JP3753088B2 - Steel material for cargo oil tanks - Google Patents

Steel material for cargo oil tanks Download PDF

Info

Publication number
JP3753088B2
JP3753088B2 JP2002071834A JP2002071834A JP3753088B2 JP 3753088 B2 JP3753088 B2 JP 3753088B2 JP 2002071834 A JP2002071834 A JP 2002071834A JP 2002071834 A JP2002071834 A JP 2002071834A JP 3753088 B2 JP3753088 B2 JP 3753088B2
Authority
JP
Japan
Prior art keywords
content
corrosion
steel
addition
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002071834A
Other languages
Japanese (ja)
Other versions
JP2003082435A (en
Inventor
和幸 鹿島
英昭 幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2002071834A priority Critical patent/JP3753088B2/en
Publication of JP2003082435A publication Critical patent/JP2003082435A/en
Application granted granted Critical
Publication of JP3753088B2 publication Critical patent/JP3753088B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、タンカーにおける原油タンクであるカーゴオイルタンク用の鋼材に関する。
【0002】
【従来の技術】
現在、タンカーのカーゴオイルタンクの材料としては、裸仕様の普通鋼が使われている。
【0003】
カーゴオイルタンクの気相部は、防爆目的でエンジンの排ガスを利用したN2主体のガス(以下、これをイナートガスという)が充填されているが、乾湿繰り返しのある厳しい腐食環境であり、しかも、硫化水素(H2S)を含む原油の積載時には、原油中に含まれるH2Sの一部が気相中に移行するため、腐食環境としては極めて厳しいものになる。原油中に含まれる炭化水素の一部も気化してイナートガスと混合することは勿論であるが、腐食への影響はほとんどないので無視できる。なお、上記イナートガスの一例としては、体積%で、13%CO2−5%O2−0.1%SO2−残部N2の組成のガスが挙げられる。
【0004】
上記のような腐食環境においては、カーゴオイルタンク天井部となるデッキ裏では全面腐食が起こり、腐食速度が0.1mm/年を超えるケースもある。腐食速度が0.3mm/年以上と非常に大きい全面腐食の事例も報告されている。又、カーゴオイルタンク底板には孔食が発生し、数mm/年という大きな孔食進展速度となる場合もある。
【0005】
こうした事情から、カーゴオイルタンクの材料に塗装を施すことが一部で行われているが、初期の塗装及び約10年毎の塗り替えのコストが大きい。このため、例えば20年の使用に対して2mmの腐食代をとるということで、全面腐食や局部腐食への対策とされているのが実情である。
【0006】
しかし、腐食代をとると、鋼材の厚みが増加するために、タンクの製造コストが上昇し、原油積載量が減少する、などのデメリットも生じる。したがって、腐食代の低減が図れ、しかもコスト上昇を防止できる、耐食性に優れたカーゴオイルタンク用鋼材の開発が強く望まれている。
【0007】
なお、カーゴオイルタンク用鋼としては、例えば、特開2000−17381号公報にCuとMgを必須成分として含む鋼が、又、特開2001−107180号公報にCrとAlを必須成分として含む鋼が、それぞれ提案されている。しかし、これらの公報で開示された鋼においては、原油がH2Sを含む場合において、H2Sが腐食に対して及ぼす影響については全く配慮されておらず、このため、実船のカーゴオイルタンクにおいて十分な耐食性が得られない場合があった。
【0008】
【発明が解決しようとする課題】
本発明は、上記現状に鑑みてなされたもので、その目的は、イナートガス及びH 2 Sを含む環境における全面腐食や局部腐食に対する抵抗性に優れたカーゴオイルタンク用鋼材を提供することである。
【課題を解決するための手段】
【0009】
本発明の要旨は、下記(1)〜(4)に示すカーゴオイルタンク用鋼材にある。
【0010】
(1)質量%で、C:0.01〜0.3%、Si:0.02〜1%、Mn:0.05〜2%、P:0.05%以下、S:0.01%以下、Ni:0.01〜3%、Cu:0.01〜2%、Mo:0〜1%、W:0〜1%、Ca:0〜0.01%、Sb:0〜0.5%、Sn:0〜0.5%、Ti:0〜0.1%、Nb:0〜0.1%、V:0〜0.1%、B:0〜0.05%、Cr:0〜0.05%、Al:0〜0.07%を含有し、残部がFe及び不純物からなり、粒径が30μmを超える介在物が1cm2あたり30個未満で、且つ、下記(1)式を満足することを特徴とするカーゴオイルタンク用鋼材。但し、下記 (1)式中におけるApは組織に占めるパーライトの%単位での割合、Cは炭素の質量%での含有量を表す。
【0011】
Ap/C≦130・・・・・(1)。
【0012】
(2)Moの含有量が0.01〜1%、Wの含有量が0.01〜1%、Sbの含有量が0.01〜0.5%、Snの含有量が0.01〜0.5%の少なくともいずれかを満たすことを特徴とする上記(1)に記載のカーゴオイルタンク用鋼材。
【0013】
(3)Tiの含有量が0.005〜0.1%、Nbの含有量が0.002〜0.1%、Vの含有量が0.01〜0.1%、Bの含有量が0.0002〜0.05%の少なくともいずれかを満たすことを特徴とする上記(1)又は(2)に記載のカーゴオイルタンク用鋼材。
【0014】
(4)上記(1)から(3)までのいずれかに記載されたカーゴオイルタンク用鋼材であって、少なくとも片面に防食処理が施されたことを特徴とする鋼材。
【0015】
以下、上記の(1)〜(4)の鋼材に係る発明を、それぞれ、「本発明(1)」〜「本発明(4)」という。また、総称して「本発明」ということがある。
【0016】
本発明における「介在物」とは、JIS G 0555に記載されたA系介在物又はB系介在物をいい、「粒径」とは、形状が円形の場合はその直径、扁平している場合は長径と短径の平均で定義される値を指す。
【0017】
本発明者らは、前記した課題を達成するために、実船の腐食環境を模擬して数多くの実験を行った。
【0018】
すなわち、イナートガス及びH2Sを含む乾湿繰り返し環境において、数多くの実験を行った。その結果、H2Sを含む原油を積載した実船のデッキ裏に見られる腐食生成物層の再現に成功し、更に、気相部の腐食メカニズム及び底板部の孔食発生メカニズムに関して下記(a)(f)の知見を得た。
【0019】
(a)イナートガス中に含まれるSO2及び原油から気相部に移行するH2Sの両者と、イナートガス中に含まれるO2あるいはH2Oとが反応してH2SO3が生成する。更に、H2SO3がO2により酸化して生じるH2SO4も生成する。
【0020】
(b)結露時には、上記のH2SO3やH2SO4が水分中に含有される。このため、前記のイナートガス及びH2Sを含む乾湿繰り返しの環境は、酸性水による乾湿繰り返しの腐食環境である。
【0021】
(c)実船のデッキ裏における腐食は、温度が下がって結露が生じる夜間に進行し、原油を積載せず多量のCO2、SO2やO2が存在する場合の腐食生成物としてはα−FeOOH(以下、「錆」という)が主体となる。
【0022】
(d)一方、H2Sを含む原油の積載時にはH2Sが錆の表面でO2により酸化されて固体のSが生成する。
【0023】
(e)原油を積載しない場合と原油を積載する場合の繰り返しにより、実船のデッキ裏には「錆/S/錆/S・・・」という層状構造が形成される。
【0024】
(f)カーゴオイルタンク底はドレン水が滞留するとともに、表面が油膜によりコーティングされているが、スラッジの移動或いは原油洗浄などによって油膜による被覆が一部はがれ、その被覆がなくなった部位にデッキ裏に生成したSが落下し、付着する。次いで、そのSが酸化剤として作用し、腐食電位の貴化をもたらし、H2S及びCl-が存在する条件下で孔食が発生する。なお、油井に存在する岩塩が採掘時に原油に混入してタンク内に持ち込まれるため、タンク底にCl-が存在することとなる。
【0025】
上記の気相部の腐食メカニズム及び底板部の孔食発生メカニズムを踏まえて、本発明者ら更なる実験を行ったところ、下記(g)(m)の事項が明らかになった。
【0026】
(g)Cuの添加によって、酸性水による乾湿繰り返しの環境での全面腐食及びS存在下での孔食の発生を抑制することができる。一例として、図1に、酸性水による乾湿繰り返しの環境におけるCu含有量と全面腐食速度との関係を示す。なお、この図1において、「全面腐食速度」を単に「腐食速度」と表記した。図1から明らかなように、Cu含有量の増加に伴って腐食速度が著しく低下する。
【0027】
(h)CuとNiを複合して含有させることにより、更に耐全面腐食性や耐孔食性が向上する。
【0028】
(i)Cu及びNiに加えて、Mo、W、Ca、Sb及びSnの1種以上を添加すると、更に耐全面腐食性及び耐孔食性が向上する。
【0029】
(j)上記のCuからSnまでを添加すれば、塗装寿命が従来に比べ長くなる。
【0030】
(k)Cr及びAlの含有量を制限することで、酸性水による乾湿繰り返しの環境での全面腐食を抑えることができる。
【0031】
l 酸性水による乾湿繰り返しの環境での全面腐食は、組織に占めるパーライトの%単位での割合Ap及び質量%でのC含有量とも関係し、「Ap/C」で表される値の低減とともに耐全面腐食性が向上する。
【0032】
(m)酸性水による乾湿繰り返しの環境での全面腐食及びS存在下での孔食の発生には、鋼中介在物の粒径及び単位面積当たりの存在量が影響する。
【0033】
本発明(1)〜本発明(4)は、上記(a)〜(m)の知見に基づいて完成されたものである。
【0034】
お、本発明(1)においては、鋼材を構成する前記各元素のうち、Mo、W、Ca、Sb、Sn、Ti、Nb、V、B、Cr及びAlの11元素については、必ずしも積極的に添加する必要はなく、その添加は任意である。上記元素のうちでCrとAlの含有量は、むしろ低ければ低いほど好ましい。Sの含有量は低ければ低いほどよい。
【発明の実施の形態】
【0035】
以下、本発明の各要件について詳しく説明する。なお、各元素の含有量の「%」表示は「質量%」を意味する。
【0036】
(A)鋼材の化学組成
C:
Cは、材料としての強度を確保するために必要な元素であり、0.01%以上の含有量が必要である。しかし、0.3%を超えて含有させると溶接性が低下する。又、C含有量の増大とともに、酸性水による乾湿繰り返しの環境でカソードとなって腐食を促進するセメンタイトの生成量が増大し、特に、C含有量が0.30%を超えるとセメンタイトの生成が増大して腐食が著しくなる。したがって、Cの含有量を0.01〜0.3%とした。C含有量の好ましい範囲は0.01〜0.2%であり、より好ましい範囲は0.01〜0.15%である。
【0037】
Si:
Siは、脱酸に必要な元素であり、十分な脱酸効果を得るためには0.02%以上含有させる必要がある。しかし、1%を超えて含有させると靱性が損なわれる。このため、Siの含有量を0.02〜1%とした。好ましい含有量の範囲は0.02〜0.8%であり、より好ましい範囲は0.02〜0.5%である。
