0.01 to 1.0%, Ni: 0.01 to 1.0%, Mo: 0.01 to 1.0%, W: 0.01 to 1.0% As described above, Co, Ni, Mo, and W are all elements that have an action of improving the corrosion resistance by improving the protection of rust generated on the surface of the thick steel plate. Such an effect is effectively exhibited by containing any one of Co, Ni, Mo and W by 0.01% or more. However, if Co, Ni, Mo, and W are contained in excess of 1.0%, weldability and hot workability are deteriorated. For these reasons, when Co, Ni, Mo, and W are contained, the content is in the range of 0.01 to 1.0%. The more preferable lower limit in the case of containing Co, Ni, Mo, and W is 0.02%, more preferably 0.03% or more. On the other hand, the more preferable upper limit in the case of containing Co, Ni, Mo, W is 0.95%, and more preferably 0.9% or less.
・Ti:0.001〜0.05%、Zr:0.001〜0.05%、Nb:0.001〜0.05%の1種または2種以上
Ti、Zr、Nbは、厚鋼板の表面に生成する錆を微細化して、耐食性を向上させる作用を有している。このような作用を発揮させるためには、Ti、Zr、Nbの何れかを0.001%以上含有させる必要がある。しかしながら、Ti、Zr、Nbは何れもが0.05%を超えて含有させると溶接性や熱間加工性を劣化させる。こうしたことから、Ti、Zr、Nbを含有させる場合は、何れも0.001〜0.05%の範囲とした。Ti、Zr、Nbを含有させる場合のより好ましい下限は夫々0.003%であり、0.005%以上とすることが更に好ましい。一方、Ti、Zr、Nbを含有させる場合のより好ましい上限は夫々0.045%であり、0.04%以下とすることが更に好ましい。
・ Ti: 0.001 to 0.05%, Zr: 0.001 to 0.05%, Nb: 0.001 to 0.05%, one or more types Ti, Zr, and Nb are thick steel plates It has the effect of refining rust generated on the surface and improving corrosion resistance. In order to exert such an effect, it is necessary to contain at least 0.001% of Ti, Zr, or Nb. However, if Ti, Zr, and Nb are contained in amounts exceeding 0.05%, weldability and hot workability are deteriorated. For these reasons, when Ti, Zr, and Nb are contained, the content is in the range of 0.001 to 0.05%. The more preferable lower limit in the case of containing Ti, Zr, and Nb is 0.003%, more preferably 0.005% or more. On the other hand, the more preferable upper limit in the case of containing Ti, Zr, and Nb is 0.045%, and more preferably 0.04% or less.
・Mg:0.0003〜0.005%、Ca:0.0003〜0.005%の1種または2種
Mg、Caは、厚鋼板の表面のpHを上昇させる作用を有しており、カソード反応を抑制して耐食性を向上させるのに有効な元素である。このような作用を発揮させるためには、Mg、Caの何れかを0.0003%以上含有させる必要がある。しかしながら、Mg、Caは何れもが0.005%を超えて含有させると加工性と溶接性を劣化させる。こうしたことから、Mg、Caを含有させる場合は、何れも0.0003〜0.005%の範囲とした。Mg、Caを含有させる場合のより好ましい下限は夫々0.0004%であり、0.0005%以上とすることが更に好ましい。一方、Mg、Caを含有させる場合のより好ましい上限は夫々0.0045%であり、0.004%以下とすることが更に好ましい。
-Mg: 0.0003-0.005%, Ca: 0.0003-0.005% 1 type or 2 types Mg, Ca has the effect of increasing the pH of the surface of the thick steel plate, cathode It is an element effective in suppressing reaction and improving corrosion resistance. In order to exhibit such an action, it is necessary to contain 0.0003% or more of either Mg or Ca. However, if both Mg and Ca are contained in excess of 0.005%, workability and weldability are deteriorated. For these reasons, when Mg and Ca are contained, the content is in the range of 0.0003 to 0.005%. The more preferable lower limit in the case of containing Mg and Ca is 0.0004%, and more preferably 0.0005% or more. On the other hand, the more preferable upper limit in the case of containing Mg and Ca is 0.0045%, more preferably 0.004% or less.
・Sn:0.005〜0.20%、Sb:0.005〜0.20%、Se:0.005〜0.20%の1種または2種以上
Sn、Sb、Seは、厚鋼板の表面の局所的にpHが低下した部位における腐食反応を抑制して、耐食性を向上させる作用を有している。このような作用を発揮させるためには、Sn、Sb、Seの何れかを0.005%以上含有させる必要がある。しかしながら、Sn、Sb、Seは何れもが0.20%を超えて含有させると溶接性や靱性が劣化する。こうしたことから、Sn、Sb、Seを含有させる場合は、何れも0.005〜0.20%の範囲とした。Sn、Sb、Seを含有させる場合のより好ましい下限は夫々0.006%であり、0.007%以上とすることが更に好ましい。一方、Sn、Sb、Seを含有させる場合のより好ましい上限は夫々0.19%であり、0.18%以下とすることが更に好ましい。
・ Sn: 0.005 to 0.20%, Sb: 0.005 to 0.20%, Se: 0.005 to 0.20%, one or more kinds Sn, Sb, and Se are thick steel plates. It has the effect of suppressing the corrosion reaction at the site where the pH is locally lowered on the surface and improving the corrosion resistance. In order to exhibit such an action, it is necessary to contain 0.005% or more of Sn, Sb, or Se. However, when all Sn, Sb, and Se are contained in amounts exceeding 0.20%, weldability and toughness deteriorate. For these reasons, when Sn, Sb, and Se are contained, the content is in the range of 0.005 to 0.20%. The more preferable lower limit in the case of containing Sn, Sb, and Se is 0.006%, and more preferably 0.007% or more. On the other hand, the more preferable upper limit in the case of containing Sn, Sb, and Se is 0.19%, and more preferably 0.18% or less.
・B:0.0001〜0.005%、V:0.001〜0.1%の1種または2種
B、Vは、厚鋼板の強度向上に有効な元素である。このような作用を発揮させるためには、Bは0.0001%以上、Vは0.001%以上含有させる必要がある。しかし、過剰に含有させると母材靱性が劣化する。こうしたことから、Bを含有させる場合は0.005%以下、Vを含有させる場合は0.1%以下とする必要がある。尚、Bを含有させる場合のより好ましい下限は0.0002%であり、0.0003%以上とすることが更に好ましい。また、Bを含有させる場合のより好ましい上限は0.0045%であり、0.004%以下とすることが更に好ましい。一方、Vを含有させる場合のより好ましい下限は0.002%であり、0.003%以上とすることが更に好ましい。また、Vを含有させる場合のより好ましい上限は夫々0.095%であり、0.09%以下とすることが更に好ましい。
-B: 0.0001 to 0.005%, V: 0.001 to 0.1%, 1 type or 2 types B and V are effective elements for improving the strength of thick steel plates. In order to exert such an effect, it is necessary to contain 0.0001% or more of B and 0.001% or more of V. However, if it is excessively contained, the base material toughness deteriorates. Therefore, when B is contained, it is necessary to be 0.005% or less, and when V is contained, it is necessary to be 0.1% or less. In addition, the more preferable minimum in the case of containing B is 0.0002%, and it is still more preferable to set it as 0.0003% or more. Further, a more preferable upper limit in the case of containing B is 0.0045%, and further preferably 0.004% or less. On the other hand, the more preferable lower limit in the case of containing V is 0.002%, and more preferably 0.003% or more. Moreover, the more preferable upper limit in the case of containing V is 0.095% respectively, and it is still more preferable to set it as 0.09% or less.
