JP6736255B2 - Corrosion resistant steel for ballast tanks - Google Patents

Corrosion resistant steel for ballast tanks Download PDF

Info

Publication number
JP6736255B2
JP6736255B2 JP2015016055A JP2015016055A JP6736255B2 JP 6736255 B2 JP6736255 B2 JP 6736255B2 JP 2015016055 A JP2015016055 A JP 2015016055A JP 2015016055 A JP2015016055 A JP 2015016055A JP 6736255 B2 JP6736255 B2 JP 6736255B2
Authority
JP
Japan
Prior art keywords
less
corrosion
steel material
resistant steel
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015016055A
Other languages
Japanese (ja)
Other versions
JP2016141819A (en
Inventor
伊藤 実
実 伊藤
金子 道郎
道郎 金子
鹿島 和幸
和幸 鹿島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2015016055A priority Critical patent/JP6736255B2/en
Publication of JP2016141819A publication Critical patent/JP2016141819A/en
Application granted granted Critical
Publication of JP6736255B2 publication Critical patent/JP6736255B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、特に海水による厳しい腐食環境下にあるバラストタンク等に用いられる耐食用鋼材であって、表面にエポキシ系塗膜を有するバラストタンク用耐食鋼材に関するものである。 TECHNICAL FIELD The present invention relates to a corrosion-resistant steel material for use in a ballast tank or the like that is particularly in a severe corrosive environment due to seawater, and relates to a corrosion-resistant steel material for a ballast tank having an epoxy coating film on its surface.

タンカー等の貨物船は、空荷であると航行中に船体が浮いて横風や横波に対して不安定になるため、積荷がない時には、喫水が下がらないように、バラストタンクに海水を積載している。バラストタンクは、貨物の積み下ろしに応じて海水の注入、排出が繰り返されるため、厳しい腐食環境に曝される。そのため、バラストタンクに使用される鋼材の表面には、エポキシ系塗料による防食が施される。 When a cargo ship such as a tanker is empty, the hull floats during navigation and becomes unstable with respect to crosswinds and transverse waves.Therefore, when there is no cargo, seawater is loaded on the ballast tank to prevent the draft from decreasing. ing. Ballast tanks are exposed to severe corrosive environments because seawater is repeatedly injected and discharged as cargo is loaded and unloaded. Therefore, the surface of the steel material used for the ballast tank is protected by an epoxy-based paint.

しかし、バラストタンクの最上部付近、特に上甲板の裏側は、海水の飛沫が付着した状態で、日中の温度上昇と夜間の温度低下が繰り返されるため、非常に厳しい腐食環境となる。また、バラストタンクに電気防食を施しても、貨物積載時には海水が注入されないため機能せず、残留付着塩分の作用によって激しい腐食を受ける。 However, near the top of the ballast tank, especially on the back side of the upper deck, the temperature rises during the daytime and the nighttime decreases with the splash of seawater, resulting in a very severe corrosive environment. In addition, even if the ballast tank is subjected to cathodic protection, it does not function because seawater is not injected when cargo is loaded, and is severely corroded by the action of residual adhering salt.

バラストタンクは塗装が義務付けられているが、非常に厳しい腐食環境下での塗膜の寿命は15年程度といわれている。一方、船舶の寿命は25年であるため、塗装補修や鋼板の切替えが必要となる。バラストタンクの補修は、ドック時の修繕費用や期間を増加させるため、塗装の劣化後も10年程度は孔空き腐食に至らないような、耐食性に優れた鋼材の開発が望まれている。 Although the ballast tank is required to be painted, the life of the paint film is said to be about 15 years in a very severe corrosive environment. On the other hand, since the life of the ship is 25 years, it is necessary to repair the painting and change the steel plate. Since repairing ballast tanks increases repair costs and periods at the time of docking, it is desired to develop a steel material having excellent corrosion resistance that does not lead to pitting corrosion for about 10 years after deterioration of the coating.

このような要求に対して、優れた塗装耐食性を発揮する耐食鋼材が提案されている(例えば、特許文献1、2、参照)。これらは、W、Moの一方又は両方を添加し、さらにSn、Sbの一方又は両方を添加することにより、塗膜欠陥部から発生する塗膜膨れを低減させた鋼材である。 Corrosion-resistant steel materials that exhibit excellent coating corrosion resistance have been proposed to meet such requirements (see, for example, Patent Documents 1 and 2). These are steel materials in which one or both of W and Mo are added, and one or both of Sn and Sb are added to reduce the blister of the coating film generated from the defective portion of the coating film.

特開2009−046749号公報JP, 2009-046749, A 特開2009−046750号公報JP, 2009-046750, A

W、Mo、Sn、及び、Sbは、塗装欠陥部の腐食の抑制に有効な元素であるが、本発明者らの検討の結果、鋼中に形成されたMnSが塗装欠陥部の耐食性を劣化させる場合があることがわかった。MnSを低減する方法には鋼中のS量を低減する方法があるが、製鋼上の負荷が大きくなり、生産性の低下やコストの上昇が問題になる。 W, Mo, Sn, and Sb are effective elements for suppressing the corrosion of coating defects, but as a result of the study by the present inventors, MnS formed in steel deteriorates the corrosion resistance of coating defects. It turned out that there are cases where it is necessary to do so. As a method of reducing MnS, there is a method of reducing the amount of S in steel, but the load on steelmaking becomes large, and there is a problem that productivity is reduced and cost is increased.

本発明は、このような実情に鑑み、0.003%程度のSの含有を許容して製造コストの上昇を抑えたうえで、バラストタンク内の腐食環境下における塗装耐食性に優れたバラストタンク用耐食鋼材を提供するものである。 In view of the above situation, the present invention is for a ballast tank that has an S content of about 0.003% to suppress an increase in manufacturing cost, and has excellent coating corrosion resistance in a corrosive environment in the ballast tank. It provides a corrosion resistant steel material.