【0038】
Mn:
Mnは、低コストで鋼の強度を高める作用を有する元素であり、この効果を得るためには0.05%以上の含有量が必要である。しかし、1.5%を超えて含有させると溶接性が劣化する。このため、Mnの含有量を0.05〜1.5%とした。
【0039】
P:
Pは、鋼中に含まれる不純物元素で、溶接性を低下させる。特に、その含有量が0.05%を超えると、溶接性の低下が著しくなる。このため、Pの含有量を0.05%以下とした。なお、Pは溶接性を低下させる一方で耐全面腐食性を向上させる作用を有するので、耐全面腐食性を高めるために0.01%以上を含有させてもよい。Pの含有量の好ましい上限は0.04%、より好ましい上限は0.03%である。
【0040】
S:0.01%以下
Sは、鋼中に含まれる不純物元素で、その含有量が0.01%を超えると鋼中にMnSが多く生成し、MnSが腐食の起点となって全面腐食及び孔食が生じる。このため、Sの含有量を0.01%以下とした。S含有量の好ましい上限は0.008%、より好ましい上限は0.005%である。なお、S含有量は低ければ低いほどよい。
【0041】
Ni:
Niは、湿潤硫化水素環境において防食性の硫化物皮膜を形成して耐全面腐食性を高める効果や、耐孔食性を向上させる効果ある。しかし、これらの効果を得るにはNiを0.01%以上含有させる必要があり、0.05%以上含有させれば一層顕著な効果が得られる。しかし、Niを3%を超えて含有させても前記効果が飽和し、コストが嵩むばかりである。したがって、Niの含有量を0.01〜3%とした。
【0042】
本発明に係る鋼材は、上記の化学組成に加えてCuも必須の元素として含む必要がある。なお、本発明に係る鋼材は、必要に応じて、以下に述べるMoからAlまでの元素のうちから選ばれる1種以上を含んでもよい。
【0043】
Cu:
Cuは、酸性水による乾湿繰り返しの環境での耐全面腐食性を高めるとともに硫化水素存在下での耐全面腐食性を著しく向上させる効果、更には、S存在下での孔食発生の抑制にも効果があり、これらの効果を得るためには、Cuは0.01%以上の含有量とする必要があり、0.1%以上含有させれば一層確実な効果が得られる。しかし、Cuを2%を超えて含有させてもその効果が飽和する。更に、鋼が脆化する恐れもある。なお、鋼の脆化防止の観点からはCu含有量の上限は1%とすることがより好ましい。したがって、Cuの含有量を0.01〜2%とした。
【0044】
Mo:
Moの添加は任意である。添加すれば、湿潤硫化水素環境において防食性の硫化物皮膜を形成して耐全面腐食性を高める効果や、耐孔食性を向上させる効果ある。更に、Moは耐酸性を高める作用も有する。これらの効果を顕著に得るには、Moは0.01%以上の含有量とすることが好ましい。しかし、Moを1%を超えて含有させても効果が飽和するばかりか溶接性を損なうし、コストも嵩む。したがって、Moの含有量を0〜1%とした。なお、添加する場合のMo含有量の下限値は0.1%であることが更に好ましく、0.3%であれば一層好ましい。
【0045】
Cr:
Crは、H2Sを含む乾湿繰り返し環境、すなわち、酸性水による乾湿繰り返しの環境における耐全面腐食性を低下させるし、S存在下での耐孔食性をも低下させ、特に、その含有量が0.05%を超えると、上記環境での耐全面腐食性と耐孔食性の低下が著しくなる。したがって、Cr含有量を0〜0.05%とした。なお、Cr含有量は0〜0.04%とすることが好ましい。
【0046】
W:
Wの添加は任意である。添加すれば、湿潤硫化水素環境において防食性の硫化物皮膜を形成して耐全面腐食性を高める効果や、耐孔食性を向上させる効果ある。更に、Wは耐酸性を高める作用も有する。これらの効果を顕著に得るには、Wは0.01%以上の含有量とすることが好ましい。しかし、Wを1%を超えて含有させても前記の効果は飽和しコストが嵩むばかりである。したがって、Wの含有量を0〜1%とした。なお、添加する場合のW含有量の下限値は0.1%であることが更に好ましく、0.3%であれば一層好ましい。
【0047】
Ca:
Caの添加は任意である。添加すれば、Caは鋼中に酸化物の形で存在し、水に溶けてアルカリ性となって腐食反応時の鋼材界面のpH低下を抑制するので、H2Sを含む場合の全面腐食を抑える作用有する。こうした効果を顕著に得るには、Caは0.0002%以上の含有量とすることが好ましい。しかし、Caを0.01%を超えて含有させても前記の効果は飽和しコストが嵩むばかりである。したがって、Caの含有量を0〜0.01%とした。なお、添加する場合のCaの含有量の下限値は0.0005%であることが更に好ましく、0.001%であれば一層好ましい。
【0048】
Ti:
Tiの添加は任意である。添加すれば、鋼の強度を高める作用を有する。Tiには、鋼の靱性を向上させる作用や、TiSを形成するによって腐食の起点となるMnSの生成を抑制し、耐全面腐食性及び耐孔食性を高める作用もある。これらの効果を顕著に得るには、Tiは0.005%以上の含有量とすることが好ましい。しかし、Tiを0.1%を超えて含有させても前記の効果は飽和しコストが嵩むばかりである。したがって、Tiの含有量を0〜0.1%とした。なお、添加する場合のTiの含有量の下限値は0.01%であることが更に好ましく、0.05%であれば一層好ましい。
【0049】
Nb:
Nbの添加は任意である。添加すれば、鋼の強度を高める作用を有する。この効果を顕著に得るには、Nbは0.002%以上の含有量とすることが好ましい。しかし、Nbを0.1%を超えて含有させると靱性の低下を招く。したがって、Nbの含有量を0〜0.1%とした。なお、添加する場合のNbの含有量の上限値は0.05%であることが好ましく、0.03%であれば一層好ましい。
【0050】
V:
Vの添加は任意である。添加すれば、鋼の強度を向上させる作用を有する。この効果を顕著に得るには、Vは0.01%以上の含有量とすることが好ましい。しかし、Vを0.1%を超えて含有させると靱性及び溶接性の低下を招く。したがって、Vの含有量を0〜0.1%とした。なお、添加する場合のVの含有量の上限値は0.05%であることが好ましく、0.03%であれば一層好ましい。
【0051】
B:
Bの添加は任意である。添加すれば、鋼の強度を高める作用を有する。この効果を顕著に得るには、Bは0.0002%以上の含有量とすることが好ましい。しかし、Bを0.05%を超えて含有させると靱性の低下を招く。したがって、Bの含有量を0〜0.05%とした。なお、添加する場合のBの含有量の上限値は0.02%であることが好ましく、0.01%であれば一層好ましい。
【0052】
Sb:
Sbの添加は任意である。添加すれば、乾湿繰り返し環境での耐全面腐食性を向上させるとともに耐酸性を高める作用を有する。これらの効果を顕著に得るには、Sbは0.01%以上の含有量とすることが好ましい。しかし、Sbを0.5%を超えて含有させても前記の効果は飽和する。したがって、Sbの含有量を0〜0.5%とした。なお、添加する場合のSbの含有量の下限値は0.01%であることが好ましく、0.05%であれば一層好ましい。
【0053】
Sn:
Snの添加は任意である。添加すれば、乾湿繰り返し環境での耐全面腐食性を向上させるとともに耐酸性を高める作用を有する。これらの効果を顕著に得るには、Snは0.01%以上の含有量とすることが好ましい。しかし、Snを0.5%を超えて含有させても前記の効果は飽和する。したがって、Snの含有量を0〜0.5%とした。なお、添加する場合のSnの含有量の下限値は0.1%であることが好ましい。
【0054】
Al:
Alは、鋼の脱酸に有効な元素であるが、本発明においては既に述べた量のSiを含有させるので、Siで脱酸することができる。したがって、Alで脱酸処理することは特に必要でないため、Alの添加は任意である。一方、Alを積極的に添加すれば、脱酸効果が高まるとともに、窒化物を形成してオーステナイト粒を微細にするので、強度が向上する。更に、靱性の改善効果も得られる。これらの効果を確実に得るには、Alの含有量はは0.001%以上とすることが好ましい。しかし、Alを0.07%を超えて含有させても、脱酸効果がほぼ飽和するばかりか、窒化物が粗大化するために却って靱性の低下をきたす。なお、Alの含有量が多いとアルミナ系介在物の生成量が増加して、H2Sを含む乾湿繰り返し環境、すなわち、酸性水による乾湿繰り返しの環境における耐全面腐食性を低下させ、特に、0.07%を超えると酸性水による乾湿繰り返しの環境における耐全面腐食性の低下が著しい。したがって、Alの含有量を0〜0.07%とした。なお、添加する場合のAlの含有量の下限値は0.05%であることが好ましい。
【0055】
(B)鋼材の組織
酸性水による乾湿繰り返しの環境での全面腐食は、パーライトを形成するセメンタイトがカソード反応の水素イオン還元を加速するため、組織に占めるパーライトの%単位での割合Ap及び質量%でのC含有量と関係し、「Ap/C」の値が大きくなると耐全面腐食性が低下する。特に、上記「Ap/C」の値が130以上になると、化学組成を既に述べた範囲に調整した鋼材であっても、耐全面腐食性の低下が著しくなる。したがって、本発明においては、(1)式、すなわち、「Ap/C≦130」を満足するように規定した。
【0056】
又、鋼中介在物は腐食の起点となり、酸性水による乾湿繰り返しの環境における全面腐食及びS存在下での孔食の発生に影響を及ぼす。しかし、介在物の粒径が小さく、且つ単位面積当たりの存在量が少ないほど、全面腐食や孔食の発生に及ぼす影響は少なく、粒径30μmを超える介在物が1cm2あたり30個未満であれば耐全面腐食や耐孔食性が低下することはない。したがって、本発明においては、粒径が30μmを超える介在物が1cm2あたり30個未満と規定した。
【0057】
なお、粒径が30μmを超える介在物が1cm2あたり30個未満で、且つ、「Ap/C≦130」を満足する鋼材は、例えば、Sの含有量を低く抑えるとともに製鋼段階での電磁撹拌を実施したスラブを、鋼組成に応じて、通常の方法で加熱温度が1150℃程度、圧延1パス当たりの圧下率が3%以上、圧延仕上げ温度が800〜900℃程度となる条件で熱間圧延し、圧延終了後は、Ar3点以上の温度から少なくとも570℃程度までの温度域を水冷し、その後大気中放冷することによって製造することができる。なお、上記した温度はすべて鋼材の表面部における温度である。
【0058】
以上に説明した本発明(1)、本発明(2)及び本発明(3)の鋼材は、そのまま使用しても良好な耐食性を示し、腐食代を少なくできるが、その表面を有機樹脂や金属からなる防食被膜で覆った場合には、防食被膜の耐久性が向上し、耐食性が一段と向上する。
【0059】
ここで、有機樹脂からなる防食被膜としては、ビニルブチラール系、エポキシ系、ウレタン系、フタル酸系等の樹脂被膜、金属からなる防食被膜としては、ZnやAl等のメッキ被膜や溶射被膜を挙げることができる。
【0060】
また、防食被膜の耐久性が向上するのは、下地である本発明鋼材の腐食が著しく抑制される結果として防食被膜欠陥部からの下地鋼材腐食に起因する防食被膜のふくれや剥離が抑制されるためであると考えられる。
【0061】
上記の防食被膜で覆う処理は通常の方法で行えばよい。又、必ずしも鋼材の全面に防食被膜を施す必要はなく、腐食環境に曝される面としての鋼材の片面だけを防食処理してもよい。
【0062】
したがって、本発明(4)に係る鋼材は、本発明(1)から本発明(3)までのいずれかに記載されたカーゴオイルタンク用鋼材であって、少なくとも片面に防食処理が施された鋼材であることと規定した。
【0063】
【実施例】
実施例1
表1及び表2に示す化学組成を有する26種類の鋼を真空溶解炉を用いて溶製し50kg鋼塊とした後、通常の方法で熱間鍛造して厚さが120mmのブロックを作製した。
【0064】
表1

Figure 0003753088
【0065】
表2
Figure 0003753088
【0066】
次いで、上記鍛造によって得た厚さが120mmのブロックを、1150℃で2時間加熱してから熱間圧延し、厚さ20mmの鋼板にした。なお、上記20mmの鋼板の製造条件は下記の「製造法1」又は「製造法2」である。
【0067】
「製造法1」:厚さ120mmのブロックを1150℃で2時間加熱後、熱間圧延して950℃で厚さ20mmに仕上げ、その後室温まで大気中放冷する製造方法。
【0068】
「製造法2」:厚さ120mmのブロックを1150℃で2時間加熱後、熱間圧延して850℃で厚さ20mmに仕上げ、その後800℃から500℃までの温度域を水冷し、その後室温まで大気中放冷する製造方法。
【0069】
厚さが20mmの各鋼板から、JIS G 0555に準じて、圧延方向に平行に、その中心線をとおって切断したミクロ試験片を作製し、光学顕微鏡による組織と介在物の調査を行った。
【0070】
すなわち、上記の圧延方向に平行に切断した面(L断面)を被検面とし、鏡面研磨した後、倍率400倍で60視野の光学顕微鏡写真を撮影し、その写真から粒径が30μmを超える介在物の個数を測定した。
【0071】
又、鏡面研磨した面をナイタルで腐食し、倍率100倍で10視野光学顕微鏡観察して、組織に占めるパーライトの%単位での割合Apを測定し、前述の「Ap/C」の値を算出した。
【0072】
更に、前記厚さが20mmの各鋼板から、幅が25mm、長さが50mm、厚さが4mmの試験片を採取し、そのまま次に述べる原油がH 2 Sを含む実船のデッキ裏環境を模擬した腐食試験に供した。
【0073】
すなわち、0.1質量%NaCl水溶液を下部1/3部分に入れたガラス容器を準備する一方、採取した試験片を下面に取り付けたガス供給口を有するアクリル製の蓋によって上記ガラス容器の開口上端を密閉した。次いで、密閉後のガラス容器を恒温槽内に設置し、50℃×20時間→25℃×4時間の温度サイクルを4ヶ月間付与した。その際、ガラス容器内の気相部には、バラスト時とフルロード時をシミュレートし、前記のガス供給口より下記2種類のガスAとガスBを2週間間隔で交互に吹き込んだ。
【0074】
ガスA:体積%で、5%O2−13%CO2−0.02%SO2−残N2
ガスB:体積%で、5%O2−13%CO2−0.02%SO2−0.25%H2S−残N2
【0075】
4ヶ月の腐食試験の後、各試験片の減少質量から「mm/年」単位での腐食速度(全面腐食速度)を求めた。表3に、上記の各試験結果を厚さ20mm鋼板の製造条件とともに示す。
【0076】
表3
Figure 0003753088
【0077】
表3に示す結果からわかるように、化学組成、介在物規定及び「Ap/C」の値が本発明で規定する範囲内の試番B1〜B20の鋼材は、全面腐食速度が0.13mm/年以下と小さい。これに対し、化学組成、介在物規定及び「Ap/C」の値の少なくともいずれかが本発明で規定する範囲を外れる試番B21〜B26の鋼材は、全面腐食速度が0.29mm/年以上と大きい。
【0078】
実施例2
上記実施例1で述べた厚さが20mmの各鋼板から、幅が100mm、長さが100mm、厚さが4mmの試験片を採取し、次に述べる原油がH 2 Sを含む実船のカーゴオイルタンク底板の環境を模擬した腐食試験に供した。
【0079】
すなわち、上記の幅が100mm、長さが100mm、厚さが4mmの試験片の幅、長さ方向それぞれについて、中央部3mmをシールして残りの部分に原油を1mmの厚さで塗布した後、中央部のシールを除去して十字の形で鋼面を露出させた試験片の上に固体Sを0.2g/cm2の割合で付着させて腐食試験に供した。
【0080】
図2に、このようにして作製した腐食試験片を示す。
【0081】
次に、人工海水を入れたガラス容器の底に上記の腐食試験片を取り付け、ガス供給口を有するアクリル製の蓋でガラス容器の開口上端を密閉した。次いで、密閉後のガラス容器を恒温槽内に設置し、温度40℃で1ヶ月間試験を行なった。その際、ガラス容器内の人工海水に、バラスト時とフルロード時をシミュレートし、前記のガス供給口より下記2種類のガスAとガスBを2週間間隔で交互に吹き込んだ。
【0082】
ガスA:体積%で、5%O2−13%CO2−0.02%SO2−残N2
ガスB:体積%で、5%O2−13%CO2−0.02%SO2−0.25%H2S−残N2
【0083】
1ヶ月の腐食試験の後、試験片の最大孔食深さから孔食進展速度を求めた。表3には、上記の試験結果を併せて示した。
【0084】
表3から明らかなように、化学組成が本発明で規定する範囲内にあり、しかも、前記(1)式及び介在物の規定を満たす試番B1〜B20の鋼材は、孔食進展速度が0.15mm/年以下と小さい。これに対し、化学組成、介在物規定及び「Ap/C」の値の少なくとのいずれかが本発明で規定する範囲を外れる試番B21〜B26の鋼材は、孔食進展速度が0.61mm/年以上と大きい。
【0085】
実施例3
表4に示す化学組成を有する14種類の鋼を真空溶解炉を用いて溶製し50kg鋼塊とした後、通常の方法で熱間鍛造して厚さが120mmのブロックを作製した。
【0086】
表4
Figure 0003753088
【0087】
次いで、上記鍛造によって得た厚さが120mmのブロックを、1150℃で2時間加熱してから熱間圧延し、厚さ20mmの鋼板にした。なお、上記20mmの鋼板の製造条件は前記実施例1における「製造法1」又は「製造法2」である。
【0088】
実施例1の場合と同様の方法で、厚さが20mmの各鋼板からミクロ試験片を作製し、光学顕微鏡による組織と介在物の調査を行った。
【0089】
又、上記の厚さが20mmの各鋼板から幅が25mm、長さが50mm、厚さが4mmの試験片を採取し、その表面に通常の方法で厚さ200μmのタールエポキシ樹脂の防食被膜を施し、実施例の場合と同じ条件の腐食試験に供した。
【0090】
4ヶ月の腐食試験の後、各試験片の減少質量から「mm/年」単位での全面腐食速度を求めた。
【0091】
表5に、上記の各試験結果を厚さ20mm鋼板の製造条件とともに示す。
【0092】
表5
Figure 0003753088
【0093】
表5から明らかなように、化学組成が本発明で規定する範囲内にあり、しかも、前記(1)式及び介在物の規定を満たす試番B27〜B35の鋼材は、全面腐食速度が0.04mm/年以下と小さい。これに対し、化学組成、介在物規定及び「Ap/C」の値の少なくとのいずれかが本発明で規定する範囲を外れる試番B36〜B40の鋼材は、全面腐食速度が0.08mm/年以上と大きい。
【発明の効果】
【0094】
本発明の鋼材によれば、イナートガス及びH 2 Sを含むカーゴオイルタンクの腐食環境における耐食性が向上し、メンテナンス費用の大幅な削減が可能である。
【図面の簡単な説明】
図1
酸性水による乾湿繰り返しの環境におけるCu含有量と全面腐食速度との関係を示す図である。
図2
実施例2で用いた腐食試験片の形状を示す図である。[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a steel material for a cargo oil tank which is a crude oil tank in a tanker.
[0002]
[Prior art]
  At present, bare steel is used as a material for tanker cargo oil tanks.
[0003]
  The gas phase part of the cargo oil tank is N which uses engine exhaust for explosion-proof purposes.2It is filled with the main gas (hereinafter referred to as inert gas), but in a severe corrosive environment with repeated wet and dry conditions.And moreover, Hydrogen sulfide (H2When loading crude oil containing S), H contained in crude oil2Since a part of S moves into the gas phase, the corrosive environment becomes extremely severe. Of course, some of the hydrocarbons contained in the crude oil are also vaporized and mixed with the inert gas, but it has little effect on corrosion and can be ignored. An example of the inert gas is 13% CO in volume%.2-5% O2-0.1% SO2-Remaining N2The gas of the composition is mentioned.
[0004]
  In the corrosive environment as described above, there is a case where the entire surface of the deck which is the ceiling of the cargo oil tank is corroded, and the corrosion rate exceeds 0.1 mm / year. A case of general corrosion with a very high corrosion rate of 0.3 mm / year or more has been reported. In addition, pitting corrosion occurs on the bottom plate of the cargo oil tank, and there are cases where the pitting corrosion progressing speed is as high as several mm / year.
[0005]
  For these reasons, some parts of the cargo oil tank are painted, but the cost of initial painting and repainting every 10 years is high. For this reason, for example, taking a corrosion allowance of 2 mm for 20 years of use, it is the actual situation that it is taken as a countermeasure against general corrosion and local corrosion.
[0006]
  However, if the corrosion allowance is taken, the thickness of the steel material increases, so there are disadvantages such as an increase in the manufacturing cost of the tank and a reduction in the amount of crude oil loaded. Accordingly, there is a strong demand for the development of a steel material for cargo oil tanks that can reduce the corrosion allowance and that can prevent an increase in cost and has excellent corrosion resistance.
[0007]
  In addition, as steel for cargo oil tanks, for example, steel including Cu and Mg as essential components in Japanese Patent Laid-Open No. 2000-17181, and steel including Cr and Al as essential components in Japanese Patent Laid-Open No. 2001-107180 are disclosed. Each has been proposed. However, in the steels disclosed in these publications, crude oil is H2When S is included, H2The influence of S on corrosion is not taken into consideration at all, and for this reason, sufficient corrosion resistance may not be obtained in a cargo oil tank of an actual ship.
[0008]
[Problems to be solved by the invention]
  The present invention has been made in view of the above situation, and its purpose is as follows.Inert gas and H 2 In an environment containing SIt is to provide a steel material for a cargo oil tank that has excellent resistance to general corrosion and local corrosion.
[Means for Solving the Problems]
[0009]
  The gist of the present invention is the following (1) to(4)In steel materials for cargo oil tanks shown inThe
[0010]
  (1)In mass%, C: 0.01 to 0.3%, Si: 0.02 to 1%, Mn: 0.05 to 2%, P: 0.05% or less, S: 0.01% or less, Ni : 0.01 to 3%, Cu: 0.01 to 2%, Mo: 0 to 1%, W: 0 to 1%, Ca: 0 to 0.01%, Sb: 0 to 0.5%, Sn : 0-0.5%, Ti: 0-0.1%, Nb: 0-0.1%, V: 0-0.1%, B: 0-0.05%, Cr: 0-0. 05%, Al: 0 to 0.07%, the balance is Fe and impurities, and inclusions with a particle size exceeding 30 μm are 1 cm.2Less than 30 and satisfy the following formula (1)It is characterized bySteel for cargo oil tanks. However, Ap in the following formula (1) is the percentage of pearlite in the structure in% units, and C represents the content in mass% of carbon.
[0011]
  Ap / C ≦ 130 (1).
[0012]
  (2)Mo content is 0.01 to 1%, W content is 0.01 to 1%, Sb content is 0.01 to 0.5%, Sn content is 0.01 to 0.5%. % At leastIt is characterized bythe above(1)The steel for cargo oil tanks described in 1.
[0013]
  (3)The Ti content is 0.005 to 0.1%, the Nb content is 0.002 to 0.1%, the V content is 0.01 to 0.1%, and the B content is 0.0002. Satisfies at least one of -0.05%It is characterized bythe above(1)Or(2)The steel for cargo oil tanks described in 1.
[0014]
  (4) Above(1)From(3)It is a steel material for cargo oil tanks described in any of the above, and at least one surface is subjected to anticorrosion treatmentIt is characterized bySteel material.
[0015]
  The above (1) to(4)The inventions related to the steel materials of "the present invention (1)" to "the present invention", respectively.(4)" Also, it may be collectively referred to as “the present invention”.
[0016]
  “Inclusion” in the present invention refers to A-type inclusions or B-type inclusions described in JIS G 0555, and “particle size” refers to the case where the shape is circular, the diameter of which is flat. Indicates a value defined by the average of the major axis and the minor axis.
[0017]
  In order to achieve the above-described problems, the present inventors have conducted many experiments by simulating the corrosive environment of an actual ship.
[0018]
  SnowINarto gas and H2A number of experiments were conducted in a dry and wet environment containing S. As a result, H2Succeeded in reproducing the corrosion product layer found on the back of an actual ship loaded with crude oil containing S. Furthermore, regarding the corrosion mechanism in the gas phase and the pitting corrosion in the bottom plate,(A)~(F)I got the knowledge.
[0019]
  (A)SO contained in inert gas2And H moving from crude oil to gas phase2Both S and O contained in inert gas2Or H2O reacts with H2SOThreeProduces. In addition, H2SOThreeIs O2H generated by oxidation by2SOFourAlso generate.
[0020]
  (B)When condensation occurs, the above H2SOThreeAnd H2SOFourIs contained in moisture. Therefore, the inert gas and H2The wet and dry repeated environment containing S is a dry and wet repeated corrosive environment with acidic water.
[0021]
  (C)Corrosion on the deck of the actual ship progresses at night when the temperature drops and condensation occurs, and a large amount of CO is not loaded without loading crude oil.2, SO2Or O2As a corrosion product in the presence of slag, α-FeOOH (hereinafter referred to as “rust”) is mainly used.
[0022]
  (D)On the other hand, H2H when loading crude oil containing S2S is rust surface and O2Is oxidized to produce solid S.
[0023]
  (E)By repeating the case where the crude oil is not loaded and the case where the crude oil is loaded, a layered structure of “rust / S / rust / S...” Is formed on the back of the deck of the actual ship.
[0024]
  (F)The bottom of the cargo oil tank retains drain water, and the surface is coated with an oil film, but the coating with the oil film is peeled off due to sludge movement or crude oil washing, etc. S falls and adheres. The S then acts as an oxidant, resulting in a noble corrosion potential,2S and Cl-Pitting corrosion occurs in the presence of In addition, since the rock salt existing in the oil well is mixed with crude oil during mining and brought into the tank, Cl-Will exist.
[0025]
  Based on the above-mentioned corrosion mechanism of the gas phase part and the pitting corrosion generation mechanism of the bottom plate part, the present inventors conducted further experiments.(G)~(M)The matter became clear.
[0026]
  (G)By adding Cu, it is possible to suppress the occurrence of general corrosion in a dry and wet environment with acidic water and the occurrence of pitting corrosion in the presence of S. As an example,FIG.Shows the relationship between the Cu content and the overall corrosion rate in a dry and wet environment with acidic water. In addition, thisFIG.smellAnd“Overall corrosion rate” was simply expressed as “corrosion rate”.FIG.As can be seen from the above, the corrosion rate decreases significantly with increasing Cu content.
[0027]
  (H)By containing Cu and Ni in combination, the overall corrosion resistance and pitting resistance are further improved.
[0028]
  (I)When one or more of Mo, W, Ca, Sb and Sn are added in addition to Cu and Ni, the overall corrosion resistance and pitting corrosion resistance are further improved.
[0029]
  (J)If the above Cu to Sn are added, the coating life will be longer than before.
[0030]
  (K)By limiting the contents of Cr and Al, it is possible to suppress overall corrosion in an environment of repeated wet and dry with acidic water.
[0031]
  ( l )The overall corrosion in the environment of repeated wet and dry with acidic water is also related to the percentage Ap of pearlite in the structure and the C content in mass%, and with the reduction of the value represented by "Ap / C" Overall corrosivity is improved.
[0032]
  (M)The particle size of inclusions in steel and the abundance per unit area affect the occurrence of general corrosion in the environment of repeated wet and dry conditions with acidic water and the occurrence of pitting corrosion in the presence of S.
[0033]
  Present invention (1) to present invention(4)Are the above (a) to(M)It was completed based on the knowledge ofThe
[0034]
  NaThe present invention(1)In each of the above elements constituting the steel materialMo, W, Ca, Sb, Sn, Ti, Nb, V, B, Cr, and Al, it is not always necessary to add positively, and the addition is optional. Of the above elements, the lower the Cr and Al content, the better. The lower the S content, the better.
DETAILED DESCRIPTION OF THE INVENTION
[0035]
  Hereinafter, each requirement of the present invention will be described in detail. In addition, "%" display of the content of each element means "mass%".
[0036]
  (A) Chemical composition of steel
  C:
  C is an element necessary for securing strength as a material, and a content of 0.01% or more is necessary. However, if the content exceeds 0.3%, the weldability decreases. Also, as the C content increases, the amount of cementite produced that promotes corrosion in the environment of repeated wet and dry with acidic water increases, and particularly when the C content exceeds 0.30%, cementite is produced. Increases corrosion. Therefore, the content of C is set to 0.01 to 0.3%. A preferable range of the C content is 0.01 to 0.2%, and a more preferable range is 0.01 to 0.15%.
[0037]
  Si:
  Si is an element necessary for deoxidation, and in order to obtain a sufficient deoxidation effect, it is necessary to contain 0.02% or more. However, if the content exceeds 1%, the toughness is impaired. Therefore, the Si content is set to 0.02 to 1%. A preferable range of the content is 0.02 to 0.8%, and a more preferable range is 0.02 to 0.5%.
[0038]
  Mn:
  Mn is an element having an effect of increasing the strength of steel at a low cost, and a content of 0.05% or more is necessary to obtain this effect. However, if the content exceeds 1.5%, the weldability deteriorates. Therefore, the Mn content is set to 0.05 to 1.5%.
[0039]
  P:
  P is an impurity element contained in the steel and reduces weldability. In particular, when the content exceeds 0.05%, the weldability is significantly lowered. Therefore, the P content is set to 0.05% or less. In addition, since P has the effect | action which improves a general corrosion resistance, while reducing weldability, in order to improve a general corrosion resistance, you may contain 0.01% or more. The upper limit with preferable content of P is 0.04%, and a more preferable upper limit is 0.03%.
[0040]
  S: 0.01% or less
  S is an impurity element contained in the steel. When the content exceeds 0.01%, a large amount of MnS is formed in the steel, and MnS becomes a starting point of corrosion, resulting in overall corrosion and pitting corrosion. Therefore, the S content is set to 0.01% or less. The upper limit with preferable S content is 0.008%, and a more preferable upper limit is 0.005%. In addition, the lower the S content, the better.
[0041]
  Ni:
  NiThe wetThe effect of improving corrosion resistance and improving pitting corrosion resistance by forming a corrosion-resistant sulfide film in a hydrogen sulfide environmentButis there. However, in order to obtain these effects, it is necessary to contain Ni by 0.01% or more, and if it contains 0.05% or more, a more remarkable effect can be obtained. However, even if Ni is contained in excess of 3%, the effect is saturated and the cost is increased. ThereforeNiContent of0.01-3%.
[0042]
  Main departureClearlySuch steel is the above chemical group.FinallyIn addition, Cu must be included as an essential element. In addition, this departureClearlySteelThe material isAs needed, you may include 1 or more types chosen from the elements from Mo to Al described below.
[0043]
  Cu:
  CuThe acidEffective in improving the general corrosion resistance in the presence of hydrogen sulfide and remarkably improving the general corrosion resistance in the presence of hydrogen sulfide, and also in suppressing the occurrence of pitting corrosion in the presence of S In order to obtain these effects, Cu needs to be contained in an amount of 0.01% or more. If 0.1% or more is contained, a more reliable effect can be obtained. OnlyCuEven if it contains more than 2%, the effect is saturated. In addition, the steel may become brittle. In addition, from the viewpoint of preventing embrittlement of steel, the upper limit of the Cu content is more preferably 1%. ThereforeCuThe content of was made 0.01 to 2%.
[0044]
  Mo:
  The addition of Mo is optional. AddDampThe effect of improving corrosion resistance and improving pitting corrosion resistance by forming a corrosion-resistant sulfide film in a hydrogen sulfide environmentButis there. Furthermore, Mo also has the effect | action which raises acid resistance. In order to obtain these effects remarkably, the Mo content is preferably 0.01% or more. However, even if Mo is contained in an amount exceeding 1%, the effect is saturated and weldability is impaired, and the cost is increased. Therefore, the content of Mo is set to 0 to 1%. In addition, when adding, the lower limit of the Mo content is more preferably 0.1%, and more preferably 0.3%.
[0045]
  Cr:
  Cr is H2SIncludeIt reduces the overall corrosion resistance in a dry and wet repeated environment, that is, in an environment of repeated wet and dry with acidic water, and also reduces the pitting corrosion resistance in the presence of S. In particular, when its content exceeds 0.05%, Decrease in overall corrosion resistance and pitting resistance in the above environment becomes significant. ThereforeCrThe content was 0 to 0.05%. NaOh, CrThe content is preferably 0 to 0.04%.
[0046]
  W:
  The addition of W is optional. AddDampThe effect of improving corrosion resistance and improving pitting corrosion resistance by forming a corrosion-resistant sulfide film in a hydrogen sulfide environmentButis there. Furthermore, W also has an effect of increasing acid resistance. In order to obtain these effects remarkably, the W content is preferably 0.01% or more. However, even if W is contained in excess of 1%, the above effect is saturated and the cost is increased. Therefore, the content of W is set to 0 to 1%. In addition, when adding, the lower limit of the W content is more preferably 0.1%, and even more preferably 0.3%.
[0047]
  Ca:
  The addition of Ca is optional. AddCaIs present in the form of oxides in steel and becomes alkaline when dissolved in water, and suppresses the pH drop at the steel interface during the corrosion reaction.2Action to suppress general corrosion when S is includedTheHave.SuchIn order to obtain the effect remarkably, the Ca content is preferably 0.0002% or more. However, even if Ca is contained in excess of 0.01%, the above effect is saturated and the cost is increased. Therefore, the content of Ca is set to 0 to 0.01%. In addition, when adding, the lower limit of Ca content is more preferably 0.0005%, and even more preferably 0.001%.
[0048]
  Ti:
  The addition of Ti is optional. If added, it has the effect of increasing the strength of the steel. Ti also has the effect of improving the toughness of steel and the effect of suppressing the generation of MnS, which is the starting point of corrosion by forming TiS, and enhancing the resistance to general corrosion and pitting corrosion. In order to obtain these effects remarkably, the Ti content is preferably 0.005% or more. However, even if Ti is contained more than 0.1%, the above effect is saturated and the cost is increased. Therefore, the content of Ti is set to 0 to 0.1%. In addition, it is more preferable that the lower limit value of the Ti content when added is 0.01%, and more preferable is 0.05%.
[0049]
  Nb:
  Addition of Nb is optional. If added, it has the effect of increasing the strength of the steel. In order to obtain this effect remarkably, the Nb content is preferably 0.002% or more. However, when Nb exceeds 0.1%, toughness is reduced. Therefore, the Nb content is set to 0 to 0.1%. In addition, it is preferable that the upper limit of content of Nb in the case of adding is 0.05%, and if it is 0.03%, it is still more preferable.
[0050]
  V:
  The addition of V is optional. If added, it has the effect of improving the strength of the steel. In order to obtain this effect remarkably, the V content is preferably 0.01% or more. However, when V exceeds 0.1%, toughness and weldability are reduced. Therefore, the content of V is set to 0 to 0.1%. In addition, when adding, it is preferable that the upper limit of content of V is 0.05%, and if it is 0.03%, it is still more preferable.
[0051]
  B:
  The addition of B is optional. If added, it has the effect of increasing the strength of the steel. In order to obtain this effect remarkably, the B content is preferably 0.0002% or more. However, when B exceeds 0.05%, toughness is reduced. Therefore, the content of B is set to 0 to 0.05%. In addition, when adding, it is preferable that the upper limit of content of B is 0.02%, and if it is 0.01%, it is still more preferable.
[0052]
  Sb:
  The addition of Sb is optional. If added, it has the effect of improving the overall corrosion resistance in a wet and dry repeated environment and increasing the acid resistance. In order to obtain these effects remarkably, the Sb content is preferably 0.01% or more. However, the above effect is saturated even if Sb is contained in excess of 0.5%. ThereforeSbThe content of was made 0 to 0.5%. In addition, when adding, it is preferable that the lower limit of content of Sb is 0.01%, and if it is 0.05%, it is still more preferable.
[0053]
  Sn:
  The addition of Sn is optional. If added, it has the effect of improving the overall corrosion resistance in a wet and dry repeated environment and increasing the acid resistance. In order to obtain these effects remarkably, the Sn content is preferably 0.01% or more. However, the effect is saturated even if Sn is contained in excess of 0.5%. ThereforeSnThe content of was made 0 to 0.5%. In addition, it is preferable that the lower limit of content of Sn in the case of adding is 0.1%.
[0054]
  Al:
  Al is an element effective for deoxidation of steel, but in the present invention, since it contains the amount of Si already described, it can be deoxidized with Si. Therefore, since it is not particularly necessary to deoxidize with Al, addition of Al is optional. On the other hand, if Al is positively added, the deoxidizing effect is enhanced, and nitride is formed to make the austenite grains fine, so that the strength is improved. Furthermore, the effect of improving toughness is also obtained. In order to reliably obtain these effects, the Al content is preferably 0.001% or more. However, even if Al is contained in excess of 0.07%, not only the deoxidation effect is almost saturated, but also the toughness is lowered due to coarsening of the nitride. In addition, when there is much content of Al, the production amount of an alumina inclusion increases, and H2Reduces the overall corrosion resistance in a dry and wet repeated environment containing S, that is, in an environment of repeated wet and dry with acidic water. . Therefore, the content of Al is set to 0 to 0.07%. In addition, it is preferable that the lower limit of content of Al in the case of adding is 0.05%.
[0055]
  (B) Steel structure
  The total corrosion in the environment of repeated wet and dry with acidic water is because the cementite forming pearlite accelerates the hydrogen ion reduction of the cathode reaction, so the percentage Ap of pearlite in the structure and the C content in mass% In relation to this, when the value of “Ap / C” increases, the overall corrosion resistance decreases. In particular, when the value of “Ap / C” is 130 or more, even if the steel material has a chemical composition adjusted to the above-described range, the overall corrosion resistance is significantly reduced. Therefore, this departureClearlyIn this case, it is defined so as to satisfy the expression (1), that is, “Ap / C ≦ 130”.
[0056]
  In addition, inclusions in steel serve as a starting point for corrosion and affect the occurrence of pitting corrosion in the presence of S in the presence of S and the overall corrosion in a dry and wet environment with acidic water. However, as the particle size of inclusions is smaller and the abundance per unit area is smaller, there is less influence on the occurrence of general corrosion and pitting corrosion, and inclusions with a particle size exceeding 30 μm are 1 cm.2If it is less than 30 per sheet, the overall corrosion resistance and pitting corrosion resistance will not be reduced. Therefore, this departureClearlyIn this case, inclusions having a particle size exceeding 30 μm are 1 cm.2It was defined as less than 30 per one.
[0057]
  Inclusions with a particle size exceeding 30 μm are 1 cm.2For example, a steel material satisfying “Ap / C ≦ 130” is less than 30 per slab, and, for example, a slab subjected to electromagnetic stirring in the steelmaking stage while keeping the S content low is usually selected according to the steel composition. In this method, hot rolling is performed under the conditions that the heating temperature is about 1150 ° C., the rolling reduction per pass of rolling is 3% or more, and the rolling finishing temperature is about 800 to 900 ° C.ThreeIt can be produced by water-cooling a temperature range from the temperature above the point to at least about 570 ° C. and then allowing to cool in the atmosphere. In addition, all the above-mentioned temperature is the temperature in the surface part of steel materials.
[0058]
  The present invention described above(1), the present invention (2) and the present invention (3)This steel material shows good corrosion resistance even if it is used as it is, and can reduce the corrosion allowance. However, when the surface is covered with an anticorrosion coating made of organic resin or metal, the durability of the anticorrosion coating is improved and the corrosion resistance is improved. Will further improve.
[0059]
  Here, examples of the anticorrosion coating made of an organic resin include vinyl butyral, epoxy, urethane, and phthalic acid resin coatings, and examples of the anticorrosion coating made of metal include a plating coating and a thermal spray coating of Zn or Al. be able to.
[0060]
  In addition, the durability of the anticorrosive coating is improved because the corrosion of the steel material of the present invention as a base is remarkably suppressed, and the swelling and peeling of the anticorrosive coating due to corrosion of the base steel material from the defective portion of the anticorrosive coating is suppressed. This is probably because of this.
[0061]
  What is necessary is just to perform the process covered with said anti-corrosion film by a normal method. Further, it is not always necessary to apply the anticorrosion coating on the entire surface of the steel material, and only one surface of the steel material as the surface exposed to the corrosive environment may be anticorrosive.
[0062]
  Therefore, the steel material according to the present invention (4) is a steel material for a cargo oil tank described in any of the present invention (1) to the present invention (3), and at least one surface of which is subjected to anticorrosion treatment. It was stipulated that
[0063]
【Example】
  (Example 1)
  Table 1as well asTable 2After melting 26 types of steel having the chemical composition shown in FIG. 5 using a vacuum melting furnace to form a 50 kg steel ingot, a block having a thickness of 120 mm was produced by hot forging by a normal method.
[0064]
[Table 1]
Figure 0003753088
[0065]
[Table 2]
Figure 0003753088
[0066]
  Subsequently, the block having a thickness of 120 mm obtained by the forging was heated at 1150 ° C. for 2 hours and then hot-rolled to obtain a steel plate having a thickness of 20 mm. In addition, the manufacturing conditions of the said 20 mm steel plate are the following "manufacturing method 1" or "manufacturing method 2".
[0067]
  “Manufacturing method 1”: A manufacturing method in which a block having a thickness of 120 mm is heated at 1150 ° C. for 2 hours, hot-rolled to a thickness of 20 mm at 950 ° C., and then allowed to cool to room temperature.
[0068]
  “Manufacturing method 2”: A 120 mm thick block was heated at 1150 ° C. for 2 hours, then hot-rolled to finish at 850 ° C. to a thickness of 20 mm, then water-cooled in a temperature range from 800 ° C. to 500 ° C., and then room temperature Manufacturing method that cools to the air.
[0069]
  From each steel plate having a thickness of 20 mm, a micro test piece cut along the center line in parallel with the rolling direction was prepared according to JIS G 0555, and the structure and inclusions were examined with an optical microscope.
[0070]
  That is, the surface (L cross section) cut parallel to the rolling direction is used as a test surface and mirror-polished, and then an optical microscope photograph of 60 fields of view is taken at a magnification of 400 times, and the grain size exceeds 30 μm from the photograph. The number of inclusions was measured.
[0071]
  In addition, the mirror-polished surface is corroded with nital, observed with a 10-field optical microscope at a magnification of 100 times, the ratio Ap of% of pearlite in the tissue is measured, and the above-mentioned “Ap / C” value is calculated. did.
[0072]
  Further, a test piece having a width of 25 mm, a length of 50 mm, and a thickness of 4 mm was taken from each steel plate having a thickness of 20 mm and described as it is next.Crude oil is H 2 Including SIt was subjected to a corrosion test simulating the environment behind the deck of an actual ship.
[0073]
  That is, while preparing a glass container in which a 0.1% by weight NaCl aqueous solution was placed in the lower third part, the upper end of the glass container was opened by an acrylic lid having a gas supply port attached to the lower surface of the collected specimen. Was sealed. Next, the sealed glass container was placed in a thermostatic bath, and a temperature cycle of 50 ° C. × 20 hours → 25 ° C. × 4 hours was applied for 4 months. At that time, ballast time and full load time were simulated into the gas phase portion in the glass container, and the following two types of gas A and gas B were alternately blown from the gas supply port at intervals of two weeks.
[0074]
  Gas A:% by volume, 5% O2-13% CO2-0.02% SO2-N remaining2,
  Gas B: 5% O in volume%2-13% CO2-0.02% SO2-0.25% H2S-remaining N2.
[0075]
  After the 4-month corrosion test, the corrosion rate (total corrosion rate) in units of “mm / year” was determined from the reduced mass of each specimen.Table 3Each of the above test results are shown together with the manufacturing conditions for a steel plate having a thickness of 20 mm.
[0076]
[Table 3]
Figure 0003753088
[0077]
  Table 3As can be seen from the results shown in Table 1, the steel compositions of trial numbers B1 to B20 within the range defined by the present invention in terms of chemical composition, inclusion definition, and "Ap / C" have a general corrosion rate of 0.13 mm / year or less. And small. On the other hand, the steel materials of trial numbers B21 to B26 in which at least one of the chemical composition, the inclusion definition, and the value of “Ap / C” is outside the range specified in the present invention have a total corrosion rate of 0.29 mm / year or more. And big.
[0078]
  (Example 2)
  the aboveExample 1From each steel plate having a thickness of 20 mm described in the above, a test piece having a width of 100 mm, a length of 100 mm, and a thickness of 4 mm is collected.Crude oil is H 2 Including SIt was subjected to a corrosion test that simulated the environment of the cargo oil tank bottom plate of an actual ship.
[0079]
  That is, after each of the width and length direction of the test piece having a width of 100 mm, a length of 100 mm, and a thickness of 4 mm, the central portion 3 mm is sealed and the crude oil is applied to the remaining portion with a thickness of 1 mm. The solid S was 0.2 g / cm on the test piece with the steel surface exposed in a cross shape by removing the seal at the center.2It was made to adhere in the ratio and was used for the corrosion test.
[0080]
  FIG.Shows a corrosion test piece produced in this manner.
[0081]
  Next, the above-mentioned corrosion test piece was attached to the bottom of the glass container containing artificial seawater, and the upper end of the glass container was sealed with an acrylic lid having a gas supply port. Next, the sealed glass container was placed in a thermostatic bath, and a test was conducted at a temperature of 40 ° C. for one month. At that time, ballast time and full load time were simulated into the artificial seawater in the glass container, and the following two kinds of gas A and gas B were alternately blown from the gas supply port at intervals of two weeks.
[0082]
  Gas A:% by volume, 5% O2-13% CO2-0.02% SO2-N remaining2,
  Gas B: 5% O in volume%2-13% CO2-0.02% SO2-0.25% H2S-remaining N2.
[0083]
  After the 1 month corrosion test, the pitting corrosion growth rate was determined from the maximum pitting depth of the test piece.Table 3The above test results are also shown.
[0084]
  Table 3As is clear from the above, the steel composition Nos. B1 to B20 having a chemical composition within the range defined by the present invention and satisfying the above-mentioned formula (1) and the definition of inclusions has a pitting corrosion growth rate of 0.15 mm. / Smaller than a year. On the other hand, the steel composition of trial numbers B21 to B26, in which any one of the chemical composition, the inclusion definition, and the “Ap / C” value is outside the range defined in the present invention, has a pitting corrosion growth rate of 0.61 mm. / Greater than a year.
[0085]
  (Example 3)
  Table 414 types of steel having the chemical composition shown below were melted into a 50 kg steel ingot using a vacuum melting furnace, and then hot forged by a normal method to produce a block having a thickness of 120 mm.
[0086]
[Table 4]
Figure 0003753088
[0087]
  Subsequently, the block having a thickness of 120 mm obtained by the forging was heated at 1150 ° C. for 2 hours and then hot-rolled to obtain a steel plate having a thickness of 20 mm. The manufacturing conditions for the 20 mm steel plate are “Production Method 1” or “Production Method 2” in Example 1.
[0088]
  In the same manner as in Example 1, micro test pieces were prepared from each steel plate having a thickness of 20 mm, and the structure and inclusions were examined using an optical microscope.
[0089]
  In addition, a test piece having a width of 25 mm, a length of 50 mm, and a thickness of 4 mm is taken from each steel plate having a thickness of 20 mm, and a 200 μm-thick tar epoxy resin anticorrosive coating is applied to the surface of the test piece. Application, Examples1The sample was subjected to a corrosion test under the same conditions as in.
[0090]
  After the 4-month corrosion test, the overall corrosion rate in units of “mm / year” was determined from the reduced mass of each specimen.
[0091]
  Table 5Each of the above test results are shown together with the manufacturing conditions for a steel plate having a thickness of 20 mm.
[0092]
[Table 5]
Figure 0003753088
[0093]
  Table 5As is clear from the above, the steel composition Nos. B27 to B35 satisfying the above-mentioned formula (1) and the inclusions in the chemical composition is within the range defined in the present invention, and the overall corrosion rate is 0.04 mm / Less than a year. On the other hand, the steel materials of trial numbers B36 to B40 in which any one of the chemical composition, the inclusion definition, and the value of “Ap / C” is outside the range specified in the present invention have a total corrosion rate of 0.08 mm / Greater than a year.
【The invention's effect】
[0094]
  According to the steel material of the present invention,Inert gas and H 2 Including SCorrosion resistance of the cargo oil tank in the corrosive environment is improved, and maintenance costs can be significantly reduced.
[Brief description of the drawings]
[FIG.]
  It is a figure which shows the relationship between Cu content and the general corrosion rate in the environment of the wet and dry repetition by acidic water.
[FIG.]
  Example 2It is a figure which shows the shape of the corrosion test piece used by.

Claims (4)

質量%で、C:0.01〜0.3%、Si:0.02〜1%、Mn:0.05〜2%、P:0.05%以下、S:0.01%以下、Ni:0.01〜3%、Cu:0.01〜2%、Mo:0〜1%、W:0〜1%、Ca:0〜0.01%、Sb:0〜0.5%、Sn:0〜0.5%、Ti:0〜0.1%、Nb:0〜0.1%、V:0〜0.1%、B:0〜0.05%、Cr:0〜0.05%、Al:0〜0.07%を含有し、残部がFe及び不純物からなり、粒径が30μmを超える介在物が1cm2あたり30個未満で、且つ、下記(1)式を満足することを特徴とするカーゴオイルタンク用鋼材。
Ap/C≦130・・・・・(1)
ここで、上記(1)式中におけるApは組織に占めるパーライトの%単位での割合、Cは炭素の質量%での含有量を表す。
In mass%, C: 0.01 to 0.3%, Si: 0.02 to 1%, Mn: 0.05 to 2%, P: 0.05% or less, S: 0.01% or less, Ni : 0.01 to 3%, Cu: 0.01 to 2%, Mo: 0 to 1%, W: 0 to 1%, Ca: 0 to 0.01%, Sb: 0 to 0.5%, Sn : 0-0.5%, Ti: 0-0.1%, Nb: 0-0.1%, V: 0-0.1%, B: 0-0.05%, Cr: 0-0. 05%, Al: 0 to 0.07%, the balance is Fe and impurities, the number of inclusions with a particle size exceeding 30 μm is less than 30 per 1 cm 2 , and the following formula (1) is satisfied A steel material for cargo oil tanks.
Ap / C ≦ 130 (1)
Here, Ap in the above formula (1) represents the percentage of pearlite in the structure in% units, and C represents the content in mass% of carbon.
Moの含有量が0.01〜1%、Wの含有量が0.01〜1%、Sbの含有量が0.01〜0.5%、Snの含有量が0.01〜0.5%の少なくともいずれかを満たすことを特徴とする請求項1に記載のカーゴオイルタンク用鋼材。Mo content is 0.01 to 1%, W content is 0.01 to 1%, Sb content is 0.01 to 0.5%, Sn content is 0.01 to 0.5%. The steel material for a cargo oil tank according to claim 1 , wherein at least one of the following values is satisfied. Tiの含有量が0.005〜0.1%、Nbの含有量が0.002〜0.1%、Vの含有量が0.01〜0.1%、Bの含有量が0.0002〜0.05%の少なくともいずれかを満たすことを特徴とする請求項1又は2に記載のカーゴオイルタンク用鋼材。The Ti content is 0.005 to 0.1%, the Nb content is 0.002 to 0.1%, the V content is 0.01 to 0.1%, and the B content is 0.0002. The steel material for cargo oil tanks according to claim 1 or 2 , wherein at least one of -0.05% is satisfied. 請求項1から3までのいずれかに記載されたカーゴオイルタンク用鋼材であって、少なくとも片面に防食処理が施されたことを特徴とする鋼材。A cargo oil tank steel material according to any one of claims 1 to 3, steel, characterized in that at least one surface anticorrosion treatment is performed.
JP2002071834A 2001-07-04 2002-03-15 Steel material for cargo oil tanks Expired - Fee Related JP3753088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002071834A JP3753088B2 (en) 2001-07-04 2002-03-15 Steel material for cargo oil tanks

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-203331 2001-07-04
JP2001203331 2001-07-04
JP2002071834A JP3753088B2 (en) 2001-07-04 2002-03-15 Steel material for cargo oil tanks

Publications (2)

Publication Number Publication Date
JP2003082435A JP2003082435A (en) 2003-03-19
JP3753088B2 true JP3753088B2 (en) 2006-03-08

Family

ID=26618111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002071834A Expired - Fee Related JP3753088B2 (en) 2001-07-04 2002-03-15 Steel material for cargo oil tanks

Country Status (1)

Country Link
JP (1) JP3753088B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4267367B2 (en) 2002-06-19 2009-05-27 新日本製鐵株式会社 Crude oil tank steel and its manufacturing method, crude oil tank and its anticorrosion method
JP4224347B2 (en) * 2003-05-16 2009-02-12 新日本製鐵株式会社 Submerged arc welding method for steel for crude oil tank
JP4449691B2 (en) * 2004-04-14 2010-04-14 住友金属工業株式会社 Steel material for cargo oil tanks
JP5119595B2 (en) * 2005-07-15 2013-01-16 Jfeスチール株式会社 Corrosion resistant steel for shipbuilding
JP5413392B2 (en) * 2005-07-15 2014-02-12 Jfeスチール株式会社 Corrosion resistant steel for shipbuilding
KR20110084462A (en) * 2006-02-27 2011-07-22 제이에프이 스틸 가부시키가이샤 Corrosion-resistant steel material for ship and vessel
EP2009125B1 (en) 2006-03-30 2018-07-04 JFE Steel Corporation Corroson-resistant steel material for crude oil storage tank, and crude oil storage tank
JP4811277B2 (en) * 2007-01-16 2011-11-09 住友金属工業株式会社 Corrosion resistant steel for holding coal and ore carrier
JP2010530477A (en) 2007-06-18 2010-09-09 エクソンモービル アップストリーム リサーチ カンパニー Low alloy steel with excellent corrosion resistance for pipe products in oil producing countries
WO2009041703A1 (en) * 2007-09-25 2009-04-02 Jfe Steel Corporation Hot-rolled shape steel for crude oil tanks and process for manufacturing the same
JP5320919B2 (en) * 2007-09-25 2013-10-23 Jfeスチール株式会社 Hot rolled shape steel for crude oil tank and method for producing the same
JP5145897B2 (en) * 2007-11-22 2013-02-20 新日鐵住金株式会社 Corrosion resistant steel for cargo oil tanks
JP4502075B1 (en) 2008-12-24 2010-07-14 Jfeスチール株式会社 Corrosion resistant steel for crude oil tankers
WO2010087509A1 (en) 2009-01-30 2010-08-05 Jfeスチール株式会社 Corrosion resistant steel for crude oil tank, manufacturing method therefor, and crude oil tank
JP6113475B2 (en) * 2012-12-05 2017-07-05 Jfeスチール株式会社 Steel material with excellent resistance to alcohol corrosion
JP6105264B2 (en) * 2012-12-05 2017-03-29 Jfeスチール株式会社 Steel material with excellent resistance to alcohol corrosion
CN104878321B (en) * 2015-04-21 2017-01-04 中信重工机械股份有限公司 A kind of smelting process of 25Cr2Ni4MoV rotor steel
WO2018066019A1 (en) 2016-10-06 2018-04-12 Jfeスチール株式会社 Steel for crude oil tanker and crude oil tanker
WO2019102817A1 (en) 2017-11-24 2019-05-31 Jfeスチール株式会社 Corrosion-resistant steel material for deck plate and bottom plate of crude oil tanker and crude oil tanker
CN113005370A (en) * 2021-02-26 2021-06-22 四川金恒液压有限公司 Steel for hydraulic support and production method thereof

Also Published As

Publication number Publication date
JP2003082435A (en) 2003-03-19

Similar Documents

Publication Publication Date Title
JP3753088B2 (en) Steel material for cargo oil tanks
TWI410503B (en) Corrosion resistant steel for crude oil sump and its manufacturing method, and crude oil sump
CN100360696C (en) Steel for crude oil tank and method for manufacture thereof, crude oil tank and method for protecting corrosion thereof
JP4577158B2 (en) Corrosion resistant steel for crude oil tanks
KR101115275B1 (en) Corrosion-resistant steel material for ship and vessel
KR101023634B1 (en) Corroson-resistant steel material for crude oil storage tank, and crude oil storage tank
JP4449691B2 (en) Steel material for cargo oil tanks
JP5453840B2 (en) Marine steel with excellent corrosion resistance
JP2007270196A (en) Steel material for cargo oil tank
JP5839151B1 (en) Steel, a ballast tank and a hold of a ship using this steel, and a ship provided with this ballast tank or a hold
JP5481980B2 (en) Marine steel with excellent film swell resistance
JP5145897B2 (en) Corrosion resistant steel for cargo oil tanks
JP2007254881A (en) Corrosion-resistant steel material for ship and vessel
JP2010222665A (en) Corrosion resistant shape steel member for crude oil tank and method for producing the same
JP5958103B2 (en) Steel material for marine ballast tanks with excellent paint swell resistance
CN102851582A (en) Corrosion-resistant steel for acidic crude oil storage and transportation tank and manufacturing method thereof
CN112272712A (en) Corrosion-resistant steel for cabin of special coal ship or mine/coal ship and cabin
JP4243863B2 (en) Welded joint for crude oil tank and crude oil tank
JP5942532B2 (en) Steel material with excellent corrosion resistance
JPH0734196A (en) Ballast tank excellent in durability
JP7261364B1 (en) steel plate
JP4129440B2 (en) Steel material excellent in weather resistance and method for producing the same
JP2023119905A (en) steel
JP2020164897A (en) Steel
JPH0734272A (en) Corrosion inhibiting method for ballast tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040426

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3753088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees