JP2008133536A - Steel having excellent corrosion resistance for ship use - Google Patents

Steel having excellent corrosion resistance for ship use Download PDF

Info

Publication number
JP2008133536A
JP2008133536A JP2007277861A JP2007277861A JP2008133536A JP 2008133536 A JP2008133536 A JP 2008133536A JP 2007277861 A JP2007277861 A JP 2007277861A JP 2007277861 A JP2007277861 A JP 2007277861A JP 2008133536 A JP2008133536 A JP 2008133536A
Authority
JP
Japan
Prior art keywords
group
steel
corrosion
inclusions
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007277861A
Other languages
Japanese (ja)
Inventor
Akihiko Tatsumi
明彦 巽
Shinji Sakashita
真司 阪下
Hiroki Imamura
弘樹 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007277861A priority Critical patent/JP2008133536A/en
Publication of JP2008133536A publication Critical patent/JP2008133536A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel for ship use, exhibiting corrosion resistance on a level capable of practical use in a high corrosive environment even without being subjected to coating and electrolytic protection, having excellent durability particularly to crevice corrosion, and further exhibiting excellent corrosion protection and durability even to corrosion generated by the repetition of salt adhesion and humid environments caused by sea water. <P>SOLUTION: The steel having excellent corrosion resistance for ship use is composed of a steel material comprising prescribed amounts of C, Si, Mn and Al, respectively, and also, comprising one or more kinds among A group elements (Mg, Ca, Sr, Ba) by 0.0005 to 0.020% and B group elements (Ti, Zr, Hf) by 0.005 to 0.20% in such a manner that the ratio between the total content of the A group elements (A) and the total content of the B group elements (B), (A)/(B), lies in the range of 0.01 to 1, and the balance Fe with inevitable impurities, and in which sulfide based inclusions and oxide based inclusions including the A, B group elements by prescribed amounts and having prescribed sizes are present by 200 to 2,000 pieces per 1 mm<SP>2</SP>in the cross section in the rolling direction. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、原油タンカー、貨物船、貨客船、客船、軍艦などの船舶において、主要な構造材として用いられる耐食性に優れた船舶用鋼材に関し、特に、海水に由来する塩分や高温多湿に曝される腐食性の高い環境下においても優れた耐食性を示す船舶用鋼材に関するものである。   TECHNICAL FIELD The present invention relates to marine steel materials with excellent corrosion resistance that are used as main structural materials in ships such as crude oil tankers, cargo ships, cargo passenger ships, passenger ships, warships, and the like, and are particularly exposed to salt and high-temperature and high-humidity derived from seawater. The present invention relates to a marine steel material that exhibits excellent corrosion resistance even in a highly corrosive environment.

上記の様な各種船舶を建造する際に用いる主要な構造材(例えば、外板やバラスドタンク、原油タンクなど)として用いられている鋼材は、海水に由来する塩分や高温多湿に曝されることから、腐食損傷を受けることが多い。こうした腐食は、浸水や沈没などの海難事故を招く恐れがあることから、鋼材には防食対策を講じる必要があり、斯かる防食対策として一般に実施されているのは、防食塗装や電気防食などである。   Steel materials used as the main structural materials (such as outer plates, ballasted tanks, crude oil tanks, etc.) used when building various ships as described above are exposed to salt and high-temperature and high-humidity derived from seawater. Often suffers from corrosion damage. Since such corrosion may lead to marine accidents such as inundation and sinking, it is necessary to take anti-corrosion measures for steel materials. Anti-corrosion coating and cathodic protection are generally implemented as such anti-corrosion measures. is there.

このうち重塗装に代表される防食塗装は、塗膜欠陥を皆無にすることが困難である他、製造時に他部材との衝突などによって塗膜が傷付くことも多く、塗膜の損傷によって生じた鋼材露出部では、高腐食環境下で鋼材の局部的かつ集中的な腐食が進行し、石油系液体燃料などの早期漏洩に繋がる危険がある。   Of these, anti-corrosion coatings represented by heavy coatings are difficult to eliminate coating film defects, and the coating film is often damaged by collisions with other components during production, resulting in damage to the coating film. In the exposed steel material, local and intensive corrosion of the steel material proceeds in a highly corrosive environment, and there is a risk of leading to early leakage of petroleum liquid fuel and the like.

一方、電気防食は、海水中に完全に浸漬される部位に対しては非常に優れた防食効果を発揮する。ところが大気中で海水の飛沫を受ける部位などでは、防食に必要な電気回路が形成されず、満足のいく防食効果が発揮されないことも多い。しかも、防食電流を通すための陽極が異常消耗や脱落によって消失すると、直ちに激しい腐食が進行する。   On the other hand, the anti-corrosion exhibits a very excellent anti-corrosion effect for a part that is completely immersed in seawater. However, in parts that receive seawater splashes in the atmosphere, an electrical circuit necessary for anticorrosion is not formed, and a satisfactory anticorrosion effect is often not exhibited. Moreover, if the anode for passing the anticorrosion current disappears due to abnormal consumption or dropout, severe corrosion proceeds immediately.

これらの防食技術以外にも、防食皮膜で覆われた鋼材の耐食性を向上させるものとして、例えば特許文献1に開示されている様な技術も提案されている。この技術はカーゴオイルタンク用鋼材に関するもので、鋼材の化学成分や鋼材組織、更には鋼材中に含まれる介在物の大きさや分布密度を適切に調整することで耐食性の向上を図っている。また特許文献2には、鋼材の化学成分組成、鋼中の硫化物系介在物や酸化物系介在物の組成、サイズ、個数などを最適化することで、原油槽内環境における耐食性を改善すると共に、大入熱溶接によるHAZ(溶接熱影響部)靭性を改善した原油槽用鋼が開示されており、これらの改良技術で、従来材に比べるとそれなりの耐食性は確保できる様になってきた。   In addition to these anticorrosion techniques, for example, a technique as disclosed in Patent Document 1 has been proposed as one that improves the corrosion resistance of a steel material covered with an anticorrosion film. This technology relates to a steel material for cargo oil tanks, and aims to improve corrosion resistance by appropriately adjusting the chemical composition and steel structure of the steel material and the size and distribution density of inclusions contained in the steel material. Further, Patent Document 2 improves the corrosion resistance in the environment in the crude oil tank by optimizing the chemical composition of the steel material, the composition, size and number of sulfide inclusions and oxide inclusions in the steel. At the same time, steel for crude oil tanks with improved HAZ (welding heat affected zone) toughness by high heat input welding has been disclosed. With these improved technologies, it has become possible to secure a certain level of corrosion resistance compared to conventional materials. .

しかし、より厳しい腐食環境下での耐食性は依然として十分とはいえず、更なる耐食性の向上が求められる。特に、異物と鋼材との接触部分や、構造上の原因や防食塗膜の損傷などによって生じる「すきま」部では所謂すきま腐食が急速に進行し、寿命を大幅に短縮させるが、従来の防食技術は、こうした腐食部分に対する耐食性を満たすものとはいえない。
特開2003-82435号公報(特許請求の範囲など) 特開2004-169048号公報(特許請求の範囲など)
However, the corrosion resistance in a more severe corrosive environment is still not sufficient, and further improvement in corrosion resistance is required. In particular, so-called crevice corrosion rapidly progresses at the `` crevice '' part caused by the contact between foreign material and steel material, structural causes, damage to the anticorrosion coating, etc. Does not satisfy the corrosion resistance against these corroded parts.
JP 2003-82435 A (Claims etc.) Japanese Unexamined Patent Application Publication No. 2004-169048 (claims, etc.)

本発明は上記の様な事情に着目してなされたものであって、その目的は、防食塗装や電気防食をせずとも高腐食環境下で実用可能なレベルの耐食性を示し、特にすきま腐食に対する耐久性に優れると共に、海水に起因する塩分付着と湿潤環境の繰返しによって生じる腐食に対しても、優れた防食耐久性を示す船舶用鋼材を提供することにある。中でも、原油などの石油系燃料を輸送するタンカー用素材として、原油などの石油系燃料と直接接触
するタンクなどの構造材として用いた場合でも、優れた耐食性を示す船舶用の鋼材を提供することにある。
The present invention has been made paying attention to the above-mentioned circumstances, and its purpose is to exhibit a level of corrosion resistance that is practical in a highly corrosive environment without anticorrosion coating or electrocorrosion protection, and particularly against crevice corrosion. An object of the present invention is to provide a marine steel material that is excellent in durability and exhibits excellent anti-corrosion durability against corrosion caused by salt adhesion caused by seawater and repeated wet environments. Above all, to provide steel materials for ships that exhibit excellent corrosion resistance even when used as a structural material for tanks that come in direct contact with petroleum-based fuels such as crude oil as tanker materials that transport petroleum-based fuels such as crude oil. It is in.

上記課題を解決することのできた本発明に係る船舶用鋼材とは、
C:0.01〜0.30%(質量%の意味、以下同じ)、
Si:0.01〜2.0%、
Mn:0.01〜2.0%、
Al:0.005〜0.10%、
S:0.010%以下
を夫々含有し、かつ、
A群元素(Mg,Ca,Sr,Baの中から選ばれる1種以上):0.0005〜0.020%、と
B群元素(Ti,Zr,Hfの中から選ばれる1種以上):0.005〜0.20%
を含有すると共に、上記A群元素の合計含量(A)とB群元素の合計含量(B)の比(A)/(B)が0.01〜1の範囲で、残部がFeおよび不可避的不純物である鋼からなり、更に、下記の要件を満たす硫化物系介在物および酸化物系介在物の平均粒径が1〜10μmで、且つこれらが圧延方向断面の1mm当たりに各々200〜2000個存在するところに要旨が存在する。
硫化物系介在物:前記A群元素を総量で1〜30%および/または前記B群元素を総量で1〜30%含有する、円相当径が0.5μm以上の硫化物系介在物、
酸化物系介在物:前記A群元素を総量で1〜30%および/または前記B群元素を総量で1〜30%含有する、円相当径が0.5μm以上の酸化物系介在物。
The steel material for ships according to the present invention that has solved the above-mentioned problems is
C: 0.01 to 0.30% (meaning mass%, the same shall apply hereinafter)
Si: 0.01 to 2.0%,
Mn: 0.01 to 2.0%,
Al: 0.005 to 0.10%,
S: each containing 0.010% or less, and
Group A element (one or more selected from Mg, Ca, Sr, Ba): 0.0005 to 0.020%, and Group B element (one or more selected from Ti, Zr, Hf): 0.005-0.20%
In addition, the ratio (A) / (B) of the total content (A) of the group A element and the total content (B) of the group B element is in the range of 0.01 to 1, with the balance being Fe and inevitable The average particle size of sulfide inclusions and oxide inclusions satisfying the following requirements is 1 to 10 μm, and these are 200 to 2000 per 1 mm 2 of the cross section in the rolling direction. There is a gist where there are pieces.
Sulfide inclusions: sulfide inclusions having an equivalent circle diameter of 0.5 μm or more, containing 1 to 30% in total amount of the group A elements and / or 1 to 30% in total amount of the group B elements,
Oxide inclusions: Oxide inclusions having an equivalent circle diameter of 0.5 μm or more, containing 1 to 30% of the group A elements and / or 1 to 30% of the group B elements in total.

