JP4898543B2 - Steel sheet with excellent pit resistance and method for producing the same - Google Patents

Steel sheet with excellent pit resistance and method for producing the same Download PDF

Info

Publication number
JP4898543B2
JP4898543B2 JP2007121892A JP2007121892A JP4898543B2 JP 4898543 B2 JP4898543 B2 JP 4898543B2 JP 2007121892 A JP2007121892 A JP 2007121892A JP 2007121892 A JP2007121892 A JP 2007121892A JP 4898543 B2 JP4898543 B2 JP 4898543B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
content
steel
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007121892A
Other languages
Japanese (ja)
Other versions
JP2008274379A (en
Inventor
弘樹 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007121892A priority Critical patent/JP4898543B2/en
Priority to CN2008100903879A priority patent/CN101298645B/en
Priority to KR1020080040428A priority patent/KR100993407B1/en
Publication of JP2008274379A publication Critical patent/JP2008274379A/en
Application granted granted Critical
Publication of JP4898543B2 publication Critical patent/JP4898543B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、原油を輸送するタンクや貯蔵するタンク等の構造材として用いられる鋼板に関するものであり、特に原油タンカー等のタンク底板で発生する局部腐食(孔食またはピット)の発生を効果的に防止でき、原油タンクの素材として有用な耐ピット性に優れた鋼板に関するものである。   The present invention relates to a steel plate used as a structural material such as a tank for transporting crude oil or a tank for storing oil, and in particular, effectively generates local corrosion (pitting corrosion or pits) generated in a tank bottom plate of a crude oil tanker or the like. The present invention relates to a steel plate that can be prevented and has excellent pit resistance that is useful as a material for crude oil tanks.

上記原油タンク等の素材として用いられている鋼板は、海水による塩分や高温多湿に曝されることから腐食損傷を受けることが多い。こうした腐食は、浸水や沈没などの海難事故を招く恐れがあることから、鋼材には何らかの防食手段を施す必要がある。これまで行われている防食手段としては、(a)塗装や(b)電気防食等が従来からよく知られている。   Steel plates used as raw materials for the crude oil tank and the like are often corroded because they are exposed to salt from seawater and high temperature and humidity. Since such corrosion may cause marine accidents such as inundation and sinking, it is necessary to apply some anticorrosion means to the steel. Conventionally, (a) coating, (b) cathodic protection, and the like are well known as anticorrosion means used so far.

このうち重塗装に代表される塗装では、塗膜欠陥が存在する可能性が高く、製造工程における衝突等によって塗膜に傷が付く場合もあるため、素地鋼材が露出してしまうことが多い。このような鋼材露出部においては、局部的にかつ集中的に鋼材が腐食してしまい、内容されている石油系液体燃料の早期漏洩に繋がることになる。   Of these, in coatings represented by heavy coating, there is a high possibility that coating film defects exist, and the coating film may be damaged due to a collision or the like in the manufacturing process, so that the base steel material is often exposed. In such a steel exposed portion, the steel material corrodes locally and intensively, leading to early leakage of the petroleum-based liquid fuel contained therein.

一方、電気防食においては、海水中に完全に浸漬された部位に対しては、非常に有効であるが、大気中で海水飛沫を受ける部位などでは防食に必要な電気回路が形成されず、防食効果が十分に発揮されないことがある。また、防食用の流電陽極が異常消耗や脱落して消失した場合には、直ちに激しい腐食が進行することがある。   On the other hand, in the anti-corrosion, it is very effective for the part completely immersed in the seawater. However, in the part that receives the seawater splash in the atmosphere, the electric circuit necessary for the anticorrosion is not formed, and the anticorrosion. The effect may not be fully demonstrated. In addition, when the galvanic anode for anticorrosion disappears due to abnormal consumption or dropping, severe corrosion may immediately proceed.

上記技術の他、鋼材自体の耐食性を向上させるものとして例えば特許文献1のような技術も提案されている。この技術では、鋼材の化学成分を適切に調整することによって、耐食性を優れたものとし、無塗装であっても使用できる造船用耐食鋼が開示されている。しかしながら、この技術では、Mgの含有量を比較的多くするものであるので、鋼の製造安定性が阻害される(例えば、鋳造時の浸漬ノズル詰まり発生)ことや、合金元素を添加する際に要する製造コストの増大という問題がある。   In addition to the above technique, for example, a technique as disclosed in Patent Document 1 has been proposed as a means for improving the corrosion resistance of the steel material itself. This technology discloses a corrosion-resistant steel for shipbuilding that has excellent corrosion resistance by appropriately adjusting the chemical composition of the steel material and can be used even without coating. However, in this technique, since the content of Mg is relatively large, the production stability of the steel is hindered (for example, the occurrence of clogging of the immersion nozzle at the time of casting), or when adding an alloy element There is a problem of an increase in manufacturing cost.

またこの技術では、併用することが記載されているプライマー塗装等の防食皮膜を形成することによって腐食量を軽減する場合には、施工コストがかかるという問題がある。しかも、防食皮膜施工時のミクロな欠陥が発生したり、溶接継手部等のように局部的に塗装が薄くなりやすい部分等を中心に局部腐食が不可避的に発生・進展するので、通常の使用では長くて5〜10年で裸使用と大差がないほど腐食が進行することもある。更に、防食皮膜が劣化した後では、局部腐食(孔食:ピット腐食)によってピットの深さの進展速度が裸使用と大差がないという問題がある。   Moreover, in this technique, when reducing the amount of corrosion by forming an anticorrosion film such as primer coating which is described to be used in combination, there is a problem that construction costs are required. In addition, micro-defects at the time of anti-corrosion coating are generated, and local corrosion inevitably occurs and develops mainly in areas where the coating tends to be thin, such as welded joints, so normal use Then, corrosion may progress so that it is not much different from naked use in 5 to 10 years. Furthermore, after the anticorrosion film is deteriorated, there is a problem that the rate of progress of the pit depth is not much different from that of bare use due to local corrosion (pitting corrosion: pit corrosion).

特許文献2には、Ni,CuおよびMoを必須成分として含有し、鋼板表面近傍の内部酸化層が2μm以下で、且つ該内部酸化層上に厚さ2μm以上のNi,CuおよびMoの濃化層を形成することによって、耐候性および疲労特性を向上させた鋼板について開示されている。   Patent Document 2 contains Ni, Cu, and Mo as essential components, and the inner oxide layer in the vicinity of the steel sheet surface is 2 μm or less, and the concentration of Ni, Cu, and Mo is 2 μm or more on the inner oxide layer. A steel sheet having improved weather resistance and fatigue properties by forming a layer is disclosed.

しかしながらこの技術では、上記のような内部酸化層や濃化層を形成するには、特別に炉内温度を高温(例えば、1300℃)にする必要があり、しかも長時間(例えば4〜5時間)の保持が必要となり、バッチ式加熱炉を使用せざるを得ず、生産性や経済性に優れる連続式加熱炉を適用できないという問題がある。また、こうした処理によって得られた鋼板であっても、必ずしもピット腐食に優れた特性(以下、この特性を「耐ピット性」と呼ぶ)を発揮しているとはいえず、更なる耐食性向上が要求される。   However, in this technique, in order to form the internal oxide layer or the concentrated layer as described above, the furnace temperature needs to be raised to a high temperature (for example, 1300 ° C.), and for a long time (for example, 4 to 5 hours). ) Must be maintained, a batch-type heating furnace must be used, and there is a problem that a continuous heating furnace excellent in productivity and economy cannot be applied. Moreover, even steel sheets obtained by such treatment do not necessarily exhibit excellent pit corrosion characteristics (hereinafter referred to as “pit resistance”), and further improvement in corrosion resistance can be achieved. Required.

原油タンクの素材として、その耐食性を向上させたものとして、例えば特許文献3のような技術も提案されている。この技術では、化学成分組成を適切に調整することによって、原油を貯蔵するタンクの素材の耐食性を向上させるものである。この技術においては、全面腐食と共に「すきま腐食」のような局部腐食についても考慮されたものであるが、必ずしも良好な耐ピット性を発揮しているとはいえない。
特開2000−17381号公報 特開2000−54066号公報 特開2001−214236号公報
As a material for a crude oil tank, for example, a technique as disclosed in Patent Document 3 has been proposed as a material having improved corrosion resistance. In this technique, the corrosion resistance of the raw material of the tank for storing crude oil is improved by appropriately adjusting the chemical composition. In this technique, local corrosion such as “crevice corrosion” as well as overall corrosion is taken into consideration, but it cannot always be said that good pit resistance is exhibited.
Japanese Patent Laid-Open No. 2000-17371 JP 2000-54066 A JP 2001-214236 A

本発明は上記の様な事情に着目してなされたものであって、その目的は、塗装や電気防食を施さなくても実用化できる耐ピット性に優れ、原油タンクに適用したときにおいても優れた耐ピット性を発揮することのできる鋼板を提供することにある。   The present invention has been made paying attention to the circumstances as described above, and its purpose is excellent in pit resistance that can be put into practical use without painting or cathodic protection, and also when applied to a crude oil tank. An object of the present invention is to provide a steel plate that can exhibit high pit resistance.

上記目的を達成することのできた本発明の鋼板とは、C:0.03〜0.2%(「質量%」の意味、化学成分組成について以下同じ)、Si:0.05〜0.5%、Mn:0.4〜1.8%、P:0.04%以下(0%を含まない)、S:0.040%以下(0%を含まない)、Al:0.01〜0.10%、N:0.002〜0.0080%、Cu:0.1〜0.5%およびNi:0.1〜0.50%を満たし、残部がFeおよび不可避的不純物からなり、且つ鋼板表面から深さ10μmまでの旧オーステナイト粒界に、CuおよびNiの合計含有量が1.2%以上の濃化領域が存在すると共に、該濃化領域の板厚方向断面における面積率が%以上である点に要旨を有するものである。 The steel sheet of the present invention that has achieved the above object is C: 0.03 to 0.2% (meaning “mass%”, the same applies to the chemical composition), Si: 0.05 to 0.5 %, Mn: 0.4 to 1.8%, P: 0.04% or less (not including 0%), S: 0.040% or less (not including 0%), Al: 0.01 to 0 .10%, N: 0.002 to 0.0080%, Cu: 0.1 to 0.5% and Ni: 0.1 to 0.50%, with the balance being Fe and inevitable impurities, and In the prior austenite grain boundary from the steel sheet surface to a depth of 10 μm, there is a concentrated region where the total content of Cu and Ni is 1.2% or more, and the area ratio in the cross section in the thickness direction of the concentrated region is 5 It has a gist in that it is at least%.

本発明の鋼板においては、必要によって、更に(a)Ti:0.005〜0.05%、(b)Sn:0.05%以下(0%を含まない)、Bi:0.06%以下(0%を含まない)、Mg:0.004%以下(0%を含まない)およびCo:0.5%以下(0%を含まない)よりなる群から選ばれる1種以上、(c)Sb:0.04%以下(0%を含まない)、(d)Ca:0.005%以下(0%を含まない)および/またはZr:0.006%以下(0%を含まない)、(e)Mo:0.5%以下(0%を含まない)、Cr:0.5%以下(0%を含まない)、W:0.50%以下(0%を含まない)、Nb:0.05%以下(0%を含まない)、V:0.10%以下(0%を含まない)およびB:0.005%以下(0%を含まない)よりなる群から選ばれる1種以上、等を含有させることも有効であり、含有させる成分の種類に応じて船舶用鋼材の特性が更に改善されることになる。   In the steel sheet of the present invention, if necessary, (a) Ti: 0.005 to 0.05%, (b) Sn: 0.05% or less (not including 0%), Bi: 0.06% or less (Not including 0%), Mg: not more than 0.004% (not including 0%) and Co: not less than 0.5% (not including 0%), (c) Sb: 0.04% or less (excluding 0%), (d) Ca: 0.005% or less (not including 0%) and / or Zr: 0.006% or less (not including 0%), (E) Mo: 0.5% or less (not including 0%), Cr: 0.5% or less (not including 0%), W: 0.50% or less (not including 0%), Nb: 0.05% or less (not including 0%), V: 0.10% or less (not including 0%), and B: 0.005% or less (not including 0%) Least one member selected from Li Cheng group, etc. is also effective to contain, so that the characteristics of marine steel according to the type of component to be contained is further improved.

本発明の鋼板は、原油輸送用タンクまたは原油貯蔵用タンクの素材として用いられたときであっても、その腐食環境下において優れた耐ピット腐食性を発揮するものとなる。   Even when the steel plate of the present invention is used as a raw material for a crude oil transport tank or a crude oil storage tank, it exhibits excellent pit corrosion resistance in the corrosive environment.

本発明の鋼板を製造するに当っては、酸素濃度が0.5〜3.0容量%に制御された雰囲気温度が1000℃以上の加熱炉内に鋼板を80分以上保持し、鋼板の表面温度が1000℃以上の状態で加熱炉から取り出すようにすれば良い。   In manufacturing the steel sheet of the present invention, the steel sheet is held for 80 minutes or more in a heating furnace having an oxygen temperature controlled to 0.5 to 3.0% by volume and having an atmosphere temperature of 1000 ° C. or more, and the surface of the steel sheet What is necessary is just to make it take out from a heating furnace in the state whose temperature is 1000 degreeC or more.

本発明の鋼板においては、化学成分組成を適切に調整すると共に、鋼板表面にCuとNiが濃化した領域を形成することによって、塗装および電気防食を施さなくても実用化できる耐ピット性に優れた鋼板が実現でき、こうした鋼板は、原油の輸送用、貯蔵用のタンクの素材として有用である。   In the steel plate of the present invention, the chemical component composition is appropriately adjusted, and by forming an area where Cu and Ni are concentrated on the steel plate surface, the pit resistance can be put into practical use without applying coating and cathodic protection. An excellent steel plate can be realized, and such a steel plate is useful as a material for tanks for transporting and storing crude oil.

CuおよびNiは、耐食性向上に有効な元素であることは知られているが、多量に添加した場合には、溶接性が劣化するばかりでなく、特にNiは高価であり、製造コストを増大させるという結果を招く。本発明者らは、こうした状況の下、耐食性(特に耐ピット性)に優れた鋼板の実現を目指して様々な角度から検討した。   Cu and Ni are known to be effective elements for improving the corrosion resistance. However, when added in a large amount, not only the weldability is deteriorated, but also Ni is expensive and increases the production cost. Results in. Under these circumstances, the present inventors have studied from various angles with the aim of realizing a steel sheet having excellent corrosion resistance (particularly pit resistance).

その結果、CuおよびNiを鋼板中に多量に含有させるのではなく、鋼板表層部にのみ濃化させてやればよいことを見出した。また鋼板表層部にCuおよびNiを濃化させる手段としては、鋼板加熱時の適切な温度範囲と酸素濃度を特定してやれば、圧延中に生成する二次スケールが形成される非常に短い時間で効率良くCuとNiを濃化させた領域(以下、「濃化領域」と呼ぶことがある)が形成されることを見出し、本発明を完成した。   As a result, it has been found that Cu and Ni should not be contained in a large amount in the steel sheet, but should be concentrated only in the surface layer portion of the steel sheet. Moreover, as a means for concentrating Cu and Ni in the steel sheet surface layer portion, if an appropriate temperature range and oxygen concentration at the time of heating the steel sheet are specified, the secondary scale generated during rolling can be formed in a very short time. The inventors have found that a region where Cu and Ni are well concentrated (hereinafter, sometimes referred to as “enriched region”) is formed, and the present invention has been completed.

適切な条件で加熱した場合、鋼板中に本来存在していたCuおよびNiは、スケール中に殆ど固溶しないので、加熱時の酸化が進行するにつれて鋼板表面(地金部)に濃縮(濃化)されることになる。本発明者が検討したところ、圧延中の二次スケール生成時に、CuおよびNiは二次スケール部と地金部の界面直下、および地金部で最表面に位置するオーステナイト結晶粒の粒界界面に濃縮することが判明した。その濃化領域は非常に小さいものであるが、耐ピット性を著しく向上させる上で極めて有効であることが確認できた。   When heated under appropriate conditions, Cu and Ni that originally existed in the steel sheet are hardly dissolved in the scale, so as the oxidation during heating proceeds, it concentrates (concentrates) on the steel sheet surface (metal part). ) Will be. When the present inventor examined, at the time of secondary scale generation during rolling, Cu and Ni are immediately below the interface between the secondary scale part and the metal part, and the grain boundary interface of the austenite grain located on the outermost surface in the metal part It was found to concentrate. Although the concentration region is very small, it has been confirmed that it is extremely effective in remarkably improving the pit resistance.

本発明における上記濃化領域は、二次スケール生成時の濃縮を利用するものであるので、拡散速度の速い粒界拡散によってCuおよびNiが濃化しているものと推定され、その結果として、濃化の形態が地金部表面から均一の厚さを有する層状に形成されているのではなく、網目状に濃化領域が存在する形態を呈するものとなる。また、CuおよびNiの含有量は微量であるので、必ずしも皮膜のように連続して存在する訳ではなく、連続性が途切れているような状態となっている部分も観察される。しかしながら、CuおよびNiの濃化領域が非連続的に存在しているような場合においても、良好な耐ピット性を発揮することから、特に膜状(層状)に存在している必要はなく、上記のようなCuおよびNiの「濃化領域」が存在すること自体が重要な要件である。   Since the concentration region in the present invention uses concentration at the time of secondary scale generation, it is estimated that Cu and Ni are concentrated by grain boundary diffusion with a high diffusion rate. Instead of being formed in a layer shape having a uniform thickness from the surface of the base metal part, the form of the thickening exhibits a form in which the concentrated region exists in a mesh shape. Further, since the contents of Cu and Ni are very small, they do not always exist like a film, and a portion where the continuity is interrupted is also observed. However, even in the case where Cu and Ni enriched regions are discontinuously present, since they exhibit good pit resistance, it is not particularly necessary to be present in a film form (layer form) The existence of the “concentration region” of Cu and Ni as described above is an important requirement.

本発明者が検討したところによれば、同一の鋼板から採取したサンプルを用いた場合であっても表層部を含むサンプルと、表面を研削したサンプルでは耐ピット性における最大ピット深さ(後記実施例の測定方法参照)が、明らかに異なることが判明した。図1は、後記表1に示す通常鋼(鋼種J)と本発明鋼(鋼種A)を用いて、鋼板の形態が最大ピット深さに与える影響を比較して示した棒グラフである。   According to a study by the present inventor, even in the case of using a sample collected from the same steel plate, the maximum pit depth in the pit resistance in the sample including the surface layer part and the sample whose surface is ground (described later) The measurement method in the example) was clearly different. FIG. 1 is a bar graph showing a comparison of the influence of the form of the steel sheet on the maximum pit depth using the normal steel (steel type J) and the steel of the present invention (steel type A) shown in Table 1 below.

この結果から明らかなように、表層部が存在するものでは、表層部がないものに比べて、最大ピット深さが約2/3と小さくなることが分かる。このサンプル(鋼種A)のCuおよびNi濃化量をEPMA(Electoron Probe Microanalyzer)によって測定したところ、鋼板(母材)のCuおよびNiの含有量が夫々0.3%、0.35%であるのに対して、表層部[最表面の黒皮部(二次スケール部)を除く]には、表面からわずか5〜10μm程度の深さまでではあるが、CuおよびNiが濃化している領域が存在することが判明したのである。また、この領域のCuおよびNiの含有量は、鋼板の含有量に対して2〜3倍程度、濃度に換算して夫々0.7〜1.0%程度であることが判明したのである。   As is clear from this result, the maximum pit depth is reduced to about 2/3 when the surface layer portion is present, compared to the case without the surface layer portion. When the Cu and Ni concentration of this sample (steel type A) was measured by EPMA (Electron Probe Microanalyzer), the Cu and Ni contents of the steel plate (base material) were 0.3% and 0.35%, respectively. On the other hand, the surface layer portion [excluding the outermost black skin portion (secondary scale portion)] has a region where Cu and Ni are concentrated, although the depth is only about 5 to 10 μm from the surface. It was found to exist. Further, it has been found that the Cu and Ni contents in this region are about 2 to 3 times the content of the steel sheet and about 0.7 to 1.0% in terms of concentration.

こうした現象は、鋼板のCuおよびNiの含有量を増加させて耐ピット性を検討した場合の最大ピット深さに非常に対応しており、表層部のわずかな領域ではあるが、表層部に濃化したCuおよびNiが耐ピット性を大きく向上させているものと考えることができる。黒皮部(二次スケール部)の組成をEPMAにて測定した結果、主としてFeとOのみにて構成されており、その他の元素は殆ど含まれておらず、従来の鋼板の裸耐食性(耐ピット性)が劣悪であることから判断すると、表層部の二次スケール層自体には耐ピット性を向上させる効果は全く認められず、耐ピット性の向上因子はCuおよびNiの濃化領域の存在にあると判断できた。   Such a phenomenon corresponds very much to the maximum pit depth when the pit resistance is examined by increasing the Cu and Ni contents of the steel sheet, and although it is a small region of the surface layer portion, it is concentrated in the surface layer portion. It can be considered that the converted Cu and Ni greatly improve the pit resistance. As a result of measuring the composition of the black skin part (secondary scale part) with EPMA, it is mainly composed only of Fe and O and contains almost no other elements. Judging from the fact that the pit property is inferior, the secondary scale layer itself of the surface layer portion has no effect of improving the pit resistance, and the improvement factor of the pit resistance is the concentration of Cu and Ni. I was able to judge that there was.