(製造方法)
本発明の溶接継手の作製に用いる厚鋼板を製造する方法は特に限定しないが、確実に製造するには、例えば、以下に説明する方法により製造することが好ましい。
(Production method)
The method for producing the thick steel plate used for the production of the welded joint of the present invention is not particularly limited, but for reliable production, for example, it is preferably produced by the method described below.
まず、転炉または電気炉から取鍋に出鋼した溶鋼に対して、RH真空脱ガス装置を用いて、本発明で規定する厚鋼板の成分組成に調整すると共に、温度調整をすることで二次精錬を行う。その後、連続鋳造法、造塊法等の通常の鋳造方法で鋼塊とすれば良い。尚、脱酸形式としては、機械的特性や溶接性の観点でキルド鋼を用いることが好ましく、より好ましくはAlキルド鋼を用いることが推奨される。次いで、得られた鋼塊を1000〜1300℃の温度域に加熱した後、熱間圧延を行って、所望の寸法形状にする。このとき熱間圧延終了温度を650〜850℃に制御し、熱間圧延終了後から500℃までの冷却速度を0.1〜15℃/秒の範囲に制御することによって、所定の強度特性が得られる。 First, with respect to the molten steel discharged from the converter or electric furnace to the ladle, the RH vacuum degassing apparatus is used to adjust the composition of the thick steel plate specified in the present invention and to adjust the temperature. Next refining. Thereafter, the steel ingot may be formed by a normal casting method such as a continuous casting method or an ingot-making method. As a deoxidation type, it is preferable to use killed steel from the viewpoint of mechanical properties and weldability, and it is recommended to use Al killed steel more preferably. Next, the obtained steel ingot is heated to a temperature range of 1000 to 1300 ° C., and then hot rolled to obtain a desired size and shape. At this time, the hot rolling end temperature is controlled to 650 to 850 ° C., and the cooling rate from the end of hot rolling to 500 ° C. is controlled in the range of 0.1 to 15 ° C./second, whereby a predetermined strength characteristic is obtained. can get.
<溶接金属>
本発明は、前記厚鋼板を突き合わせ溶接してなる船舶用溶接継手に関する発明であり、溶接継手部では使用する厚鋼板と溶接材料の組み合わせによっては、両者の化学成分の違いから、塗装が剥離した場合に顕著な異種金属接触腐食が生じる場合がある。異種金属接触腐食は溶接金属と母材(厚鋼板)との電位差によって生じるものであり、異種金属接触腐食を生じない程度の電位差とするためには、電位への影響の大きいCuおよびCrの溶接金属中の含有量を式(1)および(2)を満足するように調整する必要がある。また、溶接継手の機械的特性を満足させるため、溶接金属中のC、Si、Mn、P、S、Al、Nについても、適切な成分範囲とする必要がある。以下に、溶接金属中のCuおよびCrの含有量を含め、各元素の成分範囲の限定理由について説明する。尚、単位は全て%と記載するが、質量%のことを示す。
<Welded metal>
The present invention relates to a marine welded joint obtained by butt welding the thick steel plates, and depending on the combination of the thick steel plate and the welding material used in the welded joint part, the coating peels off due to the difference in chemical composition between the two. In some cases, significant dissimilar metal contact corrosion may occur. Dissimilar metal contact corrosion is caused by the potential difference between the weld metal and the base metal (thick steel plate). To achieve a potential difference that does not cause dissimilar metal contact corrosion, welding of Cu and Cr, which has a large effect on the potential, is performed. It is necessary to adjust the content in the metal so as to satisfy the expressions (1) and (2). Moreover, in order to satisfy the mechanical characteristics of the welded joint, C, Si, Mn, P, S, Al, and N in the weld metal also need to have an appropriate component range. Below, the reason for limitation of the component range of each element including content of Cu and Cr in a weld metal is demonstrated. All units are described as%, but indicate mass%.
(化学成分組成)
・[Cu]b×0.5と0.10%のうち大きい方≦[Cu]w≦[Cu]b×1.5・・・式(1)
(但し、[Cu]wは溶接金属におけるCuの含有量、[Cu]bは母材におけるCuの含有量)
溶接金属中に含有されるCuは、母材中での作用と同様に、腐食環境において、溶接金属表面に緻密な錆皮膜を形成して、腐食反応を低減させる作用を有しており、耐食性向上に必要な元素である。このような作用を発揮させるためには、溶接金属中にCuを0.10%以上含有させることが必要である。但し、溶接金属のCu含有量が母材のCu含有量の1/2未満になると、溶接金属が母材よりも卑となって、異種金属接触腐食により溶接金属の腐食が促進される。よって、溶接金属のCu含有量の下限は、母材のCu含有量の1/2か、或いは0.10%のうち、大きい方の値以上とする必要がある。また、溶接金属のCu含有量が母材のCu含有量の1.5倍を超えると、溶接金属が母材よりも貴となって、異種金属接触腐食により母材の腐食が促進される。よって、溶接金属のCu含有量の上限は、母材のCu含有量の1.5倍以下とする必要がある。
(Chemical composition)
[Cu] b × 0.5 and 0.10%, whichever is greater ≦ [Cu] w ≦ [Cu] b × 1.5 Formula (1)
(However, [Cu] w is the Cu content in the weld metal, and [Cu] b is the Cu content in the base metal)
Cu contained in the weld metal has the action of reducing the corrosion reaction by forming a dense rust film on the surface of the weld metal in the corrosive environment, as well as the action in the base metal. It is an element necessary for improvement. In order to exert such effects, it is necessary to contain 0.10% or more of Cu in the weld metal. However, when the Cu content of the weld metal is less than ½ of the Cu content of the base metal, the weld metal becomes lower than the base metal, and the corrosion of the weld metal is promoted by the different metal contact corrosion. Therefore, the lower limit of the Cu content of the weld metal needs to be ½ of the Cu content of the base metal or more than the larger value of 0.10%. Further, when the Cu content of the weld metal exceeds 1.5 times the Cu content of the base metal, the weld metal becomes noble than the base metal, and the corrosion of the base metal is promoted by the contact corrosion of different metals. Therefore, the upper limit of the Cu content of the weld metal needs to be 1.5 times or less the Cu content of the base metal.
尚、溶接金属のCu含有量のより好ましい下限は、[Cu]b×0.55と0.11%のうち何れか大きい方であり、更に好ましい下限は、[Cu]b×0.6と0.12%のうち何れか大きい方である。また、溶接金属のCu含有量の好ましい上限は、[Cu]b×1.45であり、更に好ましい上限は、[Cu]b×1.4である。 The more preferable lower limit of the Cu content of the weld metal is [Cu] b × 0.55 or 0.11%, whichever is larger, and the more preferable lower limit is [Cu] b × 0.6. The larger of 0.12%. Moreover, the upper limit with preferable Cu content of a weld metal is [Cu] b * 1.45, and a more preferable upper limit is [Cu] b * 1.4.