本発明に係る上記船舶用鋼材には、更に他の元素として、Cr:0.01〜5.0%、Cu:0.01〜5.0%、Ni:0.01〜5.0%、Co:0.01〜5.0%よりなる群から選ばれる少なくとも1種を含むものであってもよく、或は更に、B:0.0001〜0.010%、V:0.01〜0.50%、Nb:0.003〜0.50%よりなる群から選ばれる少なくとも1種を含有するものであってもよい。   In the marine steel material according to the present invention, as other elements, Cr: 0.01-5.0%, Cu: 0.01-5.0%, Ni: 0.01-5.0%, Co: It may contain at least one selected from the group consisting of 0.01 to 5.0%, or B: 0.0001 to 0.010%, V: 0.01 to 0 It may contain at least one selected from the group consisting of .50% and Nb: 0.003 to 0.50%.

そして本発明の船舶用鋼材は、その優れた耐食性を活かして、特に原油タンカーのタンク素材として極めて有効に活用できる。   The marine steel material of the present invention can be used extremely effectively as a tank material for crude oil tankers, taking advantage of its excellent corrosion resistance.

本発明の船舶用鋼材によれば、鋼材の成分組成を適切に調整し、特に、所定のA群元素(Mg,Ca,Sr,Baの1種以上)とB群元素(Ti,Zr,Hfの1種以上)とを適量含有させると共に、その含有比率を調整し、更には、それらA群元素やB群元素を含む硫化物系介在物と酸化物系介在物のサイズと個数を所定範囲に制御することで、防食塗装や電気防食を施さなくても十分な耐食性を示す船舶用鋼材を提供でき、特にすきま腐食に対する耐久性の向上を図ると共に、海水に起因する塩分付着と湿潤環境の繰返しによる苛酷な腐食環境下でも優れた防食耐久性を発揮する船舶用鋼材を提供できる。こうした特性を備えた本発明の船舶用鋼材は、原油タンカー、貨物船、貨客船、客船、軍艦などの船舶における外板やバラストタンクなどの素材として有用であり、中でも原油タンクの素材として極めて有用である。   According to the marine steel material of the present invention, the component composition of the steel material is appropriately adjusted, and in particular, a predetermined group A element (one or more of Mg, Ca, Sr, Ba) and a group B element (Ti, Zr, Hf). A suitable amount of sulfide inclusions and oxide inclusions containing a group A element or a group B element, and a predetermined range. This can provide marine steels that exhibit sufficient corrosion resistance without the need for anticorrosion coating or electrocorrosion protection.In particular, while improving durability against crevice corrosion, it is possible to prevent the adhesion of salt caused by seawater and the wet environment. It is possible to provide a marine steel material that exhibits excellent anti-corrosion durability even under severe corrosive environments caused by repetition. The marine steel material of the present invention having such characteristics is useful as a material for outer plates and ballast tanks in ships such as crude oil tankers, cargo ships, freight passenger ships, passenger ships, warships, etc., and is particularly useful as a material for crude oil tanks. is there.

本発明者らは、先に説明した様な課題の解決を期して鋭意研究を重ねてきた。その結果、pHの低下抑制作用や生成錆の緻密化と安定化作用を有するA群元素(Mg,Ca,Sr,Baの1種以上)とB群元素(Ti,Zr,Hfの1種以上)とを適量含有させ、それらの含有比率を適切に制御すれば、これらの元素を含む硫化物系介在物と酸化物系介在物のサイズと個数をうまく調整することができ、上記課題を解決することのできる高性能の船舶用鋼材が得られることを知り、本発明を完成した。   The inventors of the present invention have conducted intensive research aimed at solving the problems as described above. As a result, a group A element (one or more of Mg, Ca, Sr, Ba) and a group B element (one or more of Ti, Zr, Hf) having an effect of suppressing the decrease in pH and a function of densifying and stabilizing generated rust. )), And the content ratio of these elements can be controlled appropriately, the size and number of sulfide inclusions and oxide inclusions containing these elements can be adjusted well, and the above problems can be solved. Knowing that a high performance marine steel material can be obtained, the present invention has been completed.

また本発明では、鋼材としての基本的特性を満足させるため、C,Si,Mn,Alなどの基本成分も適切に調整する必要があり、まずこれら基本成分の限定理由を明らかにする。   In the present invention, in order to satisfy the basic characteristics as a steel material, basic components such as C, Si, Mn, and Al need to be appropriately adjusted. First, the reasons for limiting these basic components will be clarified.

C:0.01〜0.30%
Cは、鋼材の構造強度を確保するために重要な元素であり、船舶の構造部材として最低限の強度(鋼材の肉厚にもよるが、概ね400MPa程度以上)を確保するには、Cを0.01%以上含有させる必要がある。しかし、C含量が0.30%を超えると靱性が悪くなるので、多くとも0.30%までに抑えるべきである。より好ましいC含量は0.02%以上、更に好ましくは0.04%以上で、0.28%以下、更に好ましくは0.26%以下である。
C: 0.01 to 0.30%
C is an important element for securing the structural strength of steel materials, and in order to secure the minimum strength as a structural member of a ship (approximately 400 MPa or more depending on the thickness of the steel materials) It is necessary to contain 0.01% or more. However, if the C content exceeds 0.30%, the toughness deteriorates, so it should be suppressed to 0.30% at most. The C content is more preferably 0.02% or more, further preferably 0.04% or more, 0.28% or less, and further preferably 0.26% or less.

Si:0.01〜2.0%
Siは脱酸と強度確保のために必要な元素であり、0.01%未満では構造部材として強度不足となる。しかし多過ぎると溶接性が悪くなるので、2.0%以下に抑えるべきである。より好ましいSi含有量は0.02%以上、更に好ましくは0.05%以上で、1.5%以下、更に好ましくは1.0%以下である。
Si: 0.01 to 2.0%
Si is an element necessary for deoxidation and ensuring strength, and if it is less than 0.01%, the strength is insufficient as a structural member. However, if the amount is too large, the weldability deteriorates, so it should be suppressed to 2.0% or less. The Si content is more preferably 0.02% or more, still more preferably 0.05% or more, and 1.5% or less, and still more preferably 1.0% or less.

Mn:0.01〜2.0%
Mnも、Siと同様に脱酸と強度確保のために重要な元素であり、0.01%未満では構造部材として強度不足になる。しかし多過ぎると靭性が悪くなるので、2.0%以下に抑えるべきである。より好ましいMn含有量は0.05%以上、更に好ましくは0.10%以上で、1.80%以下、より好ましくは1.60%以下である。
Mn: 0.01 to 2.0%
Mn is also an important element for deoxidation and securing of strength, like Si, and if it is less than 0.01%, the strength is insufficient as a structural member. However, if it is too much, the toughness deteriorates, so it should be suppressed to 2.0% or less. The Mn content is more preferably 0.05% or more, further preferably 0.10% or more, 1.80% or less, more preferably 1.60% or less.

Al:0.005〜0.10%
Alも、上記SiやMnと同様に脱酸と強度確保のために必要な元素であり、0.005%未満では脱酸不足となる。しかし、多過ぎると溶接性が劣悪になるので0.10%を上限とする。より好ましいAl含有量は0.010%以上、更に好ましくは0.015%以上で、0.040%以下、更に好ましくは0.050%以下である。
Al: 0.005-0.10%
Al, like Si and Mn, is an element necessary for deoxidation and securing strength, and if it is less than 0.005%, deoxidation is insufficient. However, if the amount is too large, weldability becomes poor, so the upper limit is made 0.10%. The Al content is more preferably 0.010% or more, further preferably 0.015% or more, 0.040% or less, and further preferably 0.050% or less.

S:0.010%以下
Sは、鋼材の靭性や溶接性に悪影響を及ぼす元素であり、可能な限り少なく抑えることが好ましい。S含有量の許容される上限は0.010%までであり、これを超えると船舶用鋼材として必要な溶接性を確保できなくなる。より好ましいS含有量は0.008%以下である。
S: 0.010% or less S is an element that adversely affects the toughness and weldability of steel materials, and is preferably suppressed as little as possible. The allowable upper limit of the S content is up to 0.010%, and if it exceeds this, it becomes impossible to ensure the weldability required for marine steel. A more preferable S content is 0.008% or less.

A群元素(Mg,Ca,Sr,Baから選ばれる少なくとも1種):0.0005〜0.020%
A群に含まれるこれらの元素は、鋼材から溶出することで周辺の水系環境のpHを高める作用を有しており、鉄の溶解が起こっている局部アノード形成部分の加水分解反応によるpH低下を抑えて腐食反応を抑制し、耐食性の向上に寄与する。こうした効果は、合計で0.0005%以上含有させることによって有効に発揮される。しかし、合計含量が多くなり過ぎると、成形加工性や溶接性に悪影響を及ぼすので、多くとも0.020%以下に抑えなければならない。A群元素のより好ましい含有量は、合計で0.0008%以上、0.015%以下である。
Group A element (at least one selected from Mg, Ca, Sr, Ba): 0.0005 to 0.020%
These elements contained in Group A have the effect of increasing the pH of the surrounding aqueous environment by leaching from the steel material, and lowering the pH due to the hydrolysis reaction of the local anode forming part where iron dissolution occurs. Suppresses the corrosion reaction and contributes to the improvement of corrosion resistance. Such an effect is effectively exhibited by containing 0.0005% or more in total. However, if the total content is too large, it adversely affects the formability and weldability, so it must be suppressed to 0.020% or less at most. A more preferable content of the group A element is 0.0008% or more and 0.015% or less in total.

B群元素(Ti,Zr,Hfから選ばれる少なくとも1種):0.005〜0.20%
B群に含まれるこれらの元素は、耐食性向上に大きく寄与する表面錆皮膜を緻密化して環境遮断性を高めると共に、すきま内部での腐食を抑えて耐すきま腐食性の向上にも寄与する有用な元素である。こうした作用を有効に発揮させるには、合計で0.005%以上含有させる必要があるが、多過ぎると加工性や溶接性を劣化させるので、合計含量で0.20%以下に抑える。B群元素のより好ましい含有量は、合計で0.008%以上、0.15%以下である。
Group B element (at least one selected from Ti, Zr, and Hf): 0.005 to 0.20%
These elements included in Group B are useful for improving the crevice corrosion resistance by densifying the surface rust film that contributes greatly to the improvement of corrosion resistance and improving the environmental barrier properties, and also suppressing the corrosion inside the crevice. It is an element. In order to exert such an action effectively, it is necessary to contain 0.005% or more in total. However, if too much, workability and weldability are deteriorated, so the total content is suppressed to 0.20% or less. A more preferable content of the group B element is 0.008% or more and 0.15% or less in total.

本発明では、上述したA群元素によるpH低下抑制作用と、B群元素による表面錆皮膜の緻密・安定化作用を相乗的に発揮させるため、A群元素の合計含量(A)とB群元素の合計含量(B)との比を適切に制御することが重要であり、これらの比(A)/(B)が0.01〜1.0の範囲となる様に両者の合計含量を調整することで、総合的な耐食性を高めることが可能となる。(A)/(B)のより好ましい比率は、0.02以上、0.8以下である。   In the present invention, the total content (A) of the A group element and the B group element are used in order to synergistically exhibit the pH lowering suppressing action by the A group element and the dense and stabilizing action of the surface rust film by the B group element. It is important to properly control the ratio with the total content (B), and the total content of both is adjusted so that the ratio (A) / (B) is in the range of 0.01 to 1.0. By doing so, it becomes possible to improve comprehensive corrosion resistance. A more preferable ratio of (A) / (B) is 0.02 or more and 0.8 or less.

本発明に係る船舶用鋼材の必須構成元素は以上の通りであり、残部は製鉄原料(鉄鉱石や副原料、スクラップなど)や製造工程などから不可避に混入してくる不純物(例えば、P,O,N,W,Moなど)であるが、これらも鋼材の特性を阻害しない限度で微量の含有は許容される。但し、これら許容成分は、多過ぎると靭性などに悪影響を及ぼす様になるので、多くとも0.5%以下、より好ましくは0.1%程度以下に抑えるべきである。   The essential constituent elements of the marine steel according to the present invention are as described above, and the balance is an impurity (for example, P, O) that is inevitably mixed in from a steelmaking raw material (iron ore, secondary raw material, scrap, etc.) or a manufacturing process. , N, W, Mo, etc.), but these are also allowed to be contained in trace amounts as long as they do not impair the properties of the steel material. However, if these allowable components are too much, they will adversely affect toughness and the like, so at most 0.5% or less, more preferably about 0.1% or less should be suppressed.

本発明では、更に他の元素として次に示す様な元素を積極的に含有させることで、一層の物性改善を図ることができる。以下、それらの元素と添加効果について補足する。   In the present invention, further physical properties can be improved by positively containing the following elements as other elements. Hereinafter, it supplements about those elements and the addition effect.

Cr:0.01〜5.0%、Cu:0.01〜5.0%、Ni:0.01〜5.0%、Co:0.01〜5.0%よりなる群から選ばれる1種以上
Cr,Cu,NiおよびCoは、いずれも鋼材の耐食性向上に寄与する元素である。これらのうちCrとCuは、耐食性向上に大きく寄与する緻密な表面錆皮膜の形成を助長する作用があり、それらの効果は各々0.01%以上添加することで有効に発揮される。しかし、過剰に含有させると溶接性や熱間加工性に悪影響を及ぼす様になるので、各々5.0%以下に抑えるべきである。CrやCuを含有させるときのより好ましい含有量は各々0.05%以上、4.50%以下である。
1 selected from the group consisting of Cr: 0.01-5.0%, Cu: 0.01-5.0%, Ni: 0.01-5.0%, Co: 0.01-5.0% Seed and above Cr, Cu, Ni and Co are all elements that contribute to improving the corrosion resistance of steel. Among these, Cr and Cu have an action of promoting the formation of a dense surface rust film that greatly contributes to the improvement of corrosion resistance, and these effects are effectively exhibited by adding 0.01% or more of each. However, if excessively contained, the weldability and hot workability will be adversely affected, so each should be suppressed to 5.0% or less. More preferable contents when Cr or Cu is contained are 0.05% or more and 4.50% or less, respectively.

またNiとCoは、耐食性の向上に大きく寄与する緻密な表面錆皮膜を安定化させる作用を有しており、特に塗膜下での腐食の進展を抑えて塗装後耐食性の向上に寄与する。こうした効果は、各々0.01%以上含有させることで有効に発揮されるが、多過ぎると溶接性や熱間加工性を劣化させるので、5.0%以下に抑えるべきである。NiやCoを含有させる際のより好ましい含有量は、各々0.05%以上、4.50%以下である。   Moreover, Ni and Co have the effect | action which stabilizes the precise | minute surface rust film | membrane which contributes largely to an improvement in corrosion resistance, and especially contribute to improvement of corrosion resistance after coating by suppressing the progress of corrosion under the coating film. These effects are effectively exhibited by containing 0.01% or more of each, but if it is too much, weldability and hot workability are deteriorated, so it should be suppressed to 5.0% or less. More preferable contents when Ni or Co is contained are 0.05% or more and 4.50% or less, respectively.

B:0.0001〜0.010%、V:0.01〜0.50%、Nb:0.003〜0.50%よりなる群から選ばれる1種以上
船舶用鋼材では、適用する部位によっては更なる高強度化が必要な場合もあり、これらの元素はいずれも強度の一層の向上に寄与する。このうちBは、0.0001%以上含有させることによって焼入性が向上し強度を高めるが、0.010%を超えて過剰に含有させると靭性が劣化するため好ましくない。Vは、0.01%以上含有させることで強度向上に寄与するが、0.50%を超えるとやはり靭性を劣化させる。Nbは、0.003%以上含有させることによって強度向上に有効に作用するが、0.50%を超えるとやはり鋼材の靭性劣化を招く。尚、これらの元素のより好ましい下限を示すと、Bは0.0003%、Vは0.02%、Nbは0.005%である。またより好ましい上限を示すと、Bは0.0090%、Vは0.45%、Nbは0.45%である。
One or more types selected from the group consisting of B: 0.0001 to 0.010%, V: 0.01 to 0.50%, and Nb: 0.003 to 0.50%. In some cases, further strengthening is required, and these elements all contribute to further improvement in strength. Among these, when B is contained in an amount of 0.0001% or more, the hardenability is improved and the strength is increased. V contributes to strength improvement by containing 0.01% or more, but if it exceeds 0.50%, it also deteriorates toughness. Nb effectively acts to improve the strength by containing 0.003% or more, but if it exceeds 0.50%, the toughness of the steel is also deteriorated. In addition, when the more preferable lower limit of these elements is shown, B is 0.0003%, V is 0.02%, and Nb is 0.005%. Moreover, if a more preferable upper limit is shown, B is 0.0090%, V is 0.45%, and Nb is 0.45%.

以上が化学成分についての限定理由であるが、本発明では鋼中の硫化物系介在物や酸化物系介在物に、上記所定のA群元素とB群元素を含有させると共に、そのサイズと個数を適正に制御することが、優れた耐食性を得るうえで重要となる。以下、それらの介在物について説明する。   The above is the reason for limiting the chemical components. In the present invention, the sulfide-type inclusions and oxide-type inclusions in steel contain the predetermined group A element and group B element, and the size and number thereof. Proper control is important for obtaining excellent corrosion resistance. Hereinafter, these inclusions will be described.

塩化物イオンを含む水系環境では、硫化物系介在物は逐次水に溶け出して腐食の起点となる。ところが、硫化物系介在物に前記A群元素とB群元素を所定量含有させると、塩化物イオンを含む水系環境における硫化物系介在物の溶解が抑えられることが分かった。また、石油類に由来する硫黄分(元素状硫黄や硫化水素ガスなど)を含む腐食性環境下では、酸化物系介在物中に上記A群元素とB群元素を所定量含有させると、酸化物系介在物の溶解を促進し、これらが水に溶け出すのを促して水系環境のpHを上昇させる。その結果、鉄の溶解が起こっている局部アノードにおける加水分解反応によるpH低下を抑えて腐食反応を抑制し、耐食性の向上に寄与することが確認された。   In an aqueous environment containing chloride ions, sulfide inclusions gradually dissolve in water and become the starting point of corrosion. However, it has been found that when a predetermined amount of the group A element and the group B element are contained in the sulfide inclusions, the dissolution of the sulfide inclusions in an aqueous environment containing chloride ions can be suppressed. Further, in a corrosive environment containing sulfur content derived from petroleum (such as elemental sulfur and hydrogen sulfide gas), if a predetermined amount of the above group A element and group B element is contained in the oxide inclusions, It promotes the dissolution of physical inclusions and promotes their dissolution in water to raise the pH of the aqueous environment. As a result, it was confirmed that the pH decrease due to the hydrolysis reaction in the local anode where iron dissolution occurred was suppressed to suppress the corrosion reaction and contribute to the improvement of the corrosion resistance.

そこで本発明では、硫化物系介在物と酸化物系介在物に前記A群およびB群に含まれる元素を適量含有させることで、硫化物系介在物の溶解抑制と、酸化物系介在物の溶解によるpH上昇とそれに伴う腐食抑制作用を相加的に発揮させ、耐食性を大幅に高めるものである。   Therefore, in the present invention, the sulfide inclusions and oxide inclusions contain an appropriate amount of the elements contained in Group A and Group B, so that the dissolution of sulfide inclusions can be suppressed and the oxide inclusions can be reduced. It is intended to increase the corrosion resistance by significantly exhibiting the pH increase due to dissolution and the corrosion inhibition effect associated therewith.

こうした作用を有効に発揮させるには、硫化物系介在物と酸化物系介在物中に、各々前記A群元素を総量で1〜30%および/またはB群元素を総量で1〜30%含有させると共に、それら硫化物系介在物と酸化物系介在物のうち、円相当径が0.5μm以上であるものの平均粒径と個数を適正範囲に制御する必要がある。即ち本発明では、上記A群元素および/またはB群元素を適量含有する硫化物系介在物および酸化物系介在物で、円相当径が0.5μm以上であるものの平均粒径がそれぞれ1〜10μmで、且つそれらが鋼断面の1mm当たりに夫々200〜2000個存在させることが、上記両特性を有効に発揮させて高レベルの耐食性を発揮させる上で極めて重要となる。 In order to effectively exhibit such an action, the sulfide group inclusions and oxide inclusions contain 1 to 30% of the total amount of the A group element and / or 1 to 30% of the total group B element, respectively. In addition, among these sulfide inclusions and oxide inclusions, those having an equivalent circle diameter of 0.5 μm or more must be controlled within an appropriate range. That is, in the present invention, sulfide inclusions and oxide inclusions containing an appropriate amount of the above group A element and / or group B element and having an equivalent circle diameter of 0.5 μm or more have an average particle size of 1 to 1, respectively. It is extremely important that 10 to 200 μm and each of them be 200 to 2000 per 1 mm 2 of the steel cross section in order to effectively exhibit both of the above characteristics and to exhibit a high level of corrosion resistance.

