JP2003082435A - Steel for cargo oil tank - Google Patents

Steel for cargo oil tank

Info

Publication number
JP2003082435A
JP2003082435A JP2002071834A JP2002071834A JP2003082435A JP 2003082435 A JP2003082435 A JP 2003082435A JP 2002071834 A JP2002071834 A JP 2002071834A JP 2002071834 A JP2002071834 A JP 2002071834A JP 2003082435 A JP2003082435 A JP 2003082435A
Authority
JP
Japan
Prior art keywords
less
content
steel
corrosion
effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002071834A
Other languages
Japanese (ja)
Other versions
JP3753088B2 (en
Inventor
Kazuyuki Kajima
和幸 鹿島
Hideaki Yuki
英昭 幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2002071834A priority Critical patent/JP3753088B2/en
Publication of JP2003082435A publication Critical patent/JP2003082435A/en
Application granted granted Critical
Publication of JP3753088B2 publication Critical patent/JP3753088B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide inexpensive steel for a cargo oil tank which has excellent corrosion resistance. SOLUTION: (1) The steel has a composition containing 0.01 to 0.3% C, 0.02 to 1% Si, 0.05 to 2% Mn, <=0.05% P, <=0.01% S and 0.03 to 3% Ni, and the balance Fe with impurities, and, Mo, Cu, Cr, W, Ca, Ti, Nb, V, B, Sb, Sn and Al can be contained therein. (2) The steel has a composition containing 0.01 to 0.3% C, 0.02 to 1% Si, 0.05 to 2% Mn, <=0.05% P, <=0.01% S, 0.01 to 3% Ni, 0.01 to 2% Cu, <=0.05% Cr and <=0.07 Al, and the balance Fe with impurities, and in which the number of inclusion particles with a grain diameter of >30 μm is <30 pieces per cm<2> , and, provided that Ap denotes the ratio in the % unit of pearlite occupied in the structure, and C denotes the content of carbon in mass%, A/C<=130 is satisfied. The steel can contain Mo, Cu, W, Ca, Ti, Nb, V, B, Sb and Sn.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、タンカーにおける
原油タンクであるカーゴオイルタンク用の鋼材に関す
る。
TECHNICAL FIELD The present invention relates to a steel material for a cargo oil tank which is a crude oil tank in a tanker.

【0002】[0002]

【従来の技術】現在、タンカーのカーゴオイルタンクの
材料としては、裸仕様の普通鋼が使われている。
2. Description of the Related Art At present, bare steel is used as a material for cargo oil tanks of tankers.

【0003】カーゴオイルタンクの気相部は、防爆目的
でエンジンの排ガスを利用したN主体のガス(以下、
これをイナートガスという)が充填されているが、乾湿
繰り返しのある厳しい腐食環境である。更に、硫化水素
(HS )を含む原油の積載時には、原油中に含まれ
るHS の一部が気相中に移行するため、腐食環境と
しては極めて厳しいものになる。原油中に含まれる炭化
水素の一部も気化してイナートガスと混合することは勿
論であるが、腐食への影響はほとんどないので無視でき
る。なお、上記イナートガスの一例としては、体積%
で、13%CO −5%O−0.1%SO −残部
の組成のガスが挙げられる。
The gas phase portion of the cargo oil tank is used for explosion-proof purposes.
Using N engine exhaust gasTwoMain gas (hereinafter,
This is called inert gas), but dry and wet
It is a repetitive and severe corrosive environment. Furthermore, hydrogen sulfide
(HTwoS) is included in the crude oil when loaded.
HTwoSince a part of S 2 is transferred to the gas phase,
Then it will be extremely severe. Carbonization contained in crude oil
It is of course not possible to vaporize some of the hydrogen and mix it with inert gas.
However, since it has almost no effect on corrosion, it can be ignored.
It As an example of the inert gas, volume%
And 13% CO Two-5% OTwo-0.1% SOTwo -The balance
NTwo A gas having the composition of

【0004】上記のような腐食環境においては、カーゴ
オイルタンク天井部となるデッキ裏では全面腐食が起こ
り、腐食速度が0.1mm/年を超えるケースもある。
腐食速度が0.3mm/年以上と非常に大きい全面腐食
の事例も報告されている。又、カーゴオイルタンク底板
には孔食が発生し、数mm/年という大きな孔食進展速
度となる場合もある。
In the corrosive environment as described above, there is a case where the entire surface of the back of the deck, which is the ceiling of the cargo oil tank, is corroded, and the corrosion rate exceeds 0.1 mm / year.
Cases of general corrosion with a very high corrosion rate of 0.3 mm / year or more have also been reported. In addition, pitting corrosion may occur on the bottom plate of the cargo oil tank, resulting in a large pitting corrosion growth rate of several mm / year.

【0005】こうした事情から、カーゴオイルタンクの
材料に塗装を施すことが一部で行われているが、初期の
塗装及び約10年毎の塗り替えのコストが大きい。この
ため、例えば20年の使用に対して2mmの腐食代をと
るということで、全面腐食や局部腐食への対策とされて
いるのが実情である。
Under these circumstances, the material of the cargo oil tank is partially coated, but the cost of the initial coating and repainting approximately every 10 years is high. Therefore, for example, by taking a corrosion allowance of 2 mm for 20 years of use, the actual situation is that it is a countermeasure against general corrosion or local corrosion.

【0006】しかし、腐食代をとると、鋼材の厚みが増
加するために、タンクの製造コストが上昇し、原油積載
量が減少する、などのデメリットも生じる。したがっ
て、腐食代の低減が図れ、しかもコスト上昇を防止でき
る、耐食性に優れたカーゴオイルタンク用鋼材の開発が
強く望まれている。
However, if the corrosion allowance is taken, the thickness of the steel material increases, so that the manufacturing cost of the tank rises, and the crude oil load decreases, which is also a demerit. Therefore, it is strongly desired to develop a steel material for a cargo oil tank having excellent corrosion resistance, which can reduce the corrosion allowance and prevent the cost from increasing.

【0007】なお、カーゴオイルタンク用鋼としては、
例えば、特開2000−17381号公報にCuとMg
を必須成分として含む鋼が、又、特開2001−107
180号公報にCrとAlを必須成分として含む鋼が、
それぞれ提案されている。しかし、これらの公報で開示
された鋼においては、原油がHS を含む場合におい
て、HS が腐食に対して及ぼす影響については全く
配慮されておらず、このため、実船のカーゴオイルタン
クにおいて十分な耐食性が得られない場合があった。
As the steel for the cargo oil tank,
For example, Japanese Patent Laid-Open No. 2000-17381 discloses Cu and Mg.
A steel containing as an essential component is also disclosed in JP-A-2001-107.
No. 180 discloses a steel containing Cr and Al as essential components,
Each has been proposed. However, in the steels disclosed in these publications, when the crude oil contains H 2 S, no consideration is given to the effect of H 2 S on corrosion, and therefore, the cargo oil of the actual ship is not considered. In some cases, sufficient corrosion resistance could not be obtained in the tank.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記現状に
鑑みてなされたもので、その目的は、全面腐食や局部腐
食に対する抵抗性に優れたカーゴオイルタンク用鋼材を
提供することである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object thereof is to provide a steel material for a cargo oil tank having excellent resistance to general corrosion and local corrosion.

【0009】[0009]

【課題を解決するための手段】本発明の要旨は、下記
(1)〜(7)に示すカーゴオイルタンク用鋼材にあ
る。
The gist of the present invention resides in the steel materials for cargo oil tanks shown in the following (1) to (7).

【0010】(1)質量%で、C:0.01〜0.3
%、Si:0.02〜1%、Mn:0.05〜2%、
P:0.05%以下、S:0.01%以下、Ni:0.
05〜3%、Mo:1%以下、Cu:1%以下、Cr:
2%以下、W:1%以下、Ca:0.01%以下、T
i:0.1%以下、Nb:0.1%以下、V:0.1%
以下、B:0.05%以下を含有し、残部Fe及び不純
物からなるカーゴオイルタンク用鋼材。
(1)% by mass, C: 0.01 to 0.3
%, Si: 0.02-1%, Mn: 0.05-2%,
P: 0.05% or less, S: 0.01% or less, Ni: 0.
05-3%, Mo: 1% or less, Cu: 1% or less, Cr:
2% or less, W: 1% or less, Ca: 0.01% or less, T
i: 0.1% or less, Nb: 0.1% or less, V: 0.1%
Hereinafter, a steel material for a cargo oil tank containing B: 0.05% or less and the balance Fe and impurities.

【0011】(2)表面が防食被膜で覆われている上記
(1)に記載のカーゴオイルタンク用鋼材。
(2) The steel material for cargo oil tank according to the above (1), the surface of which is covered with an anticorrosion coating.

【0012】(3)質量%で、C:0.01〜0.3
%、Si:0.02〜1%、Mn:0.05〜2%、
P:0.05%以下、S:0.01%以下、Ni:0.
01〜3%、Mo:1%以下、Cu:2%以下、Cr:
2%以下、W:1%以下、Ca:0.01%以下、T
i:0.1%以下、Nb:0.1%以下、V:0.1%
以下、B:0.05%以下、Sb:0.5%以下、S
n:0.5%以下、Al:0.07%以下を含有し、残
部がFe及び不純物からなるカーゴオイルタンク用鋼
材。
(3)% by mass, C: 0.01 to 0.3
%, Si: 0.02-1%, Mn: 0.05-2%,
P: 0.05% or less, S: 0.01% or less, Ni: 0.
01 to 3%, Mo: 1% or less, Cu: 2% or less, Cr:
2% or less, W: 1% or less, Ca: 0.01% or less, T
i: 0.1% or less, Nb: 0.1% or less, V: 0.1%
Below, B: 0.05% or less, Sb: 0.5% or less, S
A steel material for a cargo oil tank containing n: 0.5% or less, Al: 0.07% or less, and the balance being Fe and impurities.

【0013】(4)質量%で、C:0.01〜0.3
%、Si:0.02〜1%、Mn:0.05〜2%、
P:0.05%以下、S:0.01%以下、Ni:0.
01〜3%、Cu:0.01〜2%、Mo:1%以下、
W:1%以下、Ca:0.01%以下、Sb:0.5%
以下、Sn:0.5%以下、Ti:0.1%以下、N
b:0.1%以下、V:0.1%以下、B:0.05%
以下、Cr:0.05%以下、Al:0.07%以下を
含有し、残部がFe及び不純物からなり、粒径が30μ
mを超える介在物が1cm あたり30個未満で、且
つ、下記 (1)式を満足するカーゴオイルタンク用鋼材。
但し、下記 (1)式中におけるApは組織に占めるパーラ
イトの%単位での割合、Cは炭素の質量%での含有量を
表す。
(4) C: 0.01 to 0.3 in mass%
%, Si: 0.02-1%, Mn: 0.05-2%,
P: 0.05% or less, S: 0.01% or less, Ni: 0.
01 to 3%, Cu: 0.01 to 2%, Mo: 1% or less,
W: 1% or less, Ca: 0.01% or less, Sb: 0.5%
Below, Sn: 0.5% or less, Ti: 0.1% or less, N
b: 0.1% or less, V: 0.1% or less, B: 0.05%
Hereafter, Cr: 0.05% or less and Al: 0.07% or less are contained, the balance is Fe and impurities, and the particle size is 30 μm.
A steel material for a cargo oil tank that has less than 30 inclusions per 1 cm 2 and that satisfies the following formula (1).
However, in the following formula (1), Ap represents the ratio of pearlite in the structure in%, and C represents the content of carbon in mass%.

【0014】Ap/C≦130・・・・・(1)。Ap / C ≦ 130 (1).

【0015】(5)Moの含有量が0.01〜1%、W
の含有量が0.01〜1%、Sbの含有量が0.01〜
0.5%、Snの含有量が0.01〜0.5%の少なく
ともいずれかを満たす上記(4)に記載のカーゴオイル
タンク用鋼材。
(5) Mo content of 0.01 to 1%, W
Content of 0.01 to 1%, Sb content of 0.01 to 1%
The steel material for a cargo oil tank according to (4) above, wherein the content of 0.5% and the content of Sn satisfy at least any one of 0.01 to 0.5%.

【0016】(6)Tiの含有量が0.005〜0.1
%、Nbの含有量が0.002〜0.1%、Vの含有量
が0.01〜0.1%、Bの含有量が0.0002〜
0.05%の少なくともいずれかを満たす上記(4)又
は(5)に記載のカーゴオイルタンク用鋼材。
(6) The content of Ti is 0.005 to 0.1
%, Nb content is 0.002-0.1%, V content is 0.01-0.1%, B content is 0.0002-
The steel material for cargo oil tank according to the above (4) or (5), which satisfies at least one of 0.05%.

【0017】(7)上記(3)から(6)までのいずれ
かに記載されたカーゴオイルタンク用鋼材であって、少
なくとも片面に防食処理が施された鋼材。
(7) The steel material for a cargo oil tank according to any one of the above (3) to (6), the steel material having at least one surface subjected to anticorrosion treatment.

【0018】以下、上記の(1)〜(7)の鋼材に係る
発明をそれぞれ(1)〜(7)の発明という。
Hereinafter, the inventions relating to the steel materials (1) to (7) are referred to as inventions (1) to (7), respectively.

【0019】本発明における「介在物」とは、JIS G 05
55に記載されたA系介在物又はB系介在物をいい、「粒
径」とは、形状が円形の場合はその直径、扁平している
場合は長径と短径の平均で定義される値を指す。
In the present invention, "inclusion" means JIS G 05
Refers to the A type inclusions or B type inclusions described in 55, and the "particle size" is the value defined by the diameter of a circular shape and the average of the major axis and the minor axis when the shape is flat. Refers to.

【0020】本発明者らは、前記した課題を達成するた
めに、実船の腐食環境を模擬して数多くの実験を行っ
た。
In order to achieve the above-mentioned objects, the present inventors conducted a number of experiments by simulating the corrosive environment of an actual ship.

【0021】すなわち、先ず、イナートガスを含むがH
S は含まない乾湿繰り返し環境において、数多くの
実験を行った。その結果、下記(a)〜(c)の知見を
得た。
That is, first, H containing an inert gas
Numerous experiments were conducted in a dry and wet repeated environment containing no 2 S. As a result, the following findings (a) to (c) were obtained.

【0022】(a)イナートガスを含むがHS は含
まない乾湿繰り返し環境においては、Ni添加により全
面腐食に対する抵抗性(以下、耐全面腐食性という)が
著しく向上する。図1に、Ni含有量と全面腐食速度と
の関係を示す。なお、この図1においては、「全面腐食
速度」を単に「腐食速度」と表記した。図1から明らか
なように、Ni含有量の増加に伴って腐食速度が著しく
低下する。
(A) In a dry-wet repeated environment containing an inert gas but not H 2 S, the resistance to general corrosion (hereinafter referred to as general corrosion resistance) is remarkably improved by adding Ni. FIG. 1 shows the relationship between the Ni content and the general corrosion rate. In FIG. 1, the “general corrosion rate” is simply referred to as the “corrosion rate”. As is clear from FIG. 1, the corrosion rate remarkably decreases as the Ni content increases.

【0023】(b)Niに加えて、Mo、Cu、Cr、
W、Ca、Sb及びSnの1種以上を添加すると、更に
耐全面腐食性が向上する。
(B) In addition to Ni, Mo, Cu, Cr,
Addition of one or more of W, Ca, Sb and Sn further improves general corrosion resistance.

【0024】(c)更に、上記のMoからSnまでの元
素を複合添加した場合には、耐全面腐食性が一段と向上
するだけでなく、表面に施した防食被膜の耐久性も向上
する。
(C) Further, when the above elements of Mo to Sn are added in combination, not only the general corrosion resistance is further improved, but also the durability of the anticorrosion coating applied on the surface is improved.

【0025】次いで、本発明者らは、イナートガス及び
S を含む乾湿繰り返し環境において、数多くの実
験を行った。その結果、HS を含む原油を積載した
実船のデッキ裏に見られる腐食生成物層の再現に成功
し、更に、気相部の腐食メカニズム及び底板部の孔食発
生メカニズムに関して下記(d)〜(i)の知見を得
た。
Next, the present inventors conducted a number of experiments in a dry-wet cyclic environment containing inert gas and H 2 S. As a result, we succeeded in reproducing the corrosion product layer found on the backside of the deck of an actual ship loaded with crude oil containing H 2 S. Furthermore, regarding the corrosion mechanism of the vapor phase part and the pitting corrosion mechanism of the bottom plate part, the following (d )-(I).

【0026】(d)イナートガス中に含まれるSO
及び原油から気相部に移行するHS の両者と、イナ
ートガス中に含まれるO あるいはHO とが反応し
てH SOが生成する。更に、HSOがO
より酸化して生じるHSO も生成する。
(D) SO contained in inert gasTwo 
And H that migrates from crude oil to the gas phaseTwoBoth S and Ina
O contained in gasTwo Or HTwoReacts with O
H TwoSOThreeIs generated. Furthermore, HTwoSOThreeIs OTwo To
More oxidized HTwoSO FourAlso generate.

【0027】(e)結露時には、上記のHSOやH
SOが水分中に含有される。このため、前記のイナ
ートガス及びHS を含む乾湿繰り返しの環境は、酸
性水による乾湿繰り返しの腐食環境である。
(E) At the time of dew condensation, the above H 2 SO 3 and H
2 SO 4 is contained in water. Therefore, the environment of repeated dry and wet conditions containing the inert gas and H 2 S is a corrosive environment of repeated dry and wet with acidic water.

【0028】(f)実船のデッキ裏における腐食は、温
度が下がって結露が生じる夜間に進行し、原油を積載せ
ず多量のCO 、SO やO が存在する場合の腐
食生成物としてはα−FeOOH(以下、「錆」とい
う)が主体となる。
(F) Corrosion on the backside of the deck of an actual ship progresses at night when the temperature drops and dew condensation occurs, and when a large amount of CO 2 , SO 2 or O 2 exists without loading crude oil, corrosion products Is mainly α-FeOOH (hereinafter referred to as “rust”).

【0029】(g)一方、HS を含む原油の積載時
にはHS が錆の表面でO により酸化されて固体の
Sが生成する。
(G) On the other hand, when the crude oil containing H 2 S is loaded, H 2 S is oxidized by O 2 on the surface of rust to produce solid S.

【0030】(h)原油を積載しない場合と原油を積載
する場合の繰り返しにより、実船のデッキ裏には「錆/
S/錆/S・・・」という層状構造が形成される。
(H) When the crude oil is not loaded and the crude oil is loaded repeatedly, "rust /
A layered structure of "S / rust / S ..." is formed.

【0031】(i)カーゴオイルタンク底はドレン水が
滞留するとともに、表面が油膜によりコーティングされ
ているが、スラッジの移動或いは原油洗浄などによって
油膜による被覆が一部はがれ、その被覆がなくなった部
位にデッキ裏に生成したSが落下し、付着する。次い
で、そのSが酸化剤として作用し、腐食電位の貴化をも
たらし、HS 及びCl が存在する条件下で孔食が
発生する。なお、油井に存在する岩塩が採掘時に原油に
混入してタンク内に持ち込まれるため、タンク底にCl
が存在することとなる。
(I) Although the drain water is retained at the bottom of the cargo oil tank and the surface is coated with an oil film, the oil film coating is partly peeled off due to sludge movement or crude oil washing. The generated S drops on the back of the deck and adheres to it. The S then acts as an oxidant, leading to a noble corrosion potential, and pitting occurs in the presence of H 2 S and Cl . In addition, since rock salt existing in the oil well is mixed into crude oil and brought into the tank at the time of mining, Cl at the bottom of the tank.
-Is present.

【0032】上記の気相部の腐食メカニズム及び底板部
の孔食発生メカニズムを踏まえて、本発明者ら更なる実
験を行ったところ、下記(j)〜(p)の事項が明らか
になった。
Based on the above corrosion mechanism of the vapor phase portion and the pitting corrosion generation mechanism of the bottom plate portion, further experiments by the present inventors revealed the following items (j) to (p). .

【0033】(j)Cuの添加によって、酸性水による
乾湿繰り返しの環境での全面腐食及びS存在下での孔食
の発生を抑制することができる。一例として、図2に、
酸性水による乾湿繰り返しの環境におけるCu含有量と
全面腐食速度との関係を示す。なお、この図2において
も、「全面腐食速度」を単に「腐食速度」と表記した。
図2から明らかなように、Cu含有量の増加に伴って腐
食速度が著しく低下する。
(J) By adding Cu, it is possible to suppress the general corrosion in the environment of repeated dry and wet with acidic water and the occurrence of pitting corrosion in the presence of S. As an example, in FIG.
The relationship between the Cu content and the general corrosion rate in the environment of repeated dry and wet with acidic water is shown. Note that, also in FIG. 2, the "general corrosion rate" is simply referred to as "corrosion rate".
As is clear from FIG. 2, the corrosion rate remarkably decreases as the Cu content increases.

【0034】(k)CuとNiを複合して含有させるこ
とにより、更に耐全面腐食性や耐孔食性が向上する。
(K) By including Cu and Ni in combination, general corrosion resistance and pitting corrosion resistance are further improved.

【0035】(l)Cu及びNiに加えて、Mo、W、
Ca、Sb及びSnの1種以上を添加すると、更に耐全
面腐食性及び耐孔食性が向上する。
(L) In addition to Cu and Ni, Mo, W,
Addition of one or more of Ca, Sb and Sn further improves general corrosion resistance and pitting corrosion resistance.

【0036】(m)上記のCuからSnまでを添加すれ
ば、塗装寿命が従来に比べ長くなる。
(M) If Cu to Sn are added, the coating life will be longer than in the conventional case.

【0037】(n)Cr及びAlの含有量を制限するこ
とで、酸性水による乾湿繰り返しの環境での全面腐食を
抑えることができる。
(N) By limiting the contents of Cr and Al, it is possible to suppress general corrosion in an environment of repeated dry and wet conditions with acidic water.

【0038】(o)酸性水による乾湿繰り返しの環境で
の全面腐食は、組織に占めるパーライトの%単位での割
合Ap及び質量%でのC含有量とも関係し、「Ap/
C」で表される値の低減とともに耐全面腐食性が向上す
る。
(O) The general corrosion in an environment of repeated dry and wet with acidic water is also related to the ratio Ap of the pearlite in the structure in% unit and the C content in mass%.
The general corrosion resistance improves as the value represented by "C" decreases.

【0039】(p)酸性水による乾湿繰り返しの環境で
の全面腐食及びS存在下での孔食の発生には、鋼中介在
物の粒径及び単位面積当たりの存在量が影響する。
(P) The grain size and the amount of inclusions per unit area of the inclusions in steel influence the occurrence of general corrosion and pitting corrosion in the presence of S in the environment of repeated dry and wet conditions with acidic water.

【0040】(1)〜(3)の発明は、上記(a)〜
(c)の知見に基づいて完成されたものである。
The inventions (1) to (3) are the same as the above (a) to
It was completed based on the knowledge of (c).