・[Cr]b×0.5と0.01%のうち大きい方≦[Cr]w≦[Cr]b×1.5・・・式(2)
(但し、式(2)において、[Cr]wは溶接金属におけるCrの含有量、[Cr]bは母材におけるCrの含有量)
溶接金属中に含有されるCrは、母材中での作用と同様に、腐食環境において、溶接金属表面に緻密な錆皮膜を形成して、腐食反応を低減させる作用を有しており、耐食性向上に必要な元素である。このような作用を発揮させるためには、溶接金属中に0.01%以上含有させることが必要である。但し、溶接金属のCr含有量が[Cr]b×0.5未満になると、溶接金属が母材よりも卑となって、異種金属接触腐食により溶接金属の腐食が促進される。よって、溶接金属のCr含有量の下限は、母材のCr含有量の1/2か、或いは0.01%のうち、大きい方の値以上とする必要がある。また、溶接金属のCr含有量が[Cr]b×1.5%を超えると、溶接金属が母材よりも貴となって、異種金属接触腐食により母材の腐食が促進される。よって、溶接金属のCr含有量の上限は、母材のCr含有量の1.5倍以下とする必要がある。
[Cr] b × 0.5 and 0.01%, whichever is larger ≦ [Cr] w ≦ [Cr] b × 1.5 (2)
(However, in formula (2), [Cr] w is the Cr content in the weld metal, and [Cr] b is the Cr content in the base metal)
Cr contained in the weld metal has the effect of reducing the corrosion reaction by forming a dense rust film on the surface of the weld metal in a corrosive environment, similar to the action in the base metal. It is an element necessary for improvement. In order to exert such an effect, it is necessary to contain 0.01% or more in the weld metal. However, when the Cr content of the weld metal is less than [Cr] b × 0.5, the weld metal becomes baser than the base metal, and the corrosion of the weld metal is promoted by the different metal contact corrosion. Therefore, the lower limit of the Cr content of the weld metal needs to be ½ of the Cr content of the base metal, or 0.01% or more, whichever is larger. Further, when the Cr content of the weld metal exceeds [Cr] b × 1.5%, the weld metal becomes nobler than the base metal, and the corrosion of the base metal is promoted by the different metal contact corrosion. Therefore, the upper limit of the Cr content of the weld metal needs to be 1.5 times or less the Cr content of the base metal.
尚、溶接金属のCr含有量のより好ましい下限は、[Cr]b×0.55と0.02%の何れか大きい方であり、更に好ましい下限は[Cr]b×0.6と0.03%の何れか大きい方である。また、溶接金属のCr含有量の好ましい上限は、[Cr]b×1.45であり、更に好ましい上限は[Cr]b×1.4%である。 The more preferable lower limit of the Cr content of the weld metal is [Cr] b × 0.55 or 0.02%, whichever is larger, and the more preferable lower limit is [Cr] b × 0.6 or 0.8. 03%, whichever is greater. Moreover, the upper limit with preferable Cr content of a weld metal is [Cr] b * 1.45, and a more preferable upper limit is [Cr] b * 1.4%.
・C:0.04〜0.30%
Cは、溶接金属部の強度確保のために必要な基本的添加元素である。必要な強度特性を得るためには、少なくとも0.04%以上は含有させる必要がある。しかし、Cを過剰に含有させると、耐食性が劣化することに加えて、割れ感受性が増大し、靱性も劣化する。このようなCの過剰添加による悪影響を発生させないためには、Cの含有量は多くても0.30%に抑える必要がある。こうしたことから、Cの含有量の範囲は0.04〜0.30%とした。尚、Cの含有量の好ましい下限は0.045%であり、より好ましくは0.05%以上とするのが良い。また、Cの含有量の好ましい上限は0.29%であり、より好ましくは0.28%以下とするのが良い。
・ C: 0.04 to 0.30%
C is a basic additive element necessary for ensuring the strength of the weld metal part. In order to obtain the required strength characteristics, it is necessary to contain at least 0.04% or more. However, when C is contained excessively, corrosion resistance is deteriorated, crack sensitivity is increased, and toughness is also deteriorated. In order not to cause such an adverse effect due to excessive addition of C, the C content needs to be suppressed to 0.30% at most. For these reasons, the C content range is set to 0.04 to 0.30%. In addition, the minimum with preferable content of C is 0.045%, It is good to set it as 0.05% or more more preferably. Moreover, the upper limit with preferable content of C is 0.29%, It is good to set it as 0.28% or less more preferably.
・Si:0.05〜1.0%
Siは、溶接金属部の強度確保のために必要な元素でもあり、少なくとも0.05%以上含有させないと構造部材としての最低強度を確保できない。しかし、1.0%を超えて過剰に含有させると靱性が劣化する。尚、Siの含有量の好ましい下限は0.08%であり、より好ましくは0.10%以上とするのが良い。また、Siの含有量の好ましい上限は0.95%であり、より好ましくは0.90%以下とするのが良い。
・ Si: 0.05-1.0%
Si is also an element necessary for securing the strength of the weld metal part, and the minimum strength as a structural member cannot be secured unless it is contained at least 0.05% or more. However, if the content exceeds 1.0%, the toughness deteriorates. In addition, the minimum with preferable content of Si is 0.08%, More preferably, it is good to set it as 0.10% or more. Moreover, the upper limit with preferable content of Si is 0.95%, More preferably, it is good to set it as 0.90% or less.
・Mn:0.1〜2.0%
MnもSiと同様に、溶接金属部の強度向上のために必要な元素であり、0.1%に満たないと構造部材としての最低強度を確保できない。しかし、2.0%を超えて過剰に含有させると靱性が劣化する。尚、Mnの含有量の好ましい下限は0.15%であり、より好ましくは0.2%以上とするのが良い。また、Mnの含有量の好ましい上限は1.9%であり、より好ましくは1.8%以下とするのが良い。
Mn: 0.1 to 2.0%
Like Si, Mn is an element necessary for improving the strength of the weld metal part, and if it is less than 0.1%, the minimum strength as a structural member cannot be secured. However, if the content exceeds 2.0%, the toughness deteriorates. In addition, the minimum with preferable content of Mn is 0.15%, More preferably, it is good to set it as 0.2% or more. Moreover, the upper limit with preferable Mn content is 1.9%, More preferably, it is good to set it as 1.8% or less.
・P:0.04%以下(0%を含まない)
Pは、溶接金属部の靭性を劣化させる元素であり、Pの許容される含有量の上限は0.04%である。Pの含有量はできる限り少ない方が好ましく、Pの含有量のより好ましい上限は0.038%であり、更に好ましくは0.035%以下とするのが良い。しかし、溶接金属部のPの含有量を0%にすることは困難である。
・ P: 0.04% or less (excluding 0%)
P is an element that deteriorates the toughness of the weld metal part, and the upper limit of the allowable content of P is 0.04%. The content of P is preferably as small as possible, and the more preferable upper limit of the content of P is 0.038%, and more preferably 0.035% or less. However, it is difficult to reduce the P content in the weld metal part to 0%.
・S:0.04%以下(0%を含まない)
SもPと同様に、含有量が多くなると溶接金属部の靭性を劣化させることに加えて、腐食を促進する元素である。Sの許容される含有量の上限は0.04%である。Sの含有量のより好ましい上限は0.038%であり、更に好ましくは0.035%以下とするのが良い。しかし、溶接金属部のSの含有量を0%にすることは困難である。
S: 0.04% or less (excluding 0%)
S, like P, is an element that promotes corrosion in addition to degrading the toughness of the weld metal when the content increases. The upper limit of the allowable content of S is 0.04%. The upper limit with more preferable content of S is 0.038%, More preferably, it is good to set it as 0.035% or less. However, it is difficult to reduce the S content in the weld metal part to 0%.
・Al:0.010〜0.10%
Alは、酸化物皮膜を表面に形成して耐食性を向上させることに加えて、前記したSi、Mnと同様に溶接金属部の強度向上作用も発揮する元素である。こうした作用を有効に発揮させるためには、0.010%以上含有させることが必要である。しかし、0.10%を超えて含有させると溶接性を害するため、Alの含有量の範囲は0.010〜0.10%とした。尚、Alの含有量の好ましい下限は0.011%であり、より好ましくは0.012%以上とするのが良い。また、Alの含有量の好ましい上限は0.095%であり、より好ましくは0.090%以下とするのが良い。
・ Al: 0.010-0.10%
In addition to improving the corrosion resistance by forming an oxide film on the surface, Al is an element that also exhibits the effect of improving the strength of the weld metal part in the same manner as Si and Mn described above. In order to exhibit such an action effectively, it is necessary to contain 0.010% or more. However, if the content exceeds 0.10%, the weldability is impaired, so the range of Al content is set to 0.010 to 0.10%. In addition, the minimum with preferable content of Al is 0.011%, More preferably, it is good to set it as 0.012% or more. Moreover, the upper limit with preferable content of Al is 0.095%, More preferably, it is good to set it as 0.090% or less.