ところで、鋼板表面に形成されるスケール層は2種類存在する。その一つは、鋼片加熱時に形成される一次スケールであり、もう一つは圧延中に形成される二次スケールと呼ばれるものである。しかしながら、二次スケールは圧延中という分単位の非常に短時間で生成するものであるため、当該元素を濃縮させるために必要な拡散時間を確保し難いという問題がある。こうした点について、本発明者が検討したところ、一次スケールが形成される加熱時に予め当該元素をオーステナイト粒界に濃縮させてやることで、二次スケール生成時の非常に短時間においても効率的にCuおよびNiを濃縮させることが可能であることを見出した。   There are two types of scale layers formed on the steel plate surface. One of them is a primary scale formed during heating of a steel slab, and the other is called a secondary scale formed during rolling. However, since the secondary scale is generated in a very short time of a minute unit during rolling, there is a problem that it is difficult to secure a diffusion time necessary for concentrating the element. As a result of the study by the present inventors, it is possible to efficiently concentrate the element to the austenite grain boundaries in advance during heating when the primary scale is formed, so that the secondary scale is efficiently generated even in a very short time. It has been found that Cu and Ni can be concentrated.

通常、圧延のための再加熱には、1000〜1250℃程度の高温の加熱炉内に約1〜3時間ほど在炉させ、鋼片全体が均一に加熱されるように処理している。この際、加熱炉内の酸素濃度が高いと一次スケールの形成が多くなり、その結果圧延される製品の表面疵の原因となることから、酸素濃度を限りなく0%に低減して操業することが、一次スケールの生成を抑制し、一次スケールに起因した表面疵の低減に有効とされている。   Usually, reheating for rolling is performed in a high-temperature heating furnace of about 1000 to 1250 ° C. for about 1 to 3 hours so that the entire steel slab is heated uniformly. At this time, if the oxygen concentration in the heating furnace is high, the formation of primary scale increases, and as a result, it causes surface flaws in the rolled product. Therefore, the oxygen concentration should be reduced to 0% for operation. However, it is said that it suppresses the generation of the primary scale and is effective in reducing surface wrinkles due to the primary scale.

これに対して本発明では、一次スケールによって鋼片の地金側のオーステナイト結晶粒界に排出された有効元素(CuおよびNi)の濃縮を利用し、非常に短時間で生成する二次スケール生成時に有効元素の濃縮を達成するため、一次スケールを積極的に形成させる必要がある。一次スケールの形成は、加熱炉内の酸素濃度が大きく関与していることから、有効元素の濃縮に対して有効で且つ表面疵が発生しにくい加熱炉内の酸素濃度について詳細に検討した結果、加熱条件を適切に設定することによって、従来よりも高い酸素濃度の領域を適用することが可能であることが判明したのである(具体的な製造条件については後述する)。 On the other hand, in the present invention, secondary scale generation is generated in a very short time using the concentration of effective elements (Cu and Ni) discharged to the austenite grain boundary on the bare metal side of the steel piece by the primary scale. Sometimes primary scales need to be actively formed to achieve effective element enrichment. Since the formation of the primary scale is greatly related to the oxygen concentration in the heating furnace, as a result of detailed examination of the oxygen concentration in the heating furnace, which is effective for the concentration of effective elements and hardly generates surface defects, It has been found that by appropriately setting the heating conditions, it is possible to apply a region having a higher oxygen concentration than before (specific manufacturing conditions will be described later).

本発明の鋼板においては、前記濃化領域の存在が重要なのであるが、その効果を有効に発揮させるためには、濃化領域中のCuおよびNiの含有量も重要な要件である。本発明の鋼板において良好な耐ピット性を発揮させるためには、濃化領域中のCuおよびNiの合計含有量[以下、(Cu+Ni)含有量と記す]が少なくとも1.2%以上である必要がある。この(Cu+Ni)含有量は、好ましくは1.3%以上であり、より好ましくは1.4%以上とするのが良い。(Cu+Ni)含有量については、その量が大きくなればなるほど耐ピット性は向上するので、その上限については特に限定されないが、鋼中の含有量や製造条件によって自ずと限界は存在する(後記実施例参照)。   In the steel sheet of the present invention, the presence of the concentrated region is important, but in order to effectively exhibit the effect, the contents of Cu and Ni in the concentrated region are also an important requirement. In order to exhibit good pit resistance in the steel sheet of the present invention, the total content of Cu and Ni in the concentrated region [hereinafter referred to as (Cu + Ni) content] needs to be at least 1.2% or more. There is. The (Cu + Ni) content is preferably 1.3% or more, and more preferably 1.4% or more. Regarding the (Cu + Ni) content, the pit resistance improves as the amount increases, so the upper limit is not particularly limited, but there is a limit naturally depending on the content in steel and the production conditions (Examples described later) reference).

尚、濃化領域におけるCuとNiの含有比率は、(Cu/Ni:質量比)で2.5以下であることが好ましい。本来、固溶S存在下における孔食発生防止という観点からすれば、Cu単独で濃化させることも考えられるのであるが、Cuを単独で濃化させた場合には、熱間割れが発生しやすくなること、およびNiも耐食性向上効果を有していることから併用して含有させるものである(後記添加作用参照)。   In addition, it is preferable that the content ratio of Cu and Ni in a concentration area | region is 2.5 or less by (Cu / Ni: mass ratio). Originally, from the viewpoint of preventing pitting corrosion in the presence of solute S, it is conceivable that Cu is concentrated alone, but when Cu is concentrated alone, hot cracking occurs. It is easy to use, and Ni also has an effect of improving corrosion resistance.

(Cu+Ni)含有量が1.2%以上となる濃化領域が存在していても、その生成量が少なければ本発明の効果を発揮させることはできない。図2は、濃化領域(CuおよびNiの含有量が1.2%以上となる領域)の面積率と最大ピット深さの関係を示したものである。この結果から明らかなように、濃化領域の面積率を5%以上とすることによって、最大ピット深さが150μm以下に低減されていることが分かる。この面積率は好ましくは、6%以上とするのが良い。   Even if there is a concentrated region where the (Cu + Ni) content is 1.2% or more, the effect of the present invention cannot be exhibited unless the amount of formation is small. FIG. 2 shows the relationship between the area ratio of the concentrated region (the region where the Cu and Ni contents are 1.2% or more) and the maximum pit depth. As is clear from this result, it is understood that the maximum pit depth is reduced to 150 μm or less by setting the area ratio of the concentrated region to 5% or more. This area ratio is preferably 6% or more.

本発明の鋼板では、その鋼板としての基本的特性を満足させるために、C,Si,Mn,P,S,Al等の基本成分も適切に調整する必要がある。これらの成分の範囲限定理由について、上記CuおよびNiによる作用効果と共に、次に示す。   In the steel plate of the present invention, basic components such as C, Si, Mn, P, S, and Al need to be appropriately adjusted in order to satisfy the basic characteristics of the steel plate. The reasons for limiting the ranges of these components will be described below together with the effects of Cu and Ni.

[C:0.03〜0.2%]
Cは、鋼板の強度確保のために必要な元素である。船舶等の構造部材としての最低強度(例えば、降伏点:355MPa以上、引張強度TS:490MPa以上)を得るためには、0.03%以上含有させる必要がある。しかしながら、0.2%を超えて過剰に含有させると構造部材として要求される特性である溶接性が劣化することなる。こうしたことから、C含有量の範囲は0.03〜0.2%とした。尚、C含有量の好ましい下限は0.05%であり、より好ましくは0.07%以上とするのが良い。また、C含有量の好ましい上限は0.16%であり、より好ましくは0.12%以下とするのが良い。
[C: 0.03-0.2%]
C is an element necessary for ensuring the strength of the steel sheet. In order to obtain the minimum strength (for example, yield point: 355 MPa or more, tensile strength TS: 490 MPa or more) as a structural member such as a ship, it is necessary to contain 0.03% or more. However, if the content exceeds 0.2%, the weldability, which is a characteristic required as a structural member, is deteriorated. For these reasons, the C content range was 0.03 to 0.2%. In addition, the minimum with preferable C content is 0.05%, It is good to set it as 0.07% or more more preferably. Moreover, the upper limit with preferable C content is 0.16%, It is good to set it as 0.12% or less more preferably.

[Si:0.05〜0.5%]
Siは脱酸のための必要な元素であり、十分な脱酸効果を発揮させるためには0.05%以上含有させる必要がある。しかし、0.5%を超えて過剰に含有させると靭性が劣化する。尚、Si含有量の好ましい下限は0.1%であり、より好ましくは0.15%以上とするのが良い。また、Si含有量の好ましい上限は0.45%であり、より好ましくは0.4%以下とするのが良い。
[Si: 0.05 to 0.5%]
Si is a necessary element for deoxidation, and in order to exhibit a sufficient deoxidation effect, it is necessary to contain 0.05% or more. However, if the content exceeds 0.5%, the toughness deteriorates. In addition, the minimum with preferable Si content is 0.1%, It is good to set it as 0.15% or more more preferably. Moreover, the upper limit with preferable Si content is 0.45%, More preferably, it is good to set it as 0.4% or less.

[Mn:0.4〜1.8%]
Mnは低いコストで鋼板の強度を高める作用を発揮する元素であり、こうした効果を発揮させるためには0.4%以上含有させる必要がある。しかし、1.8%を超えて過剰に含有させると溶接性が劣化する。尚、Mn含有量の好ましい下限は0.5%であり、より好ましくは0.7%以上とするのが良い。また、Mn含有量の好ましい上限は1.6%であり、より好ましくは1.4%以下とするのが良い。
[Mn: 0.4 to 1.8%]
Mn is an element that exhibits the effect of increasing the strength of the steel sheet at a low cost. In order to exhibit such an effect, it is necessary to contain 0.4% or more. However, if the content exceeds 1.8%, weldability deteriorates. In addition, the minimum with preferable Mn content is 0.5%, It is good to set it as 0.7% or more more preferably. Moreover, the upper limit with preferable Mn content is 1.6%, It is good to set it as 1.4% or less more preferably.

[P:0.04%以下(0%を含まない)]
Pは、鋼中に不可避的に含まれる不純物元素であり、溶接性を低下させる。特に、その含有量が0.04%を超えて過剰になると、溶接性の低下が著しくなる。こうしたことから、Pの含有量は0.04%以下とする必要があり、好ましくは0.03%以下、より好ましくは0.02%以下とするのが良い。但し、Pは溶接性を低下させる一方で耐全面腐食性を高める効果を発揮するので、0.005%以上で含有させることは有用である。
[P: 0.04% or less (excluding 0%)]
P is an impurity element inevitably contained in the steel and reduces weldability. In particular, when the content exceeds 0.04% and becomes excessive, the weldability deteriorates remarkably. Therefore, the P content needs to be 0.04% or less, preferably 0.03% or less, and more preferably 0.02% or less. However, since P exhibits the effect of increasing the overall corrosion resistance while lowering the weldability, it is useful to contain P at 0.005% or more.

[S:0.040%以下(0%を含まない)]
Sは、鋼中に不可避的に含まれる不純物元素であり、できるだけ少なくする必要がある。Sの含有量が0.040%を超えると溶接性を低下させる。こうしたことから、S含有量が少なくとも0.040%以下に抑制する必要があり、好ましくは、0.02%以下、より好ましくは0.01%以下とするのが良い。
[S: 0.040% or less (excluding 0%)]
S is an impurity element inevitably contained in the steel and needs to be reduced as much as possible. If the S content exceeds 0.040%, the weldability is lowered. For these reasons, it is necessary to suppress the S content to at least 0.040% or less, preferably 0.02% or less, more preferably 0.01% or less.