【0041】なお、(1)及び(2)の発明において
は、鋼材を構成する前記各元素のうち、Mo、Cu、C
r、W、Ca、Ti、Nb、V及びBの9元素は、必ず
しも積極的に添加する必要はなく、その含有量は不純物
レベルであってもよい。Sの含有量は低ければ低いほど
よい。
In the inventions of (1) and (2), among the above-mentioned elements constituting the steel material, Mo, Cu and C are included.
The nine elements of r, W, Ca, Ti, Nb, V and B do not necessarily have to be positively added, and the content thereof may be an impurity level. The lower the S content, the better.

【0042】(3)の発明においても、Mo、Cu、C
r、W、Ca、Ti、Nb、V、B、Sb、Sn及びA
lの12元素は、必ずしも積極的に添加する必要はな
く、その含有量は不純物レベルであってもよい。Sの含
有量は低ければ低いほどよい。
Also in the invention of (3), Mo, Cu, C
r, W, Ca, Ti, Nb, V, B, Sb, Sn and A
The 12 elements of 1 do not necessarily have to be positively added, and the content thereof may be an impurity level. The lower the S content, the better.

【0043】(4)〜(7)の発明は、上記(d)〜
(p)の知見に基づいて完成されたものである。
The inventions of (4) to (7) are (d) to (7) above.
It was completed based on the knowledge of (p).

【0044】なお、(4)の発明においては、鋼材を構
成する前記各元素のうち、Mo、W、Ca、Sb、S
n、Ti、Nb、V、B、Cr及びAlの11元素につ
いては、必ずしも積極的に添加する必要はなく、その含
有量は不純物レベルであってもよい。上記元素のうちで
CrとAlの含有量は、むしろ低ければ低いほど好まし
い。Sの含有量は低ければ低いほどよい。
In the invention of (4), among the elements constituting the steel material, Mo, W, Ca, Sb and S are included.
The 11 elements of n, Ti, Nb, V, B, Cr, and Al do not necessarily have to be positively added, and the content thereof may be an impurity level. Among the above elements, the lower the content of Cr and Al, the more preferable. The lower the S content, the better.

【0045】[0045]

【発明の実施の形態】以下、本発明の各要件について詳
しく説明する。なお、各元素の含有量の「%」表示は
「質量%」を意味する。 (A)鋼材の化学組成 C:Cは、材料としての強度を確保するために必要な元
素であり、0.01%以上の含有量が必要である。しか
し、0.3%を超えて含有させると溶接性が低下する。
又、C含有量の増大とともに、酸性水による乾湿繰り返
しの環境でカソードとなって腐食を促進するセメンタイ
トの生成量が増大し、特に、C含有量が0.30%を超
えるとセメンタイトの生成が増大して腐食が著しくな
る。したがって、Cの含有量を0.01〜0.3%とし
た。C含有量の好ましい範囲は0.01〜0.2%であ
り、より好ましい範囲は0.01〜0.15%である。
BEST MODE FOR CARRYING OUT THE INVENTION Each requirement of the present invention will be described in detail below. The “%” display of the content of each element means “mass%”. (A) Chemical composition C of steel material: C is an element necessary for securing the strength as a material, and the content of 0.01% or more is necessary. However, if the content exceeds 0.3%, the weldability decreases.
Further, as the C content increases, the amount of cementite produced which becomes a cathode and promotes corrosion in an environment of repeated wet and dry with acidic water increases, and in particular, when the C content exceeds 0.30%, cementite is produced. Corrosion increases and corrosion becomes significant. Therefore, the content of C is set to 0.01 to 0.3%. The preferable range of the C content is 0.01 to 0.2%, and the more preferable range is 0.01 to 0.15%.

【0046】Si:Siは、脱酸に必要な元素であり、
十分な脱酸効果を得るためには0.02%以上含有させ
る必要がある。しかし、1%を超えて含有させると靱性
が損なわれる。このため、Siの含有量を0.02〜1
%とした。好ましい含有量の範囲は0.02〜0.8%
であり、より好ましい範囲は0.02〜0.5%であ
る。
Si: Si is an element necessary for deoxidation,
In order to obtain a sufficient deoxidizing effect, it is necessary to contain 0.02% or more. However, if the content exceeds 1%, the toughness is impaired. Therefore, the Si content is 0.02-1
%. The preferred content range is 0.02-0.8%
And a more preferable range is 0.02 to 0.5%.

【0047】Mn:Mnは、低コストで鋼の強度を高め
る作用を有する元素であり、この効果を得るためには
0.05%以上の含有量が必要である。しかし、2%を
超えて含有させると溶接性が劣化する。このため、Mn
の含有量を0.05〜2%とした。好ましい含有量の範
囲は0.05〜1.8%であり、より好ましい範囲は
0.05〜1.5%である。
Mn: Mn is an element having the effect of enhancing the strength of steel at low cost, and the content of 0.05% or more is necessary to obtain this effect. However, if the content exceeds 2%, the weldability deteriorates. Therefore, Mn
Content of 0.05 to 2%. The preferable range of the content is 0.05 to 1.8%, and the more preferable range is 0.05 to 1.5%.

【0048】P:Pは、鋼中に含まれる不純物元素で、
溶接性を低下させる。特に、その含有量が0.05%を
超えると、溶接性の低下が著しくなる。このため、Pの
含有量を0.05%以下とした。なお、Pは溶接性を低
下させる一方で耐全面腐食性を向上させる作用を有する
ので、耐全面腐食性を高めるために0.01%以上を含
有させてもよい。Pの含有量の好ましい上限は0.04
%、より好ましい上限は0.03%である。
P: P is an impurity element contained in steel,
Reduces weldability. In particular, if the content exceeds 0.05%, the weldability deteriorates significantly. Therefore, the P content is set to 0.05% or less. Since P has the effect of improving the general corrosion resistance while decreasing the weldability, it may be contained in an amount of 0.01% or more in order to increase the general corrosion resistance. The preferable upper limit of the P content is 0.04.
%, And a more preferable upper limit is 0.03%.

【0049】S:0.01%以下 Sは、鋼中に含まれる不純物元素で、その含有量が0.
01%を超えると鋼中にMnSが多く生成し、MnSが
腐食の起点となって全面腐食及び孔食が生じる。このた
め、Sの含有量を0.01%以下とした。S含有量の好
ましい上限は0.008%、より好ましい上限は0.0
05%である。なお、S含有量は低ければ低いほどよ
い。
S: 0.01% or less S is an impurity element contained in steel, and its content is 0.1%.
If it exceeds 01%, a large amount of MnS is produced in the steel, and MnS becomes the starting point of corrosion, causing general corrosion and pitting corrosion. Therefore, the content of S is set to 0.01% or less. The preferable upper limit of the S content is 0.008%, and the more preferable upper limit thereof is 0.0.
It is 05%. The lower the S content, the better.

【0050】Ni:Niは、HS を含まない乾湿繰
り返し環境での耐全面腐食性を向上させる元素である。
Niには、湿潤硫化水素環境において防食性の硫化物皮
膜を形成して耐全面腐食性を高める効果や、耐孔食性を
向上させる効果もある。しかし、これらの効果を得るに
はNiを0.01%以上含有させる必要があり、0.0
5%以上含有させれば一層顕著な効果が得られる。しか
し、Niを3%を超えて含有させても前記効果が飽和
し、コストが嵩むばかりである。したがって、Niの含
有量を0.01〜3%とした。好ましい含有量の範囲は
0.1〜3%、より好ましい範囲は0.5〜3%であ
る。
Ni: Ni is an element that does not contain H 2 S and improves the general corrosion resistance in a dry and wet repeated environment.
Ni also has the effect of forming a corrosion-resistant sulfide film in a wet hydrogen sulfide environment to enhance general corrosion resistance and the effect of improving pitting corrosion resistance. However, in order to obtain these effects, it is necessary to contain Ni in an amount of 0.01% or more.
If the content is 5% or more, a more remarkable effect can be obtained. However, even if Ni is contained in an amount of more than 3%, the effect is saturated and the cost is increased. Therefore, the content of Ni is set to 0.01 to 3%. A preferable content range is 0.1 to 3%, and a more preferable range is 0.5 to 3%.

【0051】(1)〜(3)及び(7)の発明に係る鋼
材は、上記の化学組成を満たせば十分である。しかし、
上記の成分元素に加え、必要に応じて以下に述べるCu
からAlまでの元素のうちから選ばれる1種以上を含ん
でもよい。
It is sufficient for the steel materials according to the inventions (1) to (3) and (7) to satisfy the above chemical composition. But,
In addition to the above component elements, Cu described below may be added if necessary.
One or more elements selected from the elements from to Al may be included.

【0052】一方、(4)〜(6)の発明に係る鋼材の
場合は、上記の化学組成に加えてCuも必須の元素とし
て含む必要がある。なお、(4)〜(6)の発明に係る
鋼材の場合にも、必要に応じて、以下に述べるMoから
Alまでの元素のうちから選ばれる1種以上を含んでも
よい。
On the other hand, in the case of the steel materials according to the inventions (4) to (6), it is necessary to contain Cu as an essential element in addition to the above chemical composition. Even in the case of the steel materials according to the inventions of (4) to (6), one or more elements selected from the elements from Mo to Al described below may be included if necessary.

【0053】Cu:Cuは、HS を含まない乾湿繰
り返し環境での耐全面腐食性を向上させる元素であり、
この効果は不純物レベルの含有量であっても得られる
が、0.01%以上含有させることで効果は顕著にな
り、0.1%以上含有させることで効果は一層顕著にな
る。Cuには、酸性水による乾湿繰り返しの環境での耐
全面腐食性を高めるとともに硫化水素存在下での耐全面
腐食性を著しく向上させる効果、更には、S存在下での
孔食発生の抑制にも効果があり、これらの効果を得るた
めには、Cuは0.01%以上の含有量とする必要があ
り、0.1%以上含有させれば一層確実な効果が得られ
る。しかし、いずれの場合もCuを2%を超えて含有さ
せてもその効果が飽和する。更に、鋼が脆化する恐れも
ある。なお、鋼の脆化防止の観点からはCu含有量の上
限は1%とすることがより好ましい。したがって、
(1)〜(3)の発明におけるCuを必須の構成元素と
しない鋼の場合のCuの含有量を、(1)及び(2)の
発明においては1%以下、(3)の発明においては2%
以下とした。又、Cuを必須の構成元素とする鋼の場合
のCuの含有量を0.01〜2%とした。
Cu: Cu is an element that does not contain H 2 S and improves the general corrosion resistance in a dry and wet repeated environment.
This effect can be obtained even if the content is at the impurity level, but the effect becomes remarkable when the content is 0.01% or more, and the effect becomes more remarkable when the content is 0.1% or more. Cu has the effect of enhancing the general corrosion resistance in the environment of repeated dry and wet with acidic water and significantly improving the general corrosion resistance in the presence of hydrogen sulfide, and further suppressing the occurrence of pitting corrosion in the presence of S. Is also effective, and in order to obtain these effects, the content of Cu needs to be 0.01% or more, and if it is 0.1% or more, a more reliable effect can be obtained. However, in any case, the effect is saturated even if Cu is contained in excess of 2%. Furthermore, the steel may become brittle. From the viewpoint of preventing the embrittlement of steel, the upper limit of the Cu content is more preferably 1%. Therefore,
In the inventions of (1) to (3), the content of Cu in the case of steel not containing Cu as an essential constituent element is 1% or less in the inventions of (1) and (2), and in the invention of (3). 2%
Below. Further, the content of Cu in the case of steel containing Cu as an essential constituent element is set to 0.01 to 2%.