・N:0.01%以下(0%を含まない)
NもPやSと同様に、含有量が多くなると溶接金属部の靭性を劣化させる元素である。Nの許容される含有量の上限は0.01%である。Nの含有量のより好ましい上限は0.009%であり、更に好ましくは0.008%以下とするのが良い。しかし、溶接金属部のNの含有量を0%にすることは困難である。
・ N: 0.01% or less (excluding 0%)
N, like P and S, is an element that deteriorates the toughness of the weld metal part as the content increases. The upper limit of the allowable content of N is 0.01%. A more preferable upper limit of the N content is 0.009%, and further preferably 0.008% or less. However, it is difficult to reduce the N content of the weld metal part to 0%.
溶接金属の前記以外の化学成分はFeおよび不可避的不純物である。不可避的不純物は耐食性や機械的特性を害さない程度の含有量に止める必要があり、具体的な含有量は、概ね合計で1%以下とする必要がある。 Other chemical components of the weld metal are Fe and unavoidable impurities. Inevitable impurities must be limited to a content that does not impair corrosion resistance and mechanical properties, and the specific content should generally be 1% or less in total.
また、Cu、Cr、C、Si、Mn、P、S、Al、Nの各元素の溶接金属中の含有量[X]wは、母材(厚鋼板)の前記各元素の含有量[X]b、採用する溶接方法および溶接条件によって決まる希釈率a、溶接材料の前記各元素の含有量[X]rを用いて、下記式(4)から求めることができる。言い換えれば、厚鋼板の溶接に用いる溶接材料の前記各元素の含有量[X]rは、母材(厚鋼板)の前記各元素の含有量[X]b、採用する溶接方法および溶接条件によって決まる希釈率a、そして溶解金属中の目標とする前記各元素の含有量を用いて計算することで求めることができる。
[X]w=[X]b×a+[X]r×(1−a)・・・式(4)
In addition, the content [X] w of each element of Cu, Cr, C, Si, Mn, P, S, Al, and N in the weld metal is the content [X] of each element of the base material (thick steel plate). ], The dilution rate a determined by the welding method and welding conditions to be employed, and the content [X] r of each element of the welding material can be obtained from the following formula (4). In other words, the content [X] r of each element of the welding material used for welding of the thick steel plate depends on the content [X] b of each element of the base material (thick steel plate), the welding method employed and the welding conditions. It can be determined by calculating using the determined dilution ratio a and the target content of each element in the molten metal.
[X] w = [X] b × a + [X] r × (1−a) (4)
尚、希釈率aは溶接方法・溶接条件によって変化するが、種々の溶接方法・溶接条件において希釈率aがどの程度になるかについては過去から多く検討されており、例えば、(社)溶接学会編:溶接便覧(改訂3版)、丸善(株)、p.494や、神鋼溶接総合カタログ(2013年度版)、p.257などにも紹介されている。参考であるが、下記の実施例で採用しているサブマージアーク溶接法で溶接条件が溶接速度70cm/min、溶接入熱110kJ/cmであれば、希釈率は50%となる。 Although the dilution rate a varies depending on the welding method and welding conditions, many studies have been made on the dilution rate a in various welding methods and welding conditions. For example, the Japan Welding Society Hen: Welding Handbook (3rd revised edition), Maruzen Co., Ltd., p. 494, Shinko Welding General Catalog (2013 edition), p. 257 and the like. For reference, if the welding conditions are the welding speed 70 cm / min and the welding heat input 110 kJ / cm in the submerged arc welding method employed in the following examples, the dilution rate is 50%.
尚、Nは溶接時に大気からもある程度、溶接金属中へ混入することがあるが、その場合には、前記(4)式を用いて計算した[N]r値から更に0.02%以上を減量した溶接材料を用いて溶接継手を作製すれば良い。 Note that N may be mixed into the weld metal to some extent from the atmosphere during welding. In that case, 0.02% or more from the [N] r value calculated using the above equation (4). What is necessary is just to produce a welded joint using the reduced welding material.
(溶接金属の幅)
・Wmax−Wmin≦5mm・・・式(3)
溶接金属は、溶接時の凝固偏析によりPやSなどの腐食を促進する不可避的不純物元素の濃縮が生じて、局部腐食が促進される場合がある。本発明者は、このような凝固偏析は、溶接時の入熱変動が大きい場合に特に顕著となることを知見し、その抑制策を検討することとした。検討の結果、溶接時には溶接の入熱に応じて母材溶融が起こるため、溶接金属の幅が変動するが、その溶接金属の幅の変動をある規定値内に制御することで、優れた耐食性を発現する溶接継手が得られることを見出した。
(Width of weld metal)
・ Wmax−Wmin ≦ 5 mm (3)
In the weld metal, concentration of inevitable impurity elements that promote corrosion such as P and S occurs due to solidification segregation during welding, and local corrosion may be promoted. The present inventor has found that such solidification segregation is particularly noticeable when the heat input fluctuation during welding is large, and decided to investigate the suppression measures. As a result of the examination, the base metal melts in response to the heat input of the weld during welding, so the width of the weld metal varies, but by controlling the variation in the width of the weld metal within a specified value, excellent corrosion resistance It has been found that a welded joint that expresses can be obtained.
溶接された厚鋼板の圧延面と平行な板厚の1/2位置の断面における溶接金属の最大幅Wmaxおよび最小幅Wminの差(Wmax−Wmin)が5mmを超えると、溶接時の凝固偏析でPやSの濃縮部が顕著に形成され、溶接金属の局部腐食が促進される。よって、Wmax−Wminを5mm以下に抑制しなければならない。Wmax−Wminのより好ましい上限は4mmであり、3mm以下が更に好ましい。 If the difference between the maximum width Wmax and the minimum width Wmin (Wmax-Wmin) of the weld metal in the cross section at 1/2 position of the plate thickness parallel to the rolled surface of the welded thick steel plate exceeds 5 mm, solidification segregation during welding occurs. A concentrated portion of P or S is formed remarkably, and local corrosion of the weld metal is promoted. Therefore, Wmax−Wmin must be suppressed to 5 mm or less. The upper limit with more preferable Wmax-Wmin is 4 mm, and 3 mm or less is still more preferable.
Wmax−Wminを前記規定値内に抑える方法については特に制約はないが、その方法として、例えば、溶接電流I、溶接電圧E、溶接速度Vを常時モニタリングして、入熱量に関係するE×I/Vを常時一定となるように制御することを挙げることができる。また、溶接金属の幅には溶接ワイヤ送給速度も影響するため、高い精度で溶接ワイヤ送給速度を制御することにより、Wmax−Wminを低下させることができる。また、溶接に用いる交流電源を用いる場合には、高い周波数の交流電源を用いることにより溶接時のアーク安定性が向上して、Wmax−Wminを低下させることができる。交流電源の波形としては、通常のsin波よりも矩形波の方が好ましい。 There is no particular limitation on the method of keeping Wmax-Wmin within the specified value. For example, the welding current I, the welding voltage E, and the welding speed V are constantly monitored, and E × I related to the amount of heat input. It can be mentioned that / V is always controlled to be constant. Further, since the welding wire feeding speed also affects the width of the weld metal, Wmax-Wmin can be reduced by controlling the welding wire feeding speed with high accuracy. Moreover, when using the alternating current power supply used for welding, the arc stability at the time of welding improves by using a high frequency alternating current power supply, and Wmax-Wmin can be reduced. As the waveform of the AC power source, a rectangular wave is preferable to a normal sin wave.