本発明者らは、S量を製鋼上の負荷にならない程度に含有する鋼材、具体的には、S量が0.003%以上である鋼材の塗装欠陥部の耐食性を向上させるため、検討を行った。その結果、S添加量[S]とMn添加量[Mn]との積を0.020以下に制限し、更に、Sn、Sbの一方又は両方を添加することにより、塗膜欠陥部の腐食の進展が大幅に抑制されることを見出した。また、MnSの生成を抑制するため、Mn量の上限を1.20%以下に制限し、母材の強度を確保するために、Nbを添加する必要があることを見出した。 The present inventors have studied in order to improve the corrosion resistance of a coating defect portion of a steel material containing S in an amount that does not impose a load on steelmaking, specifically, a steel material having an S content of 0.003% or more. went. As a result, by limiting the product of the S addition amount [S] and the Mn addition amount [Mn] to 0.020 or less, and further adding one or both of Sn and Sb, corrosion of the coating film defective portion can be prevented. We have found that progress is greatly curtailed. Further, they have found that it is necessary to limit the upper limit of the amount of Mn to 1.20% or less in order to suppress the generation of MnS, and to add Nb in order to secure the strength of the base material.

本発明はこのような知見に基づいてなされたものであり、その要旨は以下のとおりである。
(1)質量%で、
C :0.03〜0.25%、
Si:0.05〜0.50%、
Mn:0.10〜1.20%、
S :0.003〜0.020%、
Al:0.001〜0.100%、及び、
Nb:0.001〜0.020%
を含有し、更に、
Sb:0.010〜0.300%、及び、
Sn:0.010〜0.300%
の少なくとも一方を含有し、更に、
Cu:0.05〜0.40%、
Ni:0.05〜0.40%、
Cr:0.06〜0.40%、
の1種又は2種以上を含有し、
P :0.025%以下
に制限し、残部がFe及び不可避的不純物からなり、Mnの含有量[Mn]とSの含有量[S]とが、0.005≦[Mn]×[S]≦0.020を満足し、表面にエポキシ系塗膜を有することを特徴とするバラストタンク用耐食鋼材。
(2)更に、
Mo:0.50%以下、及び、
W :1.00%以下
の1種又は2を含有することを特徴とする上記(1)に記載のバラストタンク用耐食鋼材。
(3)更に、
Ti:0.100%以下、
Zr:0.10%以下、及び、
V :0.20%以下
の1種又は2種以上を含有することを特徴とする上記(1)又は(2)に記載のバラストタンク用耐食鋼材。
(4)に、
B :0.0030%以下
を含有することを特徴とする上記(1)〜(3)の何れかに記載のバラストタンク船舶用耐食鋼材。
(5)更に、
Ca:0.0100%以下、
Mg:0.0100%以下、
REM:0.015%以下、及び、
Y :0.100%以下
の1種又は2種以上を含有することを特徴とする上記(1)〜(4)の何れかに記載のバラストタンク用耐食鋼材。
(6)前記エポキシ系塗膜の下地にジンクプライマー塗膜を有することを特徴とする上記(1)〜(5)の何れかに記載のバラストタンク用耐食鋼材。
The present invention has been made based on such findings, and the gist thereof is as follows.
(1) In mass%,
C: 0.03 to 0.25%,
Si: 0.05 to 0.50%,
Mn: 0.10 to 1.20%,
S: 0.003 to 0.020%,
Al: 0.001 to 0.100%, and
Nb: 0.001-0.020%
Containing
Sb: 0.010 to 0.300%, and
Sn: 0.010 to 0.300%
Containing at least one of the
Cu: 0.05 to 0.40%,
Ni: 0.05 to 0.40%,
Cr: 0.06 to 0.40%,
Containing one or more of
P: 0.025% or less, the balance consisting of Fe and unavoidable impurities, and the content of Mn [Mn] and the content of S [S] are 0.005≦ [Mn]×[S] A corrosion-resistant steel material for ballast tanks, which satisfies ≦0.020 and has an epoxy coating film on the surface.
(2) Furthermore,
Mo: 0.50% or less, and
W: Corrosion-resistant steel material for ballast tanks according to the above (1), characterized by containing 1.00% or less of one or two kinds .
(3) Furthermore,
Ti: 0.100% or less,
Zr: 0.10% or less, and
V: The corrosion-resistant steel material for ballast tanks according to the above (1) or (2), which contains 0.20% or less of one kind or two or more kinds.
(4) Further, the
B: 0.0030% or less is contained, The corrosion-resistant steel material for ballast tank ships in any one of said (1)-(3) characterized by the above-mentioned.
(5) Furthermore,
Ca: 0.0100% or less,
Mg: 0.0100% or less,
REM: 0.015% or less, and
Y: 0.100% or less of one type or two or more types of corrosion resistant steel materials for ballast tanks according to any one of the above (1) to (4).
(6) The corrosion resistant steel material for ballast tanks according to any one of the above (1) to (5), which has a zinc primer coating film as a base of the epoxy coating film.

本発明のバラストタンク用耐食鋼材は、製造コストの上昇を抑え、かつ、バラストタンク内の腐食環境下で優れた塗装耐食性を示すので、過酷な腐食環境に曝されるバラストタンクヘ適用した場合、初期コスト及び補修再塗装等の保守費用を大幅に削減することができる。 The ballast tank corrosion-resistant steel material of the present invention suppresses an increase in manufacturing cost, and exhibits excellent coating corrosion resistance under a corrosive environment in the ballast tank, so when applied to a ballast tank exposed to a severe corrosive environment, Initial costs and maintenance costs such as repair and repainting can be significantly reduced.

本発明者らは、エポキシ系塗料を塗布した種々の耐食鋼材を用いて、エポキシ系塗膜の欠陥部の腐食について、以下の検討を行った。 The present inventors conducted the following investigations on corrosion of defective portions of epoxy coating films using various corrosion resistant steel materials coated with epoxy coating materials.

種々の合金元素を添加した鋼を溶製し、熱間圧延して板厚が5mmの鋼板を作製し、長さ150mm、幅70mmの試験片を採取した。試験片の表面のスケールをショットブラスによって除去し、塗膜厚が300〜400μmになるようにエポキシ系塗料を2回塗布した。その後、塗膜の欠陥部の耐食性を評価するため、試験片の中央に、幅2mmのエンドミルで地鉄表面まで達する50mm長さの疵を一文字状に付与した。 Steels to which various alloying elements were added were melted and hot-rolled to produce steel plates having a plate thickness of 5 mm, and test pieces having a length of 150 mm and a width of 70 mm were collected. The scale on the surface of the test piece was removed by shot brass, and the epoxy-based paint was applied twice so that the coating film thickness was 300 to 400 μm. Then, in order to evaluate the corrosion resistance of the defective portion of the coating film, a 50 mm-long flaw reaching the surface of the base metal was formed in one letter in the center of the test piece with an end mill having a width of 2 mm.

耐食性は、複合サイクル試験によって評価した。バラストタンクの環境に合わせるために、腐食液には、5%NaCl水溶液ではなく、人工海水を用いた。サイクル条件は、腐食液噴霧(温度35℃)1時間、乾燥(60℃、湿度20〜30%)2時間、湿潤(50℃、湿度95%以上)1時間とした。このサイクルを300サイクル行った後、付与した疵部の塗装膨れの最大長さを測定した。 The corrosion resistance was evaluated by a combined cycle test. In order to match the environment of the ballast tank, artificial seawater was used as the corrosive liquid instead of the 5% NaCl aqueous solution. The cycle conditions were 1 hour for spraying a corrosive liquid (temperature: 35° C.), 2 hours for drying (60° C., 20 to 30% humidity), and 1 hour for wetting (50° C., 95% or higher humidity). After performing this cycle 300 times, the maximum length of coating blistering on the applied flaw was measured.

その結果、Sn、Sbの一方又は両方を添加した場合、塗装欠陥部の塗膜膨れや腐食が抑制されている試験片と、抑制されていない試験片が見られることがわかった。これらを詳細に調査した結果、塗装欠陥部の膨れが抑制されていないものには、MnSが多く生成していることが判明した。 As a result, it was found that when one or both of Sn and Sb were added, a test piece in which coating film swelling and corrosion in the coating defect part were suppressed and a test piece in which coating film swelling and corrosion were not suppressed were observed. As a result of detailed investigation, it was found that a large amount of MnS was generated in the case where the bulging of the coating defect portion was not suppressed.

次に、表面を鏡面研磨し、観察されたMnSの周囲にビッカース硬度計でマーキングを施して、その位置に疵を入れた試験片を用いて耐食性評価を行った。その結果、塗膜膨れは抑制されず、MnSが塗装欠陥部の耐食性に悪影響を及ぼしていることが明らかになった。SnやSbを含む耐食鋼材であっても、MnSが多く生成している場合、塗膜欠陥部の腐食が抑制されない理由は、MnSの加水分解によって硫酸が生じ、pHが大きく低下したためではないかと推定している。 Next, the surface was mirror-polished, marking was performed around the observed MnS with a Vickers hardness meter, and corrosion resistance was evaluated using a test piece with a flaw in that position. As a result, it was revealed that the swelling of the coating film was not suppressed and that MnS adversely affected the corrosion resistance of the coating defect portion. Even in a corrosion-resistant steel material containing Sn or Sb, when a large amount of MnS is produced, the reason why the corrosion of the coating film defect portion is not suppressed may be that sulfuric acid is generated by the hydrolysis of MnS and the pH is greatly lowered. I'm estimating.

次に、Sn、Sbの一方又は両方を添加した耐食鋼材のMn量及びS量と塗膜欠陥部の耐食性との関係を整理した。その結果、S量が0.003%以上であってもMn量とS量の積([Mn]×[S])が0.020以下となる場合、塗膜欠陥部の腐食が抑制されることが判明した。また、0.003%以上のSの含有を許容したうえで、MnSの生成を抑制するためには、Mn量の制限も必要になる。 Next, the relationship between the Mn content and S content of the corrosion-resistant steel material to which one or both of Sn and Sb was added and the corrosion resistance of the coating film defect portion was arranged. As a result, even if the amount of S is 0.003% or more, if the product of the amount of Mn and the amount of S ([Mn]×[S]) is 0.020 or less, corrosion of the coating film defect portion is suppressed. It has been found. Further, it is necessary to limit the amount of Mn in order to suppress the formation of MnS while allowing the content of S to be 0.003% or more.

本発明者らの検討の結果、MnSの生成を抑制するには、Mn量の上限を1.2%以下に制限する必要があることがわかった。しかし、Mn量を低減すると母材の強度が低下するため、母材の機械特性を極力低下させないように、Nbを添加し、Mn低下による強度の不足を補うことが必要になる。 As a result of studies by the present inventors, it was found that the upper limit of the amount of Mn needs to be limited to 1.2% or less in order to suppress the generation of MnS. However, if the amount of Mn is reduced, the strength of the base material decreases. Therefore, it is necessary to add Nb so as to prevent the mechanical properties of the base material from being reduced as much as possible, and to supplement the lack of strength due to the decrease in Mn.

このような検討結果に基づいて、本発明のバラストタンク用耐食鋼材(以下、「本発明の耐食鋼材」という)では、Nbを添加し、S量を0.003〜0.02%、Mn量を0.10〜1.20%、Mnの含有量[Mn]とSの含有量[S]との積[Mn]×[S]を0.020以下に制限し、Sb、Snの一方又は両方を含有する成分組成にすることとした。また、必要に応じて、Cu、Ni、Cr、Mo、Wの1種又は2種以上を添加すると、さらに優れた耐食性が得られる。
次に、本発明の耐食鋼材の成分組成について具体的に説明する。なお、特に断りのない限り、「%」は、「質量%」を示す。
Based on the results of such examination, in the corrosion resistant steel material for ballast tanks of the present invention (hereinafter referred to as “corrosion resistant steel material of the present invention”), Nb is added, the S amount is 0.003 to 0.02%, and the Mn amount is Is 0.10 to 1.20%, the product [Mn]×[S] of the Mn content [Mn] and the S content [S] is limited to 0.020 or less, and one of Sb and Sn or It was decided to make the component composition containing both. Further, if necessary, one or more of Cu, Ni, Cr, Mo, and W are added to obtain further excellent corrosion resistance.
Next, the component composition of the corrosion resistant steel material of the present invention will be specifically described. In addition, "%" means "mass %" unless otherwise specified.

(C :0.03〜0.25%)
Cは、鋼材強度を上昇させるのに有効な元素であり、所望の強度を得るために0.03%以上の含有を必要とする。好ましくは0.05%以上、より好ましくは0.08%以上とする。一方、0.25%を超えるCの含有は、HAZ(溶接熱影響部)の靭性を低下させるため、Cの含有量の上限は0.25%とする。Cの含有量の上限は、好ましくは0.20%、より好ましくは0.17%とする。
(C: 0.03 to 0.25%)
C is an element effective in increasing the strength of the steel material, and needs to be contained in an amount of 0.03% or more to obtain the desired strength. It is preferably at least 0.05%, more preferably at least 0.08%. On the other hand, the content of C exceeding 0.25% lowers the toughness of HAZ (welding heat affected zone), so the upper limit of the content of C is 0.25%. The upper limit of the C content is preferably 0.20%, more preferably 0.17%.

(Si:0.05〜0.50%)
Siは、脱酸剤として、また、鋼材の強度を高めるために添加される元素であり、0.05%以上を含有させる。好ましくは0.10%以上、より好ましくは0.15%以上含有させる。しかし、0.50%を超える添加は、鋼の靭性を劣化させるので、Siの含有量の上限を0.50%とする。Siの含有量の上限は、好ましくは0.40%、より好ましくは0.30%とする。
(Si: 0.05 to 0.50%)
Si is an element added as a deoxidizing agent and for increasing the strength of the steel material, and contains 0.05% or more. The content is preferably 0.10% or more, more preferably 0.15% or more. However, addition of more than 0.50% deteriorates the toughness of steel, so the upper limit of the Si content is made 0.50%. The upper limit of the Si content is preferably 0.40%, more preferably 0.30%.

(Mn:0.10〜1.20%)
Mnは、鋼材の強度を高める元素であり、0.10%以上添加する。好ましくは0.50%以上、より好ましくは0.70%以上とする。しかし、1.20%を超えるMnの添加は、MnSを増加させて塗膜欠陥部の耐食性を低下させるため、1.20%以下とする。好ましくは1.10%以下、より好ましくは1.00%以下とする。
(Mn: 0.10 to 1.20%)
Mn is an element that enhances the strength of the steel material and is added in an amount of 0.10% or more. It is preferably 0.50% or more, more preferably 0.70% or more. However, the addition of Mn in excess of 1.20% increases MnS and reduces the corrosion resistance of coating film defects, so the content is made 1.20% or less. It is preferably 1.10% or less, more preferably 1.00% or less.

(S :0.003〜0.020%)
Sは、MnSを生成させて塗膜欠陥部の耐食性を低下させるため、Sの含有量を0.020%以下とする。好ましくは0.015以下、より好ましくは0.010%以下含有させる。Sの含有量は、耐食性の観点からは低減することが好ましいが、0.003%未満にするに製鋼上の負荷が大きくコストが高くなるため、下限を0.003%とする。
(S: 0.003 to 0.020%)
Since S produces MnS and reduces the corrosion resistance of the coating film defective portion, the content of S is set to 0.020% or less. The content is preferably 0.015 or less, more preferably 0.010% or less. The content of S is preferably reduced from the viewpoint of corrosion resistance, but if it is less than 0.003%, the load on steelmaking is large and the cost becomes high, so the lower limit is made 0.003%.

(Al:0.001〜0.100%)
Alは、脱酸剤として添加する元素であり、0.001%以上添加する。好ましくは0.005%以上、より好ましくは0.010%以上含有させる。しかし、0.100%を超えてAlを含有させると、母材靭性が低下するため、上限を0.100%とする。Alの含有量の上限は、好ましくは0.080%、より好ましくは0.060%とする。
(Al: 0.001 to 0.100%)
Al is an element added as a deoxidizer, and is added in an amount of 0.001% or more. The content is preferably 0.005% or more, more preferably 0.010% or more. However, if Al is contained in excess of 0.100%, the toughness of the base material decreases, so the upper limit is made 0.100%. The upper limit of the Al content is preferably 0.080%, more preferably 0.060%.

(Nb:0.001〜0.020%)
Nbは、母材の強度と靭性を確保するのに必要な元素であり、0.001%以上を添加する。好ましくは0.003%以上、より好ましくは0.005%以上含有させる。しかし、0.020%を超える添加は、HAZの靭性を低下させるため、Nbの含有量を0.020%以下とする。好ましくはNbの含有量を0.018%以下とする。
(Nb: 0.001-0.020%)
Nb is an element necessary to secure the strength and toughness of the base material, and 0.001% or more is added. The content is preferably 0.003% or more, more preferably 0.005% or more. However, the addition of more than 0.020% lowers the HAZ toughness, so the Nb content is 0.020% or less. Preferably, the Nb content is 0.018% or less.

(Sb:0.010〜0.300%)
(Sn:0.010〜0.300%)
Sb、Sbは、塗膜欠陥部の耐食性を向上させる効果があり、一方又は両方を添加する。効果を得るには、Sn、Sbとも0.010%以上の含有が必要であり、好ましくは0.020%以上、より好ましくは0.030%以上を添加する。一方、Sn、Sbとも含有量が0.300%を超えると、母材及びHAZの靭性を劣化させる。したがって、Sb及びSnの含有量の上限は、0.300%とし、好ましくは0.200%、より好ましくは0.150%とする。
(Sb:0.010~0.300%)
(Sn: 0.010 to 0.300%)
Sb and Sb have an effect of improving the corrosion resistance of the coating film defective portion, and one or both of them are added. In order to obtain the effect, both Sn and Sb must be contained in an amount of 0.010% or more, preferably 0.020% or more, more preferably 0.030% or more. On the other hand, if the content of both Sn and Sb exceeds 0.300%, the toughness of the base material and HAZ is deteriorated. Therefore, the upper limit of the Sb and Sn contents is 0.300%, preferably 0.200%, and more preferably 0.150%.

(P :0.025%以下)
Pは、不純物であり、鋼の母材靭性や溶接性、溶接部靭性を劣化させるため、できるだけ低減するのが好ましい。特に、Pの含有量が0.025%を超えると、母材靭性及び溶接部靭性の低下が大きくなるので、0.025%以下に制限する。好ましくはPの含有量を0.020%以下、より好ましくは0.015%以下とする。
(P: 0.025% or less)
P is an impurity and deteriorates the base metal toughness, weldability, and weld zone toughness of steel, so it is preferable to reduce P as much as possible. In particular, if the P content exceeds 0.025%, the toughness of the base metal and the toughness of the welded portion will be significantly reduced, so the content is limited to 0.025% or less. The P content is preferably 0.020% or less, more preferably 0.015% or less.

([Mn]×[S]≦0.020)
Mn及びSの含有量を上述の範囲とし、更に、Mnの含有量[Mn]とSの含有量[S]の数値の積([Mn]×[S])を0.020以下にする。[Mn]×[S]を0.020以下とすることで、0.003%以上のSを含有しても、MnSの生成が抑制され、塗膜欠陥部の腐食が抑制される。また、[Mn]×[S]は、好ましくは0.010以下、より好ましくは0.007以下である。
([Mn]×[S]≦0.020)
The contents of Mn and S are set in the above ranges, and the product ([Mn]×[S]) of the numerical values of the Mn content [Mn] and the S content [S] is 0.020 or less. By setting [Mn]×[S] to 0.020 or less, even if S is contained in an amount of 0.003% or more, generation of MnS is suppressed, and corrosion of the coating film defective portion is suppressed. [Mn]×[S] is preferably 0.010 or less, more preferably 0.007 or less.

本発明の耐食鋼材は、上述された基本成分(必須元素)に加え、更に、塗装欠陥部の耐食性を高めるために、Cu、Ni、Cr、Mo、及び、Wの1種又は2種以上を選択元素として添加してもよい。 The corrosion-resistant steel material of the present invention contains, in addition to the above-mentioned basic components (essential elements), one or more of Cu, Ni, Cr, Mo, and W in order to further improve the corrosion resistance of the coating defect portion. You may add as a selective element.

(Cu:0.40%以下)
(Ni:0.40%以下)
(Cr:0.40%以下)
(Mo:0.50%以下)
(W :1.0%以下)
Cu、Ni、Cr、Mo、及び、Wは、1種又は2種以上を、Sn、Sbの一方又は両方と同時に添加すると、塗装欠陥部の耐食性を更に高める効果が発現する。塗装欠陥部の耐食性を向上させる効果を得るには、Cu、Ni、Cr、Mo、Wとも、0.01%以上の添加が好ましい。ただし、Cu、Ni、Cr、Mo、Wを過剰に添加すると、HAZ靭性が劣化する場合がある。Cuは0.40%、Niは0.40%、Crは0.40%、Moは0.50%、Wは1.0%を上限とすることが好ましい。より好ましくは、Cuは0.30%、Niは0.30%、Crは0.20%、Moは0.20%、Wは0.5%を上限とする。
(Cu: 0.40% or less)
(Ni: 0.40% or less)
(Cr: 0.40% or less)
(Mo: 0.50% or less)
(W: 1.0% or less)
When one or more of Cu, Ni, Cr, Mo and W are added at the same time as one or both of Sn and Sb, the effect of further enhancing the corrosion resistance of the coating defect portion is exhibited. In order to obtain the effect of improving the corrosion resistance of the coating defect portion, it is preferable to add 0.01% or more of each of Cu, Ni, Cr, Mo and W. However, if Cu, Ni, Cr, Mo, and W are excessively added, the HAZ toughness may deteriorate. It is preferable that Cu is 0.40%, Ni is 0.40%, Cr is 0.40%, Mo is 0.50%, and W is 1.0%. More preferably, Cu is 0.30%, Ni is 0.30%, Cr is 0.20%, Mo is 0.20%, and W is 0.5%.

本発明の耐食鋼材は、上述された必須元素に加え、更に、母材やHAZの機械特性を向上させるために、Ti、Zr、V、B、Ca、Mg、REM、及び、Yの1種又は2種以上を添加してもよい。 The corrosion-resistant steel material of the present invention contains, in addition to the above-mentioned essential elements, one of Ti, Zr, V, B, Ca, Mg, REM, and Y in order to further improve the mechanical properties of the base material and HAZ. Alternatively, two or more kinds may be added.

(Ti:0.100%以下)
(Zr:0.10%以下)
(V :0.20%以下)
Ti、Zr、Vは、いずれも、析出物を生じて鋼材の強度を高める元素であり、必要に応じて含有することができる。Ti、Zr、Vは、0.001%以上を添加することが好ましい。一方、Ti、Zr、Vを過剰に添加すると靭性が低下することがあるため、Tiは0.100%、Zrは0.10%、Vは0.20%を上限として添加するのが好ましい。より好ましくは、Tiは0.020%、Zrは0.02%、Vは0.03%を上限とする。
(Ti: 0.100% or less)
(Zr: 0.10% or less)
(V: 0.20% or less)
Each of Ti, Zr, and V is an element that produces a precipitate to enhance the strength of the steel material, and can be contained if necessary. It is preferable to add 0.001% or more of Ti, Zr, and V. On the other hand, if Ti, Zr, and V are excessively added, the toughness may decrease. Therefore, it is preferable to add Ti with 0.100%, Zr with 0.10%, and V with 0.20% as the upper limits. More preferably, Ti is 0.020%, Zr is 0.02%, and V is 0.03%.

(B :0.0030%以下)
Bは、微量の添加で鋼材の強度を高める元素であり、必要に応じて含有させることができる。B量は0.0003%以上が好ましい。より好ましくは0.0005%以上とする。一方、0.0030%を超えて添加すると、靭性が劣化することがあるため、Bの含有量の上限は0.0030%が好ましい。より好ましくは0.0020%とする。
(B: 0.0030% or less)
B is an element that enhances the strength of the steel by adding a trace amount, and can be contained as necessary. The B content is preferably 0.0003% or more. More preferably, it is 0.0005% or more. On the other hand, if added in excess of 0.0030%, the toughness may deteriorate, so the upper limit of the B content is preferably 0.0030%. More preferably, it is 0.0020%.

(Ca:0.0100%以下)
(Mg:0.0100%以下)
(REM:0.015%)
(Y :0.100%以下)
Ca、Mg、REM、Yは、いずれも、溶接熱影響部の靭性向上に効果のある元素であり、必要に応じて選択して含有することができる。Ca、Mg、REM、Yは、それぞれ、0.0001%以上を添加することが好ましい。より好ましくは、Ca、Mg、REM、Yの含有量を、それぞれ、0.0005%以上とする。一方、これらを過剰に添加すると靭性を低下させることがあるため、Caは0.0100%以下、Mgは0.0100%以下、REMは0.015%以下、Yは0.100%以下が好ましい。より好ましくは、Ca、Mg、REM、Yの含有量を、それぞれ、0.0030%以下とする。
(Ca: 0.0100% or less)
(Mg: 0.0100% or less)
(REM: 0.015%)
(Y: 0.100% or less)
Each of Ca, Mg, REM, and Y is an element effective in improving the toughness of the weld heat affected zone, and can be selected and contained if necessary. It is preferable to add 0.0001% or more of each of Ca, Mg, REM, and Y. More preferably, the contents of Ca, Mg, REM, and Y are each set to 0.0005% or more. On the other hand, excessive addition of these may lower the toughness, so Ca is preferably 0.0100% or less, Mg is 0.0100% or less, REM is 0.015% or less, and Y is preferably 0.100% or less. .. More preferably, the contents of Ca, Mg, REM and Y are each set to 0.0030% or less.

本発明の耐食鋼材において、上記以外の成分は、Fe及び不可避的不純物であるが、本発明の効果を害しない範囲内であれば、上記以外の成分の含有は許容される。 In the corrosion-resistant steel material of the present invention, the components other than the above are Fe and inevitable impurities, but the inclusion of components other than the above is acceptable as long as it is within the range that does not impair the effects of the present invention.

本発明の耐食鋼材は、上記組成からなる下地鋼材の表面に、表面にエポキシ系塗膜を有する。エポキシ系塗膜は、国際海事機関(International Maritime Organization、IMO)が定めた塗装性能基準を満たすものであれば、特に制限されるものではなく、エポキシ系塗料を塗布し、乾燥させて形成すればよい。 The corrosion resistant steel material of the present invention has an epoxy coating film on the surface of the base steel material having the above composition. The epoxy coating film is not particularly limited as long as it satisfies the coating performance standards set by the International Maritime Organization (IMO), and is formed by coating the epoxy coating material and drying it. Good.

また、上記組成からなる下地鋼材の表面に、ジンクリッチプライマー塗膜を形成してから、エポキシ系塗膜を設けることができる。ジンクリッチプライマー塗膜は、特に制限されるものではなく、ジンクリッチプライマーを塗布し、乾燥させて形成すればよい。 Further, the zinc-rich primer coating film can be formed on the surface of the base steel material having the above composition, and then the epoxy coating film can be provided. The zinc-rich primer coating film is not particularly limited and may be formed by applying a zinc-rich primer and drying.

本発明の耐食鋼材は、常法で製造することができる。
例えば、溶鋼を転炉、電気炉等の公知の方法で溶製し、連続鋳造法、造塊法等の公知の方法でスラブやビレット等の鋼素材とし、熱間圧延に供する。なお、溶鋼に、取鍋精錬や真空脱ガス等の処理を付加してもよい。
The corrosion resistant steel material of the present invention can be manufactured by a conventional method.
For example, molten steel is melted by a known method such as a converter or an electric furnace, and made into a steel material such as a slab or billet by a known method such as a continuous casting method or an ingot making method, and is subjected to hot rolling. The molten steel may be subjected to ladle refining and vacuum degassing.

そして、鋼素材を、好ましくは1050〜1250℃の温度に加熱し、所望の寸法形状に熱間圧延する。鋳造や造塊後の鋼材をそのまま熱間圧延してもよい。なお、熱間圧延では、強度を確保するために、熱間仕上圧延終了温度及び熱間仕上圧延終了後の冷却速度を適正化することが好ましく、熱間仕上圧延終了温度は、700℃以上、熱間仕上圧延終了後の冷却は、空冷又は冷却速度100℃/s以下の加速冷却を行うことが好ましい。また、冷却後、再加熱処理を施してもよい。 Then, the steel material is preferably heated to a temperature of 1050 to 1250° C. and hot rolled into a desired size and shape. The steel material after casting or ingot may be hot-rolled as it is. In the hot rolling, in order to secure the strength, it is preferable to optimize the hot finish rolling finish temperature and the cooling rate after the hot finish rolling finish, and the hot finish rolling finish temperature is 700° C. or higher, The cooling after the hot finish rolling is preferably air cooling or accelerated cooling at a cooling rate of 100° C./s or less. Moreover, you may re-heat-process after cooling.

そして、鋼材の表面にエポキシ系塗料を塗布し、乾燥させてエポキシ系塗膜を形成させる。エポキシ系塗料を塗布する前にジンクリッチプライマー塗膜を形成してもよい。また、エポキシ系塗料やジンクリッチプライマーを塗布する前に、ショットブラストを施してもよく、酸洗を行ってもよい。 Then, an epoxy-based paint is applied to the surface of the steel material and dried to form an epoxy-based coating film. A zinc rich primer coating may be formed before applying the epoxy paint. Also, shot blasting or pickling may be performed before applying the epoxy paint or the zinc rich primer.

以下、実施例により本発明をさらに詳細に説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the conditions in the Examples are one condition example adopted for confirming the feasibility and effects of the present invention. It is not limited to the example. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

表1に示した成分組成を有する鋼を真空溶解炉又は転炉で溶製して、鋳塊又は鋼スラブとし、これらを加熱炉で1150℃に加熱し、熱間圧延して25mm厚の厚鋼板とした。得られた厚鋼板について、母材の引張特性及び衝撃特性を調査した。引張試験はJIS Z 2241に準拠して室温で行い、シャルピー衝撃試験はJIS Z 2242に準拠して−40℃で行った。 Steel having the composition shown in Table 1 is melted in a vacuum melting furnace or a converter to form an ingot or a steel slab, which are heated to 1150° C. in a heating furnace and hot-rolled to a thickness of 25 mm. It was a steel plate. The tensile properties and impact properties of the base metal of the obtained thick steel plate were investigated. The tensile test was performed at room temperature according to JIS Z 2241, and the Charpy impact test was performed at -40°C according to JIS Z 2242.

Figure 0006736255
Figure 0006736255

次に、それぞれの厚鋼板から、長さ150mm、幅70mm、厚さ5mmの試験片を採取し、試験片の表面のスケールをショットブラスによって除去した後、エポキシ塗料を2回塗布して塗膜厚が300〜400μmとなる試験片を作製した。また、いくつかの鋼板についてはエポキシ塗料による塗布の前にジンクプライマーを10μm塗布したものも用意した。 Next, a test piece having a length of 150 mm, a width of 70 mm, and a thickness of 5 mm was taken from each thick steel plate, the scale on the surface of the test piece was removed by shot brass, and then an epoxy paint was applied twice to form a coating film. A test piece having a thickness of 300 to 400 μm was produced. In addition, some steel plates were prepared by applying a zinc primer of 10 μm before applying the epoxy paint.

これらの試験片の中央を幅2mmのエンドミルで地鉄表面まで達する50mm長さの疵を横方向に一文字状に付与し、人工海水を用いて複合サイクル試験を行った。サイクル条件は、腐食液噴霧(温度35℃)1時間、乾燥(60℃、湿度20〜30%)2時間、湿潤(50℃、湿度95%以上)1時間とした。このサイクルを300サイクル行った後、付与した疵部の塗装膨れの最大長さを測定した。耐食性は、耐食性向上元素を特に含まないNo.27の鋼をベース鋼(100)として塗装膨れの最大長さの比率を算出し、評価した。 A 50 mm long flaw reaching the surface of the base metal was formed in a letter shape in the lateral direction in the end mill having a width of 2 mm at the center of these test pieces, and a combined cycle test was performed using artificial seawater. The cycle conditions were 1 hour for spraying a corrosive liquid (temperature: 35° C.), 2 hours for drying (60° C., 20 to 30% humidity), and 1 hour for wetting (50° C., 95% or higher humidity). After performing this cycle 300 times, the maximum length of coating blistering on the applied flaw was measured. Corrosion resistance is No. 1 which does not particularly include the corrosion resistance improving element. The ratio of the maximum length of paint blisters was calculated and evaluated using 27 steels as base steel (100).

表2に腐食試験、引張試験、衝撃試験の結果を示す。本発明の成分組成を満たす発明例又は参考例のNo.1〜26の鋼は、ベース鋼(No.27)に対する塗装膨れの最大長さの比率が50%以下であり、良好な耐食性を有していることがわかる。また、発明例又は参考例にジンクプライマーを塗布した鋼材は、ベース鋼(No.27)に対する塗装膨れの最大長さの比率が25%以下であり、良好な耐食性を有していることがわかる。
これに対して、本発明の成分組成の条件を満たさないNo.28〜32鋼は、ベース鋼(No.27)に対する塗装膨れの最大長さの比率がいずれも50%を超えている。No.33鋼は、ベース鋼(No.27)に対する塗装膨れの最大長さの比率が50%以下であるが、Nbを含有しないため、母材の機械特性が低くなっている。
Table 2 shows the results of the corrosion test, tensile test and impact test. No. of the invention examples or reference examples satisfying the component composition of the present invention. The steels Nos. 1 to 26 have a ratio of the maximum length of paint swelling to the base steel (No. 27) of 50% or less, and it is understood that the steels have good corrosion resistance. In addition, the steel material coated with the zinc primer in the invention example or the reference example has a ratio of the maximum length of coating swelling to the base steel (No. 27) of 25% or less, and it is understood that the steel material has good corrosion resistance. ..
On the other hand, No. 1 which does not satisfy the condition of the composition of the present invention. In each of the 28 to 32 steels, the ratio of the maximum coating blistering length to the base steel (No. 27) exceeds 50%. No. The steel No. 33 has a ratio of the maximum length of coating swelling to the base steel (No. 27) of 50% or less, but does not contain Nb, so that the mechanical properties of the base material are low.

Figure 0006736255
Figure 0006736255

本発明は、表面にエポキシ系塗膜を有するバラストタンク用耐食鋼材であって、厚鋼板、薄鋼板、形鋼や棒鋼を含むものである。本発明のバラストタンク用耐食鋼材は、例えば、石炭船や鉱石船、鉱炭兼用船、原油タンカー、LPG船、LNG船、ケミカルタンカー、コンテナ船、ばら積み船、木材専用船、チップ専用船、冷凍運搬船、自動車専用船、重量物船、RORO船、石灰石専用船、セメント専用船等のバラストタンク等の素材として、好適に使用することができる。なお、本発明の耐食鋼材は、海水による腐食環境下で優れた塗装耐食性を示すので、船舶のバラストタンクだけでなく、他の類似の海水による腐食環境で使用される用途にも用いることができる。よって、本発明は、産業上の利用可能性が高いものである。 INDUSTRIAL APPLICABILITY The present invention is a corrosion resistant steel material for ballast tanks having an epoxy coating film on its surface, and includes thick steel plates, thin steel plates, shaped steel and steel bars. The corrosion-resistant steel material for a ballast tank of the present invention is, for example, a coal ship, an ore ship, a coal-bearing ship, a crude oil tanker, an LPG ship, an LNG ship, a chemical tanker, a container ship, a bulk carrier, a timber carrier, a chip carrier, and a frozen container. It can be suitably used as a material for a ballast tank of a carrier ship, a car carrier, a heavy carrier, a RORO carrier, a limestone carrier, a cement carrier, and the like. Since the corrosion-resistant steel material of the present invention exhibits excellent coating corrosion resistance in a corrosive environment due to seawater, it can be used not only in a ballast tank of a ship, but also in other similar corrosive environment due to seawater. .. Therefore, the present invention has high industrial applicability.

Claims (6)

質量%で、
C :0.03〜0.25%、
Si:0.05〜0.50%、
Mn:0.10〜1.20%、
S :0.003〜0.020%、
Al:0.001〜0.100%、及び、
Nb:0.001〜0.020%
を含有し、更に、
Sb:0.010〜0.300%、及び、
Sn:0.010〜0.300%
の少なくとも一方を含有し、更に、
Cu:0.05〜0.40%、
Ni:0.05〜0.40%、
Cr:0.06〜0.40%、
の1種又は2種以上を含有し、
P :0.025%以下
に制限し、残部がFe及び不可避的不純物からなり、Mnの含有量[Mn]とSの含有量[S]とが、0.005≦[Mn]×[S]≦0.020を満足し、表面にエポキシ系塗膜を有することを特徴とするバラストタンク用耐食鋼材。
In mass %,
C: 0.03 to 0.25%,
Si: 0.05 to 0.50%,
Mn: 0.10 to 1.20%,
S: 0.003 to 0.020%,
Al: 0.001 to 0.100%, and
Nb: 0.001-0.020%
Containing
Sb: 0.010 to 0.300%, and
Sn: 0.010 to 0.300%
Containing at least one of the
Cu: 0.05 to 0.40%,
Ni: 0.05 to 0.40%,
Cr: 0.06 to 0.40%,
Containing one or more of
P: 0.025% or less, the balance consisting of Fe and unavoidable impurities, and the content of Mn [Mn] and the content of S [S] are 0.005≦ [Mn]×[S] A corrosion-resistant steel material for ballast tanks, which satisfies ≦0.020 and has an epoxy coating film on the surface.
更に、
Mo:0.50%以下、及び、
W :1.00%以下
の1種又は2種を含有することを特徴とする請求項1に記載のバラストタンク用耐食鋼材。
Furthermore,
Mo: 0.50% or less, and
W: 1.00% or less of 1 type or 2 types is contained, The corrosion-resistant steel material for ballast tanks of Claim 1 characterized by the above-mentioned.
更に、
Ti:0.100%以下、
Zr:0.10%以下、及び、
V :0.20%以下
の1種又は2種以上を含有することを特徴とする請求項1又は2に記載のバラストタンク用耐食鋼材。
Furthermore,
Ti: 0.100% or less,
Zr: 0.10% or less, and
V: 0.20% or less of 1 type or 2 or more types is contained, The corrosion-resistant steel material for ballast tanks of Claim 1 or 2 characterized by the above-mentioned.
更に、
B :0.0030%以下
を含有することを特徴とする請求項1〜3の何れか1項に記載のバラストタンク船舶用耐食鋼材。
Furthermore,
B: 0.0030% or less is contained, The corrosion-resistant steel material for ballast tank ships of any one of Claims 1-3 characterized by the above-mentioned.
更に、
Ca:0.0100%以下、
Mg:0.0100%以下、
REM:0.015%以下、及び、
Y :0.100%以下
の1種又は2種以上を含有することを特徴とする請求項1〜4の何れか1項に記載のバラストタンク用耐食鋼材。
Furthermore,
Ca: 0.0100% or less,
Mg: 0.0100% or less,
REM: 0.015% or less, and
Y: 0.100% or less of 1 type or 2 or more types is contained, The corrosion-resistant steel material for ballast tanks in any one of Claims 1-4 characterized by the above-mentioned.
前記エポキシ系塗膜の下地にジンクプライマー塗膜を有することを特徴とする請求項1〜5の何れか1項に記載のバラストタンク用耐食鋼材。 The corrosion resistant steel material for ballast tanks according to any one of claims 1 to 5, further comprising a zinc primer coating film as a base of the epoxy coating film.
JP2015016055A 2015-01-29 2015-01-29 Corrosion resistant steel for ballast tanks Active JP6736255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015016055A JP6736255B2 (en) 2015-01-29 2015-01-29 Corrosion resistant steel for ballast tanks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015016055A JP6736255B2 (en) 2015-01-29 2015-01-29 Corrosion resistant steel for ballast tanks

Publications (2)

Publication Number Publication Date
JP2016141819A JP2016141819A (en) 2016-08-08
JP6736255B2 true JP6736255B2 (en) 2020-08-05

Family

ID=56568359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015016055A Active JP6736255B2 (en) 2015-01-29 2015-01-29 Corrosion resistant steel for ballast tanks

Country Status (1)

Country Link
JP (1) JP6736255B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6772942B2 (en) * 2017-04-18 2020-10-21 日本製鉄株式会社 Corrosion resistant steel for ballast tanks

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5413392B2 (en) * 2005-07-15 2014-02-12 Jfeスチール株式会社 Corrosion resistant steel for shipbuilding
JP5119595B2 (en) * 2005-07-15 2013-01-16 Jfeスチール株式会社 Corrosion resistant steel for shipbuilding
JP4525686B2 (en) * 2006-03-30 2010-08-18 Jfeスチール株式会社 Corrosion resistant steel for crude oil tank and crude oil tank
JP5145897B2 (en) * 2007-11-22 2013-02-20 新日鐵住金株式会社 Corrosion resistant steel for cargo oil tanks
CN101928886A (en) * 2010-07-15 2010-12-29 南京钢铁股份有限公司 Corrosion resistant steel for cargo oil tanks and application thereof
JP6180956B2 (en) * 2014-02-13 2017-08-16 株式会社神戸製鋼所 Painted steel with excellent corrosion resistance

Also Published As

Publication number Publication date
JP2016141819A (en) 2016-08-08

Similar Documents

Publication Publication Date Title
EP1990437B1 (en) Corrosion-resistant steel material for ship and vessel
JP4525687B2 (en) Corrosion resistant steel for ships
JP5861335B2 (en) Welded joint with excellent corrosion resistance
JP5617191B2 (en) Marine steel with excellent film swell resistance
JP5481980B2 (en) Marine steel with excellent film swell resistance
JP5796409B2 (en) Corrosion resistant steel for ship ballast tank
JP5453835B2 (en) Corrosion resistant steel for ships
JP6493019B2 (en) Corrosion-resistant steel for ballast tanks
JP5958102B2 (en) Corrosion-resistant steel for ship ballast tank with excellent corrosion resistance and method for producing the same
JP6601258B2 (en) Corrosion-resistant steel for ballast tanks
JP6260755B1 (en) Steel for ship ballast tank and ship
JP2012177168A (en) Steel material for vessel, which is excellent in resistance to corrosion caused due to coating
JP2012092404A (en) Steel for ship having excellent coating corrosion resistance
JP6772942B2 (en) Corrosion resistant steel for ballast tanks
JP2010229526A (en) Highly-corrosion-resistant painted steel material
JP6065062B2 (en) Corrosion resistant steel for holding coal ships and coal / ore combined ships
JP6645462B2 (en) Steel material and method of manufacturing the same
JP2012092403A (en) Steel for ship having excellent coating corrosion resistance
JP6123701B2 (en) Corrosion resistant steel for inner bottom plate of coal ship and coal / ore combined use hold
JP6736255B2 (en) Corrosion resistant steel for ballast tanks
JP6048104B2 (en) Corrosion resistant steel for holding coal ships and coal / ore combined ships
JP6287791B2 (en) Corrosion resistant steel for inner bottom plate of coal ship and coal / ore combined use hold
JP2011162849A (en) Zinc primer-coated corrosion resistant steel material
JP2011094184A (en) Highly corrosion resistant painted steel
JP6624129B2 (en) Steel material and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190220

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190227

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20190329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200715

R151 Written notification of patent or utility model registration

Ref document number: 6736255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151