なお、上記硫化物系および酸化物系の介在物については、供試鋼材の断面を例えばダイヤモンドペースト等で1μm程度まで鏡面研磨したサンプル面を走査型電子顕微鏡(SEM)で観察し、エネルギー分散型X線分析(EDX)による元素分析でそれら介在物の含有成分を確認し、該介在物に含まれるS,O,N量のうちS(硫黄)含量が最も多いものを硫化物系介在物(例えば図1参照)と同定し、O(酸素)含量が最も多いものを酸化物系介在物(例えば図2参照)と同定した。   For the sulfide-based and oxide-based inclusions, a sample surface obtained by mirror-polishing the cross section of the test steel material to about 1 μm with, for example, diamond paste or the like is observed with a scanning electron microscope (SEM). The inclusions of these inclusions are confirmed by elemental analysis by X-ray analysis (EDX), and among the S, O, and N contents contained in the inclusions, the one with the largest S (sulfur) content is determined as a sulfide inclusion ( For example, see FIG. 1), and the one with the highest O (oxygen) content was identified as an oxide inclusion (see FIG. 2, for example).

これら硫化物系介在物および酸化物系介在物中に含まれる前記A群元素やB群元素の含有量が各々1%未満では、本発明で意図するレベルの耐食性向上効果が発揮されず、また各々30%を超えて過剰量になると鋼材の機械特性が劣悪になるので、それら介在物中に含まれるA群元素とB群元素の含有量は夫々1〜30%の範囲と定めた。より好ましい含有量は2%以上、28%以下、更に好ましくは3%以上、25%以下である。   If the content of the group A element and group B element contained in these sulfide inclusions and oxide inclusions is less than 1%, the corrosion resistance improving effect at the level intended by the present invention is not exhibited. When the excess amount exceeds 30%, the mechanical properties of the steel materials are deteriorated. Therefore, the contents of Group A elements and Group B elements contained in these inclusions are determined to be in the range of 1 to 30%, respectively. A more preferable content is 2% or more and 28% or less, and further preferably 3% or more and 25% or less.

ところで硫化物系介在物の粒径が小さ過ぎると、微細な硫化物系介在物が一面に分散することで全面腐食が起こり易くなり、耐食性が低下する。逆に硫化物系介在物の粒径が大き過ぎると、鋼材の機械特性が悪くなる。また酸化物系介在物の粒径が小さ過ぎると、水系雰囲気への溶解によるpH上昇作用が不十分となり、鉄の溶解が起こっている局部アノード部での加水分解反応によるpH低下を抑制できず、満足のいく耐食性改善効果が発揮され難くなる。逆に酸化物系介在物の粒径が大き過ぎると、硫化物系介在物の場合と同様に鋼材の機械的特性が悪くなる。この様なことから、硫化物系介在物および酸化物系介在物は平均粒径(円相当径の平均値)で1〜10μmの範囲に調整すべきであり、より好ましくは2.0〜9.0μmの範囲とするのがよい。   By the way, if the particle size of the sulfide inclusions is too small, the fine sulfide inclusions are dispersed all over the surface, so that overall corrosion is likely to occur and the corrosion resistance is lowered. Conversely, if the particle size of the sulfide inclusions is too large, the mechanical properties of the steel material will deteriorate. If the particle size of oxide inclusions is too small, the effect of increasing the pH due to dissolution in an aqueous atmosphere will be insufficient, and it will not be possible to suppress the decrease in pH due to the hydrolysis reaction at the local anode where the dissolution of iron occurs. It is difficult to achieve a satisfactory corrosion resistance improvement effect. On the other hand, if the particle size of the oxide inclusions is too large, the mechanical properties of the steel material deteriorate as in the case of sulfide inclusions. Therefore, the sulfide inclusions and oxide inclusions should be adjusted to an average particle diameter (average value of equivalent circle diameter) of 1 to 10 μm, and more preferably 2.0 to 9 It is good to set it as the range of 0.0 micrometer.

尚これら硫化物系介在物や酸化物系介在物の粒径は、供試鋼材の断面を鏡面研磨(例えば、ダイヤモンドペーストで1μm程度まで)した後、その研磨面を走査型電子顕微鏡(SEM)で写真撮影し、画像解析によって各介在物の中から円相当径がほぼ0.5μm以上と思われる任意の100個を選択してそれらの円相当径を求め、その平均値を平均粒径とした。   The particle size of these sulfide inclusions and oxide inclusions is determined by mirror-polishing the cross section of the test steel (for example, up to about 1 μm with diamond paste) and then polishing the polished surface with a scanning electron microscope (SEM). And select 100 arbitrary circles whose equivalent circle diameter is considered to be approximately 0.5 μm or more from each inclusion by image analysis to obtain the equivalent circle diameter, and the average value is determined as the average particle diameter. did.

次に、これら介在物の個数については、硫化物系介在物の個数が少な過ぎると、個々の硫化物系介在物が大きくなり過ぎて鋼材の機械特性を害し、また個数自体が多過ぎても同様に鋼材の機械特性が劣化する。また、酸化物系介在物の個数が不足すると、先に説明した水系環境への溶解によるpH上昇作用が低下し、鉄の溶解が起こっている局部アノードと加水分解反応によるpH低下抑制作用が不十分となって耐食性不足となり、また個数が多過ぎると鋼材の機械特性が劣化する。そこで本発明では、鋼材の任意断面1mm当たりに観察される前記サイズ(円相当径で0.5μm以上)の硫化物系介在物および酸化物系介在物の個数を各々200〜2000個と定めた。より好ましい個数は500〜1500個である。 Next, with regard to the number of these inclusions, if the number of sulfide inclusions is too small, the individual sulfide inclusions become too large, which impairs the mechanical properties of the steel material, and even if the number itself is too large. Similarly, the mechanical properties of the steel material deteriorate. In addition, when the number of oxide inclusions is insufficient, the pH increasing action due to dissolution in the aqueous environment described above is reduced, and the local anode where iron is dissolved and the pH lowering suppressing action due to hydrolysis reaction are not effective. If the number is too large, the mechanical properties of the steel will deteriorate. Therefore, in the present invention, the number of sulfide inclusions and oxide inclusions of the size (equivalent to a circle equivalent diameter of 0.5 μm or more) observed per 1 mm 2 of an arbitrary cross section of the steel material is determined to be 200 to 2000, respectively. It was. A more preferable number is 500-1500.

ここで言う硫化物系介在物および酸化物系介在物の個数とは、供試鋼材の断面を鏡面研磨(例えば、ダイヤモンドペーストで1μm程度まで)した後、研磨面を走査型電子顕微鏡(SEM)により倍率400倍で観察し、任意の10視野内に観察される前記サイズ(円相当径で0.5μm以上)の硫化物系介在物と酸化物系介在物の個数から夫々平均値として求めた。   The number of sulfide inclusions and oxide inclusions as used herein refers to mirror polishing of the cross section of the test steel (for example, up to about 1 μm with diamond paste), and then polishing the polished surface with a scanning electron microscope (SEM) And the average value was obtained from the number of sulfide inclusions and oxide inclusions of the above-mentioned size (equivalent circle diameter of 0.5 μm or more) observed in an arbitrary 10 field of view. .

次に、本発明に係る上記船舶用鋼材の製造方法について説明する。   Next, the manufacturing method of the marine steel material according to the present invention will be described.

本発明の鋼材は下記の様な方法で製造できる。すなわち、常法により転炉や電気炉で溶製し取鍋に出鋼した溶鋼に対し、RH真空脱ガス装置を用いて成分調整や温度調整を含む二次精錬を行う。本発明において前記硫化物系介在物や酸化物系介在物を構成するA群元素およびB群元素は、この二次精錬時に添加して所定の成分組成となる様に調整する。二次精錬工程においては、必要によりLF(取鍋精錬)による脱S処理など、RH以外の装置を用いて処理することも可能である。二次精錬における脱酸形式としては、機械特性や溶接性に優れた鋼材を得る観点からキルド鋼を用いるのがよく、より好ましくはAlキルド鋼を使用するのがよい。二次精錬の後は、連続鋳造法や造塊法など通常の鋳造法で鋼塊とする。   The steel material of the present invention can be produced by the following method. That is, secondary refining including component adjustment and temperature adjustment is performed using a RH vacuum degassing apparatus on molten steel melted by a conventional method using a converter or electric furnace and put out in a ladle. In the present invention, the group A elements and the group B elements constituting the sulfide inclusions and oxide inclusions are added during the secondary refining and adjusted so as to have a predetermined component composition. In the secondary refining process, it is also possible to perform processing using an apparatus other than RH such as de-S processing by LF (ladder refining) if necessary. As a deoxidation type in secondary refining, killed steel is preferably used from the viewpoint of obtaining a steel material excellent in mechanical properties and weldability, and Al killed steel is more preferably used. After secondary refining, steel ingots are made by conventional casting methods such as continuous casting and ingot casting.

得られた鋼塊を1100〜1200℃の温度域に加熱してから熱間圧延を行ない、所望の寸法形状とする。このとき、熱間圧延の終了温度は750〜850℃とし、熱間圧延終了後500℃までの温度域の冷却速度を0.1〜15℃/sの範囲に制御することが好ましい。   The obtained steel ingot is heated to a temperature range of 1100 to 1200 ° C. and then hot-rolled to obtain a desired size and shape. At this time, it is preferable that the end temperature of the hot rolling is 750 to 850 ° C., and the cooling rate in the temperature range up to 500 ° C. after the end of the hot rolling is controlled to a range of 0.1 to 15 ° C./s.

上記製造方法を実施する際に、特に本発明で重要な構成要素となる前記硫化物系介在物と酸化物系介在物のサイズと個数を前述した好適範囲に調整するには、A群元素とB群元素を二次精錬時に添加することが重要である。これらの元素を二次精錬時に添加し、且つA群元素とB群元素の比が所定範囲になる様に添加量を調整すれば、硫化物系介在物と酸化物系介在物中にA群元素とB群元素を含有させることができ、介在物のサイズと個数を好適範囲に制御することが可能となる。二次精錬の前にA群元素やB群元素を添加して成分調整を行うと、介在物構成元素が多くなり過ぎたり粗大な介在物が生成し易くなり、介在物のサイズと個数を前述した好適範囲に納めることができなくなる。   To adjust the size and number of the sulfide inclusions and oxide inclusions, which are particularly important constituent elements in the present invention when carrying out the above production method, to the preferred range described above, It is important to add the group B element during secondary refining. If these elements are added during secondary refining, and the addition amount is adjusted so that the ratio of the group A element to the group B element is within a predetermined range, the group A in the sulfide inclusions and oxide inclusions. An element and a group B element can be contained, and the size and number of inclusions can be controlled within a suitable range. If component adjustment is performed by adding Group A elements or Group B elements prior to secondary refining, too many inclusion constituent elements or coarse inclusions are likely to be generated, and the size and number of inclusions are described above. It becomes impossible to fit within the preferred range.