尚、従来から行われている通常の溶接方法によっても、溶接が安定している場合には結果的にWmax−Wminが5mm以下となることはある。しかし、単にWmax−Wminを5mm以下としても、目標とする耐食性に優れた溶接継手を得ることはできない。更に、厚鋼板および溶接金属の化学成分組成を前記したように適正化することで、初めて目標とする耐食性に優れた溶接継手を得ることができる。 In addition, even when a conventional welding method is performed conventionally, if welding is stable, Wmax-Wmin may be 5 mm or less as a result. However, even if Wmax-Wmin is simply set to 5 mm or less, a target welded joint with excellent corrosion resistance cannot be obtained. Furthermore, by optimizing the chemical composition of the thick steel plate and the weld metal as described above, it is possible to obtain a weld joint having excellent target corrosion resistance for the first time.
Wmax−Wminについては、事前に前記した溶接方法にて溶接線の長さが200〜300mm程度の試験片を作製して、規定範囲を満足することを確認することが可能である。 About Wmax-Wmin, it is possible to make a test piece having a weld line length of about 200 to 300 mm in advance by the above-described welding method and confirm that the specified range is satisfied.
(溶接方法)
本発明の溶接継手を得るための溶接方法としては、被覆アーク溶接法、マグ溶接法、ティグ溶接法、セルフシールド溶接法、サブマージアーク溶接法、エレクトロスラグ溶接法、エレクトロガスアーク溶接法など各種の溶接法を用いることができる。
(Welding method)
The welding method for obtaining the welded joint of the present invention includes various welding methods such as a covering arc welding method, a mag welding method, a TIG welding method, a self-shielding welding method, a submerged arc welding method, an electroslag welding method, and an electrogas arc welding method. Can be used.
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらは何れも本発明の技術的範囲に包含されるものである。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.
[供試材の作製]
表1,2に示す種々の化学成分組成の鋼材を真空溶解炉により溶製し、100kgの鋼塊とした。得られた鋼塊を1150℃に加熱した後、熱間圧延を行って、板厚20mmの厚鋼板とし、更に、500mm×100mm×20mmの大きさの厚鋼板でなる鋼素材を切り出した。
[Production of test materials]
Steel materials having various chemical composition compositions shown in Tables 1 and 2 were melted in a vacuum melting furnace to form a 100 kg steel ingot. The obtained steel ingot was heated to 1150 ° C. and then hot-rolled to obtain a steel plate having a thickness of 20 mm, and a steel material made of a steel plate having a size of 500 mm × 100 mm × 20 mm was cut out.
表3,4に示す化学成分組成の溶接材料を用い、切り出した500mm×100mm×20mmの鋼素材2枚の500mmの辺同士をサブマージアーク溶接法により突き合わせ溶接して、表5,6の溶接継手を作製した。全ての溶接継手の溶接時の開先形状は、開先角度50°のV形とし、溶接速度は70cm/min、溶接入熱は110kJ/cmとした。尚、No.6の溶接継手以外では、溶接金属の幅を安定化させるために、溶接に用いる交流電源を、周波数100Hzの矩形波として、溶接時の電流、電圧、溶接ワイヤ送給速度、溶接速度を常時モニタリングし、常時一定となるようにこれらの溶接金属の幅に影響するパラメータを制御した。また、No.6の溶接では、周波数50Hzのsin波交流電源を用いた従来からの溶接方法を採用した。 Using welding materials having chemical composition compositions shown in Tables 3 and 4, 500 mm × 100 mm × 20 mm two cut steel materials are butt welded by 500 mm sides using the submerged arc welding method, and welded joints shown in Tables 5 and 6 Was made. The groove shape at the time of welding of all the welded joints was V-shaped with a groove angle of 50 °, the welding speed was 70 cm / min, and the welding heat input was 110 kJ / cm. No. In order to stabilize the width of the weld metal, the AC power source used for welding is a rectangular wave with a frequency of 100 Hz, and the welding current, voltage, welding wire feed speed, and welding speed are constantly monitored. The parameters affecting the width of these weld metals were controlled so as to be always constant. No. In the welding of No. 6, a conventional welding method using a sin wave AC power source with a frequency of 50 Hz was adopted.
図1に示すように、得られた溶接継手から、60mm×25mm×5mmの大きさのテストピース用素材を各々10枚切り出した。尚、これらテストピース用素材の片面が、必ず溶接された厚鋼板(鋼素材)の圧延面と平行な板厚の1/2位置の断面になるようにして切り出した。更に、切り出したテストピース用素材の表面全面をエメリー紙で#600まで湿式研磨してテストピース(TP)とした。 As shown in FIG. 1, ten test piece materials each having a size of 60 mm × 25 mm × 5 mm were cut out from the obtained welded joint. In addition, it cut out so that the single side | surface of these test piece raw materials might become a cross section of 1/2 position of the plate | board thickness parallel to the rolling surface of the welded thick steel plate (steel raw material). Further, the entire surface of the cut test piece material was wet-polished to # 600 with emery paper to obtain a test piece (TP).
[溶接金属の幅の測定]
前記したように厚鋼板から切り出したTPの表面を、塩化銅アンモニウム水溶液にてエッチングし、板厚の1/2位置の断面に相当する面の溶接金属の幅を、デジタルノギスで計測した。各々の溶接継手から採取した10枚のTPについて溶接金属の最大幅および最小幅をそれぞれ求め、得られた10点の最大幅の中で最大値をWmax、最小幅の中での最小値をWminとして、各々の溶接継手のWmax−Wminを求めた。
[Measurement of weld metal width]
As described above, the surface of the TP cut out from the thick steel plate was etched with a copper ammonium chloride aqueous solution, and the width of the weld metal on the surface corresponding to the cross section at a half position of the plate thickness was measured with a digital caliper. The maximum width and the minimum width of the weld metal are respectively determined for 10 TPs collected from each weld joint, and the maximum value among the obtained maximum widths of 10 points is Wmax, and the minimum value among the minimum widths is Wmin. As a result, Wmax-Wmin of each welded joint was obtained.
[腐食試験]
タンカー原油タンク底板のピット内や、石炭や鉄鉱石を運搬するバラ積み船の船倉内では厳しい酸による腐食が促進されると推定することができる。そこで、船舶用の構造部材に用いる各溶接継手の耐食性を評価するための腐食試験として、pH1に調整したHCl水溶液中での浸漬腐食試験を実施し、腐食減量、局部腐食状況、異種金属接触腐食状況より耐食性を評価することとした。溶液温度はウォーターバスを用いて30℃一定に制御し、浸漬時間は72時間とした。用いたTPは前記した溶接金属幅の測定に用いたTPであり、それぞれの溶接継手について10枚ずつを腐食試験に供した。TPは何れも溶接金属の幅測定の後に、再度、エメリー紙で#600まで湿式研磨し、水洗およびアセトン洗浄し、乾燥させてから腐食試験に用いた。
[Corrosion test]
It can be estimated that severe acid corrosion is promoted in the pit of the bottom plate of the tanker crude oil tank and in the bulk of the bulk carrier that carries coal and iron ore. Therefore, as a corrosion test for evaluating the corrosion resistance of each welded joint used for marine structural members, an immersion corrosion test in an aqueous HCl solution adjusted to pH 1 was conducted to reduce the corrosion weight, local corrosion status, and dissimilar metal contact corrosion. We decided to evaluate the corrosion resistance from the situation. The solution temperature was controlled to be constant at 30 ° C. using a water bath, and the immersion time was 72 hours. The used TP was the TP used for the measurement of the weld metal width described above, and 10 pieces of each welded joint were subjected to the corrosion test. Each TP was wet-polished to # 600 again with emery paper after measuring the width of the weld metal, washed with water and acetone, dried, and then used for the corrosion test.
TPを試験溶液に72時間浸漬した後、試験溶液から取り出して水洗し、アセトン中での超音波洗浄を行い、乾燥後にTPの質量測定を実施し、それぞれのTPにつき試験前後の質量変化から腐食した減量値を求め、10枚の平均値を腐食減量とした。 After TP is immersed in the test solution for 72 hours, it is taken out from the test solution, washed with water, subjected to ultrasonic cleaning in acetone, measured for TP mass after drying, and corroded from the mass change before and after the test for each TP. The weight loss value obtained was determined, and the average value of 10 sheets was taken as the corrosion weight loss.
また、前記質量測定後のTPについて、ルーペを用いた外観観察を行い、孔食などの局部腐食の有無を調査した。その後、TP断面の樹脂埋め込みを行い、母材と溶接金属との異種金属接触腐食の有無を調査した。尚、異種金属接触腐食については、断面から見たときの母材と溶接金属との段差が30μm以下の場合を異種金属接触腐食なし、段差が30μmを超える場合を異種金属接触腐食ありと判断した。 Further, the appearance of the TP after the mass measurement was observed using a loupe, and the presence or absence of local corrosion such as pitting corrosion was investigated. Thereafter, resin embedding of the TP cross section was performed, and the presence or absence of dissimilar metal contact corrosion between the base material and the weld metal was investigated. As for dissimilar metal contact corrosion, it was judged that there was no dissimilar metal contact corrosion when the difference between the base metal and the weld metal when viewed from the cross section was 30 μm or less, and that there was dissimilar metal contact corrosion when the step exceeded 30 μm .
以上の腐食減量、局部腐食の有無、異種金属接触腐食の有無より、溶接継手の耐食性を総合評価した。その評価基準は以下の通りであり、◎◎、◎、○〜◎、○を合格、×を不合格と評価した。
◎◎ :腐食減量が20未満、且つ局部腐食なし、且つ溶接金属と母材との間の接触腐食なし
◎ :腐食減量が40未満、且つ局部腐食なし、且つ溶接金属と母材との間の接触腐食なし
○〜◎:腐食減量が60未満、且つ局部腐食なし、且つ溶接金属と母材との間の接触腐食なし
○ :腐食減量が80未満、且つ局部腐食なし、且つ溶接金属と母材との間の接触腐食なし
× :腐食減量が80以上、または局部腐食あり、または溶接金属と母材との間の接触腐食あり
The corrosion resistance of welded joints was comprehensively evaluated based on the above weight loss, local corrosion, and dissimilar metal contact corrosion. The evaluation criteria were as follows, and ◎◎, ◎, ○ to ◎, ○ was evaluated as acceptable, and × was evaluated as unacceptable.
◎◎: Corrosion weight loss is less than 20, no local corrosion, and no contact corrosion between weld metal and base material ◎: Corrosion weight loss is less than 40, no local corrosion, and between weld metal and base material No contact corrosion ○ to ◎: Corrosion weight loss less than 60, no local corrosion, no contact corrosion between weld metal and base metal ○: Corrosion weight loss less than 80, no local corrosion, weld metal and base material No contact corrosion between: No: Corrosion weight loss of 80 or more, or local corrosion, or contact corrosion between weld metal and base metal
[試験結果]
pH1のHCl水溶液中での浸漬腐食試験による腐食減量、局部腐食状況、異種金属接触腐食状況の結果、および溶接継手の耐食性を総合評価結果は表5,6に示すとおりである。「腐食減量」は、No.1の溶接継手TPの腐食減量(10枚のTPの平均値)を100としたときの相対値で示している。また、「局部腐食」は、10枚のTPの全てで局部腐食が認められなかったものを○で示し、何れか1枚でも局部腐食が認められたものは×とした。尚、×(b)は母材側に局部腐食が発生したことを示し、×(w)は溶接金属側に局部腐食が発生したことを示す。また、「接触腐食」は、10枚のTPの全てで異種金属接触腐食が認められなかったものを○で示し、何れか1枚でも異種金属接触腐食が認められたものは×とした。尚、×(b)は母材側の腐食が溶接金属より加速されたことを示し、×(w)は溶接金属側が母材よりも加速されたことを示す。
[Test results]
Tables 5 and 6 show the results of comprehensive evaluation of corrosion weight loss, local corrosion status, dissimilar metal contact corrosion status, and corrosion resistance of welded joints by immersion corrosion test in HCl aqueous solution of pH1. “Corrosion weight loss” is “No. 1 shows the relative value when the corrosion weight loss (average value of 10 TPs) of one welded joint TP is 100. In addition, “local corrosion” was indicated by “◯” when no local corrosion was observed in all 10 TPs, and “No” was observed when any one of the TPs was recognized as local corrosion. In addition, x (b) indicates that local corrosion has occurred on the base metal side, and x (w) indicates that local corrosion has occurred on the weld metal side. In addition, “contact corrosion” was marked with “◯” when no different metal contact corrosion was observed in all of the 10 TPs, and “X” when any one of the TPs was recognized with different metal contact corrosion. In addition, x (b) shows that the corrosion on the base metal side is accelerated than the weld metal, and x (w) shows that the weld metal side is accelerated than the base metal.
表5,6によると、本発明の規定の何れかを満足しないNo.1〜8の比較例は、腐食減量が相対的に大きく、局部腐食と異種金属接触腐食のうち少なくとも一方の腐食が発生し、その結果、溶接継手の耐食性は不十分であった。No.1,2,3は、母材のAl、Cu、Crの何れかが規定した成分範囲を満足しない比較例である。これらは、何れも異種金属接触腐食は認められないが、母材側に局部腐食が発生し、溶接継手全体の腐食減量も比較的大きい。No.4,5は、溶接金属のCuまたはCrが母材に対して少なすぎるため、異種金属接触腐食により溶接金属の腐食が促進され、また、局部腐食も発生した。No.7,8は、溶接金属のCuまたはCrが母材に対して多すぎるため、異種金属接触腐食により母材の腐食が促進された。従来からの通常の溶接方法によるNo.6は、溶接金属の幅が比較的不安定であり、その結果、Wmax−Wminが規定を上回ったものであるが、溶接時の凝固偏析でPやSなどの腐食を促進する不可避的不純物元素の濃縮部が溶接金属に形成され、これらの濃縮部を起点とした局部腐食が発生した。 According to Tables 5 and 6, No. 1 does not satisfy any of the provisions of the present invention. In Comparative Examples 1 to 8, the corrosion weight loss was relatively large, and at least one of local corrosion and dissimilar metal contact corrosion occurred. As a result, the corrosion resistance of the welded joint was insufficient. No. 1, 2, and 3 are comparative examples that do not satisfy the component range defined by any of Al, Cu, and Cr of the base material. In any of these, no dissimilar metal contact corrosion is observed, but local corrosion occurs on the base metal side, and the overall weight loss of the welded joint is relatively large. No. In Nos. 4 and 5, the amount of Cu or Cr of the weld metal was too small relative to the base metal, so that the corrosion of the weld metal was accelerated by the contact corrosion of different metals, and local corrosion also occurred. No. In Nos. 7 and 8, since the amount of Cu or Cr of the weld metal is too much with respect to the base material, the corrosion of the base material was accelerated by the contact corrosion of different metals. No. by conventional welding method from the past. No. 6 has a relatively unstable weld metal width, and as a result, Wmax-Wmin exceeds the specified value. However, inevitable impurity elements that promote corrosion such as P and S by solidification segregation during welding. Concentrated portions of these were formed on the weld metal, and local corrosion occurred starting from these concentrated portions.
