JP2020070465A - Corrosion-resistant steel for hold of coal carrying vessel or coal/ore carrying vessel - Google Patents

Corrosion-resistant steel for hold of coal carrying vessel or coal/ore carrying vessel Download PDF

Info

Publication number
JP2020070465A
JP2020070465A JP2018204701A JP2018204701A JP2020070465A JP 2020070465 A JP2020070465 A JP 2020070465A JP 2018204701 A JP2018204701 A JP 2018204701A JP 2018204701 A JP2018204701 A JP 2018204701A JP 2020070465 A JP2020070465 A JP 2020070465A
Authority
JP
Japan
Prior art keywords
less
corrosion
content
coal
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018204701A
Other languages
Japanese (ja)
Other versions
JP7196539B2 (en
Inventor
妃奈 佐藤
Hina Sato
妃奈 佐藤
慎 長澤
Shin Nagasawa
慎 長澤
金子 道郎
Michiro Kaneko
道郎 金子
鹿島 和幸
Kazuyuki Kashima
和幸 鹿島
伊藤 実
Minoru Ito
実 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018204701A priority Critical patent/JP7196539B2/en
Priority to CN201980038177.1A priority patent/CN112272712A/en
Priority to PCT/JP2019/042955 priority patent/WO2020091023A1/en
Priority to KR1020207034690A priority patent/KR20210005235A/en
Publication of JP2020070465A publication Critical patent/JP2020070465A/en
Application granted granted Critical
Publication of JP7196539B2 publication Critical patent/JP7196539B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

To provide corrosion-resistant steel for a hold of a coal carrying vessel or an ore/coal carrying vessel, which is suitable for a corrosive environment in a cargo hold.SOLUTION: The corrosion-resistant steel for a hold of a coal carrying vessel or an ore/coal carrying vessel contains, by mass%, C: 0.01 to 0.20%, Mn: 0.1 to 2.0%, Ni: 0.30 to 5.0%, Sn: 0.05 to 0.50%, and Al: 0.005 to 0.10% with the following limits of Si: 1.0% or less, P: 0.05% or less, S: 0.03% or less, N: 0.008% or less, O: 0.010% or less, and the balance Fe with impurities. Further, the corrosion-resistant steel can contain one or two or more of Sb, Cu, Cr, Mo, W, Ti, Zr, Ca, Mg, REM, Nb, V, and B.SELECTED DRAWING: None

Description

本発明は、石炭専用船又は鉱炭兼用船の船倉用耐食鋼に関する。 TECHNICAL FIELD The present invention relates to a corrosion-resistant steel for a cargo hold of a coal-only ship or a coal-bearing ship.

近年、石炭を運搬する石炭専用船又は鉱炭兼用船の船倉内(以下、カーゴホールド内という場合がある。)の腐食が問題視されている。従来から、石炭が積載されるカーゴホールド内には塗装が施されていたが、石炭によるメカニカルダメージや、荷揚げ時の重機による疵・磨耗により、塗装が剥がれる場合が多く、生じた疵部が腐食環境に曝され、十分な防食効果が得られていない。   2. Description of the Related Art In recent years, corrosion in the holds of coal-only ships or coal-bearing ships that carry coal (hereinafter sometimes referred to as cargo hold) has become a problem. Traditionally, the cargo hold on which coal is loaded has been painted.However, the paint often peels off due to mechanical damage from coal and flaws / wear from heavy machinery during unloading, and the flaws that have formed are corroded. It is exposed to the environment and does not have a sufficient anticorrosion effect.

塗膜形成による防食効果を維持するためには定期的な再塗装および補修が必要になるが、非常にコストがかかる。そのため、合金元素の微量添加により耐食性を向上させた耐食鋼が提案されている(例えば、特許文献1〜4、参照)。
これらの特許文献に記載の技術は、SnやSb、Cuなどの酸による腐食を抑制する合金元素(耐酸元素)を添加し、低pH環境での耐食性の向上を狙った耐食鋼である。
Periodic repainting and repairs are required to maintain the anticorrosion effect due to the coating film formation, but it is very costly. Therefore, a corrosion resistant steel having improved corrosion resistance by adding a trace amount of alloying elements has been proposed (see, for example, Patent Documents 1 to 4).
The techniques described in these patent documents are corrosion resistant steels with the aim of improving the corrosion resistance in a low pH environment by adding an alloying element (acid resistance element) that suppresses corrosion by acids such as Sn, Sb and Cu.

特開2007−262555号公報JP, 2007-262555, A 特開2012−177190号公報JP, 2012-177190, A 特開2013−227610号公報JP, 2013-227610, A 特開2016−027198号公報JP, 2016-027198, A

従来、カーゴホールド内では、船倉の側壁部に生じた結露水中に、石炭に含まれる硫黄が溶け出し、温度の上昇によって硫酸が生成し、低pH環境となるため腐食が進行するものと考えられていた。しかし、本発明者らが、カーゴホールド内にて腐食した鋼材を分析した結果、地鉄界面からは塩化物イオン(Cl)が認められたものの、硫酸イオン(SO 2−)は認められなかった。したがって、カーゴホールド内の主要腐食因子は硫酸イオン(SO 2−)ではなく、塩化物イオン(Cl)であると考えられる。 Conventionally, in the cargo hold, it is considered that the sulfur contained in the coal dissolves in the dew condensation water generated on the side wall of the hold, sulfuric acid is generated due to the temperature rise, and the low pH environment causes corrosion. Was there. However, as a result of analyzing the steel materials corroded in the cargo hold by the present inventors, although chloride ions (Cl ) were found from the base iron interface, sulfate ions (SO 4 2− ) were found. There wasn't. Therefore, it is considered that the main corrosion factor in the cargo hold is not the sulfate ion (SO 4 2− ) but the chloride ion (Cl ).

従来、カーゴホールド内では硫酸によって鋼材の腐食が進行すると考えられていたため、耐酸元素を添加し、酸による腐食を促進する合金元素の添加は避けられていた。しかし、本発明者らによる検討の結果、カーゴホールド内では塩化物イオン(Cl)が腐食の主な原因であることが判明した。したがって、石炭専用船又は鉱炭兼用船の船倉用耐食鋼の成分設計には、従来とは異なるコンセプトが必要になる。
即ち、本発明者らの研究により、硫酸イオンが影響する腐食形態ではなく、塩化物イオンが影響する腐食形態を考慮して船倉用耐食鋼の成分設計を行う必要があることがわかった。
Conventionally, it has been considered that the corrosion of steel materials is promoted by sulfuric acid in the cargo hold. Therefore, addition of an acid resistant element and addition of an alloying element that promotes acid corrosion has been avoided. However, as a result of examination by the present inventors, it was found that chloride ions (Cl ) were the main cause of corrosion in the cargo hold. Therefore, the concept design different from the conventional one is required for the component design of the corrosion-resistant steel for the hold of the coal carrier or the coal-bearing ship.
That is, the research conducted by the present inventors has revealed that it is necessary to design the components of the corrosion-resistant steel for a cargo hold in consideration of the corrosion mode affected by chloride ions, not the corrosion mode affected by sulfate ions.