【0054】Mo:Moは、HS を含まない乾湿繰
り返し環境での耐全面腐食性を向上させる元素である。
Moには、湿潤硫化水素環境において防食性の硫化物皮
膜を形成して耐全面腐食性を高める効果や、耐孔食性を
向上させる効果もある。更に、Moは耐酸性を高める作
用も有する。これらの効果は不純物レベルの含有量であ
っても得られるが、より顕著にその効果を得るには、M
oは0.01%以上の含有量とすることが好ましい。し
かし、Moを1%を超えて含有させても効果が飽和する
ばかりか溶接性を損なうし、コストも嵩む。したがっ
て、Moを添加する場合には、その含有量を1%以下と
するのがよい。なお、添加する場合のMo含有量の下限
値は0.1%であることが更に好ましく、0.3%であ
れば一層好ましい。
Mo: Mo is an element which does not contain H 2 S and improves the general corrosion resistance in a dry and wet repeated environment.
Mo also has the effect of forming a corrosion-resistant sulfide film in a wet hydrogen sulfide environment to enhance general corrosion resistance and the effect of improving pitting corrosion resistance. Furthermore, Mo also has the effect of increasing acid resistance. These effects can be obtained even at the content of the impurity level, but in order to obtain the effect more remarkably, M
The content of o is preferably 0.01% or more. However, if Mo is contained in excess of 1%, not only the effect is saturated, but also the weldability is impaired and the cost is increased. Therefore, when Mo is added, its content is preferably 1% or less. The lower limit of the Mo content when added is more preferably 0.1%, and even more preferably 0.3%.

【0055】Cr:Crは、HS を含まない乾湿繰
り返し環境において、保護性のある錆層を形成させて耐
全面腐食性を高める作用を有する。この効果は不純物レ
ベルの含有量であっても得られるが、より顕著にその効
果を得るには、Crは0.01%以上の含有量とするこ
とが好ましい。しかし、2%を超えて含有させると溶接
性が低下する。したがって、上記環境での耐全面腐食性
を高めるためにCrを添加する場合には、その含有量を
2%以下とするのがよい。この場合のCr含有量の更に
好ましい範囲は0.1〜2%で、一層好ましい範囲は
0.5〜2%である。
Cr: Cr has a function of forming a rust layer having a protective property in a dry and wet repeated environment containing no H 2 S to enhance general corrosion resistance. This effect can be obtained even when the content is at the impurity level, but in order to obtain the effect more significantly, it is preferable that the content of Cr be 0.01% or more. However, if the content exceeds 2%, the weldability decreases. Therefore, when Cr is added to enhance the general corrosion resistance in the above environment, its content is preferably 2% or less. In this case, the more preferable range of the Cr content is 0.1 to 2%, and the more preferable range is 0.5 to 2%.

【0056】一方、Crは、HS を含む乾湿繰り返
し環境、すなわち、酸性水による乾湿繰り返しの環境に
おける耐全面腐食性を低下させるし、S存在下での耐孔
食性をも低下させ、特に、その含有量が0.05%を超
えると、上記環境での耐全面腐食性と耐孔食性の低下が
著しくなる。したがって、上記環境に用いる場合のCr
含有量を0.05%以下とした。なお、この場合のCr
含有量は0.04%以下とすることが好ましい。
On the other hand, Cr reduces the general corrosion resistance in a dry and wet repeated environment containing H 2 S, that is, the environment of a dry and wet repeated with acidic water, and also reduces the pitting corrosion resistance in the presence of S. If the content exceeds 0.05%, the general corrosion resistance and the pitting corrosion resistance in the above-mentioned environment are significantly deteriorated. Therefore, Cr when used in the above environment
The content was set to 0.05% or less. In this case, Cr
The content is preferably 0.04% or less.

【0057】W:Wは、HS を含まない乾湿繰り返
し環境での耐全面腐食性を向上させる元素である。Wに
は、湿潤硫化水素環境において防食性の硫化物皮膜を形
成して耐全面腐食性を高める効果や、耐孔食性を向上さ
せる効果もある。更に、Wは耐酸性を高める作用も有す
る。これらの効果は不純物レベルの含有量であっても得
られるが、より顕著にその効果を得るには、Wは0.0
1%以上の含有量とすることが好ましい。しかし、Wを
1%を超えて含有させても前記の効果は飽和しコストが
嵩むばかりである。したがって、Wを添加する場合に
は、その含有量を1%以下とするのがよい。なお、添加
する場合のW含有量の下限値は0.1%であることが更
に好ましく、0.3%であれば一層好ましい。
W: W is an element that does not contain H 2 S and improves the general corrosion resistance in a dry and wet repeated environment. W also has an effect of forming a corrosion-resistant sulfide film in a wet hydrogen sulfide environment to enhance general corrosion resistance and an effect of improving pitting corrosion resistance. Further, W also has the effect of increasing acid resistance. These effects can be obtained even with the content of the impurity level, but in order to obtain the effect more remarkably, W is 0.0
The content is preferably 1% or more. However, even if W is contained in an amount of more than 1%, the above effect is saturated and the cost is increased. Therefore, when W is added, its content is preferably 1% or less. The lower limit of the W content when added is more preferably 0.1% and even more preferably 0.3%.

【0058】Ca:Caは、HS を含まない乾湿繰
り返し環境での耐全面腐食性を向上させる。なお、Ca
は鋼中に酸化物の形で存在し、水に溶けてアルカリ性と
なって腐食反応時の鋼材界面のpH低下を抑制するの
で、HS を含む場合の全面腐食を抑える作用も有す
る。これらの効果は不純物レベルの含有量であっても得
られるが、より顕著にその効果を得るには、Caは0.
0002%以上の含有量とすることが好ましい。しか
し、Caを0.01%を超えて含有させても前記の効果
は飽和しコストが嵩むばかりである。したがって、Ca
を添加する場合には、その含有量を0.01%以下とす
るのがよい。なお、添加する場合のCaの含有量の下限
値は0.0005%であることが更に好ましく、0.0
01%であれば一層好ましい。
Ca: Ca improves general corrosion resistance in a dry and wet repeated environment containing no H 2 S. Note that Ca
Exists in the form of an oxide in the steel, dissolves in water, becomes alkaline, and suppresses the pH decrease at the steel material interface at the time of a corrosion reaction, and therefore also has the effect of suppressing general corrosion when H 2 S is contained. These effects can be obtained even when the content is at the impurity level, but in order to obtain the effect more remarkably, Ca is less than 0.
The content is preferably 0002% or more. However, even if Ca is contained in an amount of more than 0.01%, the above effect is saturated and the cost is increased. Therefore, Ca
When adding, the content is preferably 0.01% or less. The lower limit of the content of Ca when added is more preferably 0.0005%, and 0.0
More preferably, it is 01%.

【0059】Ti:Tiは、鋼の強度を高める作用を有
する。Tiには、鋼の靱性を向上させる作用や、TiS
を形成するによって腐食の起点となるMnSの生成を抑
制し、耐全面腐食性及び耐孔食性を高める作用もある。
これらの効果は不純物レベルの含有量であっても得られ
るが、より顕著にその効果を得るには、Tiは0.00
5%以上の含有量とすることが好ましい。しかし、Ti
を0.1%を超えて含有させても前記の効果は飽和しコ
ストが嵩むばかりである。したがって、Tiを添加する
場合には、その含有量を0.1%以下とするのがよい。
なお、添加する場合のTiの含有量の下限値は0.01
%であることが更に好ましく、0.05%であれば一層
好ましい。
Ti: Ti has the function of increasing the strength of steel. Ti has the effect of improving the toughness of steel and TiS.
The formation of MnS also suppresses the formation of MnS, which is the starting point of corrosion, and also has the effect of enhancing general corrosion resistance and pitting corrosion resistance.
These effects can be obtained even if the content is at the impurity level, but in order to obtain the effect more significantly, Ti is 0.00
The content is preferably 5% or more. However, Ti
If the content of Al exceeds 0.1%, the above effect is saturated and the cost is increased. Therefore, when Ti is added, its content is preferably 0.1% or less.
The lower limit of the Ti content when added is 0.01
% Is more preferable, and 0.05% is even more preferable.

【0060】Nb:Nbは、鋼の強度を高める作用を有
する元素である。この効果は不純物レベルの含有量であ
っても得られるが、より顕著にその効果を得るには、N
bは0.002%以上の含有量とすることが好ましい。
しかし、Nbを0.1%を超えて含有させると靱性の低
下を招く。したがって、Nbを添加する場合には、その
含有量を0.1%以下とするのがよい。なお、添加する
場合のNbの含有量の上限値は0.05%であることが
好ましく、0.03%であれば一層好ましい。
Nb: Nb is an element having the action of increasing the strength of steel. This effect can be obtained even if the content is at the impurity level, but in order to obtain the effect more significantly, N
The content of b is preferably 0.002% or more.
However, if the Nb content exceeds 0.1%, the toughness is lowered. Therefore, when Nb is added, its content is preferably 0.1% or less. The upper limit of the Nb content when added is preferably 0.05%, and more preferably 0.03%.

【0061】V:Vは、鋼の強度を向上させる作用を有
する元素である。この効果は不純物レベルの含有量であ
っても得られるが、より顕著にその効果を得るには、V
は0.01%以上の含有量とすることが好ましい。しか
し、Vを0.1%を超えて含有させると靱性及び溶接性
の低下を招く。したがって、Vを添加する場合には、そ
の含有量を0.1%以下とするのがよい。なお、添加す
る場合のVの含有量の上限値は0.05%であることが
好ましく、0.03%であれば一層好ましい。
V: V is an element having an action of improving the strength of steel. This effect can be obtained even with the content of the impurity level, but in order to obtain the effect more remarkably, V
Is preferably 0.01% or more. However, if V exceeds 0.1%, toughness and weldability are deteriorated. Therefore, when V is added, its content is preferably 0.1% or less. The upper limit of the V content when added is preferably 0.05%, and more preferably 0.03%.

【0062】B:Bは、鋼の強度を高める作用を有す
る。この効果は不純物レベルの含有量であっても得られ
るが、より顕著にその効果を得るには、Bは0.000
2%以上の含有量とすることが好ましい。しかし、Bを
0.05%を超えて含有させると靱性の低下を招く。し
たがって、Bを添加する場合には、その含有量を0.0
5%以下とするのがよい。なお、添加する場合のBの含
有量の上限値は0.02%であることが好ましく、0.
01%であれば一層好ましい。
B: B has the effect of increasing the strength of the steel. This effect can be obtained even when the content is at the impurity level, but in order to obtain the effect more markedly, B is 0.000.
The content is preferably 2% or more. However, if B is contained in excess of 0.05%, the toughness is lowered. Therefore, when B is added, its content should be 0.0
It is preferable to be 5% or less. When added, the upper limit of the B content is preferably 0.02%,
More preferably, it is 01%.

【0063】Sb:Sbは、乾湿繰り返し環境での耐全
面腐食性を向上させるとともに耐酸性を高める作用を有
する。これらの効果は不純物レベルの含有量であっても
得られるが、より顕著にその効果を得るには、Sbは
0.01%以上の含有量とすることが好ましい。しか
し、Sbを0.5%を超えて含有させても前記の効果は
飽和する。したがって、Sbを添加する場合には、その
含有量を0.5%以下とするのがよい。なお、添加する
場合のTiの含有量の下限値は0.01%であることが
好ましく、0.05%であれば一層好ましい。
Sb: Sb has the functions of improving the general corrosion resistance in a dry and wet repeated environment and also increasing the acid resistance. These effects can be obtained even if the content is at the impurity level, but in order to obtain the effect more remarkably, it is preferable that the content of Sb is 0.01% or more. However, even if Sb exceeds 0.5%, the above effect is saturated. Therefore, when Sb is added, its content is preferably 0.5% or less. The lower limit of the Ti content when added is preferably 0.01%, and more preferably 0.05%.

【0064】Sn:Snは、乾湿繰り返し環境での耐全
面腐食性を向上させるとともに耐酸性を高める作用を有
する。これらの効果は不純物レベルの含有量であっても
得られるが、より顕著にその効果を得るには、Snは
0.01%以上の含有量とすることが好ましい。しか
し、Snを0.5%を超えて含有させても前記の効果は
飽和する。したがって、Snを添加する場合には、その
含有量を0.5%以下とするのがよい。なお、添加する
場合のSnの含有量の下限値は0.1%であることが好
ましい。
Sn: Sn has the functions of improving the general corrosion resistance in a dry-wet repeated environment and enhancing the acid resistance. These effects can be obtained even with the content of the impurity level, but in order to obtain the effect more remarkably, it is preferable that the content of Sn is 0.01% or more. However, even if Sn is contained in an amount of more than 0.5%, the above effect is saturated. Therefore, when Sn is added, its content is preferably 0.5% or less. The lower limit of the Sn content when added is preferably 0.1%.

【0065】Al:Alは、鋼の脱酸に有効な元素であ
るが、本発明においては既に述べた量のSiを含有させ
るので、Siで脱酸することができる。したがって、A
lで脱酸処理することは特に必要でないため、Alは添
加しなくてもよい。一方、Alを積極的に添加すれば、
脱酸効果が高まるとともに、窒化物を形成してオーステ
ナイト粒を微細にするので、強度が向上する。更に、靱
性の改善効果も得られる。これらの効果はAlの含有量
が0.001%以上で確実に得られる。したがって、脱
酸効果及び強度と靱性の改善効果を得たい場合には、A
lを添加して0.001%以上含有させてもよい。しか
し、Alを0.07%を超えて含有させても、脱酸効果
がほぼ飽和するばかりか、窒化物が粗大化するために却
って靱性の低下をきたす。なお、Alの含有量が多いと
アルミナ系介在物の生成量が増加して、HS を含む
乾湿繰り返し環境、すなわち、酸性水による乾湿繰り返
しの環境における耐全面腐食性を低下させ、特に、0.
07%を超えると酸性水による乾湿繰り返しの環境にお
ける耐全面腐食性の低下が著しい。したがって、Alを
添加する場合には、その含有量を0.07%以下とする
のがよい。なお、添加する場合のAlの含有量の下限値
は0.05%であることが好ましい。
Al: Al is an element effective for deoxidizing steel, but since it contains Si in an amount already described in the present invention, it can be deoxidized with Si. Therefore, A
Since deoxidation treatment with 1 is not particularly necessary, Al may not be added. On the other hand, if Al is positively added,
As the deoxidizing effect is enhanced, the nitride is formed and the austenite grains are made finer, so that the strength is improved. Further, an effect of improving toughness can be obtained. These effects are surely obtained when the Al content is 0.001% or more. Therefore, in order to obtain the deoxidizing effect and the effect of improving strength and toughness, A
You may add 1 and make it contain 0.001% or more. However, even if Al is contained in an amount of more than 0.07%, not only the deoxidizing effect is almost saturated, but also the toughness is rather deteriorated due to the coarsening of the nitride. In addition, when the content of Al is large, the amount of alumina-based inclusions is increased to reduce the general corrosion resistance in a dry and wet repeated environment containing H 2 S, that is, an environment of repeated dry and wet with acidic water. 0.
If it exceeds 07%, the general corrosion resistance is remarkably lowered in the environment of repeated dry and wet with acidic water. Therefore, when Al is added, its content is preferably 0.07% or less. The lower limit of the Al content when added is preferably 0.05%.

【0066】(B)鋼材の組織 酸性水による乾湿繰り返しの環境での全面腐食は、パー
ライトを形成するセメンタイトがカソード反応の水素イ
オン還元を加速するため、組織に占めるパーライトの%
単位での割合Ap及び質量%でのC含有量と関係し、
「Ap/C」の値が大きくなると耐全面腐食性が低下す
る。特に、上記「Ap/C」の値が130以上になる
と、化学組成を既に述べた範囲に調整した鋼材であって
も、耐全面腐食性の低下が著しくなる。したがって、
(1)式、すなわち、「Ap/C≦130」を満足するよ
うに規定した。
(B) The general corrosion of the steel material in the environment of repeated dry and wet with acidic water causes the cementite forming pearlite to accelerate the hydrogen ion reduction of the cathodic reaction, so that% of pearlite in the structure is occupied.
Related to the proportion Ap in units and the C content in mass%,
When the value of "Ap / C" becomes large, the general corrosion resistance decreases. In particular, when the value of "Ap / C" is 130 or more, even in the case of a steel material whose chemical composition has been adjusted to the range already described, the general corrosion resistance is significantly reduced. Therefore,
The formula (1), that is, “Ap / C ≦ 130” is specified.

【0067】又、鋼中介在物は腐食の起点となり、酸性
水による乾湿繰り返しの環境における全面腐食及びS存
在下での孔食の発生に影響を及ぼす。しかし、介在物の
粒径が小さく、且つ単位面積当たりの存在量が少ないほ
ど、全面腐食や孔食の発生に及ぼす影響は少なく、粒径
30μmを超える介在物が1cm あたり30個未満
であれば耐全面腐食や耐孔食性が低下することはない。
したがって、粒径が30μmを超える介在物が1cm
あたり30個未満と規定した。
Further, the inclusions in the steel serve as the starting point of corrosion, which affects the general corrosion in the environment of repeated dry and wet with acidic water and the occurrence of pitting corrosion in the presence of S. However, the smaller the particle size of inclusions and the smaller the amount of inclusions per unit area, the less the effect on the occurrence of general corrosion and pitting corrosion, and the number of inclusions having a particle size of more than 30 μm per cm 2 is less than 30. Therefore, general corrosion resistance and pitting corrosion resistance do not decrease.
Therefore, inclusions with a particle size exceeding 30 μm are 1 cm 2
It was defined as less than 30 per item.

【0068】なお、粒径が30μmを超える介在物が1
cm あたり30個未満で、且つ、「Ap/C≦13
0」を満足する鋼材は、例えば、Sの含有量を低く抑え
るとともに製鋼段階での電磁撹拌を実施したスラブを、
鋼組成に応じて、通常の方法で加熱温度が1150℃程
度、圧延1パス当たりの圧下率が3%以上、圧延仕上げ
温度が800〜900℃程度となる条件で熱間圧延し、
圧延終了後は、Ar点以上の温度から少なくとも57
0℃程度までの温度域を水冷し、その後大気中放冷する
ことによって製造することができる。なお、上記した温
度はすべて鋼材の表面部における温度である。
It should be noted that the number of inclusions having a particle size exceeding 30 μm is 1
Less than 30 per cm 2 , and “Ap / C ≦ 13
The steel material satisfying “0” is, for example, a slab in which the content of S is kept low and electromagnetic stirring is performed in the steelmaking stage,
Depending on the steel composition, hot rolling is carried out by a usual method under the conditions that the heating temperature is about 1150 ° C, the rolling reduction per pass is 3% or more, and the rolling finishing temperature is about 800 to 900 ° C.
After the rolling is completed, the temperature should be at least 57 after the temperature of Ar 3
It can be produced by water-cooling a temperature range up to about 0 ° C. and then allowing it to cool in the atmosphere. The above temperatures are all temperatures at the surface of the steel material.

【0069】以上に説明した本発明の鋼材は、そのまま
使用しても良好な耐食性を示し、腐食代を少なくできる
が、その表面を有機樹脂や金属からなる防食被膜で覆っ
た場合には、防食被膜の耐久性が向上し、耐食性が一段
と向上する。
The above-described steel material of the present invention exhibits good corrosion resistance even when used as it is and can reduce the corrosion allowance. However, when the surface thereof is covered with an anticorrosion coating made of organic resin or metal, The durability of the coating is improved and the corrosion resistance is further improved.

【0070】ここで、有機樹脂からなる防食被膜として
は、ビニルブチラール系、エポキシ系、ウレタン系、フ
タル酸系等の樹脂被膜、金属からなる防食被膜として
は、ZnやAl等のメッキ被膜や溶射被膜を挙げること
ができる。
Here, the organic resin anticorrosion coating is a vinyl butyral type, epoxy type, urethane type, phthalic acid type resin coating or the like, and the metal anticorrosion coating is a plated coating such as Zn or Al or a thermal spray coating. Mention may be made of coatings.

【0071】また、防食被膜の耐久性が向上するのは、
下地である本発明鋼材の腐食が著しく抑制される結果と
して防食被膜欠陥部からの下地鋼材腐食に起因する防食
被膜のふくれや剥離が抑制されるためであると考えられ
る。
The durability of the anticorrosion coating is improved by
It is considered that this is because the corrosion of the steel material of the present invention as the base is remarkably suppressed, and as a result, the swelling and peeling of the anticorrosion coating due to the corrosion of the base steel material from the defective portion of the anticorrosion coating is suppressed.

【0072】上記の防食被膜で覆う処理は通常の方法で
行えばよい。又、必ずしも鋼材の全面に防食被膜を施す
必要はなく、腐食環境に曝される面としての鋼材の片面
だけを防食処理してもよい。
The treatment for covering with the anticorrosion coating may be carried out by a usual method. Further, it is not always necessary to apply an anticorrosion coating to the entire surface of the steel material, and only one surface of the steel material that is exposed to the corrosive environment may be anticorrosion-treated.

【0073】[0073]

【実施例】(実施例1)通常の方法によって、表1及び
表2に示す化学組成を有する28種類の鋼材を作製し、
各鋼材から幅が25mm、長さが50mm、厚さが4m
mの試験片を採取し、そのまま次に述べる実船を模擬し
た腐食試験に供した。
Examples (Example 1) 28 kinds of steel materials having the chemical compositions shown in Table 1 and Table 2 were prepared by a usual method,
25mm wide, 50mm long, 4m thick from each steel
A test piece of m was sampled and directly subjected to a corrosion test simulating an actual ship described below.

【0074】すなわち、0.1質量%NaCl水溶液を
下部1/3部分に入れたガラス容器を準備する一方、採
取した試験片を下面に取り付けたガス供給口を有するア
クリル製の蓋によって上記ガラス容器の開口上端を密閉
した。次いで、密閉後のガラス容器を恒温槽内に設置
し、50℃×20時間→25℃×4時間の温度サイクル
を4ヶ月間付与した。その際、ガラス容器内の気相部に
は、前記のガス供給口より下記のガスAを吹き込んだ。
That is, while preparing a glass container in which a 0.1% by mass NaCl aqueous solution is placed in the lower 1/3 portion, the above glass container is covered by an acrylic lid having a gas supply port on which a sample piece is attached. The upper end of the opening was sealed. Then, the hermetically sealed glass container was placed in a constant temperature bath, and a temperature cycle of 50 ° C. × 20 hours → 25 ° C. × 4 hours was applied for 4 months. At that time, the following gas A was blown into the gas phase portion in the glass container through the gas supply port.

【0075】ガスA:体積%で、5%O−13%CO
−0.02%SO−残N
Gas A: volume% 5% O 2 -13% CO
2 -0.02% SO 2 - residual N 2.

【0076】4ヶ月の腐食試験の後、各試験片の減少質
量から「mm/年」単位での腐食速度、つまり、全面腐
食速度を求め、その結果を、表1及び表2に併せて示し
た。
After the corrosion test for 4 months, the corrosion rate in "mm / year" unit, that is, the general corrosion rate was obtained from the reduced mass of each test piece, and the results are shown in Table 1 and Table 2 together. It was

【0077】[0077]

【表1】 [Table 1]

【0078】[0078]

【表2】 [Table 2]

【0079】表1、表2に示す結果からわかるように、
化学組成が本発明で規定する範囲内の試番A1〜A20及びA
37〜A40の鋼材は、全面腐食速度が0.13mm/年以
下と小さい。これに対し、化学組成が本発明で規定する
範囲を外れる試番A21〜A24の鋼材は、全面腐食速度が
0.27mm/年以上と大きい。
As can be seen from the results shown in Tables 1 and 2,
Trial Nos. A1 to A20 and A whose chemical composition is within the range specified in the present invention
The steel materials of 37 to A40 have a small general corrosion rate of 0.13 mm / year or less. On the other hand, the steel materials of the trial numbers A21 to A24, whose chemical compositions are out of the range specified in the present invention, have a large general corrosion rate of 0.27 mm / year or more.

【0080】(実施例2)通常の方法によって、表3に
示す化学組成を有する16種類の鋼材を作製し、各鋼材
から幅が25mm、長さが50mm、厚さが4mmの試
験片を採取し、その表面に通常の方法で厚さ200μm
のタールエポキシ樹脂の防食被膜を施し、実施例1の場
合と同じ条件の腐食試験に供した。
(Example 2) 16 kinds of steel materials having the chemical compositions shown in Table 3 were prepared by a usual method, and a test piece having a width of 25 mm, a length of 50 mm and a thickness of 4 mm was taken from each steel material. And the surface is 200 μm thick in the usual way.
A tar-epoxy resin anticorrosion coating was applied and subjected to a corrosion test under the same conditions as in Example 1.

【0081】4ヶ月の腐食試験の後、各試験片の減少質
量から「mm/年」単位での全面腐食速度を求めた。
After the corrosion test for 4 months, the general corrosion rate in "mm / year" was obtained from the reduced mass of each test piece.

【0082】防食被膜の耐久性も調査した。すなわち、
カッターナイフを用いて防食被膜に鋼の表面に達するク
ロスカット状の切り込みを入れた試験片を準備し、上記
と同じ条件の腐食試験に供し、試験後のクロスカット部
からの防食被膜のふくれ幅(mm)を測定することによ
って、防食被膜の耐久性を評価した。表3に、上記の各
試験結果を併せて示した。
The durability of the anticorrosion coating was also investigated. That is,
Prepare a test piece with a crosscut-shaped notch that reaches the steel surface in the anticorrosion coating using a cutter knife, subject it to a corrosion test under the same conditions as above, and swell the anticorrosion coating from the crosscut portion after the test. The durability of the anticorrosion coating was evaluated by measuring (mm). Table 3 also shows the results of the above tests.

【0083】[0083]

【表3】 [Table 3]

【0084】表3に示す結果からわかるように、化学組
成が本発明で規定する範囲内の試番A25〜A33及びA41〜A
44の鋼材は、全面腐食速度が0.04mm/年以下と小
さく、ふくれ幅も1.0mm以下と極めて小さい。これ
に対し、化学組成が本発明で規定する範囲を外れる試番
A34〜A36の鋼材は、全面腐食速度が0.08mm/年以
上と大きく、ふくれ幅も10.0mm以上と極めて大き
い。
As can be seen from the results shown in Table 3, sample numbers A25 to A33 and A41 to A whose chemical compositions are within the range specified in the present invention.
The steel materials of No. 44 have a small general corrosion rate of 0.04 mm / year or less and a swelling width of 1.0 mm or less. On the other hand, a trial number whose chemical composition is outside the range specified in the present invention
The steel materials of A34 to A36 have a large general corrosion rate of 0.08 mm / year or more and an extremely large blistering width of 10.0 mm or more.

【0085】(実施例3)表4及び表5に示す化学組成
を有する26種類の鋼を真空溶解炉を用いて溶製し50
kg鋼塊とした後、通常の方法で熱間鍛造して厚さが1
20mmのブロックを作製した。
Example 3 26 kinds of steels having the chemical compositions shown in Tables 4 and 5 were melted by using a vacuum melting furnace and 50
After making into a steel ingot, the thickness is 1 by hot forging by the usual method.
A 20 mm block was made.

【0086】[0086]

【表4】 [Table 4]

【0087】[0087]

【表5】 [Table 5]

【0088】次いで、上記鍛造によって得た厚さが12
0mmのブロックを、1150℃で2時間加熱してから
熱間圧延し、厚さ20mmの鋼板にした。なお、上記2
0mmの鋼板の製造条件は下記の「製造法1」又は「製
造法2」である。
Then, the thickness obtained by the above forging is 12
The 0 mm block was heated at 1150 ° C. for 2 hours and then hot-rolled into a steel plate having a thickness of 20 mm. In addition, the above 2
The production conditions for a 0 mm steel plate are the following "Production Method 1" or "Production Method 2".

【0089】「製造法1」:厚さ120mmのブロック
を1150℃で2時間加熱後、熱間圧延して950℃で
厚さ20mmに仕上げ、その後室温まで大気中放冷する
製造方法。
[Manufacturing method 1]: A manufacturing method in which a block having a thickness of 120 mm is heated at 1150 ° C. for 2 hours, hot-rolled to a thickness of 20 mm at 950 ° C., and then left to cool to room temperature in the atmosphere.

【0090】「製造法2」:厚さ120mmのブロック
を1150℃で2時間加熱後、熱間圧延して850℃で
厚さ20mmに仕上げ、その後800℃から500℃ま
での温度域を水冷し、その後室温まで大気中放冷する製
造方法。
[Manufacturing method 2]: A block having a thickness of 120 mm was heated at 1150 ° C for 2 hours, hot-rolled to a thickness of 20 mm at 850 ° C, and then water-cooled in a temperature range from 800 ° C to 500 ° C. Then, a manufacturing method of allowing to cool to room temperature in the atmosphere.

【0091】厚さが20mmの各鋼板から、JIS G 0555
に準じて、圧延方向に平行に、その中心線をとおって切
断したミクロ試験片を作製し、光学顕微鏡による組織と
介在物の調査を行った。
From each steel plate having a thickness of 20 mm, JIS G 0555
A micro test piece was cut in parallel with the rolling direction through the center line in accordance with the above, and the structure and inclusions were examined by an optical microscope.

【0092】すなわち、上記の圧延方向に平行に切断し
た面(L断面)を被検面とし、鏡面研磨した後、倍率4
00倍で60視野の光学顕微鏡写真を撮影し、その写真
から粒径が30μmを超える介在物の個数を測定した。
That is, the surface cut in parallel to the rolling direction (L section) was used as the surface to be inspected, and after mirror polishing, the magnification was 4
An optical microscope photograph of 60 fields of view was taken at 00 times, and the number of inclusions having a particle size of more than 30 μm was measured from the photograph.

【0093】又、鏡面研磨した面をナイタルで腐食し、
倍率100倍で10視野光学顕微鏡観察して、組織に占
めるパーライトの%単位での割合Apを測定し、前述の
「Ap/C」の値を算出した。
Also, the mirror-polished surface is corroded with nital,
It was observed with a 10-field optical microscope at a magnification of 100 times, the ratio Ap of the pearlite in the tissue in% was measured, and the value of "Ap / C" was calculated.

【0094】更に、前記厚さが20mmの各鋼板から、
幅が25mm、長さが50mm、厚さが4mmの試験片
を採取し、そのまま次に述べる実船のデッキ裏環境を模
擬した腐食試験に供した。なお、この腐食試験は、原油
がHS を含む場合を想定したものである。
Further, from each steel plate having the thickness of 20 mm,
A test piece having a width of 25 mm, a length of 50 mm, and a thickness of 4 mm was sampled and directly subjected to a corrosion test simulating the deck back environment of an actual ship described below. The corrosion test is based on the assumption that the crude oil contains H 2 S.

【0095】すなわち、0.1質量%NaCl水溶液を
下部1/3部分に入れたガラス容器を準備する一方、採
取した試験片を下面に取り付けたガス供給口を有するア
クリル製の蓋によって上記ガラス容器の開口上端を密閉
した。次いで、密閉後のガラス容器を恒温槽内に設置
し、50℃×20時間→25℃×4時間の温度サイクル
を4ヶ月間付与した。その際、ガラス容器内の気相部に
は、バラスト時とフルロード時をシミュレートし、前記
のガス供給口より下記2種類のガスAとガスBを2週間
間隔で交互に吹き込んだ。
That is, while preparing a glass container containing a 0.1% by mass NaCl aqueous solution in the lower 1/3 part, the above-mentioned glass container is covered with an acrylic lid having a gas supply port on which a sample piece is attached The upper end of the opening was sealed. Then, the hermetically sealed glass container was placed in a constant temperature bath, and a temperature cycle of 50 ° C. × 20 hours → 25 ° C. × 4 hours was applied for 4 months. At that time, the gas phase portion in the glass container was simulated at the time of ballast and at the time of full load, and the following two kinds of gas A and gas B were alternately blown at two-week intervals from the gas supply port.

【0096】ガスA:体積%で、5%O−13%CO
−0.02%SO−残N 、 ガスB:体積%で、5%O−13%CO−0.02
%SO−0.25%HS−残N
Gas A: volume% 5% O 2 -13% CO
2 -0.02% SO 2 - residual N 2, gas B: volume%, 5% O 2 -13% CO 2 -0.02
% SO 2 -0.25% H 2 S- residual N 2.

【0097】4ヶ月の腐食試験の後、各試験片の減少質
量から「mm/年」単位での腐食速度(全面腐食速度)
を求めた。表6に、上記の各試験結果を厚さ20mm鋼
板の製造条件とともに示す。
After the corrosion test for 4 months, the corrosion rate in units of "mm / year" from the reduced mass of each test piece (general corrosion rate)
I asked. Table 6 shows the results of each of the above tests together with the manufacturing conditions for a 20 mm thick steel plate.

【0098】[0098]

【表6】 [Table 6]

【0099】表6に示す結果からわかるように、化学組
成が本発明で規定する範囲内の試番B1〜B20 の鋼材は、
全面腐食速度が0.13mm/年以下と小さい。これに
対し、化学組成が本発明で規定する範囲を外れる試番B2
1〜B26の鋼材は、全面腐食速度が0.29mm/年以上
と大きい。
As can be seen from the results shown in Table 6, the steel materials of trial Nos. B1 to B20 having chemical compositions within the range specified by the present invention are
The general corrosion rate is as small as 0.13 mm / year or less. On the other hand, trial number B2 whose chemical composition is outside the range specified in the present invention
Steel materials 1 to B26 have a large general corrosion rate of 0.29 mm / year or more.

【0100】(実施例4)上記実施例3で述べた厚さが
20mmの各鋼板から、幅が100mm、長さが100
mm、厚さが4mmの試験片を採取し、次に述べる実船
のカーゴオイルタンク底板の環境を模擬した腐食試験に
供した。なお、この腐食試験も上記実施例3の場合と同
様に、原油がHS を含む場合を想定したものであ
る。
(Example 4) From each steel plate having a thickness of 20 mm described in Example 3 above, a width of 100 mm and a length of 100
A test piece having a thickness of 4 mm and a thickness of 4 mm was sampled and subjected to a corrosion test simulating the environment of the cargo oil tank bottom plate of the actual ship described below. This corrosion test is also based on the assumption that the crude oil contains H 2 S, as in the case of Example 3 above.

【0101】すなわち、上記の幅が100mm、長さが
100mm、厚さが4mmの試験片の幅、長さ方向それ
ぞれについて、中央部3mmをシールして残りの部分に
原油を1mmの厚さで塗布した後、中央部のシールを除
去して十字の形で鋼面を露出させた試験片の上に固体S
を0.2g/cm の割合で付着させて腐食試験に供
した。
That is, with respect to each of the width and length directions of the test piece having the width of 100 mm, the length of 100 mm, and the thickness of 4 mm, the central portion 3 mm is sealed and the remaining portion is filled with the crude oil with a thickness of 1 mm. After coating, remove the seal at the center and apply solid S onto the test piece with the steel surface exposed in the shape of a cross.
Was attached at a rate of 0.2 g / cm 2 and subjected to a corrosion test.

【0102】図3に、このようにして作製した腐食試験
片を示す。
FIG. 3 shows the corrosion test piece thus produced.

【0103】次に、人工海水を入れたガラス容器の底に
上記の腐食試験片を取り付け、ガス供給口を有するアク
リル製の蓋でガラス容器の開口上端を密閉した。次い
で、密閉後のガラス容器を恒温槽内に設置し、温度40
℃で1ヶ月間試験を行なった。その際、ガラス容器内の
人工海水に、バラスト時とフルロード時をシミュレート
し、前記のガス供給口より下記2種類のガスAとガスB
を2週間間隔で交互に吹き込んだ。
Next, the above corrosion test piece was attached to the bottom of a glass container containing artificial seawater, and the opening upper end of the glass container was sealed with an acrylic lid having a gas supply port. Then, the sealed glass container is placed in a constant temperature bath, and the temperature is kept at 40
The test was performed at 1 ° C for 1 month. At that time, artificial seawater in a glass container was simulated at the time of ballast and at the time of full load, and the following two kinds of gas A and gas B were supplied from the gas supply port.
Were alternately blown in at intervals of 2 weeks.

【0104】ガスA:体積%で、5%O−13%CO
−0.02%SO−残N 、 ガスB:体積%で、5%O−13%CO−0.02
%SO−0.25%HS−残N
Gas A: volume% 5% O 2 -13% CO
2 -0.02% SO 2 - residual N 2, gas B: volume%, 5% O 2 -13% CO 2 -0.02
% SO 2 -0.25% H 2 S- residual N 2.

【0105】1ヶ月の腐食試験の後、試験片の最大孔食
深さから孔食進展速度を求めた。表6には、上記の試験
結果を併せて示した。
After the corrosion test for one month, the pitting growth rate was determined from the maximum pitting depth of the test piece. Table 6 also shows the above test results.

【0106】表6から明らかなように、化学組成が本発
明で規定する範囲内にあり、しかも、前記 (1)式及び介
在物の規定を満たす試番B1〜B20 の鋼材は、孔食進展速
度が0.15mm/年以下と小さい。これに対し、化学
組成、介在物規定及び「Ap/C」の値の少なくとのい
ずれかが本発明で規定する範囲を外れる試番B21〜B26の
鋼材は、孔食進展速度が0.61mm/年以上と大き
い。
As is clear from Table 6, the steel materials of the trial numbers B1 to B20 having the chemical composition within the range specified by the present invention and satisfying the above-mentioned formula (1) and the inclusions had pitting corrosion progress. The speed is as small as 0.15 mm / year or less. On the other hand, the steel materials of trial Nos. B21 to B26 in which any one of the chemical composition, the inclusion definition, and the small value of "Ap / C" is out of the range defined by the present invention, have the pitting corrosion rate of 0.61 mm. / Larger than a year.

【0107】(実施例5)表7に示す化学組成を有する
14種類の鋼を真空溶解炉を用いて溶製し50kg鋼塊
とした後、通常の方法で熱間鍛造して厚さが120mm
のブロックを作製した。
Example 5 14 kinds of steels having the chemical compositions shown in Table 7 were melted in a vacuum melting furnace into a 50 kg steel ingot, which was then hot forged by a usual method to a thickness of 120 mm.
Block was prepared.

【0108】[0108]

【表7】 [Table 7]

【0109】次いで、上記鍛造によって得た厚さが12
0mmのブロックを、1150℃で2時間加熱してから
熱間圧延し、厚さ20mmの鋼板にした。なお、上記2
0mmの鋼板の製造条件は前記実施例1における「製造
法1」又は「製造法2」である。
Then, the thickness obtained by the above forging is 12
The 0 mm block was heated at 1150 ° C. for 2 hours and then hot-rolled into a steel plate having a thickness of 20 mm. In addition, the above 2
The manufacturing conditions for the 0 mm steel plate are the "manufacturing method 1" or the "manufacturing method 2" in the first embodiment.

【0110】実施例1の場合と同様の方法で、厚さが2
0mmの各鋼板からミクロ試験片を作製し、光学顕微鏡
による組織と介在物の調査を行った。
In the same manner as in Example 1, the thickness is 2
A micro test piece was prepared from each 0 mm steel plate, and the structure and inclusions were examined by an optical microscope.

【0111】又、上記の厚さが20mmの各鋼板から幅
が25mm、長さが50mm、厚さが4mmの試験片を
採取し、その表面に通常の方法で厚さ200μmのター
ルエポキシ樹脂の防食被膜を施し、実施例3の場合と同
じ条件の腐食試験に供した。
Further, a test piece having a width of 25 mm, a length of 50 mm and a thickness of 4 mm was taken from each of the steel plates having a thickness of 20 mm and the surface thereof was coated with a tar-epoxy resin having a thickness of 200 μm by a usual method. After applying an anticorrosion coating, it was subjected to a corrosion test under the same conditions as in Example 3.

【0112】4ヶ月の腐食試験の後、各試験片の減少質
量から「mm/年」単位での全面腐食速度を求めた。
After the 4-month corrosion test, the general corrosion rate in "mm / year" unit was determined from the reduced mass of each test piece.

【0113】表8に、上記の各試験結果を厚さ20mm
鋼板の製造条件とともに示す。
Table 8 shows the results of each of the above tests with a thickness of 20 mm.
Shown together with the steel plate manufacturing conditions.

【0114】[0114]

【表8】 [Table 8]

【0115】表8から明らかなように、化学組成が本発
明で規定する範囲内にあり、しかも、前記 (1)式及び介
在物の規定を満たす試番B27〜B35の鋼材は、全面腐食速
度が0.04mm/年以下と小さい。これに対し、化学
組成、介在物規定及び「Ap/C」の値の少なくとのい
ずれかが本発明で規定する範囲を外れる試番B36〜B40の
鋼材は、全面腐食速度が0.08mm/年以上と大き
い。
As is clear from Table 8, the steel materials of trial Nos. B27 to B35 whose chemical compositions are within the range specified by the present invention and which satisfy the above-mentioned formula (1) and inclusions have the general corrosion rate. Is as small as 0.04 mm / year or less. On the other hand, the steel materials of sample numbers B36 to B40 in which any one of the chemical composition, the inclusion definition, and the small value of "Ap / C" is out of the range defined by the present invention, the general corrosion rate is 0.08 mm / Big as over a year.

【0116】[0116]

【発明の効果】本発明の鋼材によれば、カーゴオイルタ
ンクの腐食環境における耐食性が向上し、メンテナンス
費用の大幅な削減が可能である。
According to the steel material of the present invention, the corrosion resistance of the cargo oil tank in the corrosive environment is improved, and the maintenance cost can be greatly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】Ni含有量と全面腐食速度の関係を示す図であ
る。
FIG. 1 is a diagram showing a relationship between a Ni content and a general corrosion rate.

【図2】酸性水による乾湿繰り返しの環境におけるCu
含有量と全面腐食速度との関係を示す図である。
FIG. 2 Cu in an environment of repeated dry and wet with acidic water
It is a figure which shows the relationship between content and general corrosion rate.

【図3】実施例4で用いた腐食試験片の形状を示す図で
ある。
FIG. 3 is a view showing the shape of a corrosion test piece used in Example 4.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】質量%で、C:0.01〜0.3%、S
i:0.02〜1%、Mn:0.05〜2%、P:0.
05%以下、S:0.01%以下、Ni:0.05〜3
%、Mo:1%以下、Cu:1%以下、Cr:2%以
下、W:1%以下、Ca:0.01%以下、Ti:0.
1%以下、Nb:0.1%以下、V:0.1%以下、
B:0.05%以下を含有し、残部Fe及び不純物から
なるカーゴオイルタンク用鋼材。
1. In mass%, C: 0.01 to 0.3%, S
i: 0.02 to 1%, Mn: 0.05 to 2%, P: 0.
05% or less, S: 0.01% or less, Ni: 0.05 to 3
%, Mo: 1% or less, Cu: 1% or less, Cr: 2% or less, W: 1% or less, Ca: 0.01% or less, Ti: 0.
1% or less, Nb: 0.1% or less, V: 0.1% or less,
B: A steel material for a cargo oil tank containing 0.05% or less and the balance Fe and impurities.
【請求項2】表面が防食被膜で覆われている請求項1に
記載のカーゴオイルタンク用鋼材。
2. The steel material for a cargo oil tank according to claim 1, wherein the surface is covered with an anticorrosion coating.
【請求項3】質量%で、C:0.01〜0.3%、S
i:0.02〜1%、Mn:0.05〜2%、P:0.
05%以下、S:0.01%以下、Ni:0.01〜3
%、Mo:1%以下、Cu:2%以下、Cr:2%以
下、W:1%以下、Ca:0.01%以下、Ti:0.
1%以下、Nb:0.1%以下、V:0.1%以下、
B:0.05%以下、Sb:0.5%以下、Sn:0.
5%以下、Al:0.07%以下を含有し、残部がFe
及び不純物からなるカーゴオイルタンク用鋼材。
3. In mass%, C: 0.01 to 0.3%, S
i: 0.02 to 1%, Mn: 0.05 to 2%, P: 0.
05% or less, S: 0.01% or less, Ni: 0.01 to 3
%, Mo: 1% or less, Cu: 2% or less, Cr: 2% or less, W: 1% or less, Ca: 0.01% or less, Ti: 0.
1% or less, Nb: 0.1% or less, V: 0.1% or less,
B: 0.05% or less, Sb: 0.5% or less, Sn: 0.
5% or less, Al: 0.07% or less, balance Fe
Steel material for cargo oil tanks, which contains impurities.
【請求項4】質量%で、C:0.01〜0.3%、S
i:0.02〜1%、Mn:0.05〜2%、P:0.
05%以下、S:0.01%以下、Ni:0.01〜3
%、Cu:0.01〜2%、Mo:1%以下、W:1%
以下、Ca:0.01%以下、Sb:0.5%以下、S
n:0.5%以下、Ti:0.1%以下、Nb:0.1
%以下、V:0.1%以下、B:0.05%以下、C
r:0.05%以下、Al:0.07%以下を含有し、
残部がFe及び不純物からなり、粒径が30μmを超え
る介在物が1cm あたり30個未満で、且つ、下記
(1)式を満足するカーゴオイルタンク用鋼材。 Ap/C≦130・・・・・(1) ここで、上記 (1)式中におけるApは組織に占めるパー
ライトの%単位での割合、Cは炭素の質量%での含有量
を表す。
4. C: 0.01 to 0.3%, S in mass%
i: 0.02 to 1%, Mn: 0.05 to 2%, P: 0.
05% or less, S: 0.01% or less, Ni: 0.01 to 3
%, Cu: 0.01 to 2%, Mo: 1% or less, W: 1%
Below, Ca: 0.01% or less, Sb: 0.5% or less, S
n: 0.5% or less, Ti: 0.1% or less, Nb: 0.1
% Or less, V: 0.1% or less, B: 0.05% or less, C
Contains r: 0.05% or less, Al: 0.07% or less,
The balance consists of Fe and impurities, the number of inclusions having a particle size of more than 30 μm is less than 30 per 1 cm 2 , and
Steel material for cargo oil tank that satisfies the formula (1). Ap / C ≦ 130 (1) Here, Ap in the above formula (1) represents the ratio of pearlite in the structure in%, and C represents the content of carbon in mass%.
【請求項5】Moの含有量が0.01〜1%、Wの含有
量が0.01〜1%、Sbの含有量が0.01〜0.5
%、Snの含有量が0.01〜0.5%の少なくともい
ずれかを満たす請求項4に記載のカーゴオイルタンク用
鋼材。
5. The Mo content is 0.01 to 1%, the W content is 0.01 to 1%, and the Sb content is 0.01 to 0.5.
%, Sn content satisfies at least any one of 0.01-0.5%, The steel material for cargo oil tanks of Claim 4.
【請求項6】Tiの含有量が0.005〜0.1%、N
bの含有量が0.002〜0.1%、Vの含有量が0.
01〜0.1%、Bの含有量が0.0002〜0.05
%の少なくともいずれかを満たす請求項4又は5に記載
のカーゴオイルタンク用鋼材。
6. A Ti content of 0.005 to 0.1%, N
b content is 0.002-0.1%, V content is 0.
01-0.1%, B content 0.0002-0.05
The steel material for cargo oil tank according to claim 4 or 5, which satisfies at least any one of the percentages.
【請求項7】請求項3から6までのいずれかに記載され
たカーゴオイルタンク用鋼材であって、少なくとも片面
に防食処理が施された鋼材。
7. A steel material for a cargo oil tank according to any one of claims 3 to 6, wherein at least one surface thereof is subjected to anticorrosion treatment.
JP2002071834A 2001-07-04 2002-03-15 Steel material for cargo oil tanks Expired - Fee Related JP3753088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002071834A JP3753088B2 (en) 2001-07-04 2002-03-15 Steel material for cargo oil tanks

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-203331 2001-07-04
JP2001203331 2001-07-04
JP2002071834A JP3753088B2 (en) 2001-07-04 2002-03-15 Steel material for cargo oil tanks

Publications (2)

Publication Number Publication Date
JP2003082435A true JP2003082435A (en) 2003-03-19
JP3753088B2 JP3753088B2 (en) 2006-03-08

Family

ID=26618111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002071834A Expired - Fee Related JP3753088B2 (en) 2001-07-04 2002-03-15 Steel material for cargo oil tanks

Country Status (1)

Country Link
JP (1) JP3753088B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004337930A (en) * 2003-05-16 2004-12-02 Nippon Steel Corp Method for submerged-arc-welding steel for crude oil tank
WO2005100625A1 (en) * 2004-04-14 2005-10-27 Sumitomo Metal Industries, Ltd. Steel product for cargo oil tank
JP2007046148A (en) * 2005-07-15 2007-02-22 Jfe Steel Kk Corrosion resistant steel for shipbuilding
WO2007116593A1 (en) 2006-03-30 2007-10-18 Jfe Steel Corporation Corroson-resistant steel material for crude oil storage tank, and crude oil storage tank
JP2008174768A (en) * 2007-01-16 2008-07-31 Sumitomo Metal Ind Ltd Corrosion-resistant steel for hold of coal or ore carrier
WO2009041703A1 (en) * 2007-09-25 2009-04-02 Jfe Steel Corporation Hot-rolled shape steel for crude oil tanks and process for manufacturing the same
JP2009097083A (en) * 2007-09-25 2009-05-07 Jfe Steel Corp Hot-rolled shape steel for crude oil tank and process for manufacturing the same
JP2009127076A (en) * 2007-11-22 2009-06-11 Sumitomo Metal Ind Ltd Corrosion resistant steel product for cargo oil tank
WO2010074307A1 (en) 2008-12-24 2010-07-01 Jfeスチール株式会社 Corrosion-resistant steel material for crude oil tanker
WO2010087509A1 (en) 2009-01-30 2010-08-05 Jfeスチール株式会社 Corrosion resistant steel for crude oil tank, manufacturing method therefor, and crude oil tank
US7875130B2 (en) 2002-06-19 2011-01-25 Nippon Steel Corporation Crude oil tank comprising a corrosion resistant steel alloy
JP2011153382A (en) * 2005-07-15 2011-08-11 Jfe Steel Corp Corrosion resistant steel for shipbuilding
US8691030B2 (en) 2007-06-18 2014-04-08 Exxonmobil Upstream Research Company Low alloy steels with superior corrosion resistance for oil country tubular goods
JP2014111807A (en) * 2012-12-05 2014-06-19 Jfe Steel Corp Steel material having excellent alcohol corrosion resistance
JP2014111806A (en) * 2012-12-05 2014-06-19 Jfe Steel Corp Steel material having excellent alcohol corrosion resistance
EP1990437A4 (en) * 2006-02-27 2015-03-11 Jfe Steel Corp Corrosion-resistant steel material for ship and vessel
CN104878321A (en) * 2015-04-21 2015-09-02 中信重工机械股份有限公司 Process for melting 25Cr2Ni4MoV rotor steel
KR20190062479A (en) 2016-10-06 2019-06-05 제이에프이 스틸 가부시키가이샤 Crude oil tankers and crude oil tankers
KR20200080315A (en) 2017-11-24 2020-07-06 제이에프이 스틸 가부시키가이샤 Crude oil tanker Corrosion resistant steel for upper and bottom plates, and crude oil tanker
CN113005370A (en) * 2021-02-26 2021-06-22 四川金恒液压有限公司 Steel for hydraulic support and production method thereof
RU2813053C1 (en) * 2023-06-19 2024-02-06 Федеральное государственное бюджетное образовательное учреждение высшего образования "Удмуртский государственный университет" Method for producing corrosion-resistant steel

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7922838B2 (en) 2002-06-19 2011-04-12 Nippon Steel Corporation Crude oil tank fabricated from steel plate
US7875130B2 (en) 2002-06-19 2011-01-25 Nippon Steel Corporation Crude oil tank comprising a corrosion resistant steel alloy
JP2004337930A (en) * 2003-05-16 2004-12-02 Nippon Steel Corp Method for submerged-arc-welding steel for crude oil tank
WO2005100625A1 (en) * 2004-04-14 2005-10-27 Sumitomo Metal Industries, Ltd. Steel product for cargo oil tank
JP2007046148A (en) * 2005-07-15 2007-02-22 Jfe Steel Kk Corrosion resistant steel for shipbuilding
JP2011153382A (en) * 2005-07-15 2011-08-11 Jfe Steel Corp Corrosion resistant steel for shipbuilding
EP1990437A4 (en) * 2006-02-27 2015-03-11 Jfe Steel Corp Corrosion-resistant steel material for ship and vessel
WO2007116593A1 (en) 2006-03-30 2007-10-18 Jfe Steel Corporation Corroson-resistant steel material for crude oil storage tank, and crude oil storage tank
JP2008174768A (en) * 2007-01-16 2008-07-31 Sumitomo Metal Ind Ltd Corrosion-resistant steel for hold of coal or ore carrier
DE112008001635B4 (en) * 2007-06-18 2014-07-31 Exxonmobil Upstream Research Co. Low alloy steels with superior corrosion resistance for tubular oil products
US8691030B2 (en) 2007-06-18 2014-04-08 Exxonmobil Upstream Research Company Low alloy steels with superior corrosion resistance for oil country tubular goods
JP2009097083A (en) * 2007-09-25 2009-05-07 Jfe Steel Corp Hot-rolled shape steel for crude oil tank and process for manufacturing the same
WO2009041703A1 (en) * 2007-09-25 2009-04-02 Jfe Steel Corporation Hot-rolled shape steel for crude oil tanks and process for manufacturing the same
JP2009127076A (en) * 2007-11-22 2009-06-11 Sumitomo Metal Ind Ltd Corrosion resistant steel product for cargo oil tank
WO2010074307A1 (en) 2008-12-24 2010-07-01 Jfeスチール株式会社 Corrosion-resistant steel material for crude oil tanker
WO2010087509A1 (en) 2009-01-30 2010-08-05 Jfeスチール株式会社 Corrosion resistant steel for crude oil tank, manufacturing method therefor, and crude oil tank
JP2014111807A (en) * 2012-12-05 2014-06-19 Jfe Steel Corp Steel material having excellent alcohol corrosion resistance
JP2014111806A (en) * 2012-12-05 2014-06-19 Jfe Steel Corp Steel material having excellent alcohol corrosion resistance
CN104878321A (en) * 2015-04-21 2015-09-02 中信重工机械股份有限公司 Process for melting 25Cr2Ni4MoV rotor steel
KR20190062479A (en) 2016-10-06 2019-06-05 제이에프이 스틸 가부시키가이샤 Crude oil tankers and crude oil tankers
KR20200080315A (en) 2017-11-24 2020-07-06 제이에프이 스틸 가부시키가이샤 Crude oil tanker Corrosion resistant steel for upper and bottom plates, and crude oil tanker
KR102430613B1 (en) 2017-11-24 2022-08-08 제이에프이 스틸 가부시키가이샤 Corrosion-resistant steel for upper deck and bottom plate of crude oil tanker, and crude oil tanker
CN113005370A (en) * 2021-02-26 2021-06-22 四川金恒液压有限公司 Steel for hydraulic support and production method thereof
RU2813053C1 (en) * 2023-06-19 2024-02-06 Федеральное государственное бюджетное образовательное учреждение высшего образования "Удмуртский государственный университет" Method for producing corrosion-resistant steel

Also Published As

Publication number Publication date
JP3753088B2 (en) 2006-03-08

Similar Documents

Publication Publication Date Title
JP2003082435A (en) Steel for cargo oil tank
JP4898543B2 (en) Steel sheet with excellent pit resistance and method for producing the same
JP4449691B2 (en) Steel material for cargo oil tanks
JP4941620B2 (en) Corrosion resistant steel for cargo oil tanks
CN108474095B (en) High-strength hot-dip galvanized steel material having excellent plating properties and method for producing same
KR101023634B1 (en) Corroson-resistant steel material for crude oil storage tank, and crude oil storage tank
JP4577158B2 (en) Corrosion resistant steel for crude oil tanks
JP2007270196A (en) Steel material for cargo oil tank
KR20160049023A (en) Corrosion resistant steel for crude oil tank, manufacturing method therefor, and crude oil tank
KR101715581B1 (en) Steel material, ship ballast tank and hold formed using said steel material, and ship equipped with said ballast tank or hold
JP5481980B2 (en) Marine steel with excellent film swell resistance
JP2000017381A (en) Corrosion resistant steel for shipbuilding
JP5145897B2 (en) Corrosion resistant steel for cargo oil tanks
US11401567B2 (en) Manufacturing method of steel sheet
JP2007262441A (en) Steel for crude oil tank and its production method
JP2010222665A (en) Corrosion resistant shape steel member for crude oil tank and method for producing the same
CN112272712A (en) Corrosion-resistant steel for cabin of special coal ship or mine/coal ship and cabin
JP2013256701A (en) Steel material for vessel ballast tank excellent in coating film blistering resistance
JP4243863B2 (en) Welded joint for crude oil tank and crude oil tank
JP6048104B2 (en) Corrosion resistant steel for holding coal ships and coal / ore combined ships
JP2008133536A (en) Steel having excellent corrosion resistance for ship use
JPH06228711A (en) Alloy excellent in molten zinc corrosion resistance
JP5949526B2 (en) Corrosion resistant steel for holding coal ships and coal / ore combined ships
JP3879581B2 (en) Marine steel with excellent coating film peel resistance and high heat input weld toughness, and method for producing the same
JP2018150604A (en) Steel and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040426

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3753088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees