JP5413392B2 - Corrosion resistant steel for shipbuilding - Google Patents

Corrosion resistant steel for shipbuilding Download PDF

Info

Publication number
JP5413392B2
JP5413392B2 JP2011062054A JP2011062054A JP5413392B2 JP 5413392 B2 JP5413392 B2 JP 5413392B2 JP 2011062054 A JP2011062054 A JP 2011062054A JP 2011062054 A JP2011062054 A JP 2011062054A JP 5413392 B2 JP5413392 B2 JP 5413392B2
Authority
JP
Japan
Prior art keywords
steel
shipbuilding
corrosion
toughness
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011062054A
Other languages
Japanese (ja)
Other versions
JP2011153382A (en
Inventor
和彦 塩谷
俊幸 星野
務 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011062054A priority Critical patent/JP5413392B2/en
Publication of JP2011153382A publication Critical patent/JP2011153382A/en
Application granted granted Critical
Publication of JP5413392B2 publication Critical patent/JP5413392B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、船舶用鋼材に関し、特に海水腐食環境下で使用されるバラストタンク用鋼材について、補修塗装寿命延長および補修塗装作業軽減の観点から、その耐食性を向上させようとするものである。   The present invention relates to marine steel materials, and in particular, to improve the corrosion resistance of steel materials for ballast tanks used in a seawater corrosive environment from the viewpoint of extending the repair coating life and reducing the repair coating work.

バラストタンクは、海水が出入りすることから、厳しい腐食環境下にあり、通常その防食はエポキシ系塗料と電気防食とが併用されている。しかし、それらの防食を講じていても、バラストタンクの腐食は激しい状態にある。すなわち、バラストタンクの海水充満時においては、海水に完全に浸されている部分は、電気防食が働き、腐食の進行を抑えられる。しかし、バラストタンクの最上部付近、特にアッパーデッキの裏側は海水に完全に漬からず、海水飛沫の状態にある。そのため、このような部位では、電気防食が働かず、さらに太陽光により、鋼板が高温に曝されるため、厳しい腐食環境となり、激しい腐食状態となる。また、バラストタンクに海水がない場合においては、海水の残留付着塩分の作用によって、激しい腐食状態となる。   The ballast tank is in a severe corrosive environment because seawater enters and exits. Usually, the anticorrosion is combined with epoxy paint and cathodic protection. However, even if these anticorrosion measures are taken, the corrosion of the ballast tank is in a severe state. That is, when the ballast tank is filled with seawater, the portion that is completely immersed in seawater acts as an anticorrosion, and the progress of corrosion can be suppressed. However, the vicinity of the uppermost part of the ballast tank, particularly the back side of the upper deck, is not completely immersed in seawater and is in a state of splashing seawater. Therefore, in such a part, since the anticorrosion does not work and the steel plate is exposed to high temperature by sunlight, it becomes a severe corrosive environment and a severe corrosive state. Moreover, when there is no seawater in a ballast tank, it will be in a severe corrosion state by the effect | action of the residual adhering salt content of seawater.

このように厳しい腐食環境下にあるバラストタンクの塗膜寿命は、約10年といわれており、船の寿命(20年)の半分である。従って、残りの10年は、補修塗装で安全性を維持しなければならない。バラストタンクでは、このような厳しい腐食環境による激しい腐食状態、そして、それに起因した狭い空間での補修再塗装という悪条件下での作業が重大な問題であるため、補修塗装寿命の延長、および補修塗装作業の軽減を達成できる耐食性鋼材の開発が望まれている。   The coating film life of the ballast tank in such a severe corrosive environment is said to be about 10 years, which is half of the life of the ship (20 years). Therefore, for the remaining 10 years, safety must be maintained by repair painting. In ballast tanks, the severe corrosion caused by such a severe corrosive environment, and the work under adverse conditions of repair repainting in a narrow space resulting from this, is a serious problem. Development of corrosion-resistant steel that can achieve reduction in painting work is desired.

一方、バラストタンクの耐食化に関する鋼材側からの対策としては、以下のものが提案されている。   On the other hand, the following have been proposed as countermeasures from the steel side regarding the corrosion resistance of the ballast tank.

特許文献1には,P:0.03〜0.10%,Cu:0.1〜1.0%,Ni:0.1〜1.0%を添加した鋼材にエポキシ、ピュアエポキシ、ウレタン樹脂などを塗布したバラストタンクが提案されている。これは下地金属の耐食性が向上するため、樹脂皮膜の接着劣化寿命が延長し、バラストタンクの耐久化が図られるとしている。そして、20〜30年に渡って、メンテナンスを不要にすることが可能になるという提案がなされている。   In Patent Document 1, P: 0.03 to 0.10%, Cu: 0.1 to 1.0%, Ni: 0.1 to 1.0%, steel material added with epoxy, pure epoxy, urethane resin The ballast tank which applied etc. is proposed. This is because the corrosion resistance of the base metal is improved, so that the adhesive deterioration life of the resin film is extended, and the ballast tank is made durable. And it has been proposed that maintenance can be made unnecessary for 20 to 30 years.

特許文献2には、Cr:0.2〜5%を添加することで、また、特許文献3には、Cr:0.5〜3.5%を添加することで、耐食性が向上し、船舶のメンテナンスフリー化に寄与できるという提案がなされている。   Patent Document 2 adds Cr: 0.2 to 5%, and Patent Document 3 adds Cr: 0.5 to 3.5%, thereby improving corrosion resistance. A proposal has been made that it can contribute to maintenance-free.

特許文献4には、Ni:0.1〜4.0%を添加することで、耐塗膜損傷性が向上し、補修塗装などの保守費用を大幅に削減できるという提案がなされている。   Patent Document 4 proposes that by adding Ni: 0.1 to 4.0%, the coating film damage resistance is improved, and maintenance costs such as repair coating can be significantly reduced.

特開平7−34197号公報Japanese Unexamined Patent Publication No. 7-34197 特開平7−34196号公報Japanese Patent Laid-Open No. 7-34196 特開平7−310141号公報JP-A-7-310141 特開2002−266052号公報JP 2002-266052 A

しかし、特許文献1の技術では、下地金属の耐食性を向上させるため、P含有量が0.03〜0.10%と比較的多く含有されており、溶接性および溶接部靭性に問題があると考えられる。また、特許文献2及び3の技術では、Cr含有量が比較的高く、特許文献4の技術ではNi含有量が比較的高く、いずれも製造コスト高となる問題がある。   However, in the technique of Patent Document 1, in order to improve the corrosion resistance of the base metal, the P content is relatively large as 0.03 to 0.10%, and there is a problem in weldability and weld toughness. Conceivable. Further, the technologies of Patent Documents 2 and 3 have a relatively high Cr content, and the technology of Patent Document 4 has a relatively high Ni content, both of which have the problem of high manufacturing costs.

そこで、本発明は、船舶バラストタンクの補修再塗装寿命の延長および補修再塗装作業の軽減に寄与すべく、上記した溶接性、溶接部靭性の劣化や製造コストの高騰を回避できる耐食性に優れた船舶バラストタンク用鋼材を提供することを目的とする。   Therefore, the present invention has excellent corrosion resistance capable of avoiding the above-described deterioration of weldability, welded portion toughness and increase in manufacturing cost in order to contribute to the extension of the repair repaint life of the ship ballast tank and the reduction of the repair repaint work. It aims at providing the steel materials for ship ballast tanks.

発明者らは,耐食性向上有効元素を見出すため、種々の合金を添加した鋼材を溶製して圧延し、それぞれの鋼板から5mm×100mm×200mmの暴露試験片を採取した。これら試験片に、ショットブラスト後、ジンクリッチプライマー(約15μm)、タールエポキシ樹脂塗料(約100μm)を塗布した。その後、カッターナイフで、試験片の地鉄表面まで達する80mm長さのスクラッチを付加した。これら試験片を、実船のバラストタンクアッパーデッキ裏を模擬した乾湿繰り返し試験を行い、スクラッチ周囲のさびによる塗膜膨れおよび剥離面積を測定した。試験期間は6ヶ月間である。   In order to find an effective element for improving corrosion resistance, the inventors melted and rolled steel materials added with various alloys, and collected 5 mm × 100 mm × 200 mm exposure test pieces from the respective steel plates. After shot blasting, zinc rich primer (about 15 μm) and tar epoxy resin paint (about 100 μm) were applied to these test pieces. Thereafter, a 80 mm long scratch reaching the surface of the test piece was added with a cutter knife. These test pieces were subjected to a dry and wet repeated test simulating the back of the upper deck of an actual ship's ballast tank, and the swelling of the coating film and the peeled area due to rust around the scratch were measured. The test period is 6 months.

その結果、鋼へのW添加が塗膜下でのさび生成を顕著に抑制し、塗膜膨れ、塗膜剥離に有効であることを見出した。さらに、Ni,Moの添加、また、Cu,Co,Sn,Sbの添加により、その効果をさらに高めることが可能であることが分かった。さらに、大入熱溶接において溶接部靱性の向上の観点からTi、N量の適正化が有効であることがわかった。そして、それぞれの合金元素の母材機械的特性、溶接部靭性を調査し、さらにコストを勘案し、本発明はなされた。   As a result, it has been found that the addition of W to steel significantly suppresses the formation of rust under the coating film, and is effective for coating film swelling and coating film peeling. Furthermore, it has been found that the effect can be further enhanced by addition of Ni and Mo and addition of Cu, Co, Sn and Sb. Furthermore, it has been found that optimization of the amounts of Ti and N is effective from the viewpoint of improving the toughness of the welded part in high heat input welding. The present invention was made by investigating the base metal mechanical properties and weld toughness of each alloy element, and further considering the cost.

1.第一の発明は、鋼の成分組成が、質量%でC:0.03〜0.25%、Si:0.05〜0.50%、Mn:0.1〜2.0%、P:0.025%以下、S:0.01%以下、Al:0.01〜0.10%、W:0.01〜1.0%を含み、残部Feおよび不可避的不純物からなることを特徴とする造船用耐食鋼である。   1. In the first invention, the component composition of steel is C: 0.03 to 0.25%, Si: 0.05 to 0.50%, Mn: 0.1 to 2.0%, P: in mass%. 0.025% or less, S: 0.01% or less, Al: 0.01 to 0.10%, W: 0.01 to 1.0%, comprising the remainder Fe and inevitable impurities Corrosion resistant steel for shipbuilding.

2.第二の発明は、鋼の成分組成として、更に質量%でNi:0.01〜1.0%を含むことを特徴とする第一の発明に記載の造船用耐食鋼である。   2. The second invention is the corrosion-resistant steel for shipbuilding according to the first invention, further comprising Ni: 0.01 to 1.0% by mass% as a component composition of the steel.

3.第三の発明は、鋼の成分組成として、更に質量%でMo:0.01〜0.5%を含むことを特徴とする第一の発明又は第二の発明に記載の造船用耐食鋼である。   3. The third invention is a corrosion-resistant steel for shipbuilding according to the first invention or the second invention, characterized in that the composition of steel further includes Mo: 0.01 to 0.5% by mass. is there.

4.第四の発明は、鋼の成分組成として、質量%でCu:0.02〜1.0%、Co:0.02〜1.0%、Sn:0.001〜0.3%、Sb:0.001〜0.3%のうちから選ばれる1種または2種以上を更に含むことを特徴とする第一の発明から第三の発明のいずれかに記載の造船用耐食鋼である。   4). 4th invention is Cu: 0.02-1.0% by mass% as a component composition of steel, Co: 0.02-1.0%, Sn: 0.001-0.3%, Sb: The corrosion-resistant steel for shipbuilding according to any one of the first to third inventions, further comprising one or more selected from 0.001 to 0.3%.

5.第五の発明は、鋼の成分組成として、質量%でNb:0.002〜0.05%、Ti:0.002〜0.05%、V:0.002〜0.2%のうちから選ばれる1種または2種以上を更に含むことを特徴とする第一の発明から第四の発明のいずれかに記載の造船用耐食鋼である。   5. According to a fifth aspect of the present invention, the component composition of steel is Nb: 0.002 to 0.05% in mass%, Ti: 0.002 to 0.05%, and V: 0.002 to 0.2%. The corrosion-resistant steel for shipbuilding according to any one of the first to fourth inventions, further comprising one or more selected.

6.第六の発明は、鋼の成分組成として、更に質量%でB:0.0003〜0.003%を含むことを特徴とする第一の発明から第五の発明のいずれかに記載の造船用耐食鋼である。   6). A sixth invention further includes B: 0.0003 to 0.003% by mass% as a component composition of steel, and is for shipbuilding according to any one of the first to fifth inventions Corrosion resistant steel.

7.第七の発明は、鋼の成分組成として、質量%でCa:0.0002〜0.01%、REM:0.001〜0.01%のうちから選ばれる1種または2種を更に含むことを特徴とする第一の発明から第六の発明のいずれかに記載の造船用耐食鋼である。   7). 7th invention contains further 1 type or 2 types chosen from Ca: 0.0002-0.01% and REM: 0.001-0.01% by mass% as a component composition of steel. A corrosion-resistant steel for shipbuilding according to any one of the first to sixth inventions.

8.第八の発明は、鋼の成分組成が、質量%でC:0.03〜0.25%、Si:0.05〜0.50%、Mn:0.1〜2.0%、P:0.025%以下、S:0.01%以下、Al:0.01〜0.10%、W:0.01〜1.0%、Ti:0.005〜0.025%、N:0.0030〜0.0065%を含み、残部Feおよび不可避的不純物からなることを特徴とする大入熱溶接靱性に優れた造船用耐食鋼である。   8). In the eighth invention, the component composition of steel is C: 0.03 to 0.25% in mass%, Si: 0.05 to 0.50%, Mn: 0.1 to 2.0%, P: 0.025% or less, S: 0.01% or less, Al: 0.01-0.10%, W: 0.01-1.0%, Ti: 0.005-0.025%, N: 0 It is a corrosion-resistant steel for shipbuilding excellent in high heat input welding toughness, characterized by comprising .0030-0.0065% and comprising the remainder Fe and inevitable impurities.

9.第九の発明は、鋼の成分組成として、更に質量%でNi:0.01〜1.0%を含むことを特徴とする第八の発明記載の大入熱溶接靱性に優れた造船用耐食鋼である。   9. The ninth invention is a corrosion resistance for shipbuilding excellent in high heat input welding toughness according to the eighth invention, wherein the composition of steel further includes Ni: 0.01 to 1.0% by mass%. It is steel.

10.第十の発明は、鋼の成分組成として、更に質量%でMo:0.01〜0.5%を含むことを特徴とする第八の発明又は第九の発明に記載の大入熱溶接靱性に優れた造船用耐食鋼である。   10. A tenth aspect of the present invention further includes Mo: 0.01 to 0.5% by mass% as a component composition of steel, and the large heat input welding toughness according to the eighth aspect or the ninth aspect of the invention Excellent corrosion resistant steel for shipbuilding.

11.第十一の発明は、鋼の成分組成として、質量%でCu:0.02〜1.0%、Co:0.02〜1.0%、Sn:0.001〜0.3%、Sb:0.001〜0.3%のうちから選ばれる1種または2種以上を更に含むことを特徴とする第八の発明から第十の発明のいずれかに記載の大入熱溶接靱性に優れた造船用耐食鋼である。   11. In the eleventh aspect of the present invention, the component composition of steel is Cu: 0.02 to 1.0%, Co: 0.02 to 1.0%, Sn: 0.001 to 0.3%, Sb in mass%. : Excellent in high heat input welding toughness according to any one of the eighth to tenth inventions, further comprising one or more selected from 0.001 to 0.3% Corrosion resistant steel for shipbuilding.

12.第十二の発明は、鋼の成分組成として、質量%でNb:0.002〜0.05%、V:0.002〜0.2%のうちから選ばれる1種または2種を更に含むことを特徴とする第八の発明から第十一の発明のいずれかに記載の大入熱溶接靱性に優れた造船用耐食鋼である。   12 The twelfth invention further includes one or two kinds selected from Nb: 0.002 to 0.05% and V: 0.002 to 0.2% by mass% as a component composition of steel. A shipbuilding corrosion-resistant steel excellent in high heat input welding toughness according to any one of the eighth to eleventh inventions.

13.第十三の発明は、鋼の成分組成として、更に質量%でB:0.0003〜0.003%を含むことを特徴とする第八の発明から第十二の発明のいずれかに記載の大入熱溶接靱性に優れた造船用耐食鋼である。   13. According to a thirteenth aspect of the invention, in any one of the eighth to twelfth aspects of the invention, wherein the composition of steel further includes B: 0.0003 to 0.003% by mass%. It is a corrosion-resistant steel for shipbuilding with excellent high heat input welding toughness.

14.第十四の発明は、鋼の成分組成として、質量%でCa:0.0002〜0.01%、REM:0.001〜0.01%のうちから選ばれる1種または2種を更に含むことを特徴とする第八の発明から第十三の発明のいずれかに記載の大入熱溶接靱性に優れた造船用耐食鋼である。   14 14th invention further contains 1 type or 2 types chosen from Ca: 0.0002-0.01% and REM: 0.001-0.01% by mass% as a component composition of steel. A shipbuilding corrosion-resistant steel excellent in high heat input welding toughness according to any one of the eighth to thirteenth inventions.

本発明によれば、鋼材への比較的少ないW添加により、バラストタンクの腐食環境で優れた耐食性を示すので、製造コストの高騰を抑え、溶接性、溶接部靭性を確保しつつ、船舶バラストタンクの補修再塗装寿命の延長および補修再塗装作業の軽減に大きく寄与することができる。   According to the present invention, a relatively small amount of W added to the steel material exhibits excellent corrosion resistance in the corrosive environment of the ballast tank. Therefore, the ship ballast tank is suppressed while suppressing the increase in manufacturing cost and ensuring weldability and welded portion toughness. This greatly contributes to the extension of the repair and repaint life and the reduction of repair and repaint operations.

本発明の鋼材の成分組成および製造方法について、以下に具体的に説明する。
1.成分組成について
成分組成の限定理由について説明する。なお、成分組成における各元素の含有%は全て質量%を意味する。
The component composition and manufacturing method of the steel material of the present invention will be specifically described below.
1. The reason why the component composition is limited will be described. In addition, all the content% of each element in a component composition means the mass%.

C:0.03〜0.25%
Cは鋼材の強度を上昇させる元素であり、本発明では所望の強度を得るためには、0.03%以上の含有を必要とする。一方,0.25%を超える含有は、HAZ(溶接熱影響部)の靭性を劣化させる。このため、Cは0.03〜0.25%の範囲に限定した。なお、強度、靭性の観点から、好ましくは0.05〜0.20%である。
C: 0.03-0.25%
C is an element that increases the strength of the steel material. In the present invention, the content of 0.03% or more is required to obtain a desired strength. On the other hand, the content exceeding 0.25% deteriorates the toughness of HAZ (welding heat affected zone). For this reason, C was limited to the range of 0.03-0.25%. In addition, from a viewpoint of intensity | strength and toughness, Preferably it is 0.05 to 0.20%.

Si:0.05〜0.50%
Siは、脱酸剤として作用するとともに、鋼材の強度を増加させる元素であり、本発明では、0.05%以上の含有が好ましいが、0.50%を超える含有は、鋼の靭性を劣化させる。このため、Siは0.50%以下の範囲に限定した。
Si: 0.05 to 0.50%
Si is an element that acts as a deoxidizer and increases the strength of the steel material. In the present invention, it is preferably contained in an amount of 0.05% or more, but the content exceeding 0.50% deteriorates the toughness of the steel. Let For this reason, Si was limited to the range of 0.50% or less.

Mn:0.1〜2.0%
Mnは、鋼材の強度を増加させる元素であるが、2.0%を超える含有は、鋼の靭性および溶接性を低下させる。このため、Mnは2.0%以下に限定した。好ましくは0.5〜1.6%である。
Mn: 0.1 to 2.0%
Mn is an element that increases the strength of the steel material, but the content exceeding 2.0% decreases the toughness and weldability of the steel. For this reason, Mn was limited to 2.0% or less. Preferably it is 0.5 to 1.6%.

P:0.025%以下
Pは鋼の母材靭性、さらに溶接性および溶接部靭性を劣化させる。したがって、出来るだけ低減するのが好ましいが、0.025%までは許容できる。0.025%を超えて含有すると母材靭性および溶接部靭性が顕著に低下する。このため,Pは0.025%以下に限定した。
P: 0.025% or less P deteriorates the base metal toughness of steel, and further the weldability and weld zone toughness. Therefore, it is preferable to reduce as much as possible, but up to 0.025% is acceptable. If the content exceeds 0.025%, the base metal toughness and the weld zone toughness are significantly reduced. For this reason, P was limited to 0.025% or less.

S:0.01%以下
Sは靭性および溶接性を劣化させる有害な元素であることから、可能な限り低減する必要がある。従って、0.01%以下に限定した。
S: 0.01% or less Since S is a harmful element that deteriorates toughness and weldability, it must be reduced as much as possible. Therefore, it was limited to 0.01% or less.

Al:0.01〜0.10%以下
Alは脱酸剤として添加し、0.01%以上を含有するが、0.10%を超えて含有すると、耐食性を顕著に劣化させる。従って、0.10%を上限とした。
Al: 0.01 to 0.10% or less Al is added as a deoxidizer and contains 0.01% or more, but if it exceeds 0.10%, the corrosion resistance is remarkably deteriorated. Therefore, 0.10% was made the upper limit.

W:0.01〜1.0%
Wは塗膜下でのさび生成を顕著に抑制するため、本発明鋼材の中で、最も重要な元素である。その効果は、塗膜下での鋼板の腐食に伴い、さび中でWO 2−を形成し、このWO 2−の存在により、塩化物イオンの鋼板表面への侵入を抑制する。さらに、鋼板表面のアノード部などpHが下がった部位では難溶性のFeWOを形成し、このFeWOの存在により、塩化物イオンの鋼板表面への侵入を抑制する。塩化物イオンの鋼板表面への侵入抑制により、鋼板の腐食を抑制し、さび生成を抑制する。以上の効果は、W:0.01%以上の含有で顕著になり、1.0%以上では、効果が飽和する。このため、W含有量は0.01〜1.0%の範囲に限定した。
W: 0.01 to 1.0%
W is the most important element in the steel of the present invention because it significantly suppresses rust formation under the coating film. The effect is that WO 4 2− is formed in the rust as the steel sheet corrodes under the coating film, and the presence of this WO 4 2− suppresses the entry of chloride ions to the steel sheet surface. Further, hardly soluble FeWO 4 is formed at a site where the pH is lowered, such as the anode portion on the surface of the steel plate, and the presence of this FeWO 4 suppresses the penetration of chloride ions into the steel plate surface. By suppressing the penetration of chloride ions into the steel sheet surface, corrosion of the steel sheet is suppressed and rust formation is suppressed. The above effect becomes remarkable when the content of W is 0.01% or more, and when 1.0% or more, the effect is saturated. For this reason, W content was limited to 0.01 to 1.0% of range.

Ni:0.01〜1.0%
Niは塗膜下でのさび生成を抑制するため、本発明鋼材の中で重要な元素である。
その効果は、さび粒子を緻密化し、地鉄への水、酸素、塩化物イオンの鋼板表面への侵入を抑制する。以上の腐食因子の鋼板表面への侵入抑制により、鋼板の腐食を抑制し、さび生成を抑制する。この効果はNi:0.01%以上の含有で効果を発揮し、1.0%以上では、効果が飽和する。このため、Ni含有量は0.01〜1.0%の範囲に限定した。
Ni: 0.01 to 1.0%
Ni is an important element in the steel of the present invention because it suppresses the formation of rust under the coating film.
This effect densifies rust particles and suppresses the penetration of water, oxygen, and chloride ions into the steel plate surface. By suppressing the penetration of the above corrosion factors into the steel sheet surface, corrosion of the steel sheet is suppressed and rust formation is suppressed. This effect is exhibited when the content of Ni is 0.01% or more, and the effect is saturated when the content is 1.0% or more. For this reason, Ni content was limited to the range of 0.01 to 1.0%.

Mo:0.01〜0.5%
MoはWと同様の作用により、塗膜下でのさび生成をやや抑制するため、補助的に使用できる。その効果は、塗膜下での鋼板の腐食に伴い、さび中でMoO 2−を形成し、このMoO 2−の存在により、塩化物イオンの鋼板表面への侵入を抑制する。この効果は、Mo:0.01%以上の含有で発現し、0.5%以上では、効果が飽和する。このため、Mo含有量は0.01〜0.5%の範囲に限定した。
Mo: 0.01 to 0.5%
Mo can be used supplementarily because it has the same effect as W and slightly suppresses the formation of rust under the coating film. The effect is that MoO 4 2− is formed in the rust as the steel sheet corrodes under the coating film, and the presence of MoO 4 2− suppresses the entry of chloride ions to the steel sheet surface. This effect is manifested when Mo: 0.01% or more is contained, and the effect is saturated at 0.5% or more. For this reason, Mo content was limited to 0.01 to 0.5% of range.

Cu:0.02〜1.0%、Co:0.02〜1.0%、Sn:0.001〜0.3%、Sb:0.001〜0.3%のうちの1種または2種以上
Cu、Co、Sn、Sbは、塗膜下でのさび生成を抑制するが、その効果は上記W、Ni、Moほど大きくない。しかし、さび生成抑制の観点から補助的に使用できる。
Cu、Coはさび粒微細化による塩化物イオン侵入抑制の作用から、それぞれ0.02〜1.0%の範囲でさび生成抑制効果がある。Sn、Sbについては作用機構は定かではないが、それぞれ0.001%以上の添加で、さび生成を抑制するため、0.001%以上含有できる。しかし、0.3%を超えると母材靭性,HAZ靭性を顕著に劣化させる。そのため、それぞれ0.001〜0.3%の範囲とした。
One or two of Cu: 0.02-1.0%, Co: 0.02-1.0%, Sn: 0.001-0.3%, Sb: 0.001-0.3% More than seed Cu, Co, Sn, Sb suppresses the formation of rust under the coating film, but the effect is not as great as the above W, Ni, Mo. However, it can be used supplementarily from the viewpoint of suppressing rust formation.
Cu and Co have an effect of inhibiting rust formation in the range of 0.02 to 1.0% from the action of inhibiting chloride ion intrusion due to rust grain refinement. The mechanism of action of Sn and Sb is not clear, but 0.001% or more can be contained to suppress rust formation by adding 0.001% or more. However, if it exceeds 0.3%, the base metal toughness and the HAZ toughness are remarkably deteriorated. Therefore, it was set as 0.001 to 0.3% of range, respectively.

Nb:0.002〜0.05%、Ti:0.002〜0.05%、V:0.002〜0.2%のうちの1種または2種以上
Nb、Ti、Vはいずれも、鋼材の強度を増加させる元素であり、必要に応じて選択して含有できる。このような効果を得るためには、Nb:0.002%、Ti:0.002%、V:0.002%、以上をそれぞれ含有することが好ましい。一方、Nb:0.05%、Ti:0.05%、V:0.2%、を超えてそれぞれ含有すると靭性が劣化する。このため、Nb:0.05%以下、Ti:0.05%以下、V:0.2%以下とするのがよい。
One or more of Nb: 0.002 to 0.05%, Ti: 0.002 to 0.05%, V: 0.002 to 0.2% Nb, Ti, and V are all It is an element that increases the strength of the steel material, and can be selected and contained as necessary. In order to acquire such an effect, it is preferable to contain Nb: 0.002%, Ti: 0.002%, V: 0.002%, respectively. On the other hand, if Nb: 0.05%, Ti: 0.05%, and V: 0.2% are contained, the toughness deteriorates. For this reason, it is good to set it as Nb: 0.05% or less, Ti: 0.05% or less, and V: 0.2% or less.

B:0.0003〜0.003%
Bは鋼材の強度を増加させる元素であり、必要に応じて含有できる。このような効果を得るためには、0.0003%以上含有することが好ましい。一方,0.003%を超えて含有すると靭性が劣化する。このため、Bは0.0003〜0.003%とするのが好ましい。
B: 0.0003 to 0.003%
B is an element that increases the strength of the steel material and can be contained as required. In order to acquire such an effect, it is preferable to contain 0.0003% or more. On the other hand, if the content exceeds 0.003%, the toughness deteriorates. For this reason, B is preferably 0.0003 to 0.003%.

Ca:0.0002〜0.01%、REM:0.001〜0.01%のうちの1種または2種
Ca、REMはいずれもHAZの靭性向上に寄与する元素であり、必要に応じて選択して含有できる。このような効果は、Ca:0.0002%、REM:0.001%以上の含有で顕著となるが,Ca:0.01%,REM:0.01%を超えて含有すると靭性が劣化する。このため、Ca:0.01%、REM:0.01%以下の範囲とするのがよい。
Ca: 0.0002 to 0.01%, REM: One or two of 0.001 to 0.01% Ca and REM are both elements that contribute to the improvement of HAZ toughness, as needed Can be selected and contained. Such an effect becomes remarkable when Ca is contained at 0.0002% and REM: 0.001% or more, but when it is contained exceeding Ca: 0.01% and REM: 0.01%, toughness deteriorates. . For this reason, it is good to set it as the range of Ca: 0.01% and REM: 0.01% or less.

Ti:0.005〜0.025%、N:0.0030〜0.0065%
Ti、Nは溶鋼凝固時にTiNを形成する。そして、TiNは溶接時の加熱によるオーステナイト粒の粗大化を防止し、さらに微細フェライトを多量生成する。この作用により、大入熱溶接熱影響部の靱性を向上させる。Tiが0.005%未満、Nが0.0030%未満では、溶鋼凝固時でのTiNの形成量が少なく、また、大入熱溶接時の加熱により、TiNの多くが溶解するため、上記作用が得られない。一方、Tiが0.025%超えでは、母材靱性に悪影響を与える。また、N量が0.0065%を超えると、連続鋳造割れの発生、溶接熱影響部での島状マルテンサイトの生成による靱性劣化、母材より溶接金属部への希釈による溶接金属部の靱性劣化を引き起こす。従って、Ti:0.005〜0.025%、N:0.0030〜0.0065%の範囲とした。
本発明の鋼材では、上記した成分以外の残部はFeおよび不可避的不純物である。
Ti: 0.005-0.025%, N: 0.0030-0.0065%
Ti and N form TiN during solidification of molten steel. TiN prevents austenite grains from coarsening due to heating during welding, and generates a large amount of fine ferrite. This action improves the toughness of the high heat input weld heat affected zone. When Ti is less than 0.005% and N is less than 0.0030%, the amount of TiN formed during solidification of molten steel is small, and most of TiN is dissolved by heating during high heat input welding. Cannot be obtained. On the other hand, if Ti exceeds 0.025%, the base material toughness is adversely affected. If the N content exceeds 0.0065%, continuous casting cracks occur, toughness deteriorates due to the formation of island martensite in the heat affected zone, and the toughness of the weld metal due to dilution from the base metal to the weld metal. Causes deterioration. Therefore, Ti: 0.005 to 0.025%, N: 0.0030 to 0.0065% range.
In the steel material of the present invention, the balance other than the above components is Fe and inevitable impurities.

2.製造方法について
つぎに、本発明の鋼材の好ましい製造方法について説明する。まず、上記した成分組成の溶鋼を転炉、電気炉等の通常の溶製方法で溶製し、連続鋳造法、造塊法等の通常公知の鋳造方法で鋼素材とするのが好ましい。なお溶鋼で取鍋精錬、真空脱ガス等の処理を付加しても良いことは言うまでもない。
2. About a manufacturing method Below, the preferable manufacturing method of the steel materials of this invention is demonstrated. First, it is preferable that molten steel having the above-described component composition is melted by an ordinary melting method such as a converter or an electric furnace, and is made into a steel material by an ordinary known casting method such as a continuous casting method or an ingot-making method. It goes without saying that treatments such as ladle refining and vacuum degassing may be added to the molten steel.

ついで、得られた鋼素材を、結晶粒粗大化防止の観点から好ましくは1050〜1250℃の温度に加熱したのち、所望の寸法形状に熱間圧延するか、あるいは鋼素材の温度が熱間圧延可能な程度に高温である場合には、加熱することなく、あるいは均熱する程度で、ただちに所望の寸法形状の鋼材に熱間圧延することが出来る。   Next, the obtained steel material is preferably heated to a temperature of 1050 to 1250 ° C. from the viewpoint of preventing grain coarsening, and then hot-rolled to a desired size or shape, or the temperature of the steel material is hot-rolled. When the temperature is as high as possible, it can be immediately hot-rolled into a steel material having a desired size and shape without heating or with a level of soaking.

本発明では、強度確保の観点から、熱間圧延では、熱間仕上圧延終了温度および熱間仕上圧延終了後の冷却速度を適正範囲とすることが好ましい。ここで、熱間仕上圧延終了温度は700℃以上とするのが好ましく、また、熱間仕上圧延終了後は空冷、または冷却速度100℃/以下の加速冷却を行うことができる。また、冷却後、再加熱処理を行うこともできる。   In the present invention, from the viewpoint of securing strength, in hot rolling, it is preferable to set the hot finish rolling end temperature and the cooling rate after the hot finish rolling end to an appropriate range. Here, the finish temperature of hot finish rolling is preferably 700 ° C. or higher, and after the finish of hot finish rolling, air cooling or accelerated cooling at a cooling rate of 100 ° C./less can be performed. In addition, a reheating treatment can be performed after cooling.

表1に示す化学成分の鋼を転炉で溶製し、連続鋳造法でスラブとし、このスラブを加熱炉に挿入して1150℃に加熱したのち、熱間圧延し、厚鋼板(25mm厚×2500mm幅)とした。かくして得られた鋼板について、母材引張特性、衝撃特性を調査した。また、サブマージアーク溶接での入熱150kJ/cm相当の熱サイクルを付与して再現したHAZの衝撃特性(再現HAZ衝撃特性)を評価した。その結果、表2に示すとおり、P含有量が本発明範囲を超える鋼No.20では、母材衝撃特性および再現HAZ衝撃特性が劣化した。   Steel of the chemical composition shown in Table 1 was melted in a converter and made into a slab by a continuous casting method. This slab was inserted into a heating furnace and heated to 1150 ° C., and then hot-rolled to a thick steel plate (25 mm thick × 2500 mm width). The base material tensile characteristics and impact characteristics of the steel sheets thus obtained were investigated. Moreover, the impact characteristics (reproduced HAZ impact characteristics) of HAZ reproduced by applying a thermal cycle corresponding to heat input of 150 kJ / cm in submerged arc welding were evaluated. As a result, as shown in Table 2, the steel No. In No. 20, the base metal impact characteristics and the reproduced HAZ impact characteristics deteriorated.

次に、それぞれの鋼板から5mm×100mm×200mmの暴露試験片を採取した。これら試験片にショットブラスト後、ジンクリッチプライマー(約15μm)、タールエポキシ樹脂塗料(約200μm)を塗布した。その後、カッターナイフで、試験片の地鉄表面まで達する80mm長さのスクラッチを付加した。これら試験片を、実船のバラストタンクアッパーデッキ裏に装着、暴露試験に供した。暴露期間は2年間であり、このバラストタンク内の環境は、バラストタンク内に海水が入っている期間:約20日、バラストタンク内に海水が入っていない期間:約20日を1サイクルとした環境であった。暴露試験後、スクラッチ周囲のさびによる塗膜膨れおよび剥離面積を測定した。そして、ベース鋼(鋼No.18)に対する比率を算出した。その結果を表2に示す。   Next, an exposure test piece of 5 mm × 100 mm × 200 mm was taken from each steel plate. After shot blasting to these test pieces, a zinc rich primer (about 15 μm) and a tar epoxy resin paint (about 200 μm) were applied. Thereafter, a 80 mm long scratch reaching the surface of the test piece was added with a cutter knife. These test pieces were mounted on the back of the ballast tank upper deck of an actual ship and subjected to an exposure test. The exposure period is 2 years, and the environment in this ballast tank is one cycle: the period when seawater is in the ballast tank: about 20 days, the period when seawater is not in the ballast tank: about 20 days It was an environment. After the exposure test, the swelling of the coating film and the peeled area due to rust around the scratch were measured. And the ratio with respect to base steel (steel No. 18) was computed. The results are shown in Table 2.

本発明鋼の(鋼No.1〜17)の面積率は60%以下であり、本発明の鋼材は優れた耐食性を有していることが分かる。一方、本発明の範囲を外れる比較例(鋼No.19、21、22)の面積率は、それぞれ本発明例に比べて大きくなっている。比較例(鋼No.20)はW量が本発明範囲内であるため、面積率は43%と小さな値を示すが、上記のとおり,母材衝撃特性および再現HAZ衝撃特性が劣化している。   The area ratio of (steel No. 1-17) of this invention steel is 60% or less, and it turns out that the steel material of this invention has the outstanding corrosion resistance. On the other hand, the area ratios of the comparative examples (steel Nos. 19, 21, and 22) that are out of the scope of the present invention are larger than those of the present invention examples. In the comparative example (steel No. 20), since the W amount is within the range of the present invention, the area ratio shows a small value of 43%, but as described above, the base metal impact characteristics and the reproduced HAZ impact characteristics are deteriorated. .

Figure 0005413392
Figure 0005413392

Figure 0005413392
Figure 0005413392

また、大入熱溶接靱性向上の観点から、Ti、N量を適正化した表3に示す化学成分の鋼を実施例1と同様に溶解、圧延して厚鋼板(25mm厚×2500mm幅)とし、母材の引張特性、衝撃特性を調査するとともに、サブマージアーク溶接での入熱150kJ/cm相当の熱サイクルを付与して再現したHAZの衝撃特性(再現HAZ衝撃特性)も評価した。   In addition, from the viewpoint of improving high heat input welding toughness, steels having chemical components shown in Table 3 with optimized amounts of Ti and N are melted and rolled in the same manner as in Example 1 to obtain thick steel plates (25 mm thickness × 2500 mm width). The tensile properties and impact properties of the base metal were investigated, and the impact properties (reproduced HAZ impact properties) of the HAZ reproduced by applying a heat cycle equivalent to a heat input of 150 kJ / cm in submerged arc welding were also evaluated.

さらに、それぞれの鋼板から5mm×100mm×200mmの暴露試験片を採取し、これら試験片にショットブラスト後、ジンクリッチプライマー(約15μm)、タールエポキシ樹脂塗料(約200μm)を塗布した。その後、カッターナイフで、試験片の地鉄表面まで達する80mm長さのスクラッチを付加した試験片を、実施例1と同様に、実船のバラストタンクアッパーデッキ裏に装着、暴露試験に供した。その結果を表4に示す。   Furthermore, 5 mm × 100 mm × 200 mm exposed test pieces were collected from each steel plate, and after being shot blasted to these test pieces, zinc rich primer (about 15 μm) and tar epoxy resin paint (about 200 μm) were applied. Then, the test piece which added the scratch of 80 mm length which reaches to the ground-iron surface of a test piece with a cutter knife was attached to the back of the ballast tank upper deck of the actual ship, and used for the exposure test. The results are shown in Table 4.

本発明鋼である鋼No.23〜31は、再現HAZ衝撃特性は極めて優れた値を示すとともに暴露試験においても、優れた耐食性を示した。   Steel No. which is the steel of the present invention. Nos. 23 to 31 showed extremely excellent values for the reproduced HAZ impact characteristics and also showed excellent corrosion resistance in the exposure test.

Figure 0005413392
Figure 0005413392

Figure 0005413392
Figure 0005413392

本発明の造船用耐食鋼は、優れた耐塗装損傷性を有するので過酷な腐食環境である船舶のバラストタンクへ適用することができる。又、バラストタンクと類似の湿潤環境の用途にも適用できる。   Since the corrosion-resistant steel for shipbuilding of the present invention has excellent paint damage resistance, it can be applied to a ballast tank of a ship which is a severe corrosive environment. It can also be used in wet environments similar to ballast tanks.

Claims (7)

鋼の成分組成が、質量%でC:0.03〜0.25%、Si:0.05〜0.50%、Mn:0.1〜2.0%、P:0.025%以下、S:0.01%以下、Al:0.01〜0.10%、W:0.06〜1.0%、Ti:0.011〜0.025%、N:0.0045〜0.0065%を含み、残部Feおよび不可避的不純物からなることを特徴とする大入熱溶接靱性に優れた造船用耐食鋼。 The component composition of steel is C: 0.03 to 0.25%, Si: 0.05 to 0.50%, Mn: 0.1 to 2.0%, P: 0.025% or less in mass%. S: 0.01% or less, Al: 0.01 to 0.10%, W: 0.06 to 1.0%, Ti: 0.011 to 0.025%, N: 0.0045 to 0.0065 A corrosion-resistant steel for shipbuilding excellent in high heat input welding toughness, characterized by comprising the remaining Fe and inevitable impurities. 鋼の成分組成として、更に、質量%でNi:0.01〜1.0%を含むことを特徴とする請求項1記載の大入熱溶接靱性に優れた造船用耐食鋼。   The corrosion resistant steel for shipbuilding excellent in high heat input welding toughness according to claim 1, further comprising Ni: 0.01 to 1.0% by mass as a component composition of the steel. 鋼の成分組成として、更に、質量%でMo:0.01〜0.5%を含むことを特徴とする請求項1又は2に記載の大入熱溶接靱性に優れた造船用耐食鋼。   The corrosion resistant steel for shipbuilding excellent in high heat input weld toughness according to claim 1 or 2, further comprising Mo: 0.01 to 0.5% by mass% as a component composition of the steel. 鋼の成分組成として、質量%でCu:0.02〜1.0%、Co:0.02〜1.0%、Sn:0.001〜0.3%、Sb:0.001〜0.3%のうちから選ばれる1種または2種以上を、更に含むことを特徴とする請求項1乃至3のいずれかに記載の大入熱溶接靱性に優れた造船用耐食鋼。   As a component composition of steel, Cu: 0.02-1.0%, Co: 0.02-1.0%, Sn: 0.001-0.3%, Sb: 0.001-0. The corrosion resistant steel for shipbuilding excellent in high heat input welding toughness according to any one of claims 1 to 3, further comprising one or more selected from 3%. 鋼の成分組成として、質量%でNb:0.002〜0.05%、V:0.002〜0.2%のうちから選ばれる1種または2種を、更に含むことを特徴とする請求項1乃至4のいずれかに記載の大入熱溶接靱性に優れた造船用耐食鋼。   The steel composition further comprises one or two selected from Nb: 0.002 to 0.05% and V: 0.002 to 0.2% by mass% as a component composition of steel. Item 5. A corrosion-resistant steel for shipbuilding excellent in high heat input weld toughness according to any one of Items 1 to 4. 鋼の成分組成として、更に、質量%でB:0.0003〜0.003%を含むことを特徴とする請求項1乃至5のいずれかに記載の大入熱溶接靱性に優れた造船用耐食鋼。   The corrosion resistance for shipbuilding excellent in high heat input toughness according to any one of claims 1 to 5, further comprising B: 0.0003 to 0.003% by mass% as a component composition of steel. steel. 鋼の成分組成として、質量%でCa:0.0002〜0.01%,REM:0.001〜0.01%のうちから選ばれる1種または2種を、更に含むことを特徴とする請求項1乃至6のいずれかに記載の大入熱溶接靱性に優れた造船用耐食鋼。   The steel composition further includes one or two kinds selected from Ca: 0.0002 to 0.01% and REM: 0.001 to 0.01% by mass%. Item 7. A corrosion-resistant steel for shipbuilding excellent in high heat input welding toughness according to any one of Items 1 to 6.
JP2011062054A 2005-07-15 2011-03-22 Corrosion resistant steel for shipbuilding Active JP5413392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011062054A JP5413392B2 (en) 2005-07-15 2011-03-22 Corrosion resistant steel for shipbuilding

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005206967 2005-07-15
JP2005206967 2005-07-15
JP2011062054A JP5413392B2 (en) 2005-07-15 2011-03-22 Corrosion resistant steel for shipbuilding

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006005735A Division JP5119595B2 (en) 2005-07-15 2006-01-13 Corrosion resistant steel for shipbuilding

Publications (2)

Publication Number Publication Date
JP2011153382A JP2011153382A (en) 2011-08-11
JP5413392B2 true JP5413392B2 (en) 2014-02-12

Family

ID=44539543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011062054A Active JP5413392B2 (en) 2005-07-15 2011-03-22 Corrosion resistant steel for shipbuilding

Country Status (1)

Country Link
JP (1) JP5413392B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5949526B2 (en) * 2011-12-26 2016-07-06 Jfeスチール株式会社 Corrosion resistant steel for holding coal ships and coal / ore combined ships
JP6736255B2 (en) * 2015-01-29 2020-08-05 日本製鉄株式会社 Corrosion resistant steel for ballast tanks

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3753088B2 (en) * 2001-07-04 2006-03-08 住友金属工業株式会社 Steel material for cargo oil tanks
JP4267367B2 (en) * 2002-06-19 2009-05-27 新日本製鐵株式会社 Crude oil tank steel and its manufacturing method, crude oil tank and its anticorrosion method
JP4012497B2 (en) * 2003-11-06 2007-11-21 新日本製鐵株式会社 High strength steel with excellent weld heat affected zone toughness and method for producing the same

Also Published As

Publication number Publication date
JP2011153382A (en) 2011-08-11

Similar Documents

Publication Publication Date Title
JP5119595B2 (en) Corrosion resistant steel for shipbuilding
JP4525687B2 (en) Corrosion resistant steel for ships
JP4687531B2 (en) Steel for crude oil tank and method for producing the same
JP5617191B2 (en) Marine steel with excellent film swell resistance
JP5861335B2 (en) Welded joint with excellent corrosion resistance
WO2007097142A1 (en) Corrosion-resistant steel material for ship and vessel
JP5481980B2 (en) Marine steel with excellent film swell resistance
JP5796409B2 (en) Corrosion resistant steel for ship ballast tank
JP5453835B2 (en) Corrosion resistant steel for ships
JP5239615B2 (en) Welded joints for crude oil tanks with excellent corrosion resistance and ductile fracture resistance
JP6260755B1 (en) Steel for ship ballast tank and ship
JP5958102B2 (en) Corrosion-resistant steel for ship ballast tank with excellent corrosion resistance and method for producing the same
JP5526667B2 (en) Hot rolled section steel for ship ballast tank with excellent corrosion resistance and method for producing the same
JP6065062B2 (en) Corrosion resistant steel for holding coal ships and coal / ore combined ships
JP4483107B2 (en) Marine steel with excellent coating life
JP2010229526A (en) Highly-corrosion-resistant painted steel material
JP6772942B2 (en) Corrosion resistant steel for ballast tanks
JP5413392B2 (en) Corrosion resistant steel for shipbuilding
JP6048104B2 (en) Corrosion resistant steel for holding coal ships and coal / ore combined ships
JP6079074B2 (en) Painted corrosion resistant steel for above-ground oil tanks
JP4207765B2 (en) Steel material for marine ballast tanks with excellent corrosion resistance
JP6287791B2 (en) Corrosion resistant steel for inner bottom plate of coal ship and coal / ore combined use hold
JP2011094184A (en) Highly corrosion resistant painted steel
JP2011162849A (en) Zinc primer-coated corrosion resistant steel material
JP6477516B2 (en) Corrosion resistant steel and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110322

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131028

R150 Certificate of patent or registration of utility model

Ref document number: 5413392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250