本発明は、SnやSb、Cuなどの耐酸元素を添加した従来技術に基づく耐食鋼の成分設計に比べて、カーゴホールド内の塩化物イオンが影響する腐食環境に、より適しており、更に腐食を抑制することができる石炭専用船又は鉱炭兼用船の船倉用耐食鋼の提供を課題とするものである。   INDUSTRIAL APPLICABILITY The present invention is more suitable for a corrosive environment affected by chloride ions in a cargo hold, and more suitable for corrosion than the composition design of corrosion-resistant steel based on the prior art in which acid-resistant elements such as Sn, Sb, and Cu are added. It is an object of the present invention to provide a corrosion-resistant steel for a cargo hold of a coal-only ship or a coal-charging ship that can suppress the above-mentioned problems.

本発明者の研究により、カーゴホールド内の鋼板表面に生成した錆層にはβ−FeOOHが含まれることを知見したことから、カーゴホールド内では塩化物イオン(Cl)が腐食の原因となり、中性塩化物環境とpHが低下した高濃度の塩化物環境(低pH高濃度塩化物環境)とが繰り返される腐食環境になっていると考えた。中性塩化物環境は、石炭が船倉に積載された状態(積荷状態という)の鋼材と石炭との界面の腐食環境であると考えられる。一方、低pH高濃度塩化物環境は、石炭が船倉から揚荷された状態(空荷状態という)の鋼材の表面の腐食環境であると考えられる。 From the study of the present inventors, since it was found that the rust layer formed on the steel plate surface in the cargo hold contains β-FeOOH, chloride ion (Cl ) causes corrosion in the cargo hold, It was considered that the environment was a corrosive environment in which a neutral chloride environment and a high-concentration chloride environment with lowered pH (low-pH, high-concentration chloride environment) were repeated. The neutral chloride environment is considered to be a corrosive environment at the interface between steel and coal in a state where coal is loaded in the hold (called a loaded state). On the other hand, the low-pH high-concentration chloride environment is considered to be a corrosive environment on the surface of the steel material in a state where coal is unloaded from the hold (called an empty state).

積荷状態では、港湾で保管されていた石炭に含まれている、海塩などの塩化物、及び、雨や冷却水などの水分によって、石炭と鋼材の表面との間に塩化物イオンを含む中性の溶液が常に存在する中性塩化物環境になっていると推定される。
一方、空荷状態では、船倉内に残留した海塩に含まれる塩化物が吸湿することなどによって、鋼材の表面に塩化物イオンが濃化した薄い水膜が形成され、腐食の進行に伴ってpHが低下し、鋼材の表面が低pH高濃度塩化物環境になっていると推定される。
In the loaded state, chloride ions such as sea salt contained in the coal stored at the port and water such as rain and cooling water contain chloride ions between the coal and the surface of the steel product. It is presumed that the neutral chloride environment in which the sexual solution is always present.
On the other hand, when the cargo is empty, the chloride contained in the sea salt remaining in the hold absorbs moisture, forming a thin water film with concentrated chloride ions on the surface of the steel material. It is presumed that the pH is lowered and the surface of the steel material is in a low pH, high concentration chloride environment.

本発明者らは、カーゴホールド内が、中性塩化物環境と低pH高濃度塩化物環境とが繰り返される腐食環境になっているという推定に基づいて、鋼材の腐食を抑制する合金元素の検討を行った。そして、本発明者らは、中性塩化物環境、低pH高濃度塩化物環境のいずれの環境においても鋼の腐食を抑制するNiに加え、低pH高濃度塩化物環境での腐食を大きく抑制するSnを同時に含有させることによって、腐食を顕著に抑制することに成功した。
本発明はこのような知見に基づいてなされたものであり、その要旨は以下のとおりである。
Based on the estimation that the cargo hold is a corrosive environment in which a neutral chloride environment and a low-pH high-concentration chloride environment are repeated, examination of alloy elements that suppress corrosion of steel materials is conducted. I went. The inventors of the present invention significantly suppress corrosion in a low-pH high-concentration chloride environment in addition to Ni, which suppresses corrosion of steel in both neutral chloride environment and low-pH high-concentration chloride environment. It was succeeded in suppressing the corrosion remarkably by simultaneously containing Sn.
The present invention has been made based on such findings, and the gist thereof is as follows.

[1]本発明は、質量%で、C:0.01〜0.20%、Mn:0.1〜2.0%、Ni:0.30〜5.0%、Sn:0.05〜0.50%、Al:0.005〜0.10%を含有し、Si:1.0%以下、P:0.05%以下、S:0.03%以下、N:0.008%以下、O:0.010%以下に制限し、残部がFeおよび不純物からなる石炭専用船又は鉱炭兼用船の船倉用耐食鋼に関する。 [1] In the present invention, in mass%, C: 0.01 to 0.20%, Mn: 0.1 to 2.0%, Ni: 0.30 to 5.0%, Sn: 0.05 to. 0.50%, Al: 0.005 to 0.10% contained, Si: 1.0% or less, P: 0.05% or less, S: 0.03% or less, N: 0.008% or less , O: 0.010% or less, and the present invention relates to a corrosion-resistant steel for hold of a coal-only ship or a coal-charging ship, the balance of which is Fe and impurities.

[2]本発明において、さらに、質量%で、Sb:0.50%以下、Cu:0.50%以下、Cr:0.1%未満、Mo:1.0%以下、W:1.0%以下の1種又は2種以上を含有する上記[1]に記載の石炭専用船又は鉱炭兼用船の船倉用耐食鋼であっても良い。 [2] In the present invention, further, in mass%, Sb: 0.50% or less, Cu: 0.50% or less, Cr: less than 0.1%, Mo: 1.0% or less, W: 1.0. %, Or the corrosion-resistant steel for the hold of the coal-only ship or the coal-charging ship according to the above [1], which contains one or two or more%.

[3]本発明において、さらに、質量%で、Ti:0.10%以下、Zr:0.20%以下、Ca:0.050%以下、Mg:0.050%以下、REM:0.050%以下の1種又は2種以上を含有する、上記[1]又は[2]に記載の石炭専用船又は鉱炭兼用船の船倉用耐食鋼であっても良い。
[4]本発明において、さらに、質量%で、Nb:0.10%以下、V:0.10%以下、B:0.010%以下の1種又は2種以上を含有する、上記[1]〜[3]のいずれか1項に記載の石炭専用船又は鉱炭兼用船の船倉用耐食鋼であっても良い。
[3] In the present invention, further, in mass%, Ti: 0.10% or less, Zr: 0.20% or less, Ca: 0.050% or less, Mg: 0.050% or less, REM: 0.050. % Or less, or the corrosion-resistant steel for a cargo hold of the coal-only ship or the coal-charging ship according to the above [1] or [2], containing one or more kinds.
[4] In the present invention, the content of Nb: 0.10% or less, V: 0.10% or less, B: 0.010% or less in one or two or more kinds is included in the above [1. ]-[3] Corrosion-resistant steel for the cargo hold of the coal-only ship or the coal-charging ship described in any one of [3].

本発明によれば、カーゴホールド内の腐食環境に適する、石炭専用船又は鉱炭兼用船の船倉用耐食鋼を提供することができる。そして、本発明によれば、カーゴホールド内の腐食による部材切り替えや再塗装によるメンテナンスコストを大幅に低減することができる。したがって、本発明は産業上の貢献が極めて顕著である。   ADVANTAGE OF THE INVENTION According to this invention, the corrosion-resistant steel suitable for the corrosive environment in a cargo hold can be provided for the cargo hold of a coal-only ship or a coal-charging ship. Further, according to the present invention, it is possible to significantly reduce the maintenance cost due to switching of members due to corrosion in the cargo hold and repainting. Therefore, the present invention makes a very significant industrial contribution.

以下、本実施形態に係る石炭専用船又は鉱炭兼用船の船倉用耐食鋼について詳しく説明する。
まず、本実施形態の船倉用耐食鋼の化学組成 について述べる。なお、化学組成における各元素の含有量を示す「%」は、質量%を意味する。また、化学組成における数値範囲において、「〜」を用いて表される数値範囲は、特に指定しない限り、「〜」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。よって、例えば、0.01〜0.20%は0.01%以上0.20%以下の範囲を意味する。
Hereinafter, the corrosion-resistant steel for the cargo hold of the coal carrier or the coal-charging ship according to the present embodiment will be described in detail.
First, the chemical composition of the corrosion-resistant steel for hold of this embodiment will be described. In addition, "%" showing the content of each element in a chemical composition means the mass%. In addition, in the numerical range of the chemical composition, the numerical range represented by “to” means a range including the numerical values before and after “to” as the lower limit value and the upper limit value, unless otherwise specified. Therefore, for example, 0.01 to 0.20% means a range of 0.01% to 0.20%.

(C:0.01〜0.20%)
C(炭素)は、鋼の強度を増加させる元素であり、効果を十分に得るために、Cの含有量を0.01%以上とする。好ましくはC含有量を0.03%以上とする。一方、C含有量が過剰になると、セメンタイトの生成によって耐食性が低下するため、Cの含有量を0.20%以下とする。好ましくは、C含有量を0.15%以下とする。
(C: 0.01 to 0.20%)
C (carbon) is an element that increases the strength of steel, and in order to sufficiently obtain the effect, the content of C is set to 0.01% or more. Preferably, the C content is 0.03% or more. On the other hand, if the C content is excessive, the corrosion resistance is reduced due to the formation of cementite, so the C content is set to 0.20% or less. Preferably, the C content is 0.15% or less.

(Si:1.0%以下)
Si(ケイ素)は、脱酸剤として有用でかつ鋼の強度を増加させる元素である。脱酸はSi以外の元素でも可能であり、Siの含有量は0%でもよいが、脱酸の効果を得るためにSi含有量を0.01%以上とすることが好ましい。より好ましくはSi含有量を0.02%以上、さらに好ましくは0.05%以上とする。しかし、1.0%を超えてSiを含有させると母材および溶接継手部の靱性が損なわれるため、Siの含有量を1.0%以下に制限する。好ましくは、Si含有量を0.5%以下、より好ましくは0.3%以下とする。
(Si: 1.0% or less)
Si (silicon) is an element that is useful as a deoxidizer and increases the strength of steel. Deoxidation can be performed with an element other than Si, and the Si content may be 0%, but the Si content is preferably 0.01% or more in order to obtain the effect of deoxidation. The Si content is more preferably 0.02% or more, still more preferably 0.05% or more. However, if Si is contained in excess of 1.0%, the toughness of the base material and the welded joint is impaired, so the Si content is limited to 1.0% or less. The Si content is preferably 0.5% or less, more preferably 0.3% or less.

(Mn:0.1〜2.0%)
Mn(マンガン)は、鋼の強度と靱性を向上させる元素であり、Mnの含有量を0.1%以上とする。好ましくはMn含有量を0.2%以上、より好ましくは0.5%以上とする。一方、Mnは、腐食の起点となるMnSを形成する元素であり、鋼材の耐食性の劣化を避けるため、Mnの含有量を2.0%以下とする。好ましくはMn含有量を1.5%以下、より好ましくは1.2%以下とする。
(Mn: 0.1-2.0%)
Mn (manganese) is an element that improves the strength and toughness of steel, and the Mn content is 0.1% or more. The Mn content is preferably 0.2% or more, more preferably 0.5% or more. On the other hand, Mn is an element that forms MnS that is the starting point of corrosion, and the content of Mn is set to 2.0% or less in order to avoid deterioration of the corrosion resistance of the steel material. The Mn content is preferably 1.5% or less, more preferably 1.2% or less.

(P:0.05%以下)
P(リン)は、不純物であり、鋼材の機械特性や溶接性を劣化させるため、Pの含有量を0.05%以下とする。好ましくは0.025%以下である。Pの含有量は0%でもよいが、製造コストの観点から、0.0001%以上のPを含有させてもよい。また、Pは、塩化物環境での鋼の耐食性を向上させる元素であり、Pの含有量を0.001%以上としてもよい。
(P: 0.05% or less)
P (phosphorus) is an impurity and deteriorates the mechanical properties and weldability of steel materials, so the P content is set to 0.05% or less. It is preferably 0.025% or less. The P content may be 0%, but 0.0001% or more of P may be contained from the viewpoint of manufacturing cost. Further, P is an element that improves the corrosion resistance of steel in a chloride environment, and the P content may be 0.001% or more.

(S:0.03%以下)
S(硫黄)は、不純物であり、腐食を促進するMnSを形成するため、Sの含有量を0.03%以下に制限する。S含有量は0.005%以下が好ましく、より好ましくは0.003%以下とする。Sの含有量は0%でもよいが、製造コストの観点から、0.0001%以上のSを含有させてもよい。
(S: 0.03% or less)
S (sulfur) is an impurity and forms MnS that promotes corrosion, so the content of S is limited to 0.03% or less. The S content is preferably 0.005% or less, more preferably 0.003% or less. The content of S may be 0%, but 0.0001% or more of S may be contained from the viewpoint of manufacturing cost.

(Al:0.005〜0.10%)
Al(アルミニウム)は、鋼の脱酸に有効な元素であり、0.10%以下を含有させる。好ましくは、Al含有量を0.07%以下とする。Alの含有量は、脱酸の効果を得るために0.005%以上とする。好ましくはAl含有量を0.010%以上、より好ましくは0.015%以上とする。
(Al: 0.005-0.10%)
Al (aluminum) is an element effective for deoxidizing steel and contains 0.10% or less. Preferably, the Al content is 0.07% or less. The Al content is 0.005% or more in order to obtain the effect of deoxidation. The Al content is preferably 0.010% or more, more preferably 0.015% or more.

(Ni:0.30〜5.0%)
Ni(ニッケル)は、中性塩化物環境で鋼のアノード溶解速度を低減する重要な元素であり、積荷状態および空荷状態のカーゴホールド内の耐食性を向上させるために、Ni含有量を0.30%以上とする。好ましくはNi含有量を0.50%以上とする。一方、Niは高価な元素であり、コストの観点からNi含有量を5.0%以下とする 。好ましくはNi含有量を4.0%以下、より好ましくは3.0%以下とする。
(Ni: 0.30 to 5.0%)
Ni (nickel) is an important element that reduces the anodic dissolution rate of steel in a neutral chloride environment, and in order to improve the corrosion resistance in the cargo hold in the loaded state and the unloaded state, the Ni content is set to 0. 30% or more. Preferably, the Ni content is 0.50% or more. On the other hand, Ni is an expensive element, and the Ni content is 5.0% or less from the viewpoint of cost. The Ni content is preferably 4.0% or less, more preferably 3.0% or less.

(Sn:0.05〜0.50%)
Sn(錫)は、低pH高濃度塩化物環境で鋼のアノード溶解速度を低減し、また、カソード反応を抑制する重要な元素あり、空荷状態のカーゴホールド内の耐食性を向上させるために、Snの含有量を0.05%以上とする。好ましくはSn含有量を0.07%以上、より好ましくは0.10%以上とする。一方、Snを過剰に含有させると、製造性を損なうため、Snの含有量を0.50%以下とする。好ましくはSn含有量を0.35%以下とする。
(Sn: 0.05 to 0.50%)
Sn (tin) is an important element that reduces the anodic dissolution rate of steel in a low-pH high-concentration chloride environment and also suppresses the cathode reaction, and in order to improve the corrosion resistance in an empty cargo hold, The Sn content is 0.05% or more. The Sn content is preferably 0.07% or more, more preferably 0.10% or more. On the other hand, if Sn is excessively contained, manufacturability is impaired, so the Sn content is set to 0.50% or less. Preferably, the Sn content is 0.35% or less.

(N:0.008%以下)
N(窒素)は、不純物であり、鋼材の靭性を低下させる粗大な窒化物の形成を防止するため、N量を0.008%以下とする。好ましくはN含有量を0.006%以下とする。N含有量の下限は0%であってもよいが、製造コストの観点から、0.001%以上であってもよい。
(N: 0.008% or less)
N (nitrogen) is an impurity, and the amount of N is set to 0.008% or less in order to prevent the formation of coarse nitrides that reduce the toughness of steel materials. Preferably, the N content is 0.006% or less. The lower limit of the N content may be 0%, but may be 0.001% or more from the viewpoint of manufacturing cost.

(O:0.010%以下)
O(酸素)は、不純物であり、鋼材の靭性を低下させる粗大な酸化物の形成を防止するため、O含有量を0.010%以下とする。好ましくはO含有量を0.006%以下、より好ましくは0.004%以下とする。O含有量の下限は0%であってもよいが、製造コストの観点から、0.0001%以上であってもよい。
(O: 0.010% or less)
O (oxygen) is an impurity, and the O content is set to 0.010% or less in order to prevent the formation of a coarse oxide that reduces the toughness of the steel material. The O content is preferably 0.006% or less, more preferably 0.004% or less. The lower limit of the O content may be 0%, but may be 0.0001% or more from the viewpoint of manufacturing cost.

本実施形態に係る鋼材の上記各成分以外の成分は、Fe及び不純物である。ここで、不純物とは、厚鋼板を工業的に製造する際に、鉱石やスクラップ等のような原料を始めとして、製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。ただし、本発明においては、不純物のうち、P、S、N及びOについては、上述のように、上限を規定する必要がある。   Components other than the above components of the steel material according to the present embodiment are Fe and impurities. Here, the impurities are components that are mixed by various factors of the manufacturing process, including raw materials such as ores and scraps, when the steel plate is industrially manufactured, and adversely affect the present invention. It means something that is acceptable within a range that does not exist. However, in the present invention, it is necessary to define the upper limits for P, S, N, and O among the impurities as described above.

カーゴホールド内の腐食環境において、特に空荷状態での鋼材の耐食性を更に高めるために、上述の成分に加え、Sb、Cu、Cr、Mo、Wのうち、1種又は2種以上を本実施形態の船倉用耐食鋼に含有させてもよい。   In the corrosive environment inside the cargo hold, in order to further improve the corrosion resistance of the steel material especially in the empty state, in addition to the above-mentioned components, one or more kinds of Sb, Cu, Cr, Mo, W are used. It may be contained in the corrosion-resistant steel for cargo hold in the form.

(Sb:0.50%以下)
Sb(アンチモン)は、Snと同様、空荷状態での耐食性を向上させる元素であり、Sbの含有量を0.01%以上とすることが好ましい。より好ましくはSb含有量を0.05%以上とする。一方、Sbを過剰に含有させると、製造性を損なうため、Sbの含有量を0.50%以下とする。好ましくはSb含有量を0.35%以下とする。
(Sb: 0.50% or less)
Similar to Sn, Sb (antimony) is an element that improves the corrosion resistance in an empty state, and the Sb content is preferably 0.01% or more. More preferably, the Sb content is 0.05% or more. On the other hand, if Sb is excessively contained, manufacturability is impaired, so the content of Sb is set to 0.50% or less. Preferably, the Sb content is 0.35% or less.