また、熱間圧延前のスラブ(鋼塊)加熱温度を1100〜1200℃に調整することも
重要である。加熱温度が1200℃を超えると、化学成分が適正であったとしても介在物の個数が多くなり、本発明の目的を達成できなくなる。
It is also important to adjust the slab (steel ingot) heating temperature before hot rolling to 1100 to 1200 ° C. When the heating temperature exceeds 1200 ° C., the number of inclusions increases even if the chemical components are appropriate, and the object of the present invention cannot be achieved.

本発明の船舶用鋼材は、上記特性により基本的には塗装を施さなくても鋼材自体が優れた耐食性を発揮するが、必要によっては、後記実施例にも示す如く変性エポキシ樹脂塗料などに代表される各種の重防食塗装、ジンクリッチペイント、ショッププライマー、電気防食など、他の防食法と併用することも可能である。こうした防食塗装を施した場合は、後記実施例に示す様に塗装膜自体の耐食性(塗装耐食性)も優れたものとなる。   The marine steel material of the present invention basically exhibits excellent corrosion resistance even if it is not coated due to the above characteristics, but if necessary, it is represented by a modified epoxy resin paint as shown in the examples below. It can also be used in combination with other anticorrosion methods such as various anticorrosion coatings, zinc rich paints, shop primers, and cathodic protection. When such an anticorrosion coating is applied, the corrosion resistance (coating corrosion resistance) of the coating film itself is excellent as shown in the examples below.

以下、実施例を挙げて本発明の構成および作用効果をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。なお下記実施例において「%」とあるのは、特記しない限り「質量%」を意味するものとする。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, and is suitable as long as it can meet the purpose described above and below. It is also possible to carry out the invention with modifications, and these are all included in the technical scope of the present invention. In the following examples, “%” means “% by mass” unless otherwise specified.

実施例1
[供試材]
下記表1〜2に示す化学成分組成の鋼材を、表3に示すA群元素、B群元素の添加時期に従って転炉溶製し、二次精錬による脱リン及び脱硫を行った後、連続鋳造によってスラブとした。次いで、得られたスラブを表3に示す様に再加熱してから熱間圧延することにより、表4に示す平均粒径と個数の硫化物系介在物と酸化物系介在物を含む鋼板を得た。
Example 1
[Sample material]
Continuous casting after steel materials having the chemical composition shown in Tables 1 and 2 below are melted in a converter according to the addition timing of Group A elements and Group B elements shown in Table 3 and subjected to dephosphorization and desulfurization by secondary refining. With slab. Next, the obtained slab was reheated as shown in Table 3 and then hot-rolled to obtain a steel sheet containing the average particle size and number of sulfide inclusions and oxide inclusions shown in Table 4. Obtained.

各供試鋼板の圧延方向断面を1μmのダイヤモンドペーストを用いて鏡面研磨した後、供試材中に含まれる硫化物系介在物と酸化物系介在物のサイズと個数をSEM(走査型電子顕微鏡:倍率5000倍)およびEDX(エネルギー分散型蛍光X線分析装置)によって確認した。   The cross section in the rolling direction of each test steel sheet was mirror-polished using a 1 μm diamond paste, and then the size and number of sulfide inclusions and oxide inclusions contained in the test material were measured using an SEM (scanning electron microscope). : Magnification 5000 times) and EDX (energy dispersive X-ray fluorescence analyzer).

即ち、任意に選択した5箇所で各介在物の化学組成をEDXによって測定し、所定のA群元素とB群元素の含有量を満たす硫化物系介在物と酸化物系介在物について、SEM観察により平均粒径(円相当径の平均値;a)と1mm当たりの存在個数の平均値(N)を求めた。図1に、硫化物系介在物のSEMによる2次電子像と、該電子像の矢印部のEDX分析チャートの一例を、また図2に、酸化物系介在物のSEMによる2次電子像と、該電子像の矢印部のEDX分析チャートの一例を示す。 That is, the chemical composition of each inclusion is measured by EDX at five arbitrarily selected locations, and SEM observation is performed for sulfide inclusions and oxide inclusions satisfying predetermined contents of Group A elements and Group B elements. The average particle diameter (average value of equivalent circle diameter; a) and the average value (N) of the number of existing particles per 1 mm 2 were obtained. FIG. 1 shows an example of a secondary electron image of a sulfide inclusion by SEM, an example of an EDX analysis chart of an arrow portion of the electron image, and FIG. 2 shows a secondary electron image of an oxide inclusion by SEM. An example of the EDX analysis chart of the arrow part of the electronic image is shown.

更に、得られた各鋼板を切断し、表面研削を行って最終的に100×100×25(mm)のサイズの試験片Aを作製し[図3(A)]、また、図3(B)に示す如く20×20×5(mm)の小試験片4個を、100×100×25(mm)の大試験片(前記試験片Aと同じもの)に接触させて、すきま部を形成した試験片Bを作製した。すきま形成用の小試験片と大試験片とは同じ化学成分組成の鋼材を使用し、表面仕上げも前記試験片Aと同じ表面研削とした。そして小試験片の中心に直径5mmの孔を穿ち、基材(大試験片)側にねじ孔を開けてプラスチック製ねじで固定した。   Further, each steel plate obtained was cut and subjected to surface grinding to finally produce a test piece A having a size of 100 × 100 × 25 (mm) [FIG. 3 (A)], and FIG. ) 4 small test pieces of 20 × 20 × 5 (mm) are brought into contact with a large test piece of 100 × 100 × 25 (mm) (the same as the above-mentioned test piece A) to form a gap portion. Test piece B was prepared. Steel materials having the same chemical composition were used for the small test piece and the large test piece for forming the gap, and the surface finish was the same as that of the test piece A. Then, a hole with a diameter of 5 mm was made in the center of the small test piece, a screw hole was made on the base material (large test piece) side, and fixed with a plastic screw.

更に、試験片Aと同じサイズの試験片の全面に平均厚さ250μmの変性エポキシ樹脂塗装(下塗り:ジンクリッチプライマー)を施した試験片C[図3(C)]も使用した。該試験片Cの片面には、防食のための塗膜に傷がついて素地の鋼材が露出したときの腐食進展度合いを調べるため、カッターナイフで素地まで達するカット傷(長さ:100mm、幅:約0.5mm)を形成した。   Further, a test piece C [FIG. 3C] in which a modified epoxy resin coating (undercoat: zinc rich primer) with an average thickness of 250 μm was applied to the entire surface of the test piece having the same size as the test piece A was used. On one side of the test piece C, a cut flaw (length: 100 mm, width: reached to the base material with a cutter knife) in order to investigate the degree of corrosion progress when the coating film for anticorrosion is damaged and the base steel material is exposed. About 0.5 mm).

上記試験片A、試験片Bおよび試験片Cを夫々5個ずつ使用し、下記の方法で腐食試験
を行った。
The test piece A, the test piece B, and the test piece C were used five by five, respectively, and the corrosion test was performed by the following method.

[腐食試験法A:海洋模擬環境]
まず船舶が曝される海洋環境を模擬して、海水噴霧試験と恒温恒湿試験の繰返しによる複合サイクル腐食試験を行った。海水噴霧試験では、供試材(各試験片A〜C)を水平から60°の角度に傾けて試験槽内に設置し、35℃の人工海水(Cl濃度2%の塩水)を霧状に連続噴霧した。このときの噴霧量は、試験槽内において、水平に設置した面積80cmの円形皿に1時間当たり1.5±0.3mLの人工海水が任意の位置で収集される様に予め調整した。また恒温恒湿試験は、温度:60℃、湿度:95%に調整した試験槽内に、各供試材を水平から60°の角度に傾けて設置して行った。海水噴霧試験:4時間、恒温恒湿試験:4時間を1サイクルとして、これらを交互に行って供試材を腐食させた。トータルの試験時間は6ヶ月間とした。
[Corrosion test method A: simulated marine environment]
First, a combined cycle corrosion test was conducted by simulating the marine environment to which the ship was exposed and repeating a seawater spray test and a constant temperature and humidity test. In the seawater spray test, the specimens (each test piece A to C) are installed in the test tank at an angle of 60 ° from the horizontal, and 35 ° C artificial seawater (salt water with a Cl concentration of 2%) is atomized. Sprayed continuously. The spray amount at this time was adjusted in advance so that 1.5 ± 0.3 mL of artificial seawater per hour was collected in a circular dish with an area of 80 cm 2 installed horizontally in a test tank. In addition, the constant temperature and humidity test was performed by tilting each test material at an angle of 60 ° from the horizontal in a test tank adjusted to a temperature of 60 ° C. and a humidity of 95%. Seawater spray test: 4 hours, constant temperature and humidity test: 4 hours as one cycle, these were alternately performed to corrode the specimen. The total test time was 6 months.

(1)試験片Aについては、試験前後の質量変化を平均板厚減少量Dave(mm)に換算し、試験片5個の平均値を算出して各供試材の全面腐食状態を評価した。また、触針式三次元形状測定装置を用いて試験片Aの最大侵食深さDmax(mm)を求め、平均板厚減少量[Dave(mm)]からDmax/Daveを算出して腐食均一性を評価した。尚、試験後の重量測定および板厚測定は、10%のクエン酸水素二アンモニウム水溶液中で陰極電解法[JIS K8284]により鉄錆などの腐食生成物を除去してから行った。   (1) For the test piece A, the mass change before and after the test was converted into an average thickness reduction amount Dave (mm), and the average value of five test pieces was calculated to evaluate the overall corrosion state of each specimen. . Further, the maximum erosion depth Dmax (mm) of the test piece A is obtained using a stylus type three-dimensional shape measuring apparatus, and Dmax / Dave is calculated from the average thickness reduction amount [Dave (mm)] to obtain corrosion uniformity. Evaluated. The weight measurement and plate thickness measurement after the test were carried out after removing corrosion products such as iron rust by a cathodic electrolysis method [JIS K8284] in a 10% diammonium hydrogen citrate aqueous solution.

(2)試験片Bについては、すきま部(接触面)の目視観察によってすきま腐食発生の有無を調べ、すきま腐食が認められる場合には、上記陰極電解法により腐食生成物を除去し、小坂研究所製の触針式三次元形状測定装置「SE3500」を用いて最大すきま腐食深さDcrev(mm)を測定した。   (2) For test specimen B, the presence or absence of crevice corrosion was examined by visual observation of the crevice (contact surface). If crevice corrosion was observed, the corrosion products were removed by the cathodic electrolysis method. The maximum crevice corrosion depth Dcrev (mm) was measured using a stylus type three-dimensional shape measuring device “SE3500” manufactured by Tokoro.

(3)塗装処理を施した試験片C(カット傷付き)については、カット傷に垂直方向の塗膜膨れ幅をノギスで測定し、試験片5個の中の最大値を最大膨れ幅と定義した。   (3) For test piece C (with cut flaws) subjected to coating treatment, the swollen width of the coating film in the direction perpendicular to the cut flaw is measured with a caliper, and the maximum value among the five test pieces is defined as the maximum swollen width. did.

上記耐全面腐食性(Dave)、腐食均一性(Dmax/Dave)、耐すきま腐食性(Dcrev)、塗装耐食性(最大膨れ幅)の評価基準は下記表5に示す通りとした。   The evaluation criteria for the overall corrosion resistance (Dave), corrosion uniformity (Dmax / Dave), crevice corrosion resistance (Dcrev), and coating corrosion resistance (maximum swollen width) are as shown in Table 5 below.

結果を、後記実施例2の結果と共に表6,7に示す。   The results are shown in Tables 6 and 7 together with the results of Example 2 described later.

上記実験の結果から、次の様に考えることができる。   From the results of the above experiment, it can be considered as follows.

所定のA群元素(Mg,Ca,Sr,Baの1種以上)とB群元素(Ti,Zr,Hfの一種以上)の含有量や含有比が規定要件を満たしていないもの(No.2〜5)、あるいは、所定のA群元素とB群元素の含有量や含有比を満たしているが、A群元素とB群元素を二次精錬前に添加したり、スラブ加熱温度が適正温度を超えていたりすることで硫化物系介在物と酸化物系介在物の平均粒径(a)や個数(N)が規定値を満たしていないもの(No.6〜8)は、従来材(No.1)に比べていずれの腐食試験でも耐全面腐食性はやや改善されているが、腐食均一性や耐すきま腐食性で十分な改善効果が認められず、
船舶用鋼材の耐食性としては不十分である。
The content and content ratio of a predetermined group A element (one or more of Mg, Ca, Sr, Ba) and group B element (one or more of Ti, Zr, Hf) do not satisfy the prescribed requirements (No. 2) To 5), or the content and content ratio of the predetermined group A element and group B element are satisfied, but the group A element and group B element are added before secondary refining, or the slab heating temperature is an appropriate temperature. If the average particle size (a) or number (N) of sulfide inclusions and oxide inclusions does not satisfy the specified value (Nos. 6 to 8), conventional materials ( Compared to No. 1), the overall corrosion resistance is slightly improved in all corrosion tests, but sufficient improvement effect is not recognized in the corrosion uniformity and crevice corrosion resistance.
The corrosion resistance of marine steel is insufficient.

これに対して、所定のA群元素とB群元素の含有量とその比が適切であり、且つ硫化物系介在物と酸化物系介在物の平均粒径(a)と個数(N)が適切に制御されている供試材(No.9〜29)は、従来鋼(No.1)に比べていずれも優れた耐食性を示しており、船舶用耐食鋼として優れたものであることが分かる。   On the other hand, the content and ratio of the predetermined group A element and group B element are appropriate, and the average particle size (a) and the number (N) of sulfide inclusions and oxide inclusions are The appropriately controlled specimens (Nos. 9 to 29) show excellent corrosion resistance compared to the conventional steel (No. 1), and are excellent as marine corrosion resistant steels. I understand.

また、鋼中にCu,Cr,Ni,Co等の耐食性向上元素を適量含有させると、鋼材の耐食性は更に向上することが分かる。これらの中でも、CuやCrを添加した鋼種(例えば、No.10,11など)では、耐全面腐食性が大幅に向上していることを確認できる。また、適量のNiを添加した鋼種(例えば、No.17,18など)では、塗装耐食性が大幅に向上している。更にCoを添加した鋼種(例えば、No.13,16など)では、腐食均一性が大幅に向上している。   It can also be seen that the corrosion resistance of the steel material is further improved when an appropriate amount of an element for improving the corrosion resistance such as Cu, Cr, Ni, Co or the like is contained in the steel. Among these, it can be confirmed that the overall corrosion resistance is greatly improved in the steel types to which Cu or Cr is added (for example, No. 10, 11 and the like). Moreover, in the steel type (for example, No. 17, 18 etc.) to which an appropriate amount of Ni is added, the coating corrosion resistance is greatly improved. Further, in the steel types to which Co is added (for example, Nos. 13 and 16, etc.), the corrosion uniformity is greatly improved.

以上の様に、化学成分の調整に加えて、所定量のA群元素とB群元素を適正比率となる様に含有させ、所定のA群元素とB群元素を含む硫化物系介在物と酸化物系介在物のサイズと個数を適正に制御すれば、防食耐久性の著しく優れた船舶用鋼材を得ることができる。   As described above, in addition to the adjustment of the chemical components, a predetermined amount of group A element and group B element are contained in an appropriate ratio, and a sulfide-based inclusion containing the predetermined group A element and group B element; By properly controlling the size and number of oxide inclusions, it is possible to obtain a marine steel material with extremely excellent anticorrosion durability.

実施例2
[供試材]
前記表1〜2に示した化学成分組成と表4に示した介在物を含有する鋼材を、前掲の実施例1と同様にして製作した。次いで切断および表面研削を行って、実施例1と同様に図3の試験片(A)、試験片(B)、試験片(C)を作製し、夫々5個ずつ用いて腐食試験に供した。このときの腐食試験法は次の通りである。
Example 2
[Sample material]
Steel materials containing the chemical composition shown in Tables 1 and 2 and the inclusions shown in Table 4 were produced in the same manner as in Example 1 above. Next, cutting and surface grinding were performed, and the test piece (A), test piece (B), and test piece (C) of FIG. 3 were prepared in the same manner as in Example 1, and each of them was used for corrosion tests by using 5 pieces each. . The corrosion test method at this time is as follows.

[腐食試験方法B:原油タンク模擬環境]
原油タンク環境を模擬して、作製した供試材(各試験片A〜C)を、原油タンカーより採取した原油スラッジと兵庫県加古川市で採取した天然海水とを体積比で1:1に混合した原油模擬溶媒に浸漬し、試験槽内には分圧比で5%O−0.5%HS−10%CO(残部N)の混合ガスを導入した。試験期間は1年間とした。試験片Aについては、10%のクエン酸水素二アンモニウム水溶液中での陰極電解法[JIS K8284]により鉄錆などの腐食生成物を除去した。また試験片Bについても、すきま形成用の小試験片を取り外し、同様の方法で腐食生成物の除去を行った。
[Corrosion test method B: Crude oil tank simulated environment]
Simulated crude oil tank environment, prepared specimens (each specimen A to C) were mixed with crude oil sludge collected from crude oil tanker and natural seawater collected in Kakogawa City, Hyogo, Japan at a volume ratio of 1: 1. The mixed gas of 5% O 2 -0.5% H 2 S-10% CO 2 (remainder N 2 ) in a partial pressure ratio was introduced into the test tank. The test period was one year. For test piece A, corrosion products such as iron rust were removed by a cathodic electrolysis method (JIS K8284) in a 10% aqueous diammonium hydrogen citrate solution. For test piece B, the small test piece for forming the gap was removed, and the corrosion products were removed in the same manner.

(1)試験片Aについては、試験前後の重量変化を平均板厚減少量Dave(mm)に換算して試験片5個の平均値を算出し、各供試材の全面腐食性を評価した。また、触針式三次元形状測定装置を用いて試験片Aの最大侵食深さDmax(mm)を求め、平均板厚減少量[Dave(mm)]で規格化して(即ち、Dmax/Daveを算出して)、腐食均一性を評価した。尚、試験後の重量測定および板厚測定は、10%のクエン酸水素二アンモニウム水溶液中での陰極電解法[JIS K8284]により鉄錆などの腐食生成物を除去してから行った。   (1) For test piece A, the weight change before and after the test was converted into an average thickness reduction amount Dave (mm), the average value of five test pieces was calculated, and the overall corrosivity of each specimen was evaluated. . Further, the maximum erosion depth Dmax (mm) of the test piece A is obtained by using a stylus type three-dimensional shape measuring apparatus, and normalized with an average thickness reduction amount [Dave (mm)] (that is, Dmax / Dave is Calculated) and evaluated the corrosion uniformity. The weight measurement and the plate thickness measurement after the test were performed after removing corrosion products such as iron rust by a cathodic electrolysis method [JIS K8284] in a 10% diammonium hydrogen citrate aqueous solution.

(2)試験片Bについては、すきま部(接触面)の目視観察を行ってすきま腐食発生の有無を調べ、すきま腐食が認められる場合には、上記陰極電解法により腐食生成物を除去し、触針式三次元形状測定装置を用いて最大すきま腐食深さDcrev(mm)を測定した。   (2) For test piece B, the crevice portion (contact surface) was visually observed to check for crevice corrosion. If crevice corrosion was observed, the corrosion product was removed by the cathodic electrolysis method, The maximum crevice corrosion depth Dcrev (mm) was measured using a stylus type three-dimensional shape measuring apparatus.

(3)塗装処理を施した試験片C(カット傷付き)については、カット傷に垂直方向の塗膜膨れ幅をノギスで測定し、試験片5個の最大値を最大膨れ幅と定義した。   (3) About the test piece C (with cut flaws) which performed the coating process, the coating film swollen width of the perpendicular | vertical direction to a cut flaw was measured with calipers, and the maximum value of five test pieces was defined as the maximum swollen width.

上記耐全面腐食性(Dave)、腐食均一性(Dmax/Dave)、耐すきま腐食性(Dcrev)、塗装耐食性(最大膨れ幅)の評価基準は下記表8に示す通りである。   The evaluation criteria for the overall corrosion resistance (Dave), corrosion uniformity (Dmax / Dave), crevice corrosion resistance (Dcrev), and coating corrosion resistance (maximum swollen width) are as shown in Table 8 below.

[腐食試験結果]
腐食試験結果は前記表6,7にまとめて示した通りであり、A群元素(Mg,Ca,Sr,Baの1種以上)とB群元素(Ti,Zr,Hfの1種以上)の含有量比が適正に調整されていないものや、比は適正であるが含有量が規定要件を満たしていないもの(No.2〜5)、あるいは、A群元素,B群元素の含有比や含有量は規定要件を満たしているが、A群元素とB群元素を二次精錬前に添加したり、スラブ加熱温度が適正範囲を超えたりすることで硫化物系介在物と酸化物系介在物の平均粒径(a)、数(N)が規定要件を満たさないNo.6〜8は、従来鋼(No.1)に比べて耐全面腐食性はやや改善されているものの、腐食均一性や耐すきま腐食性などでは改善効果が認められず、船舶用鋼材の耐食性としては不十分である。
[Corrosion test results]
The results of the corrosion test are as summarized in Tables 6 and 7 above, including the group A element (one or more of Mg, Ca, Sr, Ba) and the group B element (one or more of Ti, Zr, Hf). The content ratio is not adjusted properly, the ratio is appropriate but the content does not meet the prescribed requirements (No. 2 to 5), or the content ratio of the A group element and the B group element Although the content satisfies the specified requirements, sulfide inclusions and oxide inclusions are added by adding Group A and Group B elements before secondary refining, or when the slab heating temperature exceeds the appropriate range. No. in which the average particle diameter (a) and number (N) of the product do not satisfy the prescribed requirements. 6-8, although the overall corrosion resistance is slightly improved compared to the conventional steel (No. 1), no improvement effect is observed in the corrosion uniformity and crevice corrosion resistance, etc. Is insufficient.

これに対して、A群元素とB群元素の各含有量と含有比率が適正であり、且つ硫化物系介在物と酸化物系介在物の平均粒径(a)と個数(N)が適正範囲にあるもの(No.9〜29)は、いずれも従来鋼(No.1)に比べて優れた耐食性を示しており、船舶用耐食鋼として好ましいものであることがわかる。   On the other hand, the contents and content ratios of the group A element and the group B element are appropriate, and the average particle diameter (a) and number (N) of the sulfide inclusions and oxide inclusions are appropriate. Those in the range (Nos. 9 to 29) all show excellent corrosion resistance as compared with the conventional steel (No. 1), and are found to be preferable as marine corrosion resistant steels.

更に、Cu,Cr,Ni,Coなどの耐食性向上元素を適量含有させたものは、鋼材の耐食性が更に向上している。このうち、CuやCrを適量添加した鋼材(例えば、No.10,11など)では、耐全面腐食性が大幅に向上している。また、Niを添加した鋼材(例えば、No.17,18など)では、塗装耐食性の大幅な向上が認められる。さらに、Coを添加した鋼材(例えば、No.13,16など)では、腐食均一性が大幅に向上している。   Further, the steel containing a suitable amount of an element for improving corrosion resistance such as Cu, Cr, Ni, Co, etc. further improves the corrosion resistance of the steel material. Among these, the steel material (for example, No. 10, 11 etc.) to which appropriate amounts of Cu and Cr are added has greatly improved the overall corrosion resistance. Moreover, in steel materials added with Ni (for example, No. 17, 18, etc.), a significant improvement in coating corrosion resistance is recognized. Furthermore, in steel materials to which Co is added (for example, Nos. 13 and 16, etc.), the corrosion uniformity is greatly improved.

以上の様に、化学成分を適正に調整することに加えて、所定のA群元素とB群元素を含有させてそれらの比を適切にし、所定量のA群元素とB群元素を含有する硫化物系介在物と酸化物系介在物のサイズと個数を制御すれば、より一層耐久性の高い船舶用鋼材が得られることがわかる。   As described above, in addition to appropriately adjusting the chemical components, a predetermined A group element and a B group element are contained to appropriately adjust the ratio thereof, and a predetermined amount of the A group element and the B group element are contained. It can be seen that marine steels with higher durability can be obtained by controlling the size and number of sulfide inclusions and oxide inclusions.

図4は、上記実施例1,2の結果を元に、各鋼材のA群元素の合計含量(A)とB群元素の合計含量(B)の比[(A)/(B)]と総合耐食性の関係を整理して示したグラフ
である。即ち、横軸に(A)/(B)比を取り、縦軸を耐食性の総合判定(判定が2つに跨る場合はその間をプロット)とし、(A)/(B)比が0.01〜1.0を満たさないものを『◇』、(A)/(B)比は0.01〜1.0の範囲に収まるが、両介在物のサイズと個数のいずれかが規定要件を外れるものを『□』、本発明の規定要件を全て満たす実施例を『○』で示している。
FIG. 4 shows the ratio [(A) / (B)] of the total content of group A elements (A) and the total content of group B elements (B) of each steel material based on the results of Examples 1 and 2 above. It is the graph which arranged and showed the relation of comprehensive corrosion resistance. That is, the horizontal axis represents the (A) / (B) ratio, the vertical axis represents the overall judgment of corrosion resistance (if there are two judgments, the plot is plotted between them), and the (A) / (B) ratio is 0.01. Those that do not satisfy -1.0 are "◇", and the ratio (A) / (B) falls within the range of 0.01-1.0, but either the size or the number of both inclusions deviates from the requirement. Examples that satisfy all of the requirements of the present invention are indicated by “□”.

このグラフからも明らかな様に、本発明の規定要件を満たす実施例は、耐食性の総合評価においていずれも○以上の良好な結果が得られている。   As is apparent from this graph, the examples satisfying the prescribed requirements of the present invention all have good results of ◯ or more in the overall evaluation of corrosion resistance.

実施例3
[供試材]
前記表1〜2に示した化学成分組成と表4に示した介在物を含有する鋼材を、前掲の実施例1と同様にして製作した。次いで切断を行って、30×30×5(mm)の大きさの金属片を切り出した。この金属片の全面を湿式回転研磨機(研磨紙;#600)で研磨仕上げし、水洗およびアセトン洗浄を行い、乾燥させた後、リード線を取り付けて、図5に示す通り、10mm×10mmの正方形部分を残し、被覆材として、製品名「KE-45W」[信越化学工業製の1液型RTV(Room Temperature Vulcanizing、室温で硬化の意味)ゴム]を塗布し、室温で1日以上乾燥させて得た試験片Dを用意した。
また、犠牲陽極として、25×40×2(mm)の大きさの純亜鉛板の全面を湿式回転研磨機(研磨紙;#600)で研磨仕上げし、水洗およびアセトン洗浄の後、乾燥させてからリード線を取り付け、上記試験片Dと同様に、10mm×10mmの正方形部分を残して被覆材を被覆し、図6に示す試験片Eを用意した。
そして上記試験片Dおよび試験片Eを用いて下記の試験を行った。
Example 3
[Sample material]
Steel materials containing the chemical composition shown in Tables 1 and 2 and the inclusions shown in Table 4 were produced in the same manner as in Example 1 above. Next, cutting was performed to cut out a metal piece having a size of 30 × 30 × 5 (mm). The entire surface of this metal piece is polished with a wet rotary polishing machine (abrasive paper; # 600), washed with water and acetone, dried, attached with a lead wire, and 10 mm × 10 mm as shown in FIG. Apply the product name "KE-45W" [Shin-Etsu Chemical Co., Ltd., one-component RTV (Room Temperature Vulcanizing, meaning curing at room temperature)] as a coating material, and leave it to dry for more than a day at room temperature. The test piece D obtained in this way was prepared.
Further, as a sacrificial anode, the entire surface of a pure zinc plate having a size of 25 × 40 × 2 (mm) is polished with a wet rotary polishing machine (abrasive paper; # 600), washed with water and acetone, and then dried. Then, a lead wire was attached, and in the same manner as the above-mentioned test piece D, a 10 mm × 10 mm square portion was left and the covering material was covered to prepare a test piece E shown in FIG.
And the following test was done using the said test piece D and the test piece E. FIG.

[電気防食による犠牲陽極の損耗量評価試験]
試験液として人工海水を満たした水槽に、試験片Dと試験片Eそれぞれの未被覆部分を、距離1cmを置いて平行に向かい合わせ、試験片Dと試験片Eのリード線を結線したものを浸漬させた。上記試験液の温度は30℃とし、浸漬日数は10日間とした。
そして、10日間浸漬後の試験片Eの表面の腐食生成物を、JIS Z 2371に記載の腐食生成物除去方法に従って、10%塩化アンモニウム水溶液に70℃で5分間浸漬し、水洗し、乾燥して除去した後に、試験片Eの重量(試験後の試験片Eの重量)を測定し、試験前の試験片Eの重量との差から、亜鉛の重量変化(損耗重量)を求めた。この試験を各鋼種につき各々5個ずつ行い、その平均値(平均損耗重量)を算出した。そして、従来鋼(No.1)とリード線で結線した試験片Eの平均損耗重量との比(犠牲陽極損耗重量比;各鋼材と結線した亜鉛の平均損耗重量/従来鋼(No.1)と結線した亜鉛の平均損耗重量)で、犠牲陽極損耗量の評価を行った。犠牲陽極の平均損耗重量比の評価基準は表9に示す通りであり、表9の基準に基づき評価した結果を表10に示す。
[Evaluation test of sacrificial anode wear due to cathodic protection]
A tank filled with artificial seawater as a test solution, with the uncoated parts of test piece D and test piece E facing each other in parallel at a distance of 1 cm, and connecting the lead wires of test piece D and test piece E Soaked. The temperature of the test solution was 30 ° C., and the immersion period was 10 days.
Then, the corrosion product on the surface of the specimen E after immersion for 10 days is immersed in a 10% aqueous ammonium chloride solution at 70 ° C. for 5 minutes according to the corrosion product removing method described in JIS Z 2371, washed with water, and dried. Then, the weight of the test piece E (the weight of the test piece E after the test) was measured, and the weight change (wear weight) of zinc was determined from the difference from the weight of the test piece E before the test. This test was performed five times for each steel type, and the average value (average wear weight) was calculated. And ratio of the conventional steel (No. 1) and the average wear weight of the test piece E connected with the lead wire (sacrificial anode wear weight ratio; average wear weight of zinc connected to each steel material / conventional steel (No. 1) The average sacrificial anode weight was evaluated based on the average wear weight of zinc wire. The evaluation criteria for the average wear weight ratio of the sacrificial anode are as shown in Table 9. Table 10 shows the results of evaluation based on the criteria in Table 9.

[試験結果]
表10より、従来鋼(No.1)、A群元素(Mg,Ca,Sr,Baの1種以上)とB群元素(Ti,Zr,Hfの1種以上)の含有量比が適正に調整されていないものや、比は適正であるが含有量が規定要件を満たしていないもの(No.2〜5)、あるいは、A群元素,B群元素の含有比や含有量は規定要件を満たしているが、A群元素とB群元素を二次精錬前に添加したり、スラブ加熱温度が適正範囲を超えたりすることで硫化物系介在物と酸化物系介在物の平均粒径(a)、数(N)が規定要件を満たさないNo.6〜8は、亜鉛とのカップリングによる亜鉛の損耗量が多く、△以下の評価であるのに対し,本発明の規定を満たす鋼材(No.9〜29)は、亜鉛とのカップリングによる亜鉛の損耗量がいずれも低減しており、○以上のレベルに向上していることが明らかである。
[Test results]
From Table 10, the content ratio of the conventional steel (No. 1), group A element (one or more of Mg, Ca, Sr, Ba) and group B element (one or more of Ti, Zr, Hf) is appropriate. Those that are not adjusted, those whose ratios are appropriate, but whose contents do not meet the prescribed requirements (Nos. 2 to 5), or the content ratios and contents of group A elements and group B elements are prescribed. The average particle size of sulfide inclusions and oxide inclusions (by adding the A group element and B group element before secondary refining, or when the slab heating temperature exceeds the appropriate range) a) No. in which the number (N) does not satisfy the prescribed requirements. Steels Nos. 9 to 29 satisfying the provisions of the present invention are due to coupling with zinc, whereas 6 to 8 have a large amount of wear of zinc due to coupling with zinc and are evaluated as Δ or less. It is clear that the amount of wear of zinc is reduced and improved to a level of ◯ or higher.

本発明の鋼材における硫化物系介在物のSEMによる二次電子像と、該介在物のEDX分析結果を示すチャートである。It is a chart which shows the secondary electron image by SEM of the sulfide type inclusion in the steel materials of the present invention, and the EDX analysis result of the inclusion. 本発明の鋼材における酸化物系介在物のSEMによる二次電子像と、該介在物のEDX分析結果を示すチャートである。It is a chart which shows the secondary electron image by SEM of the oxide type inclusion in the steel materials of the present invention, and the EDX analysis result of the inclusion. 腐食試験に用いた試験片A,B,Cの説明図である。It is explanatory drawing of the test pieces A, B, and C used for the corrosion test. 実験で得た供試鋼材のA群元素の合計含量(A)とB群元素の合計含量(B)の比[(A)/(B)]と総合耐食性の関係を整理して示したグラフである。Graph showing the relation between the total content of group A elements (A) and the total content of group B elements (B) [(A) / (B)] and the overall corrosion resistance of the test steel obtained in the experiment It is. 実施例3で用いた試験片Dの説明図である。It is explanatory drawing of the test piece D used in Example 3. FIG. 実施例3で用いた試験片Eの説明図である。It is explanatory drawing of the test piece E used in Example 3. FIG.

Claims (4)

C:0.01〜0.30%(質量%の意味、以下同じ)、
Si:0.01〜2.0%、
Mn:0.01〜2.0%、
Al:0.005〜0.10%、
S:0.010%以下
を夫々含有し、かつ、
A群元素(Mg,Ca,Sr,Baの中から選ばれる1種以上):0.0005〜0.020%、と
B群元素(Ti,Zr,Hfの中から選ばれる1種以上):0.005〜0.20%
を含有すると共に、上記A群元素の合計含量(A)とB群元素の合計含量(B)の比(A)/(B)が0.01〜1の範囲で、残部がFeおよび不可避的不純物である鋼からなり、更に、下記の要件を満たす硫化物系介在物および酸化物系介在物の平均粒径がそれぞれ1〜10μmで、且つこれらが圧延方向断面の1mm当たりに各々200〜2000個存在することを特徴とする耐食性に優れた船舶用鋼材。
硫化物系介在物:前記A群元素を総量で1〜30%および/または前記B群元素を総量で1〜30%含有する、円相当径が0.5μm以上の硫化物系介在物、
酸化物系介在物:前記A群元素を総量で1〜30%および/または前記B群元素を総量で1〜30%含有する、円相当径が0.5μm以上の酸化物系介在物。
C: 0.01 to 0.30% (meaning mass%, the same shall apply hereinafter)
Si: 0.01 to 2.0%,
Mn: 0.01 to 2.0%,
Al: 0.005 to 0.10%,
S: each containing 0.010% or less, and
Group A element (one or more selected from Mg, Ca, Sr, Ba): 0.0005 to 0.020%, and Group B element (one or more selected from Ti, Zr, Hf): 0.005-0.20%
In addition, the ratio (A) / (B) of the total content (A) of the group A element and the total content (B) of the group B element is in the range of 0.01 to 1, with the balance being Fe and inevitable It is made of steel which is an impurity, and further, the average particle size of sulfide inclusions and oxide inclusions satisfying the following requirements is 1 to 10 μm respectively, and these are 200 to 1 mm 2 of 1 mm 2 of the cross section in the rolling direction. A marine steel with excellent corrosion resistance, characterized by the presence of 2000 pieces.
Sulfide inclusions: sulfide inclusions having an equivalent circle diameter of 0.5 μm or more, containing 1 to 30% in total amount of the group A elements and / or 1 to 30% in total amount of the group B elements,
Oxide inclusions: Oxide inclusions having an equivalent circle diameter of 0.5 μm or more, containing 1 to 30% of the group A elements and / or 1 to 30% of the group B elements in total.
前記鋼材は、更に他の元素として、Cr:0.01〜5.0%、Cu:0.01〜5.0%、Ni:0.01〜5.0%、Co:0.01〜5.0%よりなる群から選ばれる少なくとも1種を含有する請求項1に記載の船舶用鋼材。   The steel material further includes, as other elements, Cr: 0.01 to 5.0%, Cu: 0.01 to 5.0%, Ni: 0.01 to 5.0%, Co: 0.01 to 5%. The marine steel material according to claim 1, comprising at least one selected from the group consisting of 0.0%. 前記鋼材は、更に他の元素として、B:0.0001〜0.010%、V:0.01〜0.50%、Nb:0.003〜0.50%よりなる群から選ばれる少なくとも1種を含有する請求項1または2に記載の船舶用鋼材。   The steel material is at least one selected from the group consisting of B: 0.0001 to 0.010%, V: 0.01 to 0.50%, and Nb: 0.003 to 0.50% as another element. The marine steel material according to claim 1 or 2, comprising a seed. 原油タンカーのタンク素材として用いられるものである請求項1〜3のいずれかに記載の船舶用鋼材。   The steel material for ships according to any one of claims 1 to 3, which is used as a tank material for a crude oil tanker.
JP2007277861A 2006-10-27 2007-10-25 Steel having excellent corrosion resistance for ship use Pending JP2008133536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007277861A JP2008133536A (en) 2006-10-27 2007-10-25 Steel having excellent corrosion resistance for ship use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006293204 2006-10-27
JP2007277861A JP2008133536A (en) 2006-10-27 2007-10-25 Steel having excellent corrosion resistance for ship use

Publications (1)

Publication Number Publication Date
JP2008133536A true JP2008133536A (en) 2008-06-12

Family

ID=39558575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007277861A Pending JP2008133536A (en) 2006-10-27 2007-10-25 Steel having excellent corrosion resistance for ship use

Country Status (1)

Country Link
JP (1) JP2008133536A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103290337A (en) * 2013-06-14 2013-09-11 首钢总公司 Corrosion-resistant steel for upper deck of cargo oil tank of crude oil tanker
JP2016008342A (en) * 2014-06-25 2016-01-18 新日鐵住金株式会社 High-tensile strength steel for welding
CN111575466A (en) * 2020-06-29 2020-08-25 张家港联峰钢铁研究所有限公司 Heat treatment preparation method of heat-strength corrosion-resistant steel
CN113657642A (en) * 2021-07-05 2021-11-16 安徽师范大学 Smelting workshop production and transportation collaborative optimization method and system based on hybrid algorithm

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216500A (en) * 1994-01-28 1995-08-15 Sumitomo Metal Ind Ltd High strength steel material excellent in corrosion resistance and its production
JP2000054065A (en) * 1998-08-05 2000-02-22 Nippon Steel Corp High tensile strength steel material for welding, excellent in toughness in weld heat-affected zone, and its production
JP2000119797A (en) * 1998-10-12 2000-04-25 Nippon Steel Corp High tensile strength steel material for welding, excellent in toughness in weld heat-affected zone, and its manufacture
JP2002256379A (en) * 2001-03-05 2002-09-11 Kawasaki Steel Corp Steel for high heat input welding
JP2005097709A (en) * 2003-09-26 2005-04-14 Jfe Steel Kk Steel material for bottom plate of crude oil tank

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216500A (en) * 1994-01-28 1995-08-15 Sumitomo Metal Ind Ltd High strength steel material excellent in corrosion resistance and its production
JP2000054065A (en) * 1998-08-05 2000-02-22 Nippon Steel Corp High tensile strength steel material for welding, excellent in toughness in weld heat-affected zone, and its production
JP2000119797A (en) * 1998-10-12 2000-04-25 Nippon Steel Corp High tensile strength steel material for welding, excellent in toughness in weld heat-affected zone, and its manufacture
JP2002256379A (en) * 2001-03-05 2002-09-11 Kawasaki Steel Corp Steel for high heat input welding
JP2005097709A (en) * 2003-09-26 2005-04-14 Jfe Steel Kk Steel material for bottom plate of crude oil tank

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103290337A (en) * 2013-06-14 2013-09-11 首钢总公司 Corrosion-resistant steel for upper deck of cargo oil tank of crude oil tanker
JP2016008342A (en) * 2014-06-25 2016-01-18 新日鐵住金株式会社 High-tensile strength steel for welding
CN111575466A (en) * 2020-06-29 2020-08-25 张家港联峰钢铁研究所有限公司 Heat treatment preparation method of heat-strength corrosion-resistant steel
CN113657642A (en) * 2021-07-05 2021-11-16 安徽师范大学 Smelting workshop production and transportation collaborative optimization method and system based on hybrid algorithm
CN113657642B (en) * 2021-07-05 2023-09-01 安徽师范大学 Smelting workshop production and transportation collaborative optimization method and system based on hybrid algorithm

Similar Documents

Publication Publication Date Title
JP4868916B2 (en) Marine steel with excellent corrosion resistance
JP4898543B2 (en) Steel sheet with excellent pit resistance and method for producing the same
JP4668141B2 (en) Steel material for ballast tank with excellent corrosion resistance and ballast tank with excellent durability
KR101715581B1 (en) Steel material, ship ballast tank and hold formed using said steel material, and ship equipped with said ballast tank or hold
JP2010285673A (en) Steel for ship excellent in coating film-blistering resistance
JP4445444B2 (en) Marine steel and welded structures with excellent combined corrosion resistance
KR100992289B1 (en) Steel for ship having excellent corrosion resistance
JP4868917B2 (en) Steel material for crude oil tank bottom plate with excellent corrosion resistance
JP5958103B2 (en) Steel material for marine ballast tanks with excellent paint swell resistance
JP2006037201A (en) Marine steel material superior in corrosion resistance
JP4616181B2 (en) Marine steel with excellent HAZ toughness and corrosion resistance during high heat input welding
KR101786409B1 (en) Steel for crude oil tank and crude oil tank
JP2008133536A (en) Steel having excellent corrosion resistance for ship use
JP2009209412A (en) Steel for ship having excellent corrosion resistance
JP4659626B2 (en) High tensile steel for marine vessels with excellent corrosion resistance and base metal toughness
JP4444924B2 (en) High tensile steel for marine vessels with excellent corrosion resistance and base metal toughness
JP4763468B2 (en) Marine steel with excellent corrosion resistance and fatigue crack growth resistance
JP4119941B2 (en) Marine steel with excellent crevice corrosion resistance in humid air
JP4579837B2 (en) Marine steel with excellent corrosion resistance and brittle fracture characteristics
TWI531660B (en) Steel, ballast tank and ship hold using the steel, and ship including the ballast tank and the ship hold
JP5143707B2 (en) Marine steel
JP5284769B2 (en) Steel tank for crude oil tank with excellent corrosion resistance, upper deck of crude oil tank and crude oil tanker
JP4579838B2 (en) Marine steel with excellent corrosion resistance and brittle crack stopping properties
JP4502949B2 (en) Marine steel with excellent corrosion resistance and brittle crack stopping properties
JP2007177286A (en) Steel material for vessel having excellent haz toughness and corrosion resistance upon high heat input welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120417