これらに対して、本発明の規定を何れも満足するNo.9〜62の溶接継手は、何れも腐食減量が80未満であり、且つ局部腐食や異種金属接触腐食は認められず、耐食性に優れる結果となった。これらの耐食性は、Al、Cu、Crなどを適量添加して得られる緻密な錆皮膜、母材と溶接金属とのCuおよびCr量の適正化による異種金属接触腐食の抑止、およびPやSなど濃縮抑制による局部腐食の抑止によって得られたものである。以上のように、本発明の溶接継手は何れも厳しい酸条件における耐食性が優れており、無塗装のまま使用されることが多いタンカーの原油タンクやバルカー船倉などの溶接継手として好適である。 On the other hand, No. 1 satisfying all the provisions of the present invention. All of the welded joints of 9 to 62 had a corrosion weight loss of less than 80, and neither local corrosion nor dissimilar metal contact corrosion was observed, resulting in excellent corrosion resistance. These corrosion resistances include a dense rust film obtained by adding appropriate amounts of Al, Cu, Cr, etc., suppression of dissimilar metal contact corrosion by optimizing the amount of Cu and Cr between the base material and the weld metal, and P, S, etc. This is obtained by suppressing local corrosion by suppressing concentration. As described above, each of the welded joints of the present invention is excellent in corrosion resistance under severe acid conditions, and is suitable as a welded joint for a crude oil tank of a tanker or a bulk cargo hold that is often used without coating.
尚、塗装仕様で厚鋼板が使用されるバラストタンクなどの腐食環境においても、何らかの要因で防食塗装が剥離し、溶接継手部が腐食環境に露出して、腐食が進行してしまう場合も多い。よって、本発明の溶接継手は、表面に塗装を施して使用した場合でも、塗装が剥離した場合の腐食抑制に効果を有するため、塗装の有無に関わらず船舶用溶接継手として有効に用いることができる。 Even in a corrosive environment such as a ballast tank in which a thick steel plate is used for coating specifications, the anticorrosion coating is peeled off for some reason, and the welded joint is exposed to the corrosive environment, and corrosion often proceeds. Therefore, even when the welded joint of the present invention is used with its surface coated, it has an effect on inhibiting corrosion when the paint is peeled off, so it can be effectively used as a marine welded joint regardless of the presence or absence of coating. it can.
Claims (6)
溶接金属におけるCuおよびCrの含有量が下記式(1)および(2)を満足すると共に、前記溶接金属におけるCu、Cr以外の化学成分含有量が、質量%で、C:0.04〜0.30%、Si:0.05〜1.0%、Mn:0.1〜2.0%、P:0.04%以下(0%を含まない)、S:0.04%以下(0%を含まない)、Al:0.010〜0.10%、N:0.010%以下(0%を含まない)を含有し、残部がFeおよび不可避的不純物であり、
更に、溶接された厚鋼板の圧延面と平行な板厚の1/2位置の断面における前記溶接金属の最大幅Wmaxと最小幅Wminの差が下記式(3)を満足することを特徴とする耐食性に優れた船舶用溶接継手。
[Cu]b×0.5と0.10%のうち大きい方≦[Cu]w≦[Cu]b×1.5・・・式(1)
[Cr]b×0.5と0.01%のうち大きい方≦[Cr]w≦[Cr]b×1.5・・・式(2)
Wmax−Wmin≦5mm・・・式(3)
但し、式(1)において、[Cu]wは溶接金属におけるCuの含有量(質量%)、[Cu]bは母材におけるCuの含有量(質量%)であり、式(2)において、[Cr]wは溶接金属におけるCrの含有量(質量%)、[Cr]bは母材におけるCrの含有量(質量%)である。 In mass%, C: 0.04 to 0.30%, Si: 0.05 to 1.0%, Mn: 0.1 to 2.0%, P: 0.04% or less (excluding 0%) ), S: 0.04% or less (excluding 0%), Al: 0.010 to 0.10%, Cu: 0.10 to 1.0%, Cr: 0.01 to 0.5%, N: 0.010% or less (not including 0%), a marine welded joint obtained by butt welding a thick steel plate made of Fe and inevitable impurities,
The content of Cu and Cr in the weld metal satisfies the following formulas (1) and (2), and the content of chemical components other than Cu and Cr in the weld metal is C%: 0.04-0. .30%, Si: 0.05 to 1.0%, Mn: 0.1 to 2.0%, P: 0.04% or less (excluding 0%), S: 0.04% or less (0 %), Al: 0.010 to 0.10%, N: 0.010% or less (not including 0%), the balance being Fe and inevitable impurities,
Furthermore, the difference between the maximum width Wmax and the minimum width Wmin of the weld metal in a cross section at a half position of the plate thickness parallel to the rolled surface of the welded thick steel plate satisfies the following formula (3). Marine welded joint with excellent corrosion resistance.
The larger of [Cu] b × 0.5 and 0.10% ≦ [Cu] w ≦ [Cu] b × 1.5 (1)
The larger of [Cr] b × 0.5 and 0.01% ≦ [Cr] w ≦ [Cr] b × 1.5 (2)
Wmax−Wmin ≦ 5 mm (3)
However, in Formula (1), [Cu] w is the Cu content (% by mass) in the weld metal, and [Cu] b is the Cu content (% by mass) in the base metal. In Formula (2), [Cr] w is the Cr content (mass%) in the weld metal, and [Cr] b is the Cr content (mass%) in the base metal.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014216550A JP2016084489A (en) | 2014-10-23 | 2014-10-23 | Weld joint for ship excellent in corrosion resistance |
CN201510686372.9A CN105537796A (en) | 2014-10-23 | 2015-10-21 | Ship welding joint with excellent corrosion resistance |
KR1020150147241A KR20160048007A (en) | 2014-10-23 | 2015-10-22 | Ship weld joint excellent in corrosion resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014216550A JP2016084489A (en) | 2014-10-23 | 2014-10-23 | Weld joint for ship excellent in corrosion resistance |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016084489A true JP2016084489A (en) | 2016-05-19 |
Family
ID=55817604
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014216550A Ceased JP2016084489A (en) | 2014-10-23 | 2014-10-23 | Weld joint for ship excellent in corrosion resistance |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2016084489A (en) |
KR (1) | KR20160048007A (en) |
CN (1) | CN105537796A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017183369A1 (en) | 2016-04-20 | 2017-10-26 | 株式会社ブリヂストン | Tire and tire mold |
JP2020070463A (en) * | 2018-10-31 | 2020-05-07 | 日本製鉄株式会社 | Corrosion-resistant steel for hold of coal carrying vessel or coal/ore carrying vessel |
JP2020070464A (en) * | 2018-10-31 | 2020-05-07 | 日本製鉄株式会社 | Corrosion-resistant steel for hold of coal carrying vessel or coal/ore carrying vessel |
JP2020070465A (en) * | 2018-10-31 | 2020-05-07 | 日本製鉄株式会社 | Corrosion-resistant steel for hold of coal carrying vessel or coal/ore carrying vessel |
WO2020091023A1 (en) * | 2018-10-31 | 2020-05-07 | 日本製鉄株式会社 | Corrosion-resistant steel for holds of coal carrying vessels or ore/coal carrying vessels, and hold |
CN112458378A (en) * | 2020-12-02 | 2021-03-09 | 山东泰山钢铁集团有限公司 | Production method of high-strength hot-rolled coiled plate for soil contact accessory of agricultural implement |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105734424A (en) * | 2016-05-09 | 2016-07-06 | 周常 | Alloy material for offshore drilling platform freshwater cooling system and preparation method thereof |
CN105937012A (en) * | 2016-07-11 | 2016-09-14 | 吴用镜 | Anti-corrosion alloy steel for drilling drill pipe |
CN110385545B (en) * | 2018-10-25 | 2022-01-11 | 唐山师范学院 | Welding wire steel for manual argon arc welding |
CN109487173B (en) * | 2018-11-21 | 2020-11-24 | 天津市华油钢管有限公司 | Corrosion-resistant spiral submerged-arc welded pipe for petroleum transportation and preparation method thereof |
CN115584439B (en) * | 2022-10-10 | 2023-07-04 | 本钢板材股份有限公司 | Special anti-corrosion steel plate for wood drying equipment and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006137963A (en) * | 2004-11-10 | 2006-06-01 | Sumitomo Metal Ind Ltd | Welded joint for crude oil tank, and crude oil tank |
JP2009082948A (en) * | 2007-09-28 | 2009-04-23 | Jfe Steel Kk | Weld joint |
JP2010043342A (en) * | 2008-08-18 | 2010-02-25 | Nippon Steel Corp | Weld joint for crude oil tank excellent in corrosion resistance and ductile fracture resistance |
JP2012001810A (en) * | 2010-05-18 | 2012-01-05 | Jfe Steel Corp | Welded joint having excellent corrosion resistance and crude oil tank |
JP2012135817A (en) * | 2005-08-08 | 2012-07-19 | Kobe Steel Ltd | Welded joint and welded structure excellent in corrosion resistance |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3773745B2 (en) * | 2000-03-07 | 2006-05-10 | 株式会社神戸製鋼所 | Method for producing low yield ratio and high Ti steel sheet excellent in bare weather resistance |
JP4792644B2 (en) * | 2001-03-09 | 2011-10-12 | Jfeスチール株式会社 | Steel with excellent salt resistance and high heat input welding toughness |
WO2012111535A1 (en) * | 2011-02-14 | 2012-08-23 | 住友金属工業株式会社 | Welded duplex stainless joint |
-
2014
- 2014-10-23 JP JP2014216550A patent/JP2016084489A/en not_active Ceased
-
2015
- 2015-10-21 CN CN201510686372.9A patent/CN105537796A/en active Pending
- 2015-10-22 KR KR1020150147241A patent/KR20160048007A/en not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006137963A (en) * | 2004-11-10 | 2006-06-01 | Sumitomo Metal Ind Ltd | Welded joint for crude oil tank, and crude oil tank |
JP2012135817A (en) * | 2005-08-08 | 2012-07-19 | Kobe Steel Ltd | Welded joint and welded structure excellent in corrosion resistance |
JP2009082948A (en) * | 2007-09-28 | 2009-04-23 | Jfe Steel Kk | Weld joint |
JP2010043342A (en) * | 2008-08-18 | 2010-02-25 | Nippon Steel Corp | Weld joint for crude oil tank excellent in corrosion resistance and ductile fracture resistance |
JP2012001810A (en) * | 2010-05-18 | 2012-01-05 | Jfe Steel Corp | Welded joint having excellent corrosion resistance and crude oil tank |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017183369A1 (en) | 2016-04-20 | 2017-10-26 | 株式会社ブリヂストン | Tire and tire mold |
JP2020070463A (en) * | 2018-10-31 | 2020-05-07 | 日本製鉄株式会社 | Corrosion-resistant steel for hold of coal carrying vessel or coal/ore carrying vessel |
JP2020070464A (en) * | 2018-10-31 | 2020-05-07 | 日本製鉄株式会社 | Corrosion-resistant steel for hold of coal carrying vessel or coal/ore carrying vessel |
JP2020070465A (en) * | 2018-10-31 | 2020-05-07 | 日本製鉄株式会社 | Corrosion-resistant steel for hold of coal carrying vessel or coal/ore carrying vessel |
WO2020091023A1 (en) * | 2018-10-31 | 2020-05-07 | 日本製鉄株式会社 | Corrosion-resistant steel for holds of coal carrying vessels or ore/coal carrying vessels, and hold |
CN112272712A (en) * | 2018-10-31 | 2021-01-26 | 日本制铁株式会社 | Corrosion-resistant steel for cabin of special coal ship or mine/coal ship and cabin |
JP7196537B2 (en) | 2018-10-31 | 2022-12-27 | 日本製鉄株式会社 | Corrosion resistant steel for hold of coal carrier or coal carrier |
JP7196538B2 (en) | 2018-10-31 | 2022-12-27 | 日本製鉄株式会社 | Corrosion resistant steel for hold of coal carrier or coal carrier |
JP7196539B2 (en) | 2018-10-31 | 2022-12-27 | 日本製鉄株式会社 | Corrosion resistant steel for hold of coal carrier or coal carrier |
CN112458378A (en) * | 2020-12-02 | 2021-03-09 | 山东泰山钢铁集团有限公司 | Production method of high-strength hot-rolled coiled plate for soil contact accessory of agricultural implement |
CN112458378B (en) * | 2020-12-02 | 2022-04-22 | 山东泰山钢铁集团有限公司 | Production method of high-strength hot-rolled coiled plate for soil contact accessory of agricultural implement |
Also Published As
Publication number | Publication date |
---|---|
CN105537796A (en) | 2016-05-04 |
KR20160048007A (en) | 2016-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2016084489A (en) | Weld joint for ship excellent in corrosion resistance | |
JP4502075B1 (en) | Corrosion resistant steel for crude oil tankers | |
EP2484790B1 (en) | Steel material for structures having excellent weather resistance and steel structure | |
JP5058574B2 (en) | Anti-corrosion steel plate for ship ballast tanks to be anticorrosive and rust prevention method for ship ballast tanks | |
KR20140105862A (en) | Corrosion-resistant steel for hold of coal carrying vessel or coal/ore carrying vessel | |
JP5861335B2 (en) | Welded joint with excellent corrosion resistance | |
JP5662894B2 (en) | Steel material for the upper deck of crude oil tankers with excellent corrosion resistance or cargo for bulk carriers | |
JP5617191B2 (en) | Marine steel with excellent film swell resistance | |
JP6180956B2 (en) | Painted steel with excellent corrosion resistance | |
JP5239615B2 (en) | Welded joints for crude oil tanks with excellent corrosion resistance and ductile fracture resistance | |
JP2007063610A (en) | Anti-corrosive steel material for crude oil tank | |
JP5481980B2 (en) | Marine steel with excellent film swell resistance | |
KR101314022B1 (en) | Welded joint having excellent corrosion resistance and crude oil tank | |
JP2012153933A (en) | Steel product for ship, excellent in corrosion resistance | |
JP5526859B2 (en) | Steel for crude oil tankers | |
JP6260755B1 (en) | Steel for ship ballast tank and ship | |
JP2012092404A (en) | Steel for ship having excellent coating corrosion resistance | |
JP6493019B2 (en) | Corrosion-resistant steel for ballast tanks | |
KR101597481B1 (en) | Welding joint and steel having exceptional galvanic corrosion resistance | |
JP4968393B2 (en) | Welded joints and crude oil tanks with excellent corrosion resistance | |
JP2014201758A (en) | Steel material for crude oil tank with excellent corrosion resistance, and crude oil tank | |
JP6048104B2 (en) | Corrosion resistant steel for holding coal ships and coal / ore combined ships | |
JP2008133536A (en) | Steel having excellent corrosion resistance for ship use | |
JP6736255B2 (en) | Corrosion resistant steel for ballast tanks | |
JP7196539B2 (en) | Corrosion resistant steel for hold of coal carrier or coal carrier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20160603 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20160713 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160901 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170614 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170704 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20180130 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180501 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20180510 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20180706 |
|
A045 | Written measure of dismissal of application [lapsed due to lack of payment] |
Free format text: JAPANESE INTERMEDIATE CODE: A045 Effective date: 20191126 |