(Cu:0.50%以下)
Cu(銅)は、Sn、Sbと同様、空荷状態での耐食性を向上させる元素であり、Cuの含有量を0.01%以上とすることが好ましい。より好ましくはCu含有量を0.05%以上とする。CuとSnとを共存させると、カーゴホールド内での耐食性が著しく向上するので、共存させるのが好ましい。一方、Cuを過剰に含有させると、製造性を損なうため、Cuの含有量を0.50%以下とする。好ましくはCu含有量を0.35%以下とする。
(Cu: 0.50% or less)
Similar to Sn and Sb, Cu (copper) is an element that improves the corrosion resistance in an empty state, and the content of Cu is preferably 0.01% or more. More preferably, the Cu content is 0.05% or more. Coexistence of Cu and Sn remarkably improves the corrosion resistance in the cargo hold, and therefore it is preferable to coexist. On the other hand, if Cu is excessively contained, manufacturability is impaired, so the Cu content is set to 0.50% or less. Preferably, the Cu content is 0.35% or less.

(Cr:0.1%未満)
Cr(クロム)は、中性塩化物環境で鋼のアノード溶解速度を低減する元素であり、積荷状態のカーゴホールド内の耐食性を向上させるために、0.1%未満を含有させることができる。Crの含有量は、効果を得るために、0.01%以上とすることが好ましい。より好ましくはCr含有量を0.02%以上、より好ましくは0.03%以上とする。
(Cr: less than 0.1%)
Cr (chromium) is an element that reduces the anodic dissolution rate of steel in a neutral chloride environment, and can be contained in an amount of less than 0.1% in order to improve the corrosion resistance in the cargo hold in the loaded state. In order to obtain the effect, the content of Cr is preferably 0.01% or more. The Cr content is more preferably 0.02% or more, and further preferably 0.03% or more.

(Mo:1.0%以下)
Mo(モリブデン)は、酸素酸イオンMoO 2− を形成し、酸性溶液中にてインヒビターとして作用し、鋼のアノード溶解を抑制する元素である。空荷状態での耐食性を向上させるために、Moの含有量0.05%以上にすることが好ましい。より好ましくはMo含有量を0.1%以上とする。一方、Mo含有量は、1.0%を超えても効果が飽和するため、1.0%以下とする 。好ましくは、Mo含有量を0.5%以下とする。
(Mo: 1.0% or less)
Mo (molybdenum) is an element that forms oxygen acid ions MoO 4 2− , acts as an inhibitor in an acidic solution, and suppresses anodic dissolution of steel. In order to improve the corrosion resistance in an empty state, the Mo content is preferably 0.05% or more. More preferably, the Mo content is 0.1% or more. On the other hand, if the Mo content exceeds 1.0%, the effect is saturated, so the content is made 1.0% or less. Preferably, the Mo content is 0.5% or less.

(W:1.0%以下)
W(タングステン)は、Moと同様、酸素酸イオンWO4− を形成し、酸性溶液中にてインヒビターとして作用し、鋼のアノード溶解を抑制する元素である。空荷状態での耐食性を向上させるために、Wの含有量0.05%以上にすることが好ましい。より好ましくはW含有量を0.1%以上とする。一方、W含有量は、1.0%を超えても効果が飽和するため、1.0%以下とする 。好ましくは、W含有量を0.5%以下とする。
(W: 1.0% or less)
Similar to Mo, W (tungsten) is an element that forms an oxygen acid ion WO 4- , acts as an inhibitor in an acidic solution, and suppresses anodic dissolution of steel. In order to improve the corrosion resistance in an empty state, the W content is preferably 0.05% or more. More preferably, the W content is 0.1% or more. On the other hand, the W content is 1.0% or less because the effect is saturated even if it exceeds 1.0%. Preferably, the W content is 0.5% or less.

本実施形態の船倉用耐食鋼において、耐食性を低下させるMnSの生成の抑制や形態の制御を目的として、上述の成分に加え、Ti、Zr、Ca、Mg、REMの1種または2種以上を含有させてもよい。   In the corrosion-resistant steel for hold of the present embodiment, one or more of Ti, Zr, Ca, Mg, and REM are added in addition to the above-mentioned components for the purpose of suppressing the formation of MnS that reduces corrosion resistance and controlling the morphology. It may be contained.

(Ti:0.10%以下)
Ti(チタン)は、硫化物や炭硫化物を形成する元素であり、腐食の起点となり耐食性を劣化させるMnSの生成を抑制するために、Tiの含有量を0.005%以上とすることが好ましい。より好ましくはTi含有量を0.01%以上とする。一方、Tiを過剰に含有させると靭性が劣化することがあるため、Ti含有量は0.10%以下とする 。好ましくはTi量を0.05%以下とする。
(Ti: 0.10% or less)
Ti (titanium) is an element that forms sulfides and carbosulfides, and in order to suppress the generation of MnS that becomes the starting point of corrosion and deteriorates corrosion resistance, the Ti content may be 0.005% or more. preferable. More preferably, the Ti content is 0.01% or more. On the other hand, if Ti is contained excessively, the toughness may deteriorate, so the Ti content is made 0.10% or less. Preferably, the Ti content is 0.05% or less.

(Zr:0.20%以下)
Zr(ジルコニウム)は、硫化物を形成する元素であり、腐食の起点となり耐食性を劣化させるMnSの生成を抑制するために、Zrの含有量を0.005%以上とすることが好ましい。より好ましくはZr含有量を0.01%以上とする。一方、Zrを過剰に含有させると靭性が劣化することがあるため、Zr含有量は0.20%以下とする 。好ましくはZr含有量を0.10%以下、さらに好ましくは0.05%以下とする。
(Zr: 0.20% or less)
Zr (zirconium) is an element that forms a sulfide, and it is preferable that the content of Zr is 0.005% or more in order to suppress the generation of MnS that becomes the starting point of corrosion and deteriorates the corrosion resistance. More preferably, the Zr content is 0.01% or more. On the other hand, if Zr is excessively contained, the toughness may deteriorate, so the Zr content is set to 0.20% or less. The Zr content is preferably 0.10% or less, more preferably 0.05% or less.

(Ca:0.050%以下)
(Mg:0.050%以下)
(REM:0.050%以下)
Ca、Mg、REMは、酸化物や硫化物の形態制御に用いられる元素であり、本実施形態の船倉用耐食鋼において1種又は2種以上を含有させてもよい。腐食の起点となり耐食性を劣化させるMnSの生成を抑制するために、Ca、Mg、REMの含有量のいずれかの元素の含有量を0.001%以上とすることが好ましい。また、これらの硫化物は腐食反応時に水に溶けてアルカリとなり、鋼材界面のpH低下を抑制する作用があるため、より好ましくはいずれかの元素の含有量を0.003%以上、さらに好ましくはいずれかの元素の含有量を0.005%以上とする。
一方、Ca、Mg、REMは過剰に含有させても効果が飽和するため、Ca、Mg、REMの含有量はそれぞれ0.050%以下とする 。好ましくは0.030%以下、さらに好ましくは0.010%以下とする。
なお、REM は希土類金属元素、即ち、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、及びLuの総称である。REM の含有量はこれらの元素の合計含有量を意味する。
(Ca: 0.050% or less)
(Mg: 0.050% or less)
(REM: 0.050% or less)
Ca, Mg, and REM are elements used to control the morphology of oxides and sulfides, and one or more of them may be contained in the corrosion-resistant steel for hold of the present embodiment. In order to suppress the generation of MnS which becomes the starting point of corrosion and deteriorates the corrosion resistance, it is preferable that the content of any element of Ca, Mg and REM is 0.001% or more. Further, these sulfides dissolve in water during the corrosion reaction to become an alkali, which has the effect of suppressing the pH decrease at the steel material interface. Therefore, the content of one of the elements is more preferably 0.003% or more, further preferably The content of either element is set to 0.005% or more.
On the other hand, even if Ca, Mg, and REM are contained excessively, the effect is saturated, so the content of Ca, Mg, and REM is each 0.050% or less. It is preferably 0.030% or less, and more preferably 0.010% or less.
Note that REM is a general term for rare earth metal elements, that is, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. The content of REM means the total content of these elements.

本実施形態の船倉用耐食鋼において、鋼材の強度を高めるために、上述の成分に加え、Nb(ニオブ)、V(バナジウム)、B(ボロン)のうち、1種又は2種以上を含有させてもよい。   In the corrosion-resistant steel for hold of the present embodiment, in order to increase the strength of the steel material, one or more of Nb (niobium), V (vanadium) and B (boron) are contained in addition to the above components. May be.

(Nb:0.10%以下)
(V:0.10%以下)
Nb、Vは、炭化物や窒化物を形成し、鋼の強度を高める元素であり、いずれかの元素を0.005%以上含有させてもよい。好ましくは、Nb、Vのいずれかの元素の含有量を0.01%以上とする。一方、Nb、Vを過剰に含有させると、鋼材の靭性が低下するため、Nb、Vの含有量はそれぞれ0.10%以下とする。好ましくは、0.050%以下とする。
(Nb: 0.10% or less)
(V: 0.10% or less)
Nb and V are elements that form carbides and nitrides and enhance the strength of steel, and 0.005% or more of either element may be contained. Preferably, the content of any element of Nb and V is 0.01% or more. On the other hand, if Nb and V are excessively contained, the toughness of the steel material is lowered, so the contents of Nb and V are each set to 0.10% or less. Preferably, it is 0.050% or less.

(B:0.010%以下)
Bは、鋼の焼入れ性を高めて、強度を向上させる元素であり、0.0003%以上を含有させてもよい。好ましくはB含有量を0.0005%以上、より好ましくは0.0010%以上とする。一方、Bを過剰に含有させると、鋼材の機械特性が損なわれる場合があるため、B含有量は0.010%以下とする。好ましくはB含有量を0.005%以下、さらに好ましくは0.003%以下とする。
(B: 0.010% or less)
B is an element that enhances the hardenability of steel and improves the strength, and may be contained in an amount of 0.0003% or more. The B content is preferably 0.0005% or more, more preferably 0.0010% or more. On the other hand, if B is contained excessively, the mechanical properties of the steel material may be impaired, so the B content is made 0.010% or less. The B content is preferably 0.005% or less, more preferably 0.003% or less.

本実施形態において船倉用耐食鋼の形状は特に限定されず、鋼板、鋼帯、形鋼、鋼管、棒鋼、鋼線等であればよい。鋼板、鋼帯、形鋼、鋼管等の鋼材の厚さは特に限定されないが、通常3〜50mmである。好ましい下限は6mm、より好ましくは10mmであり、好ましい上限は40mm、より好ましくは30mmである。   In this embodiment, the shape of the corrosion-resistant steel for hold is not particularly limited, and may be a steel plate, a steel strip, a shaped steel, a steel pipe, a steel bar, a steel wire or the like. The thickness of a steel material such as a steel plate, steel strip, shaped steel, and steel pipe is not particularly limited, but is usually 3 to 50 mm. The preferred lower limit is 6 mm, more preferably 10 mm, and the preferred upper limit is 40 mm, more preferably 30 mm.

次に、本実施形態に係る船倉用耐食鋼の製造方法について説明する。本実施形態に係る船倉用耐食鋼には、熱間圧延を施し、更に必要に応じて冷間圧延を施して製造される鋼板、形鋼、鋼管などが含まれる。   Next, a method for manufacturing the corrosion-resistant steel for hold according to the present embodiment will be described. The corrosion-resistant steel for hold according to the present embodiment includes steel plates, shaped steels, steel pipes, etc. manufactured by hot rolling and, if necessary, cold rolling.

本実施形態に係る船倉用耐食鋼は、常法で鋼を溶製し、成分の調整後、鋳造して得られた鋼片を熱間圧延し、更に必要に応じて冷間圧延を施して製造される。熱間圧延後は、そのまま水冷するか、又は空冷した後、再加熱して焼入れてもよい。熱間圧延後は、コイル状に巻き取ってもよい。熱間圧延後、冷間圧延して、更に熱処理を施してもよい。   Corrosion-resistant steel for hold according to the present embodiment, the steel is melted by a conventional method, after adjusting the composition, hot rolling the steel piece obtained by casting, further subjected to cold rolling if necessary. Manufactured. After hot rolling, it may be water-cooled as it is, or may be air-cooled and then reheated and quenched. After hot rolling, it may be wound into a coil. After hot rolling, cold rolling may be performed and further heat treatment may be performed.

本実施形態において、鋼管を製造する場合は、鋼板を管状に成形して溶接してもよく、UO鋼管、電縫鋼管、鍛接鋼管、スパイラル鋼管などにすることができる。
鋼片に熱間押出や穿孔圧延を施して製造されるシームレス鋼管も本実施形態の船倉用耐食鋼に含まれる。
In the present embodiment, when manufacturing a steel pipe, a steel plate may be formed into a tubular shape and welded, and a UO steel pipe, an electric resistance welded steel pipe, a forged steel pipe, a spiral steel pipe, or the like may be used.
A seamless steel pipe manufactured by subjecting a steel slab to hot extrusion or piercing rolling is also included in the corrosion-resistant steel for hold of the present embodiment.

以下に、本発明の船倉用耐食鋼について実施例を示す。但し、以下に記載の実施例は具体的な例に沿って説明を行うものであり、本発明に係る請求項の内容を限定するものではない。
後記する表1、表2に示す化学組成の鋼片から、長さ100mm、幅60mm、厚み5mmの試験片を作製した。試験片の表面には、Sa2.5(ISO 8501−1)以上になるようにブラスト処理を施した。これらの試験片を用いてカーゴホールド内の環境を模擬した腐食試験を行った。
Examples of the corrosion resistant steel for hold of the present invention will be shown below. However, the examples described below are intended to be described along with specific examples, and do not limit the content of the claims according to the present invention.
Test pieces having a length of 100 mm, a width of 60 mm and a thickness of 5 mm were prepared from steel pieces having the chemical compositions shown in Tables 1 and 2 described below. The surface of the test piece was blasted so as to have a Sa2.5 (ISO 8501-1) or higher. A corrosion test simulating the environment inside the cargo hold was conducted using these test pieces.

腐食試験は、温度を40℃、相対湿度を98%に保持した試験槽内で行った。人工海水を含有させた石炭を試験片上に積載させた状態で試験槽内に1週間保持して積荷状態を再現し、次に、試験片の表面に付着した石炭をスクレーパーで軽く除去した状態で試験槽内に1週間保持して空荷状態を再現する工程を1サイクルとした。このサイクルを6サイクル行った後、スクレーパーにて試験片表面のさびを除去し、クエン酸アンモニウム溶液にてさびを除去した。   The corrosion test was carried out in a test tank in which the temperature was kept at 40 ° C. and the relative humidity was kept at 98%. With the coal containing artificial seawater loaded on the test piece, it was kept in the test tank for 1 week to reproduce the loaded state, and then the coal adhering to the surface of the test piece was lightly removed with a scraper. One cycle is a process of holding the test tank for one week and reproducing the empty state. After 6 cycles of this cycle, the rust on the surface of the test piece was removed with a scraper, and the rust was removed with an ammonium citrate solution.

その後、試験片の重量を測定し、試験前の試験片の重量から減じて腐食減量を求め、6サイクル(12週間)の腐食減量から腐食速度[mm/y]を算出した。yは年を示す。
後記する表1、表2に示す鋼No.101はNi、Snの両方を含有しない従来鋼である。鋼No.101の腐食速度は、実際のカーゴホールド内に曝露した鋼材の腐食速度と同等であり、上記の腐食試験によってカーゴホールド内の環境を模擬できていることがわかった。表1、表2に示す組成の各鋼の耐食性は、表1、表2の鋼No.101との腐食速度比(%)で評価した。
After that, the weight of the test piece was measured, and the weight loss of the test piece before the test was subtracted to obtain the corrosion weight loss, and the corrosion rate [mm / y] was calculated from the corrosion weight loss of 6 cycles (12 weeks). y indicates the year.
Steel Nos. Shown in Tables 1 and 2 described later. 101 is a conventional steel containing neither Ni nor Sn. Steel No. The corrosion rate of 101 was equivalent to the corrosion rate of the steel material exposed in the actual cargo hold, and it was found that the environment in the cargo hold could be simulated by the above corrosion test. The corrosion resistance of each steel having the composition shown in Table 1 and Table 2 is shown in Table 1 and Table 2. It was evaluated by the corrosion rate ratio (%) with 101.

化学組成と前記した試験の結果とを表1、表2に示す。   The chemical composition and the results of the above-mentioned tests are shown in Tables 1 and 2.

Figure 2020070465
Figure 2020070465

Figure 2020070465
Figure 2020070465

表1、表2に示したように、鋼No.1〜11は、鋼No.101に対し腐食減量が抑制されており、耐食性が良好であった。   As shown in Table 1 and Table 2, steel No. Steel Nos. 1 to 11 are steel Nos. The corrosion weight loss was suppressed and the corrosion resistance was good.

一方、Niを含み、Snを含まない鋼No.102や、NiとSnを複合添加していてもSn含有量が不足している鋼No.103は、耐食性の改善効果が不十分であった。
また、Snを十分に含有していても、Ni含有量が不足している鋼No.104は、中性塩化物環境中での腐食抑制効果が小さくなり、十分な耐食性向上は認められなかった。
Ni含有量、Sn含有量の両方が不足している鋼No.105は、酸性環境・酸性塩化物環境どちらにおいても腐食抑制効果が小さく、耐食性が向上しなかったと考えられる。
On the other hand, steel No. containing Ni and not containing Sn. 102 or steel No. 2 having a insufficient Sn content even when Ni and Sn are added in combination. No. 103 had an insufficient effect of improving the corrosion resistance.
In addition, even if the Sn No. is sufficiently contained, the steel No. having a insufficient Ni content is used. No. 104 had a small effect of suppressing corrosion in a neutral chloride environment, and no sufficient improvement in corrosion resistance was observed.
Steel No. 2 deficient in both Ni content and Sn content. It is considered that 105 had a small effect of suppressing corrosion in both acidic environment and acidic chloride environment, and the corrosion resistance was not improved.

本発明によれば、カーゴホールド内の腐食による部材切り替えや再塗装によるメンテナンスコストを大幅に低減することができるので、産業上の貢献が極めて大きい。   According to the present invention, it is possible to significantly reduce maintenance costs due to switching of members due to corrosion in the cargo hold and repainting, and therefore, industrial contribution is extremely large.

Claims (4)

質量%で、
C:0.01〜0.20%、
Mn:0.1〜2.0%、
Ni:0.30〜5.0%、
Sn:0.05〜0.50%
Al:0.005〜0.10%
を含有し、
Si:1.0%以下、
P:0.05%以下、
S:0.03%以下、
N:0.008%以下、
O:0.010%以下
に制限し、残部がFeおよび不純物からなる石炭専用船又は鉱炭兼用船の船倉用耐食鋼。
In mass%,
C: 0.01 to 0.20%,
Mn: 0.1-2.0%,
Ni: 0.30 to 5.0%,
Sn: 0.05 to 0.50%
Al: 0.005-0.10%
Containing
Si: 1.0% or less,
P: 0.05% or less,
S: 0.03% or less,
N: 0.008% or less,
O: Corrosion-resistant steel for a cargo hold of a coal-only ship or a coal-charging ship, the content of which is limited to 0.010% or less with the balance being Fe and impurities.
さらに、質量%で、
Sb:0.50%以下、
Cu:0.50%以下、
Cr:0.1%未満、
Mo:1.0%以下、
W:1.0%以下
の1種又は2種以上を含有する、請求項1に記載の石炭専用船又は鉱炭兼用船の船倉用耐食鋼。
Furthermore, in mass%,
Sb: 0.50% or less,
Cu: 0.50% or less,
Cr: less than 0.1%,
Mo: 1.0% or less,
W: Corrosion-resistant steel for a cargo hold of a coal-only ship or a coal-charging ship according to claim 1, containing one or more of 1.0% or less.
さらに、質量%で、
Ti:0.10%以下、
Zr:0.20%以下、
Ca:0.050%以下、
Mg:0.050%以下、
REM:0.050%以下
の1種又は2種以上を含有する、請求項1又は請求項2に記載の石炭専用船又は鉱炭兼用船の船倉用耐食鋼。
Furthermore, in mass%,
Ti: 0.10% or less,
Zr: 0.20% or less,
Ca: 0.050% or less,
Mg: 0.050% or less,
REM: Corrosion-resistant steel for a cargo hold of a coal-only ship or a coal-charging ship according to claim 1 or 2, containing 0.050% or less of one type or two or more types.
さらに、質量%で、
Nb:0.10%以下、
V:0.10%以下、
B:0.010%以下
の1種又は2種以上を含有する、請求項1〜請求項3のいずれか1項に記載の石炭専用船又は鉱炭兼用船の船倉用耐食鋼。
Furthermore, in mass%,
Nb: 0.10% or less,
V: 0.10% or less,
B: Corrosion-resistant steel for a cargo hold of a coal-only ship or a coal-charging ship according to any one of claims 1 to 3, containing 0.010% or less of one kind or two or more kinds.
JP2018204701A 2018-10-31 2018-10-31 Corrosion resistant steel for hold of coal carrier or coal carrier Active JP7196539B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018204701A JP7196539B2 (en) 2018-10-31 2018-10-31 Corrosion resistant steel for hold of coal carrier or coal carrier
CN201980038177.1A CN112272712A (en) 2018-10-31 2019-10-31 Corrosion-resistant steel for cabin of special coal ship or mine/coal ship and cabin
PCT/JP2019/042955 WO2020091023A1 (en) 2018-10-31 2019-10-31 Corrosion-resistant steel for holds of coal carrying vessels or ore/coal carrying vessels, and hold
KR1020207034690A KR20210005235A (en) 2018-10-31 2019-10-31 Corrosion-resistant steel for docks of coal-only ships or coal-coal combined ships, and docks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018204701A JP7196539B2 (en) 2018-10-31 2018-10-31 Corrosion resistant steel for hold of coal carrier or coal carrier

Publications (2)

Publication Number Publication Date
JP2020070465A true JP2020070465A (en) 2020-05-07
JP7196539B2 JP7196539B2 (en) 2022-12-27

Family

ID=70547156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018204701A Active JP7196539B2 (en) 2018-10-31 2018-10-31 Corrosion resistant steel for hold of coal carrier or coal carrier

Country Status (1)

Country Link
JP (1) JP7196539B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010064110A (en) * 2008-09-11 2010-03-25 Sumitomo Metal Ind Ltd Welded joint for hold of ore/coal carrier
JP2014019908A (en) * 2012-07-18 2014-02-03 Nippon Steel & Sumitomo Metal Anticorrosion coated steel material
JP2016027206A (en) * 2015-09-03 2016-02-18 新日鐵住金株式会社 Steel materials having excellent corrosion resistance
JP2016084489A (en) * 2014-10-23 2016-05-19 株式会社神戸製鋼所 Weld joint for ship excellent in corrosion resistance
JP2016089246A (en) * 2014-11-10 2016-05-23 新日鐵住金株式会社 Corrosion resistant steel material
WO2018066018A1 (en) * 2016-10-06 2018-04-12 Jfeスチール株式会社 Steel for ship ballast tank and ship
WO2018066019A1 (en) * 2016-10-06 2018-04-12 Jfeスチール株式会社 Steel for crude oil tanker and crude oil tanker

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010064110A (en) * 2008-09-11 2010-03-25 Sumitomo Metal Ind Ltd Welded joint for hold of ore/coal carrier
JP2014019908A (en) * 2012-07-18 2014-02-03 Nippon Steel & Sumitomo Metal Anticorrosion coated steel material
JP2016084489A (en) * 2014-10-23 2016-05-19 株式会社神戸製鋼所 Weld joint for ship excellent in corrosion resistance
JP2016089246A (en) * 2014-11-10 2016-05-23 新日鐵住金株式会社 Corrosion resistant steel material
JP2016027206A (en) * 2015-09-03 2016-02-18 新日鐵住金株式会社 Steel materials having excellent corrosion resistance
WO2018066018A1 (en) * 2016-10-06 2018-04-12 Jfeスチール株式会社 Steel for ship ballast tank and ship
WO2018066019A1 (en) * 2016-10-06 2018-04-12 Jfeスチール株式会社 Steel for crude oil tanker and crude oil tanker

Also Published As

Publication number Publication date
JP7196539B2 (en) 2022-12-27

Similar Documents

Publication Publication Date Title
EP2395120B1 (en) Corrosion resistant steel for crude oil tank, manufacturing method therefor, and crude oil tank
JP4577158B2 (en) Corrosion resistant steel for crude oil tanks
JP4811277B2 (en) Corrosion resistant steel for holding coal and ore carrier
JP5845646B2 (en) Corrosion resistant steel for holding coal ships and coal / iron ore combined ships
JP4449691B2 (en) Steel material for cargo oil tanks
TWI516614B (en) Fat iron stainless steel
KR20140105862A (en) Corrosion-resistant steel for hold of coal carrying vessel or coal/ore carrying vessel
KR101530940B1 (en) Ni-Fe-Cr-Mo ALLOY
KR20120035935A (en) Corrosion-resistant steel material for cargo oil tank
JP2019127636A (en) Mooring chain steel and mooring chain
WO2020091023A1 (en) Corrosion-resistant steel for holds of coal carrying vessels or ore/coal carrying vessels, and hold
JP2012077378A (en) Welded joint excellent in corrosion resistance
JP2010222665A (en) Corrosion resistant shape steel member for crude oil tank and method for producing the same
JP2011021247A (en) Steel for ship having excellent coating film blistering resistance
JP6442852B2 (en) Duplex stainless steel welded joint
JP2006137963A (en) Welded joint for crude oil tank, and crude oil tank
JP7196537B2 (en) Corrosion resistant steel for hold of coal carrier or coal carrier
JP6048104B2 (en) Corrosion resistant steel for holding coal ships and coal / ore combined ships
JP2019026940A (en) Two-phase stainless steel welded joint
JP7196539B2 (en) Corrosion resistant steel for hold of coal carrier or coal carrier
JP7196538B2 (en) Corrosion resistant steel for hold of coal carrier or coal carrier
JP2015157969A (en) Corrosion resistant steel for holding coal ship and coal and ore ship
JP2016108625A (en) Corrosion resistant steel for bottom plate in hold of coal ship and coal-ore combining vessel
JP6736255B2 (en) Corrosion resistant steel for ballast tanks
JP2019127638A (en) Mooring chain steel and mooring chain

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221128

R151 Written notification of patent or utility model registration

Ref document number: 7196539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151