[Al:0.01〜0.10%]
Alは、脱酸剤として必要な元素であり、0.01%に満たないと脱酸効果が発揮されない。しかしながら、過剰に含有させると鋼材の靭性を劣化させるため、Al添加量は0.10%以下とする必要がある。尚、Al含有量の好ましい下限は0.02%であり、より好ましくは0.03%以上とするのが良い。また、Al含有量の好ましい上限は0.06%であり、より好ましくは0.05%以下とするのが良い。
[Al: 0.01 to 0.10%]
Al is an element necessary as a deoxidizing agent, and the deoxidizing effect is not exhibited unless it is less than 0.01%. However, since an excessive content deteriorates the toughness of the steel material, the amount of Al added needs to be 0.10% or less. In addition, the minimum with preferable Al content is 0.02%, More preferably, it is good to set it as 0.03% or more. Moreover, the upper limit with preferable Al content is 0.06%, More preferably, it is good to set it as 0.05% or less.

[N:0.002〜0.0080%]
Nは鋼中に含まれるガス成分であり、不可避的に混入する。但し、Nは耐食性を向上させる効果を発揮するので、少量含有させることは有効である。こうした効果を発揮させるためには、0.002%以上含有させる必要がある。しかしながら、N含有量が過剰になると、溶接熱影響部(HAZ)の靭性が劣化するので、0.0080%以下とする必要がある。尚、N含有量の好ましい下限は0.003%であり、より好ましくは0.004%以上にするのが良い。またN含有量の好ましい上限は0.007%であり、より好ましくは0.006%以下とするのが良い。
[N: 0.002 to 0.0080%]
N is a gas component contained in the steel and is inevitably mixed. However, since N exhibits the effect of improving the corrosion resistance, it is effective to contain a small amount. In order to exhibit such an effect, it is necessary to contain 0.002% or more. However, if the N content is excessive, the toughness of the weld heat affected zone (HAZ) deteriorates, so it is necessary to make it 0.0080% or less. In addition, the minimum with preferable N content is 0.003%, It is good to set it as 0.004% or more more preferably. Moreover, the upper limit with preferable N content is 0.007%, It is good to set it as 0.006% or less more preferably.

[Cu:0.1〜0.5%]
Cuは、硫化水素の存在下での耐全面腐食性を著しく向上させる効果を発揮し、しかもS存在下での孔食発生の抑制にも効果がある。原油タンクに適用する鋼板の耐ピット性を高めるためには、Cuは少なくとも0.1%以上含有させる必要があり、その含有量が増加するにつれて耐ピット腐食性は向上することになる。また、Cuは鋼板への塗料の密着性を高める効果をも発揮する。しかしながら、Cu含有量が過剰になると、鋼板が脆化(圧延中の熱間脆性)しやすくなるので、鋼の脆化防止という観点からしてCu含有量は0.5%以下とする必要がある。
[Cu: 0.1 to 0.5%]
Cu exhibits the effect of significantly improving the general corrosion resistance in the presence of hydrogen sulfide, and is also effective in suppressing the occurrence of pitting corrosion in the presence of S. In order to increase the pit resistance of a steel sheet applied to a crude oil tank, it is necessary to contain Cu at least 0.1% or more, and the pit corrosion resistance improves as the content increases. Cu also exhibits the effect of increasing the adhesion of the paint to the steel plate. However, when the Cu content is excessive, the steel sheet is easily embrittled (hot brittleness during rolling), so from the viewpoint of preventing embrittlement of the steel, the Cu content needs to be 0.5% or less. is there.

[Ni:0.1〜0.50%]
Niは、湿潤硫化水素環境下において防食性の硫化物皮膜を形成して耐全面腐食性を高める効果や、耐孔食性を向上させる効果がある。また、Cuと完全固溶体を形成することによって融点を引き上げ、Cu単独添加時に問題となる熱間割れを防止する効果も発揮する。このうち原油タンクの耐ピット性を高める効果を発揮させるためには、Niは0.1%以上含有させる必要があり、その含有量が多くなればなるほど耐ピット性は向上する。更に、こうしたNi含有量では、Cuと同様に鋼板の塗料の密着性を高める効果も発揮する。しかしながら、Ni含有量が過剰になると耐ピット性はなお一層向上するものの、経済性が悪くなるので、Ni含有量は0.50%以下とする必要がある。
[Ni: 0.1 to 0.50%]
Ni has an effect of improving the overall corrosion resistance by forming a corrosion-resistant sulfide film in a wet hydrogen sulfide environment and an effect of improving the pitting resistance. Moreover, the melting point is raised by forming a complete solid solution with Cu, and the effect of preventing hot cracking which becomes a problem when Cu alone is added is also exhibited. Among these, in order to exert the effect of improving the pit resistance of the crude oil tank, Ni needs to be contained in an amount of 0.1% or more, and the pit resistance improves as the content increases. Furthermore, with such Ni content, the effect of improving the adhesiveness of the coating material of a steel plate is exhibited like Cu. However, when the Ni content is excessive, the pit resistance is further improved, but the economic efficiency is deteriorated. Therefore, the Ni content needs to be 0.50% or less.

本発明の鋼板における基本成分は上記の通りであり、残部は鉄および不可避的不純物(例えば、H,O等)からなるものであるが、これら以外にも鋼材の特性を阻害しない程度の成分(例えば、希土類元素等)も許容できる。但し、これら許容成分は、その量が過剰になると靭性が劣化するので、0.1%程度以下に抑えるべきである。   The basic components in the steel sheet of the present invention are as described above, and the balance is composed of iron and unavoidable impurities (for example, H, O, etc.). For example, rare earth elements are also acceptable. However, these allowable components should be suppressed to about 0.1% or less because their toughness deteriorates when the amount is excessive.

また、本発明の鋼板には、上記成分の他必要によって、更に(a)Ti:0.005〜0.05%、(b)Sn:0.05%以下(0%を含まない)、Bi:0.06%以下(0%を含まない)、Mg:0.004%以下(0%を含まない)およびCo:0.5%以下(0%を含まない)よりなる群から選ばれる1種以上、(c)Sb:0.04%以下(0%を含まない)、(d)Ca:0.005%以下(0%を含まない)および/またはZr:0.006%以下(0%を含まない)、(e)Mo:0.5%以下(0%を含まない)、Cr:0.5%以下(0%を含まない)、W:0.50%以下(0%を含まない)、Nb:0.05%以下(0%を含まない)、V:0.10%以下(0%を含まない)およびB:0.005%以下(0%を含まない)よりなる群から選ばれる1種以上、等を含有させることも有効であり、含有させる成分の種類に応じて鋼板の特性が更に改善されることになる。これらの成分を含有させるときの範囲限定理由は、次の通りである。   The steel plate of the present invention may further include (a) Ti: 0.005 to 0.05%, (b) Sn: 0.05% or less (excluding 0%), Bi, depending on the necessity in addition to the above components. : 1 selected from the group consisting of 0.06% or less (not including 0%), Mg: 0.004% or less (not including 0%), and Co: 0.5% or less (not including 0%) Seeds or more, (c) Sb: 0.04% or less (excluding 0%), (d) Ca: 0.005% or less (excluding 0%) and / or Zr: 0.006% or less (0 %), (E) Mo: 0.5% or less (not including 0%), Cr: 0.5% or less (not including 0%), W: 0.50% or less (0% Nb: 0.05% or less (not including 0%), V: 0.10% or less (not including 0%), and B: 0.005% or less (0%) At least one member selected from the group consisting included not), or the like is also effective to contain, so that the characteristics of the steel sheet according to the type of component to be contained is further improved. The reasons for limiting the range when these components are contained are as follows.

[Ti:0.005〜0.05%]
Tiは、鋼板表層部に形成される二次スケール(表面錆皮膜)膜の組織を緻密化し、耐食性を向上させるのに有効な元素である。錆皮膜の緻密化を達成するためには、Ti含有量は、0.005%以上とすることが好ましいが、0.05%を超えて過剰に含有させてもその効果が飽和し、また鋼板の靭性を劣化させるので、その上限を0.05%以下とする。錆皮膜と鋼板靭性の両立を図るためのより好ましい範囲は0.01〜0.045%であり、更に好ましくは0.015〜0.04%である。
[Ti: 0.005 to 0.05%]
Ti is an element effective for densifying the structure of the secondary scale (surface rust film) film formed on the surface layer portion of the steel sheet and improving the corrosion resistance. In order to achieve densification of the rust film, the Ti content is preferably 0.005% or more, but the effect is saturated even if it is excessively contained in excess of 0.05%. Therefore, the upper limit is made 0.05% or less. A more preferable range for achieving both rust film and steel sheet toughness is 0.01 to 0.045%, and more preferably 0.015 to 0.04%.

[Sn:0.05%以下(0%を含まない)、Bi:0.06%以下(0%を含まない)、Mg:0.004%以下(0%を含まない)およびCo:0.5%以下(0%を含まない)よりなる群から選ばれる1種以上]
Sn,Bi,MgおよびCoは、いずれも耐食性を向上させる元素として知られているが、多量に含有させた場合には、鋼板の靭性や溶接HAZ靭性を劣化させるので、上記各上限まで含有させることが好ましい。これらの元素を含有させるときのより好ましい上限は、Sn:0.045%以下(更に好ましくは0.040%以下)、Bi:0.055%以下(更に好ましくは0.05%以下)、Mg:0.0035%以下(更に好ましくは0.003%以下)およびCo:0.45%以下(更に好ましくは0.40%以下)である。
[Sn: 0.05% or less (not including 0%), Bi: 0.06% or less (not including 0%), Mg: 0.004% or less (not including 0%), and Co: 0.0. 1 or more selected from the group consisting of 5% or less (excluding 0%)]
Sn, Bi, Mg, and Co are all known as elements that improve the corrosion resistance. However, when contained in a large amount, the toughness of the steel sheet and the welded HAZ toughness are deteriorated. It is preferable. More preferable upper limit when these elements are contained is Sn: 0.045% or less (more preferably 0.040% or less), Bi: 0.055% or less (more preferably 0.05% or less), Mg : 0.0035% or less (more preferably 0.003% or less) and Co: 0.45% or less (more preferably 0.40% or less).

[Sb:0.04%以下(0%を含まない)]
Sbは、耐ピット性を向上させる効果の大きい元素である。しかし、SbはPと同属の元素であり、多量に含有させると、耐ピット性を向上させる一方でHAZ靭性や鋼板靭性を劣化させる。こうしたことから、Sbを含有させるときには、その含有量は0.04%以下とすることが好ましい。より好ましい上限は0.035%であり、更に好ましくは0.03%以下とするのが良い。
[Sb: 0.04% or less (excluding 0%)]
Sb is an element having a large effect of improving pit resistance. However, Sb is an element belonging to the same group as P, and when contained in a large amount, it improves pit resistance while deteriorating HAZ toughness and steel plate toughness. For these reasons, when Sb is contained, its content is preferably set to 0.04% or less. A more preferable upper limit is 0.035%, and further preferably 0.03% or less.

[Ca:0.005%以下(0%を含まない)および/またはZr:0.006%以下(0%を含まない)]
CaとZrは、腐食ピットの成長の要因となっているといわれている腐食ピット底のpHを酸性側からアルカリ性に移行させることによって、腐食ピットの成長を抑制する効果を発揮する元素である。こうした効果はその含有量が増加するにつれて増大するが、過剰に含有されると鋼板の靭性を劣化させるので、Caで0.005%以下、Zrで0.006%以下にすることが好ましい。より好ましくは、Caで0.0045%以下(更に好ましくは0.004%以下)、Zrで0.0055%以下(更に好ましくは0.005%以下)である。尚、これらの元素の上記効果を発揮させる上で好ましい下限は、Caで0.0005%以上、より好ましくは0.001%以上(更に好ましくは0.0015%以上)、Zrで0.0005%以上、より好ましくは0.001%以上(更に好ましくは0.0015%以上)である。
[Ca: 0.005% or less (not including 0%) and / or Zr: 0.006% or less (not including 0%)]
Ca and Zr are elements that exhibit the effect of suppressing the growth of corrosion pits by shifting the pH of the bottom of the corrosion pits, which is said to be a cause of the growth of corrosion pits, from alkaline to alkaline. These effects increase as the content increases, but if contained excessively, the toughness of the steel sheet is deteriorated. Therefore, it is preferable to make Ca 0.005% or less and Zr 0.006% or less. More preferably, it is 0.0045% or less (more preferably 0.004% or less) for Ca, and 0.0055% or less (more preferably 0.005% or less) for Zr. In order to exhibit the above effects of these elements, the preferable lower limit is 0.0005% or more for Ca, more preferably 0.001% or more (more preferably 0.0015% or more), and 0.0005% for Zr. Thus, more preferably 0.001% or more (more preferably 0.0015% or more).

[Mo:0.5%以下(0%を含まない)、Cr:0.5%以下(0%を含まない)、W:0.50%以下(0%を含まない)、Nb:0.05%以下(0%を含まない)、V:0.10%以下(0%を含まない)およびB:0.005%以下(0%を含まない)よりなる群から選ばれる1種以上]
Mo,Cr,W,Nb,VおよびBは、いずれも基本的に鋼板の強度上昇に効果のある元素であり、必要によって含有される。このうちMoは、鋼板の強度上昇によって強度不足を補う上で有効な元素である。しかしながら、Mo含有量が過剰になると、鋼板の靭性および溶接HAZ靭性を劣化させるので、0.5%以下とすることが好ましい。より好ましくは0.45%以下(更に好ましくは0.3%以下)である。
[Mo: 0.5% or less (not including 0%), Cr: 0.5% or less (not including 0%), W: 0.50% or less (not including 0%), Nb: 0.0. 05% or less (excluding 0%), V: 0.10% or less (not including 0%), and B: 0.005% or less (not including 0%)]
Mo, Cr, W, Nb, V, and B are all elements that are basically effective in increasing the strength of the steel sheet, and are contained as necessary. Among these, Mo is an element effective in supplementing the lack of strength by increasing the strength of the steel sheet. However, when the Mo content is excessive, the toughness of the steel sheet and the welded HAZ toughness are deteriorated. More preferably, it is 0.45% or less (more preferably 0.3% or less).

Crは強度上昇に効果のある元素として知られているが、Crを含有すると、原油タンク底の厳しい腐食環境下においては、Crイオンの溶解と共に、原油タンク底にわずかながら存在する海水に由来するClイオンとの相互作用により、腐食ピット底のpHを低下させ、より腐食を進行させるという悪影響が発生する。こうしたことから、Crを含有させるときには、その上限は0.5%以下とすることが好ましい。より好ましいは0.45%以下、更に好ましくは0.3%以下とするのが良い。 Although Cr is known as an element that is effective in increasing strength and contains Cr, in severe corrosive environment of a crude oil tank bottoms, Cr - with dissolution of ions, derived from seawater present in minor crude oil tank bottom As a result of the interaction with Cl ions, the pH of the bottom of the corrosion pit is lowered and the corrosion is further promoted. For these reasons, when Cr is contained, the upper limit is preferably 0.5% or less. More preferably, it is 0.45% or less, and further preferably 0.3% or less.

Wも鋼板の強度上昇によって強度不足を補う上で有効な元素である。しかしながら、W含有量が過剰になると、鋼板の靭性および溶接HAZ靭性を劣化させるので、0.50%以下とすることが好ましい。より好ましくは0.45%以下(更に好ましくは0.4%以下)である。   W is also an element effective in making up for insufficient strength by increasing the strength of the steel sheet. However, if the W content is excessive, the toughness of the steel sheet and the welded HAZ toughness are deteriorated. More preferably, it is 0.45% or less (more preferably 0.4% or less).

Nbは、炭窒化物の析出によって鋼板の強度上昇に効果のある元素であり、また未再結晶温度を拡大させることによりフェライト結晶粒の微細化に非常に効果のある元素である。しかしながら、Nb含有量が0.05%を超えて過剰になると、鋼板およびHAZの靭性を劣化させることになる。より好ましは0.04%以下(更に好ましくは0.03%以下)である。 Nb is an element that is effective in increasing the strength of the steel sheet by precipitation of carbonitride, and is an element that is very effective in refining ferrite crystal grains by expanding the non-recrystallization temperature range . However, if the Nb content exceeds 0.05% and becomes excessive, the toughness of the steel sheet and HAZ will be deteriorated. More rather preferably is 0.04% or less (more preferably 0.03% or less).

Vも炭窒化物の析出による強度上昇に効果のある元素であり、またNbと同様に未再結晶温度を拡大させることによりフェライト結晶粒の微細化に非常に効果のある元素である。しかしながら、V含有量が0.10%を超えて過剰になると、鋼板およびHAZの靭性を劣化させることになる。より好ましくは0.08%以下(更に好ましくは0.06%以下)である。 V is also an element that is effective in increasing the strength due to precipitation of carbonitride, and is an element that is very effective in refining ferrite crystal grains by expanding the non-recrystallization temperature range in the same manner as Nb. However, if the V content exceeds 0.10% and becomes excessive, the toughness of the steel sheet and the HAZ will be deteriorated. More preferably it is 0.08% or less (more preferably 0.06% or less).

Bは、焼入れ性を向上させることで鋼板の強度上昇に効果のある元素であり、また窒化物を形成することでHAZのフェライト粒生成サイトとなると言われている元素であるが、過剰に含有させると、鋼板およびHAZの靭性を劣化させるので、0.005%以下とすることが好ましい。より好ましは0.004%以下(更に好ましくは0.003%以下)である。 B is an element that is effective in increasing the strength of the steel sheet by improving the hardenability, and is an element that is said to be a ferrite grain generation site of HAZ by forming a nitride, but is contained in excess. If done, the toughness of the steel sheet and HAZ is deteriorated, so 0.005% or less is preferable. More rather preferably is 0.004% or less (more preferably 0.003% or less).

本発明の鋼板においては、鋼板表面に形成されるスケール(一次スケールおよび二次スケール)中には、耐ピット性を著しく向上させるCuおよびNiは殆ど含有されないという特性を活用して、CuおよびNiを鋼板表層部のオーステナイト結晶粒界に濃化させることによって、耐食性向上を図るものである。これらの元素を濃化させるためには、スラブ加熱中に生成される一次スケールおよび圧延中に生成される二次スケールの生成に伴う元素の吐き出し現象(拡散現象)を利用する必要がある。   In the steel sheet of the present invention, Cu and Ni are utilized in the scale (primary scale and secondary scale) formed on the surface of the steel sheet, taking advantage of the fact that Cu and Ni that significantly improve pit resistance are not contained. Is concentrated at the austenite grain boundaries in the surface layer of the steel sheet, thereby improving the corrosion resistance. In order to concentrate these elements, it is necessary to utilize the discharge phenomenon (diffusion phenomenon) of elements accompanying the generation of the primary scale generated during slab heating and the secondary scale generated during rolling.

圧延中に生成される二次スケールは、圧延温度:800〜950℃程度の温度域で形成され、また時間に換算して精々5分程度の非常に短時間であるので、拡散によってCuおよびNiを所定量以上に濃化させるには、初期含有量(鋼板中の平均含有量)を多くする必要がある。しかし、初期含有量を多くすることは、鋼板の靭性や溶接性を却って劣化させることに加え、経済性をも損なうことになるので問題となる。   The secondary scale generated during rolling is formed at a rolling temperature range of about 800 to 950 ° C. and is a very short time of about 5 minutes in terms of time. It is necessary to increase the initial content (average content in the steel sheet) in order to concentrate the content above a predetermined amount. However, increasing the initial content becomes a problem because it deteriorates the toughness and weldability of the steel sheet and deteriorates the economic efficiency.

本発明方法では、加熱時に形成される一次スケールの生成に伴うCuおよびNiの濃化現象を利用して、表層部のCuおよびNiの濃度を予め初期含有量よりも濃化させておくことによって、二次スケール生成時の短時間で所定量以上のCuおよびNiを濃化させることに成功したのである。こうした観点から、スラブの加熱温度は厳密に制御する必要があり、併せて表面疵の発生を抑制しつつ、一次スケールを有効に生成させるために必要な加熱炉内の雰囲気酸素(O2)濃度を厳密に管理する必要がある。 In the method of the present invention, the concentration of Cu and Ni in the surface layer portion is preliminarily concentrated from the initial content by utilizing the concentration phenomenon of Cu and Ni accompanying the generation of the primary scale formed during heating. In addition, it succeeded in concentrating a predetermined amount or more of Cu and Ni in a short time when generating the secondary scale. From this point of view, it is necessary to strictly control the slab heating temperature. At the same time, the atmospheric oxygen (O 2 ) concentration in the heating furnace is required to effectively generate the primary scale while suppressing the generation of surface flaws. Need to be strictly managed.

一般的に行われている再加熱の場合には、鋼板のAc3変態点(約850〜910℃)以上に加熱し、組織を高温組織であるオーステナイトにすることが主たる目的になるのであるが、本発明ではそれに加え、CuおよびNiを拡散させるために、当該領域(鋼板表層部)の加熱温度が1000℃以上とし、且つその温度域に80分以上保持されている必要がある。このときの加熱温度については高ければ高いほど、保持時間については長ければ長いほどCuおよびNiの濃化には有効であるが、過度の加熱温度や保持時間は表面疵の発生を招き、更に生産性を阻害する要因となる。こうしたことから、加熱温度は1250℃以下、保持時間は200分以下であることが好ましい。尚、鋼板を加熱するための加熱炉は、通常は生産性の観点からスラブを急速に上昇させるための加熱帯と、スラブ内温度偏差を抑制させるための均熱帯から構成されている場合が多いが、こうした構成の加熱炉を採用する場合には、前記保持時間は加熱帯および均熱帯中の保持時間の合計した時間となる(後記実施例参照)。 In the case of reheating that is generally performed, the main purpose is to heat the steel sheet to an Ac 3 transformation point (about 850 to 910 ° C.) or higher to make the structure into austenite that is a high-temperature structure. In addition, in the present invention, in addition to this, in order to diffuse Cu and Ni, it is necessary that the heating temperature of the region (steel plate surface layer portion) be 1000 ° C. or higher and be held in that temperature region for 80 minutes or more. The higher the heating temperature at this time, the longer the holding time, the more effective the concentration of Cu and Ni. However, excessive heating temperature and holding time will cause surface defects and further production. It becomes a factor that inhibits sex. For these reasons, it is preferable that the heating temperature is 1250 ° C. or less and the holding time is 200 minutes or less. In addition, the heating furnace for heating a steel plate is usually composed of a heating zone for rapidly raising the slab from the viewpoint of productivity and a soaking zone for suppressing temperature deviation in the slab. However, when a heating furnace having such a configuration is employed, the holding time is the total time of the heating zone and the holding time in the soaking zone (see Examples below).

上記のように加熱温度および保持時間を制御するだけでは、本発明の目的を達成することができず、加熱炉中の雰囲気も重要な要件である。即ち、一次スケールを形成するために必要な酸素濃度(O2濃度)が低過ぎると、一次スケールが有効に形成されず、CuおよびNiの濃化が進行しにくくなる。従って、一次スケールを有効に生成させるためには、加熱炉内のO2濃度は0.5容量%以上とする必要がある(残部は、例えばN2)。但し、加熱炉雰囲気のO2濃度が高くなり過ぎると、CuおよびNiの濃化は十分であるが、一次スケールが多量に発生、製造ロスや製品表面疵の原因となるので、加熱炉の雰囲気中のO2濃度は3.0容量%以下とする必要がある。 By simply controlling the heating temperature and holding time as described above, the object of the present invention cannot be achieved, and the atmosphere in the heating furnace is also an important requirement. That is, if the oxygen concentration (O 2 concentration) necessary for forming the primary scale is too low, the primary scale is not effectively formed, and the concentration of Cu and Ni is difficult to proceed. Therefore, in order to effectively generate the primary scale, the O 2 concentration in the heating furnace needs to be 0.5% by volume or more (the balance is N 2 , for example). However, if the O 2 concentration in the heating furnace atmosphere becomes too high, the concentration of Cu and Ni is sufficient, but a large amount of primary scale is generated, resulting in production loss and product surface defects. The O 2 concentration in the atmosphere needs to be 3.0% by volume or less.

本発明の鋼板は、基本的には塗装を施さなくても鋼材自体が優れた耐食性を発揮するものであるが、必要によって、後記実施例に示すタールエポキシ樹脂塗料、或はそれ以外の代表される重防食塗装、ジンクリッチペイント、ショッププライマー、電気防食などの他の防食方法と併用することも可能である。また本発明の鋼材は、原油輸送タンクや原油貯蔵タンクの素材として用いられたときであっても、局部腐食を発生することなく優れた耐食性を発揮するものとなる。尚、本発明の鋼板は、厚鋼板、薄鋼板のいずれをも含む趣旨である。   Although the steel sheet of the present invention basically exhibits excellent corrosion resistance even if it is not coated, it may be represented by tar epoxy resin paints shown in the examples below or other than that if necessary. It can also be used in combination with other anticorrosion methods such as heavy anticorrosion coating, zinc rich paint, shop primer, and electrocorrosion protection. Moreover, even when the steel material of the present invention is used as a raw material for a crude oil transport tank or a crude oil storage tank, it exhibits excellent corrosion resistance without causing local corrosion. The steel plate of the present invention is intended to include both thick steel plates and thin steel plates.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含されるものである。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

下記表1に示す化学成分組成の鋼材を転炉で溶製し、連続鋳造により各種鋳片(スラブ)を作製した。得られたスラブを用い、下記表2に示す加熱条件、圧延条件および冷却条件にて各種鋼板を作製した。尚、下記表2に示した冷却速度は、冷却方法が「空冷」の場合は、圧延終了温度〜600℃までの板厚方向平均冷却速度を示し、冷却方法が「水冷」の場合は、水冷開始温度〜水冷停止温度(約580〜600℃)までの板厚方向平均冷却速度を示している。   Steel materials having the chemical composition shown in Table 1 below were melted in a converter and various slabs (slabs) were produced by continuous casting. Using the obtained slab, various steel plates were produced under the heating conditions, rolling conditions and cooling conditions shown in Table 2 below. The cooling rate shown in Table 2 below indicates the average cooling rate in the thickness direction from the rolling finish temperature to 600 ° C. when the cooling method is “air cooling”, and when the cooling method is “water cooling” The sheet thickness direction average cooling rate from the start temperature to the water cooling stop temperature (about 580 to 600 ° C.) is shown.

Figure 0004898543
Figure 0004898543

Figure 0004898543
Figure 0004898543

得られた各鋼板について、CuとNiが濃化している領域(濃化領域)の特定、濃化領域の面積率測定、表面疵の発生状況、腐食性(耐ピット性)、鋼板の機械的特性(降伏点YP、引張強度TS、鋼板の靭性vE-20)等について、夫々下記に示す方法によって測定した。 For each steel plate obtained, specification of the region where the Cu and Ni are concentrated (concentrated region), measurement of the area ratio of the concentrated region, occurrence of surface flaws, corrosion (pit resistance), mechanical properties of the steel plate Characteristics (yield point YP, tensile strength TS, steel sheet toughness vE -20 ) and the like were measured by the methods shown below.

[濃化領域の特定]
(a)濃化領域の特定に際しては、EPMA装置を使用した。測定手順としては、表層スケール部と地金部(鋼板部)の界面を含む領域を、300倍の倍率で面分析を実施し、鋼板表面から10μmまでの深さにおいてCuおよびNi濃度が他の部分よりも高くなっている領域(鋼板の最大含有量が約0.8%、必要濃化量が1.2%であることから、EPMAの強度比が少なくとも1.5倍、且つ0.8%となっている領域)を濃化領域として特定した。尚、CuおよびNiの濃化の形態については、同一部位の光学顕微鏡組織との対比によって、旧オーステナイト粒界に存在していることを確認した。
[Identify darkened area]
(A) An EPMA apparatus was used for specifying the concentrated region. As a measurement procedure, the area including the interface between the surface scale portion and the metal base portion (steel plate portion) is subjected to surface analysis at a magnification of 300 times, and Cu and Ni concentrations are different from each other at a depth of 10 μm from the steel plate surface. A region that is higher than the portion (the maximum content of the steel sheet is about 0.8% and the required concentration is 1.2%, so the strength ratio of EPMA is at least 1.5 times, and 0.8%. % Area) was identified as the thickened area. In addition, about the form of concentration of Cu and Ni, it confirmed that it existed in the prior austenite grain boundary by contrast with the optical microscope structure of the same site | part.

(b)濃化領域におけるCuおよびNiの各含有量については、EPMAにおいてCuおよびNiの含有量が判明している標準試料を基準として、濃化領域のCuおよびNiの含有量を算出した。尚、上記標準試料とは、CuまたはNiの含有量が少ない試料と多い試料[好ましくは対象鋼種のCuおよびNiの含有量が化学分析値(チェック分析値)よりも少ない試料(0.1%程度)と多い試料(2%程度)]を通常採用する。但し、標準試料を用いなくても、鋼板のt/4部(t:板厚)の面分析した値を基準として、濃化領域におけるCuおよびNiの含有量を算出することができる。   (B) About each content of Cu and Ni in a concentration area | region, content of Cu and Ni of a concentration area | region was calculated on the basis of the standard sample by which content of Cu and Ni was known in EPMA. The standard sample is a sample having a small content of Cu or Ni and a sample having a large content [preferably a sample having a content of Cu and Ni of the target steel type less than a chemical analysis value (check analysis value) (0.1% Grade) and many samples (about 2%)] are usually employed. However, even if a standard sample is not used, the contents of Cu and Ni in the concentrated region can be calculated based on the surface analysis value of t / 4 part (t: plate thickness) of the steel plate.

(c)例えば、標準試料(鋼板)がある場合には、当該鋼板をEPMAにてCuおよびNiの含有量の面分析強度を調査し、標準試料との比較によって含有量を特定する。このとき、CuまたはNiの含有量の少ない標準試料と多い標準試料の面分析強度から導かれる面分析強度とCuまたはNiの含有量の関係のグラフを用いて、内挿法による算出が好ましい。   (C) For example, when there is a standard sample (steel plate), the surface analysis strength of the Cu and Ni contents is investigated with EPMA, and the content is specified by comparison with the standard sample. At this time, the calculation by the interpolation method is preferably performed using a graph of the relationship between the surface analysis intensity and the Cu or Ni content derived from the surface analysis intensity of the standard sample having a low Cu or Ni content and a large standard sample.

一方、母材部の化学分析値(チェック分析値)のみが判明している場合に、例えばこのチェック分析値が0.35%であるとして、濃化している領域の面分析強度が、母材部の約2.4倍であれば0.84%(0.35×2.4)として含有量を算出する。   On the other hand, when only the chemical analysis value (check analysis value) of the base material portion is known, for example, the check analysis value is 0.35%, and the area analysis strength of the concentrated region is the base material. If it is about 2.4 times the part, the content is calculated as 0.84% (0.35 × 2.4).

[濃化領域の面積率測定]
上記で特定した濃化領域について、画像解析法によって、濃化領域の面積率を測定し、評価した。
[Measurement of area ratio of concentrated region]
About the concentration area | region specified above, the area ratio of the concentration area | region was measured and evaluated by the image analysis method.

[表面疵の発生状況]
製品表面に、熱間時の割れやスケール疵が有るか否かによって判断した。
[Occurrence of surface flaws]
Judgment was made based on whether there were hot cracks and scale defects on the product surface.

[腐食性(耐ピット性)]
腐食ピット発生のメカニズムを固溶Sによるものと考え、それを検証するために、板厚さ5mmの30×30(mm)の試料を切り出して評価した。
[Corrosion (pit resistance)]
The mechanism of the generation of corrosion pits is considered to be due to solute S, and in order to verify it, a 30 × 30 (mm) sample having a plate thickness of 5 mm was cut out and evaluated.

(a)供試材
サイズ:30×30×5(mm)
前処理:アセトン洗浄
回数(n):3回
(腐食試験前の各供試材の質量を0.001gの単位で測定)
(A) Specimen size: 30 x 30 x 5 (mm)
Pretreatment: acetone cleaning Number of times (n): 3 times (Measurement of the mass of each test material before the corrosion test in units of 0.001 g)

(b)腐食溶液
(i)100%硫黄粉末:500gと、8%NaCl水溶液:1000gを混合して調製した。
(ii)30℃に制御した恒温槽(上記腐食溶液を深さ100mmで充填したもの)中に、上記供試材(各3枚)を恒温槽の底面に直立させて浸漬し(供試材の5mm×30mmの面が恒温槽の底面に接触)、7日経過後に下記の評価項目について、後述する手順によって腐食性を評価した。
(B) Corrosion solution (i) 100% sulfur powder: 500 g and 8% NaCl aqueous solution: 1000 g were mixed to prepare.
(Ii) The test material (three pieces each) was placed upright on the bottom of the thermostat bath in a thermostat controlled to 30 ° C. (filled with the corrosion solution at a depth of 100 mm) (test material) The surface of 5 mm × 30 mm is in contact with the bottom surface of the thermostatic chamber), and after 7 days, the following evaluation items were evaluated for corrosivity by the procedure described below.

(c)評価項目
(i)試験後の外観観察
(ii)質量変化(腐食速度)
(iii)最大ピット深さ
(C) Evaluation item (i) Appearance observation after test (ii) Mass change (corrosion rate)
(Iii) Maximum pit depth

(d)腐食性測定手順
(i)試験前後の質量変化を算出し、供試材両面の平均腐食減少量を測定した。
(ii)供試材両面について、三次元粗さ測定器によって局所的な凹凸を測定し、平均
値を算出し、その位置を0としたときのピット深さ(見かけ上の深さ)を検出
した。
(iii)質量変化から算出した平均腐食減少量(減少量に基づく、腐食量厚さ)と、
粗さ測定器によって検出したピット深さ(見かけ上の深さ)の和を最大ピット深さ
として算出した。
(D) Corrosion measurement procedure (i) The mass change before and after the test was calculated, and the average reduction in corrosion on both sides of the test material was measured.
(Ii) Measure the local unevenness on both sides of the test material with a three-dimensional roughness meter, calculate the average value, and detect the pit depth (apparent depth) when the position is 0 did.
(Iii) Average corrosion reduction amount calculated from mass change (corrosion amount thickness based on the reduction amount);
The sum of the pit depths (apparent depth) detected by the roughness measuring instrument was calculated as the maximum pit depth.

[鋼板の機械的特性(降伏点YP、引張強度TS、鋼板の靭性vE-20)]
(a)各鋼板の圧延方向に垂直な方向にJIS Z 2201(2007年改正JIS規格)の1B号試験片を採取して、JIS Z 2241の要領で引張試験を行ない、降伏点YPおよび引張強さTSを測定した。そして降伏点YP:355MPa以上、引張強度:490MPa以上のものを合格と評価した。
[Mechanical properties of steel sheet (yield point YP, tensile strength TS, steel sheet toughness vE- 20 )]
(A) JIS Z 2201 (2007 revised JIS standard) No. 1B test piece was taken in a direction perpendicular to the rolling direction of each steel plate, and subjected to a tensile test in accordance with JIS Z 2241, yield point YP and tensile strength. TS was measured. And the thing of yield point YP: 355 MPa or more and tensile strength: 490 MPa or more was evaluated as a pass.

(b)また各鋼板の、t/4(t:板厚)位置から(表面側を基準とする)圧延方向に平行な向きに試験片素材を採取し、これからJIS Z 2242(2007年改正JIS規格)の図2および表に規定されたVノッチ試験片を、それぞれ3個採取し、JIS Z 2242の要領でシャルピー衝撃試験を行った。そして、試験温度:−20℃での吸収エネルギー(vE-20)を測定した。そして、該吸収エネルギー(vE-20)の平均値が100J以上のものを、合格と評価した。 (B) In addition, a specimen material was collected from each t / 4 (t: thickness) position of each steel plate in a direction parallel to the rolling direction (based on the surface side), and from this, JIS Z 2242 (2007 revised JIS) Standard) 3 V-notch test pieces defined in FIG. 2 and Table 1 were sampled and Charpy impact tests were conducted in accordance with JIS Z 2242. And the absorbed energy (vE- 20 ) in test temperature: -20 degreeC was measured. And the thing whose average value of this absorbed energy (vE- 20 ) was 100J or more was evaluated as the pass.

尚、母材靭性を評価する際に、板厚が10mmに満たない場合は、「2005鋼船規則 K編2章」(財団法人 日本海事協会発行)に規定されているサブサイズ試験片を適用し、試験結果(vE-20)の基準値は表K2.9に規定されている値を乗じて評価した。 When evaluating the toughness of the base metal, if the plate thickness is less than 10 mm, apply the sub-size test piece specified in “2005 Steel Ship Rules K Chapter 2” (issued by the Nippon Kaiji Kyokai). The standard value of the test result (vE -20 ) was evaluated by multiplying the value specified in Table K2.9.

これらの結果を、一括して下記表3に示すが、本発明で規定する要件を満足するもの(実験No.1〜9)では、優れた耐ピット性および機械的性質を備えていることが分かる。これに対して、本発明で規定する要件に何れかを欠くもの(実験No.10〜29)では、少なくとも何れか特性が劣化していることが分かる。尚、実験No.14,16における製品表面疵は、スケール疵の発生によって製品として不適当なことから、また実験No.18における製品表面疵は、Cuによる熱間割れ発生によって、製品として不適当なことから、いずれも「×」と評価したものである。   These results are collectively shown in Table 3 below, and those satisfying the requirements defined in the present invention (Experiment Nos. 1 to 9) have excellent pit resistance and mechanical properties. I understand. On the other hand, it can be understood that at least one of the characteristics is deteriorated in the requirements (experiment Nos. 10 to 29) that lack any of the requirements defined in the present invention. Experiment No. The product surface flaws in Nos. 14 and 16 are inappropriate as products due to the generation of scale flaws. The product surface defects in 18 are evaluated as “x” because they are inappropriate as products due to the occurrence of hot cracking due to Cu.

Figure 0004898543
Figure 0004898543

上記と同様にした実験結果に基づき、(Cu+Ni)含有量と最大ピット深さの関係を図3に(図中、「○」は鋼板中含有量、「●」は濃化領域中含有量)、加熱温度(保持温度)および保持時間が濃化領域(Cu+Ni)含有量に与える影響を図4に(図中、「●」、「■」、「▲」、「○」および「△」は保持時間を示す。但し、鋼板中(Cu+Ni)含有量:0.2%、加熱炉内酸素濃度:1.0容量%)、加熱炉内酸素濃度が濃化領域(Cu+Ni)含有量に与える影響を図5に[図中、「●」、「■」、「▲」および「○」は鋼板中の(Cu+Ni)含有量の平均値(2分の1の値)]夫々示す。これらの結果から明らかなように、製造条件(加熱温度、保持時間)を適切に制御して濃化領域における(Cu+Ni)含有量を適切な範囲に制御することによって、良好な耐ピット性が発揮されていることが分かる。   Based on the experimental results similar to the above, the relationship between the (Cu + Ni) content and the maximum pit depth is shown in FIG. 3 (in the figure, “◯” is the content in the steel sheet, “●” is the content in the concentrated region). FIG. 4 shows the effect of heating temperature (holding temperature) and holding time on the concentration region (Cu + Ni) content (“●”, “■”, “▲”, “○” and “△” in FIG. 4). This shows the holding time, however, (Cu + Ni) content in steel sheet: 0.2%, oxygen concentration in heating furnace: 1.0% by volume), and the effect of oxygen concentration in heating furnace on the concentration region (Cu + Ni) content Is shown in FIG. 5 [in the figure, “●”, “■”, “▲” and “◯” represent the average value of (Cu + Ni) content in the steel sheet (a half value)), respectively. As is clear from these results, good pit resistance is exhibited by appropriately controlling the manufacturing conditions (heating temperature, holding time) and controlling the (Cu + Ni) content in the concentrated region to an appropriate range. You can see that.

鋼板の形態が最大ピット深さに与える影響を示した棒グラフである。It is the bar graph which showed the influence which the form of a steel plate has on the maximum pit depth. 濃化領域の面積率と最大ピット深さとの関係を示すグラフである。It is a graph which shows the relationship between the area ratio of a concentration area | region, and the maximum pit depth. (Cu+Ni)含有量と最大ピット深さの関係を示すグラフである。It is a graph which shows the relationship between (Cu + Ni) content and the maximum pit depth. 加熱温度(保持温度)および保持時間が濃化領域(Cu+Ni)含有量に与える影響を示すグラフである。It is a graph which shows the influence which heating temperature (holding temperature) and holding time have on concentration area | region (Cu + Ni) content. 加熱炉内酸素濃度が濃化領域(Cu+Ni)含有量に与える影響を示すグラフである。It is a graph which shows the influence which oxygen concentration in a heating furnace has on concentration area | region (Cu + Ni) content.

Claims (8)

C:0.03〜0.2%(「質量%」の意味、化学成分組成について以下同じ)、Si:0.05〜0.5%、Mn:0.4〜1.8%、P:0.04%以下(0%を含まない)、S:0.040%以下(0%を含まない)、Al:0.01〜0.10%、N:0.002〜0.0080%、Cu:0.1〜0.5%およびNi:0.1〜0.50%を満たし、残部がFeおよび不可避的不純物からなり、且つ鋼板表面から深さ10μmまでの旧オーステナイト粒界に、CuおよびNiの合計含有量が1.2%以上の濃化領域が存在すると共に、該濃化領域の板厚方向断面における面積率が%以上であることを特徴とする耐ピット性に優れた鋼板。 C: 0.03 to 0.2% (meaning “mass%”, the same applies to the chemical component composition), Si: 0.05 to 0.5%, Mn: 0.4 to 1.8%, P: 0.04% or less (not including 0%), S: 0.040% or less (not including 0%), Al: 0.01 to 0.10%, N: 0.002 to 0.0080%, Cu: 0.1 to 0.5% and Ni: 0.1 to 0.50% are satisfied, the balance is Fe and unavoidable impurities, and Cu is formed at the prior austenite grain boundary from the steel sheet surface to a depth of 10 μm. In addition, there is a concentrated region in which the total content of Ni and Ni is 1.2% or more, and the area ratio in the cross section in the thickness direction of the concentrated region is 5 % or more, which is excellent in pit resistance steel sheet. 更に、Ti:0.005〜0.05%を含有するものである請求項1に記載の鋼板。   The steel sheet according to claim 1, further comprising Ti: 0.005 to 0.05%. 更に、Sn:0.05%以下(0%を含まない)、Bi:0.06%以下(0%を含まない)、Mg:0.004%以下(0%を含まない)およびCo:0.5%以下(0%を含まない)よりなる群から選ばれる1種以上を含有するものである請求項1または2に記載の鋼板。   Furthermore, Sn: 0.05% or less (not including 0%), Bi: 0.06% or less (not including 0%), Mg: 0.004% or less (not including 0%), and Co: 0 The steel sheet according to claim 1 or 2, which contains at least one selected from the group consisting of 0.5% or less (not including 0%). 更に、Sb:0.04%以下(0%を含まない)を含有するものである請求項1〜3のいずれかに記載の鋼板。   Furthermore, Sb: 0.04% or less (0% is not included) The steel plate in any one of Claims 1-3. 更に、Ca:0.005%以下(0%を含まない)および/またはZr:0.006%以下(0%を含まない)を含有するものである請求項1〜4のいずれかに記載の鋼板。   Furthermore, it contains Ca: 0.005% or less (not including 0%) and / or Zr: 0.006% or less (not including 0%). steel sheet. 更に、Mo:0.5%以下(0%を含まない)、Cr:0.5%以下(0%を含まない)、W:0.50%以下(0%を含まない)、Nb:0.05%以下(0%を含まない)、V:0.10%以下(0%を含まない)およびB:0.005%以下(0%を含まない)よりなる群から選ばれる1種以上を含有するものである請求項1〜5のいずれかに記載の鋼板。   Furthermore, Mo: 0.5% or less (not including 0%), Cr: 0.5% or less (not including 0%), W: 0.50% or less (not including 0%), Nb: 0 0.05% or less (not including 0%), V: 0.10% or less (not including 0%) and B: 0.005% or less (not including 0%) The steel plate according to any one of claims 1 to 5. 原油輸送用タンクまたは原油貯蔵用タンクの素材として用いられるものである請求項1〜6のいずれかに記載の鋼板。   The steel plate according to any one of claims 1 to 6, which is used as a raw material for a crude oil transport tank or a crude oil storage tank. 請求項1〜7のいずれかに記載の鋼板を製造するに当り、酸素濃度が0.5〜3.0容量%に制御された雰囲気温度が1000℃以上の加熱炉内に鋼板を80分以上保持し、鋼板の表面温度が1000℃以上の状態で加熱炉から取り出すことを特徴とする耐ピット性に優れた鋼板の製造方法。   In manufacturing the steel plate according to any one of claims 1 to 7, the steel plate is placed in a heating furnace having an oxygen temperature controlled to 0.5 to 3.0% by volume of 1000 ° C or more for 80 minutes or more. A method for producing a steel sheet having excellent pit resistance, wherein the steel sheet is held and taken out of the heating furnace in a state where the surface temperature of the steel sheet is 1000 ° C. or higher.
JP2007121892A 2007-05-02 2007-05-02 Steel sheet with excellent pit resistance and method for producing the same Expired - Fee Related JP4898543B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007121892A JP4898543B2 (en) 2007-05-02 2007-05-02 Steel sheet with excellent pit resistance and method for producing the same
CN2008100903879A CN101298645B (en) 2007-05-02 2008-04-01 Steel plate having superior pitting corrosion resistance and manufacturing method thereof
KR1020080040428A KR100993407B1 (en) 2007-05-02 2008-04-30 Steel sheet excellent in pit resistance and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007121892A JP4898543B2 (en) 2007-05-02 2007-05-02 Steel sheet with excellent pit resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008274379A JP2008274379A (en) 2008-11-13
JP4898543B2 true JP4898543B2 (en) 2012-03-14

Family

ID=40052711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007121892A Expired - Fee Related JP4898543B2 (en) 2007-05-02 2007-05-02 Steel sheet with excellent pit resistance and method for producing the same

Country Status (3)

Country Link
JP (1) JP4898543B2 (en)
KR (1) KR100993407B1 (en)
CN (1) CN101298645B (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2371978B1 (en) * 2008-11-19 2018-05-02 Nippon Steel & Sumitomo Metal Corporation Steel sheet and surface-treated steel sheet
JP4502075B1 (en) * 2008-12-24 2010-07-14 Jfeスチール株式会社 Corrosion resistant steel for crude oil tankers
CN102301025B (en) * 2009-01-30 2014-06-25 杰富意钢铁株式会社 Corrosion resistant steel for crude oil tank, manufacturing method therefor, and crude oil tank
JP5771011B2 (en) * 2011-01-18 2015-08-26 株式会社神戸製鋼所 Steel for structural members with excellent corrosion resistance
JP5763929B2 (en) * 2011-01-25 2015-08-12 株式会社神戸製鋼所 Marine steel with excellent corrosion resistance
JP5702683B2 (en) * 2011-07-29 2015-04-15 株式会社神戸製鋼所 Corrosion-resistant steel for bulk carriers and hold of bulk carriers
JP6048104B2 (en) * 2011-12-26 2016-12-21 Jfeスチール株式会社 Corrosion resistant steel for holding coal ships and coal / ore combined ships
CN102605255A (en) * 2012-01-19 2012-07-25 武汉钢铁(集团)公司 400Mpa grade corrosion resistant reinforcing steel bar
JP5869918B2 (en) * 2012-03-07 2016-02-24 株式会社神戸製鋼所 Steel and steel structure for hydrogen sulfide environment with excellent hydrogen absorption resistance
KR101467030B1 (en) * 2012-06-28 2014-12-02 현대제철 주식회사 Method for manufacturing high strength steel plate
CN103882307A (en) * 2012-12-21 2014-06-25 鞍钢股份有限公司 Corrosion-resistant steel for cargo oil tank base plate of crude oil carrier
KR101505278B1 (en) * 2013-04-30 2015-03-24 현대제철 주식회사 Steel for cargo oil tank and method of manufacturing the same
JP5950037B2 (en) * 2013-05-09 2016-07-13 Jfeスチール株式会社 Steel material with excellent weather resistance
CN103305761A (en) * 2013-06-14 2013-09-18 首钢总公司 Corrosion-resistant steel for bottom board in cargo oil compartment of crude oil tanker
CN103290186B (en) * 2013-06-14 2015-01-21 首钢总公司 Manufacturing method of corrosion-proof steel plate used for crude oil tanker cargo oil hold inner bottom plate and steel plate
CN103741056B (en) * 2014-01-26 2016-01-06 北京科技大学 A kind of ocean environment of resistance to South Sea production technique of corrosion resistant plate
JP6123701B2 (en) * 2014-02-21 2017-05-10 Jfeスチール株式会社 Corrosion resistant steel for inner bottom plate of coal ship and coal / ore combined use hold
CN105002442B (en) * 2014-04-17 2017-09-15 北京中昊创业交通科学应用技术研究发展中心 A kind of high performance steel
KR101657787B1 (en) * 2014-12-04 2016-09-20 주식회사 포스코 The steel sheet having excellent corrosion resistance to hydrochloric acid and adhesion and method for manufacturing the same
KR101657788B1 (en) * 2014-12-04 2016-09-20 주식회사 포스코 The steel sheet having excellent corrosion resistance to hydrochloric acid and adhesion and method for manufacturing the same
CN107002197A (en) * 2014-12-09 2017-08-01 杰富意钢铁株式会社 The structural steel having excellent weather resistance
JP5994916B1 (en) * 2015-08-24 2016-09-21 Jfeスチール株式会社 Steel material for alcohol storage and transportation equipment with excellent pitting corrosion resistance
CN106223190A (en) * 2016-08-31 2016-12-14 中铁第四勘察设计院集团有限公司 A kind of bridge steel support without the resistance to sea atmosphere corrosion of application
JP6690585B2 (en) * 2017-03-14 2020-04-28 Jfeスチール株式会社 Steel material and manufacturing method thereof
CN107312971A (en) * 2017-07-12 2017-11-03 攀钢集团攀枝花钢铁研究院有限公司 Anti-corrosion hot rolled steel plate and its casting method and milling method
KR102430613B1 (en) * 2017-11-24 2022-08-08 제이에프이 스틸 가부시키가이샤 Corrosion-resistant steel for upper deck and bottom plate of crude oil tanker, and crude oil tanker
CN111801436B (en) * 2019-02-05 2021-10-29 日本制铁株式会社 Steel member, steel sheet, and method for producing same
CN113574197B (en) * 2019-03-14 2022-09-06 日本制铁株式会社 Steel sheet and method for producing same
CN110863146B (en) * 2019-10-25 2021-01-08 鞍钢股份有限公司 High-strength corrosion-resistant flat-bulb steel and production method thereof
JP7331813B2 (en) * 2020-09-28 2023-08-23 Jfeスチール株式会社 Thick steel plate and its manufacturing method
CN114959444B (en) * 2022-03-22 2023-04-28 湖南华菱涟源钢铁有限公司 Low-temperature acid dew point resistant steel and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3996727B2 (en) * 2000-01-31 2007-10-24 新日本製鐵株式会社 Corrosion resistant steel for double hull oil tanker storage
EP1167561A3 (en) * 2000-06-28 2009-03-04 Mitsubishi Steel Muroran Inc. Carburizing and carbonitriding steel
JP4171379B2 (en) * 2002-09-27 2008-10-22 新日本製鐵株式会社 Cu-containing steel material having excellent surface properties and method for producing the same
JP4041781B2 (en) * 2003-08-12 2008-01-30 株式会社神戸製鋼所 Steel material with excellent corrosion resistance
CN1946864A (en) * 2004-04-14 2007-04-11 住友金属工业株式会社 Steel product for cargo oil tank
JP4495668B2 (en) * 2004-11-19 2010-07-07 株式会社神戸製鋼所 High corrosion resistance steel

Also Published As

Publication number Publication date
CN101298645B (en) 2011-03-30
CN101298645A (en) 2008-11-05
KR20080097933A (en) 2008-11-06
JP2008274379A (en) 2008-11-13
KR100993407B1 (en) 2010-11-09

Similar Documents

Publication Publication Date Title
JP4898543B2 (en) Steel sheet with excellent pit resistance and method for producing the same
JP4868916B2 (en) Marine steel with excellent corrosion resistance
JP4640529B2 (en) Corrosion resistant steel material for crude oil tank, method for producing the same, and crude oil tank
JP4577158B2 (en) Corrosion resistant steel for crude oil tanks
JP4687531B2 (en) Steel for crude oil tank and method for producing the same
JP5861335B2 (en) Welded joint with excellent corrosion resistance
JP5375246B2 (en) Corrosion-resistant steel for crude oil tank and its manufacturing method
TWI460285B (en) Hot-rolled shapes for crude oil tank and process for manufacturing the same
JP2010185108A (en) Corrosion-resistant steel material for ship, and method of manufacturing the same
JP2010285673A (en) Steel for ship excellent in coating film-blistering resistance
JP4445444B2 (en) Marine steel and welded structures with excellent combined corrosion resistance
JP4868917B2 (en) Steel material for crude oil tank bottom plate with excellent corrosion resistance
JP2010196079A (en) Corrosion-resistant steel material for ship
JP2012001810A (en) Welded joint having excellent corrosion resistance and crude oil tank
JP5526667B2 (en) Hot rolled section steel for ship ballast tank with excellent corrosion resistance and method for producing the same
JP5365187B2 (en) Method for producing marine structural steel with excellent corrosion resistance
JP6601258B2 (en) Corrosion-resistant steel for ballast tanks
JP2013019049A (en) Corrosion-resistant steel material for ship ballast tank having excellent corrosion resistance and method for producing the same
WO2018066018A1 (en) Steel for ship ballast tank and ship
JP2008133536A (en) Steel having excellent corrosion resistance for ship use
US20160244866A1 (en) Steel material having excellent alcohol-induced pitting corrosion resistance and alcohol-induced scc resistance
JP2007197758A (en) High tensile strength marine steel having excellent corrosion resistance and base metal toughness
JP4476928B2 (en) High tensile steel for marine vessels with excellent corrosion resistance and base metal toughness
JP2007197762A (en) Marine steel with excellent corrosion resistance and fatigue crack propagation resistance
JP2011094184A (en) Highly corrosion resistant painted steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

R150 Certificate of patent or registration of utility model

Ref document number: 4898543

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees