JP2007177286A - Steel material for vessel having excellent haz toughness and corrosion resistance upon high heat input welding - Google Patents

Steel material for vessel having excellent haz toughness and corrosion resistance upon high heat input welding Download PDF

Info

Publication number
JP2007177286A
JP2007177286A JP2005377205A JP2005377205A JP2007177286A JP 2007177286 A JP2007177286 A JP 2007177286A JP 2005377205 A JP2005377205 A JP 2005377205A JP 2005377205 A JP2005377205 A JP 2005377205A JP 2007177286 A JP2007177286 A JP 2007177286A
Authority
JP
Japan
Prior art keywords
steel material
less
corrosion resistance
corrosion
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005377205A
Other languages
Japanese (ja)
Other versions
JP4476926B2 (en
Inventor
Manabu Izumi
学 泉
Shinji Sakashita
真司 阪下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005377205A priority Critical patent/JP4476926B2/en
Publication of JP2007177286A publication Critical patent/JP2007177286A/en
Application granted granted Critical
Publication of JP4476926B2 publication Critical patent/JP4476926B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel material for a vessel having excellent corrosion resistance (particularly, durability to coercive corrosion) to be utilizable even without applying coating and electrolytic protection in an environment exposed to salt and high temperature-high humidity caused by seawater, and further having excellent HAZ (heat affected zone) toughness upon high heat input welding. <P>SOLUTION: The steel material for a vessel having excellent corrosion resistance and HAZ toughness upon high heat input welding has a composition comprising, by mass, 0.01 to 0.2% C, 0.01 to 1% Si, 0.01 to 2% Mn, 0.005 to 0.1% Al, 0.005 to 0.03% Ti and 0.003 to 0.015% N, and further comprising 0.010 to 1% Co and 0.0005 to 0.02% Mg, and the balance Fe with inevitable impurities, and in which the number of TiN based inclusions per unit area is ≥1.0×10<SP>8</SP>(pieces/mm<SP>2</SP>). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、原油タンカー、貨物船、貨客船、客船、軍艦等の船舶において、主要な構造材として用いられる船舶用耐食鋼に関するものであり、特に海水による塩分や恒温多湿に曝される環境下における耐食性に優れ、かつ大入熱溶接時のHAZ(熱影響部)靱性に優れた船舶用鋼材に関するものである。   The present invention relates to marine corrosion resistant steel used as a main structural material in ships such as crude oil tankers, cargo ships, cargo passenger ships, passenger ships, warships, etc., particularly in environments exposed to salinity and constant temperature and humidity due to seawater. The present invention relates to a marine steel having excellent corrosion resistance and excellent HAZ (heat affected zone) toughness during high heat input welding.

上記各種船舶において主要な構造材(例えば、外板、バラストタンク、原油タンク等)として用いられている鋼材は、海水による塩分や恒温多湿に曝されることから腐食損傷を受けることが多い。こうした腐食は、浸水や沈没などの海難事故を招く恐れがあることから、鋼材には何らかの防食手段を施す必要がある。これまで行われている防食手段としては、(a)塗装や(b)電気防食等が従来からよく知られている。   Steel materials used as main structural materials (for example, outer plates, ballast tanks, crude oil tanks, etc.) in the above-mentioned various vessels are often corroded because they are exposed to seawater salt and constant temperature and humidity. Since such corrosion may cause marine accidents such as inundation and sinking, it is necessary to apply some anticorrosion means to the steel. Conventionally, (a) coating, (b) cathodic protection, and the like are well known as anticorrosion means used so far.

このうち重塗装に代表される塗装では、塗膜欠陥が存在する可能性が高く、製造工程における衝突等によって塗膜に傷が付く場合もあるため、素地鋼材が露出してしまうことが多い。このような鋼材露出部においては、局部的にかつ集中的に鋼材が腐食してしまい、内容されている石油系液体燃料の早期漏洩に繋がることになる。   Of these, in coatings represented by heavy coating, there is a high possibility that coating film defects exist, and the coating film may be damaged due to a collision or the like in the manufacturing process, so that the base steel material is often exposed. In such a steel exposed portion, the steel material corrodes locally and intensively, leading to early leakage of the petroleum-based liquid fuel contained therein.

一方、電気防食においては、海水中に完全に浸漬された部位に対しては、非常に有効であるが、大気中で海水飛沫を受ける部位などでは防食に必要な電気回路が形成されず、防食効果が充分に発揮されないことがある。また、防食用の流電陽極が異常消耗や脱落して消失した場合には、直ちに激しい腐食が進行することがある。   On the other hand, in the anti-corrosion, it is very effective for the part completely immersed in the seawater, but in the part that receives the seawater splash in the atmosphere, the electric circuit necessary for the anticorrosion is not formed, and the anticorrosion The effect may not be fully exhibited. In addition, when the galvanic anode for anticorrosion disappears due to abnormal consumption or dropping, severe corrosion may immediately proceed.

上記技術の他、鋼材自体の耐食性を向上させるものとして例えば特許文献1のような技術も提案されている。この技術では、鋼材の化学成分を適切に調整することによって、耐食性を優れたものとし、無塗装であっても使用できる造船用耐食鋼が開示されている。また特許文献2には、鋼材の化学成分組成を適切なものとすることによって、塗膜寿命性を向上させた船舶用鋼材について開示されている。これらの技術では、従来に比べてある程度の耐食性は確保できるようになったといえる。   In addition to the above technique, for example, a technique as disclosed in Patent Document 1 has been proposed as a means for improving the corrosion resistance of the steel material itself. This technology discloses a corrosion-resistant steel for shipbuilding that has excellent corrosion resistance by appropriately adjusting the chemical composition of the steel material and can be used even without coating. Patent Document 2 discloses a marine steel material having an improved coating film life by making the chemical composition of the steel material appropriate. With these technologies, it can be said that a certain degree of corrosion resistance can be ensured as compared with the prior art.

しかしながら、より厳しい腐食環境下での耐食性については依然として充分なものとはいえず、更なる耐食性向上が要求されることになる。特に、異物と鋼材との接触部分、構造的な理由や防食塗膜の損傷部分等で形成される「すきま」部分における腐食(いわゆるすきま腐食)が顕著になり、寿命を低下させる場合があるが、これまで提案されている技術ではこうした部分における耐食性が不充分である。   However, the corrosion resistance under a more severe corrosive environment is still not sufficient, and further improvement in corrosion resistance is required. In particular, corrosion (so-called crevice corrosion) in the “clearance” portion formed at the contact portion between the foreign material and the steel material, the structural reason, the damaged portion of the anticorrosion coating film, etc. becomes prominent, and the life may be shortened. The techniques proposed so far have insufficient corrosion resistance in these areas.

また特許文献2は、化学成分組成を調整することにより、鋼材の塗膜寿命性に加えて、母材および溶接部の靱性をも向上させることも開示している。この点、特許文献2は、靱性の向上させるための手段として、化学成分組成を調整することしか記載していない。また特許文献2の実施例では、5kJ/mmという小入熱溶接時での母材および溶接部の靱性を調べている。   Patent Document 2 also discloses that the toughness of the base material and the welded portion is improved in addition to the coating film life of the steel material by adjusting the chemical component composition. In this regard, Patent Document 2 only describes adjusting the chemical component composition as a means for improving toughness. Moreover, in the Example of patent document 2, the toughness of the base material and the welding part in the small heat input welding of 5 kJ / mm is investigated.

船舶用鋼材が、バラストタンクに使用できるような厚肉材として使用される場合、大入熱溶接特性、殊に大入熱溶接時のHAZ靱性が良好であることが必要である。しかしながらこれまで提案されている技術では、耐食性に加えて大入熱溶接時のHAZ靱性も優れた船舶用鋼材は、ほとんど得られていない。
特開2000−17381号公報、特許請求の範囲等 特開2002−266052号公報、特許請求の範囲および実施例等
When marine steel is used as a thick material that can be used in a ballast tank, it is necessary that the high heat input welding characteristics, particularly the HAZ toughness during high heat input welding be good. However, the technologies proposed so far have hardly obtained marine steel materials that are excellent in HAZ toughness during high heat input welding in addition to corrosion resistance.
Japanese Patent Application Laid-Open No. 2000-17381, claims, etc. JP 2002-266052 A, Claims and Examples

本発明は上記の様な事情に着目してなされたものであって、その目的は、海水による塩分や恒温多湿に曝される環境下で、塗装や電気防食を施さなくても実用化できるほど耐食性(特にすきま腐食に対する耐久性)に優れると共に、大入熱溶接時のHAZ靱性にも優れた船舶用鋼材を提供することにある。   The present invention has been made paying attention to the circumstances as described above, and its purpose is such that it can be put into practical use without being subjected to coating or cathodic protection in an environment where it is exposed to salt or constant temperature and humidity due to seawater. An object of the present invention is to provide a marine steel having excellent corrosion resistance (particularly durability against crevice corrosion) and excellent HAZ toughness during high heat input welding.

上記目的を達成することのできた本発明の船舶用鋼材とは、C:0.01〜0.2%(質量%の意味、以下同じ)、Si:0.01〜1%、Mn:0.01〜2%、Al:0.005〜0.1%、Ti:0.005〜0.03%、N:0.003〜0.015%を夫々含有する他、Co:0.010〜1%およびMg:0.0005〜0.02%を含有し、残部がFeおよび不可避不純物からなり、単位面積あたりのTiN系介在物の個数が、1.0×108(個/mm2)以上である点に要旨を有するものである。この船舶用鋼材においては、Coの含有量[Co]とMgの含有量[Mg]の比の値([Co]/[Mg])を2〜350の範囲に調整することが好ましい。 The marine steel material of the present invention that has achieved the above object is C: 0.01 to 0.2% (meaning of mass%, the same shall apply hereinafter), Si: 0.01 to 1%, Mn: 0.00. In addition to containing 01 to 2%, Al: 0.005 to 0.1%, Ti: 0.005 to 0.03%, N: 0.003 to 0.015%, Co: 0.010 to 1 % and Mg: containing from .0005 to 0.02%, the balance being Fe and inevitable impurities, the number of TiN inclusions per unit area, 1.0 × 10 8 (pieces / mm 2) or more It has a gist in that. In this marine steel material, it is preferable to adjust the value ([Co] / [Mg]) of the Co content [Co] and the Mg content [Mg] to a range of 2 to 350.

また本発明の船舶用鋼材においては、必要によって、(1)Cu:1.5%以下(0%を含まない)、Cr:1%以下(0%を含まない)、Ni:2%以下(0%を含まない)よりなる群から選ばれる1種以上、(2)Ca:0.02%以下(0%を含まない)、(3)Mo:0.5%以下(0%を含まない)および/またはW:0.3%以下(0%を含まない)、(4)B:0.01%以下(0%を含まない)、V:0.1%以下(0%を含まない)およびNb:0.05%以下(0%を含まない)よりなる群から選ばれる1種以上、等を含有させることも有効であり、含有させる成分の種類に応じて船舶用鋼材の特性が更に改善されることになる。   Further, in the marine steel material of the present invention, (1) Cu: 1.5% or less (not including 0%), Cr: 1% or less (not including 0%), Ni: 2% or less (if necessary) 1 or more selected from the group consisting of (not including 0%), (2) Ca: 0.02% or less (not including 0%), (3) Mo: 0.5% or less (not including 0%) ) And / or W: 0.3% or less (not including 0%), (4) B: 0.01% or less (not including 0%), V: 0.1% or less (not including 0%) ) And Nb: 0.05% or less (not including 0%), it is also effective to contain one or more selected from the group consisting of, and the characteristics of the marine steel material according to the type of component to be contained. This will be further improved.

本発明においては、所定量のCoとMgを併用させて含有させると共に、化学成分組成を適切に調整することによって、塗装および電気防食を施さなくても実用化できる耐食性に優れた船舶用鋼材を製造することができた。さらに本発明の船舶用鋼材は、多数のTiN系介在物を含むことにより、大入熱溶接でも良好なHAZ靱性を示すことができる。こうした船舶用鋼材は、原油タンカー、貨物船、貨客船、客船、軍艦等の船舶における外板、バラストタンク、原油タンク等の素材として有用である。   In the present invention, a marine steel material having excellent corrosion resistance that can be put into practical use without being subjected to painting and anticorrosion by containing a predetermined amount of Co and Mg in combination and appropriately adjusting the chemical composition. Could be manufactured. Furthermore, the marine steel material of the present invention can exhibit good HAZ toughness even with high heat input welding by including a large number of TiN inclusions. Such marine steel materials are useful as raw materials for outer plates, ballast tanks, crude oil tanks and the like in ships such as crude oil tankers, cargo ships, cargo passenger ships, passenger ships, warships and the like.

本発明者らが鋭意研究を重ねた結果、船舶用鋼材中において、所定量のCoとMgを併用させて含有させると共に、化学成分組成を適切に調整すれば良好な耐食性を実現でき、かつTiN系介在物を多数存在させることにより、大入熱溶接時のHAZ靱性を向上させることができることを見出し、本発明を完成した。   As a result of intensive studies by the present inventors, it is possible to achieve a good corrosion resistance by adding a predetermined amount of Co and Mg in a marine steel material and adjusting the chemical composition appropriately, and TiN. It has been found that the presence of a large number of system inclusions can improve the HAZ toughness during high heat input welding, and the present invention has been completed.

本発明の鋼材においては、まずCoとMgを併用させて含有させることが重要であり、これらの成分のいずれを欠いても、本発明の目的である優れた耐食性を達成することができない。これらの成分における各作用効果は後述するが、これらを併用することによって、耐食性が向上した理由は次のように考えることができた。   In the steel material of the present invention, it is important to first contain Co and Mg in combination, and none of these components can achieve the excellent corrosion resistance that is the object of the present invention. Although each effect of these components will be described later, the reason why the corrosion resistance is improved by using these components in combination can be considered as follows.

Mgは腐食部分におけるpH低下を抑制して腐食反応を抑制して耐食性を向上させる作用を発揮するものである。こうした作用は通常の鋼材(例えば、Si−Mn鋼材)の成分系においては、生成する錆がポーラスであるので溶解したMgは鋼板表面近傍にとどまることなく直ちに外部(例えば、海水中)に拡散してしまうことになる。従って、Mgを単独で含有させたのでは、耐食性の向上効果は小さいものとなる。しかしながら、Mgと共にCoを含有させることによって、微細な表面錆皮膜が形成されることになり、Mgの外部への拡散が抑制されることになる。また、溶解したCoの加水分解平衡反応との相乗効果によって、耐食性を大幅に向上させることができるものと考えられた。   Mg exerts the action of suppressing the corrosion drop by suppressing the pH drop at the corroded portion and improving the corrosion resistance. In such a component system of a normal steel material (for example, Si—Mn steel material), such an action is porous because the generated rust is porous, and the dissolved Mg immediately diffuses to the outside (for example, in seawater) without staying in the vicinity of the steel plate surface. It will end up. Therefore, when Mg is contained alone, the effect of improving the corrosion resistance is small. However, by including Co together with Mg, a fine surface rust film is formed, and diffusion of Mg to the outside is suppressed. In addition, it was considered that the corrosion resistance can be greatly improved by a synergistic effect with the hydrolysis equilibrium reaction of dissolved Co.

こうした効果は、後述する適切な量に制御することによって発揮されることになるのであるが、これらの含有量の比の値([Co]/[Mg]:質量比)も適切に制御することが好ましい。即ち、この値([Co]/[Mg])が2未満であると、局部腐食の抑制が不充分となりやすく、350を超えると全面腐食の抑制が不充分となる。よって、この[Co]/[Mg]の値は2〜350程度とするのが望ましい。[Co]/[Mg]の値の下限は、好ましくは10、より好ましくは20であり、その上限は、好ましくは100、より好ましくは95、さらに好ましくは80、特に好ましくは60である。   Such an effect is exhibited by controlling to an appropriate amount described later, but the value of the ratio of these contents ([Co] / [Mg]: mass ratio) should also be appropriately controlled. Is preferred. That is, if this value ([Co] / [Mg]) is less than 2, local corrosion is likely to be insufficiently suppressed, and if it exceeds 350, overall corrosion is not sufficiently suppressed. Therefore, the value of [Co] / [Mg] is desirably about 2 to 350. The lower limit of the value of [Co] / [Mg] is preferably 10, more preferably 20, and the upper limit is preferably 100, more preferably 95, still more preferably 80, and particularly preferably 60.

さらに本発明では、鋼材中にTiN系化合物を多数存在させることによりHAZ靱性を向上させている。そもそも溶接によりHAZ靱性が低下するのは、溶接時に鋼材が受ける熱サイクルによりその部分のγ粒が粗大化して脆化するためである。そこで微細なTiN系介在物が多数存在すると、そのピンニング効果によりγ粒の粗大化を抑制することができる。本発明において、鋼材の単位面積あたりのTiN系介在物の個数は、好ましくは1.0×108(個/mm2)以上、より好ましくは5.0×108(個/mm2)以上、さらに好ましくは1.0×109(個/mm2)以上である。 Furthermore, in this invention, HAZ toughness is improved by making many TiN type compounds exist in steel materials. In the first place, the HAZ toughness is lowered by welding because the γ grains in the portion are coarsened and become brittle due to the thermal cycle received by the steel during welding. Therefore, when a large number of fine TiN inclusions are present, the coarsening of γ grains can be suppressed by the pinning effect. In the present invention, the number of TiN inclusions per unit area of the steel material is preferably 1.0 × 10 8 (pieces / mm 2 ) or more, more preferably 5.0 × 10 8 (pieces / mm 2 ) or more. More preferably, it is 1.0 × 10 9 (pieces / mm 2 ) or more.

本発明におけるTiN系介在物とは、介在物中にTiおよびNが共に0.3%以上で存在しているものをいい、介在物が、0.3%以上のTiおよびNを含有するか否かは、例えばエネルギー分散型検出器(EDX)により判定することができる。本発明における「単位面積あたりのTiN系介在物の個数」は、鋼材表面から深さ方向へ全厚tの4分の1の位置(t/4)で測定した値である。この介在物の個数は、例えば鋼材を透過型電子顕微鏡(TEM)で観察することにより測定できる。本発明においてこの個数の値は、顕微鏡の観察倍率を6万倍以上および観察視野を1.5μm×1.5μm以上で、5箇所以上観察した各個数の値を平均したものである。なぜなら観察倍率を大きくすることで、より正確な介在物の個数を計測できるからであり、観察視野を広く、かつ観察数を多くしてその平均をとることにより、観察箇所による介在物の個数のバラツキを少なくできるからである。   The TiN-based inclusion in the present invention means that both Ti and N are present in the inclusion at 0.3% or more. Does the inclusion contain 0.3% or more of Ti and N? It can be determined, for example, by an energy dispersive detector (EDX). The “number of TiN inclusions per unit area” in the present invention is a value measured at a position (t / 4) that is a quarter of the total thickness t in the depth direction from the steel surface. The number of inclusions can be measured, for example, by observing a steel material with a transmission electron microscope (TEM). In the present invention, the value of the number is an average of the values of the numbers observed at five or more locations with an observation magnification of the microscope of 60,000 times or more and an observation field of view of 1.5 μm × 1.5 μm or more. This is because by increasing the observation magnification, the number of inclusions can be measured more accurately, and by widening the observation field and increasing the number of observations and taking the average, the number of inclusions depending on the observation location can be increased. This is because variations can be reduced.

単位面積あたりのTiN系介在物の個数を1.0×108(個/mm2)以上にするには、溶鋼を急速に冷却して、微細なTiN系介在物を多数析出させればよい。そのために、溶鋼を冷却して凝固させる際の1500℃から1000℃までの冷却速度を、1.0×10-3(℃/秒)以上、好ましくは1.0×10-2(℃/秒)以上にすることが推奨される。この冷却速度は、例えば連続鋳造機の冷却水量や冷却方法を変えることにより調整することができる。 In order to increase the number of TiN inclusions per unit area to 1.0 × 10 8 (pieces / mm 2 ) or more, the molten steel is rapidly cooled to precipitate a large number of fine TiN inclusions. . Therefore, the cooling rate from 1500 ° C. to 1000 ° C. when the molten steel is cooled and solidified is 1.0 × 10 −3 (° C./second) or more, preferably 1.0 × 10 −2 (° C./second). ) Or more is recommended. This cooling rate can be adjusted, for example, by changing the amount of cooling water and the cooling method of the continuous casting machine.

本発明の鋼材では、基本的特性を満足させるために、C、Si、Mn、Al等の基本成分も適切に調整する必要がある。これらの成分の範囲限定理由について、上記Ti、N、CoおよびMgの各元素による作用効果と共に、以下に記載する。   In the steel material of the present invention, basic components such as C, Si, Mn, and Al need to be appropriately adjusted in order to satisfy basic characteristics. The reasons for limiting the ranges of these components will be described below together with the effects of the respective elements of Ti, N, Co and Mg.

[C:0.01〜0.2%]
Cは、材料の強度確保のために必要な元素である。船舶の構造部材としての最低強度、即ち概ね400MPa程度(使用する鋼材の肉厚にもよるが)を得るためには、0.01%以上含有させる必要がある。しかし、0.2%を超えて過剰に含有させると靱性、溶接性が劣化する。こうしたことから、C含有量の範囲は0.01〜0.2%とした。尚、C含有量の好ましい下限は0.02%であり、より好ましくは0.04%以上とするのが良い。また、C含有量の好ましい上限は0.18%であり、より好ましくは0.16%以下とするのが良い。
[C: 0.01 to 0.2%]
C is an element necessary for ensuring the strength of the material. In order to obtain the minimum strength as a structural member of a ship, that is, about 400 MPa (depending on the thickness of the steel material used), it is necessary to contain 0.01% or more. However, if the content exceeds 0.2%, the toughness and weldability deteriorate. For these reasons, the C content range was set to 0.01 to 0.2%. In addition, the minimum with preferable C content is 0.02%, More preferably, it is good to set it as 0.04% or more. Moreover, the upper limit with preferable C content is 0.18%, It is good to set it as 0.16% or less more preferably.

[Si:0.01〜1%]
Siは脱酸と強度確保のための必要な元素であり、0.01%に満たないと構造部材としての最低強度を確保できない。しかし、1%を超えて過剰に含有させると溶接性、HAZ靱性が劣化する。尚、Si含有量の好ましい下限は0.02%である。また、Si含有量の好ましい上限は0.8%であり、より好ましくは0.6%以下とするのが良い。
[Si: 0.01 to 1%]
Si is a necessary element for deoxidation and securing strength, and the minimum strength as a structural member cannot be secured unless it is less than 0.01%. However, if the content exceeds 1%, weldability and HAZ toughness deteriorate. In addition, the minimum with preferable Si content is 0.02%. Moreover, the upper limit with preferable Si content is 0.8%, More preferably, it is good to set it as 0.6% or less.

[Mn:0.01〜2%]
MnもSiと同様に脱酸および強度確保のために必要であり、0.01%に満たないと構造部材としての最低強度を確保できない。しかし、2%を超えて過剰に含有させると靱性が劣化する。尚、Mn含有量の好ましい下限は0.05%であり、より好ましくは0.10%以上とするのが良い。また、Mn含有量の好ましい上限は1.80%であり、より好ましくは1.60%以下とするのが良い。
[Mn: 0.01-2%]
Mn is also necessary for deoxidation and securing strength in the same manner as Si, and if it is less than 0.01%, the minimum strength as a structural member cannot be secured. However, if the content exceeds 2%, the toughness deteriorates. In addition, the minimum with preferable Mn content is 0.05%, It is good to set it as 0.10% or more more preferably. Moreover, the upper limit with preferable Mn content is 1.80%, More preferably, it is good to set it as 1.60% or less.

[Al:0.005〜0.1%]
AlもSi、Mnと同様に脱酸および強度確保のために必要であり、0.005%に満たないと脱酸に効果がない。しかし、0.1%を超えて添加すると溶接性、HAZ靱性を害するため、Al添加量の範囲は0.005〜0.1%とした。尚、Al含有量の好ましい下限は0.010%であり、より好ましくは0.015%以上とするのが良い。また、Al含有量の好ましい上限は0.090%であり、より好ましくは0.080%以下とするのが良い。
[Al: 0.005 to 0.1%]
Al is also necessary for deoxidation and securing of strength in the same manner as Si and Mn, and if less than 0.005%, there is no effect on deoxidation. However, if added over 0.1%, the weldability and HAZ toughness are impaired, so the range of Al addition amount is set to 0.005 to 0.1%. In addition, the minimum with preferable Al content is 0.010%, It is good to set it as 0.015% or more more preferably. Moreover, the upper limit with preferable Al content is 0.090%, It is good to set it as 0.080% or less more preferably.

[Ti:0.005〜0.03%]
Tiは耐食性向上に大きく寄与する表面錆被膜を緻密化してその環境遮断性を向上させると共に、すきま内部における腐食を抑制して、耐すきま腐食性も向上させる元素である。またTiは窒化物を形成することにより、溶接時におけるHAZでのγ粒の粗大化を防止するピンニング効果も発揮する。こうした耐食性およびHAZ靱性を確保するためには、0.005%以上含有させることが好ましいが、0.03%を超えて過剰に含有させると、固溶Tiが増えすぎて、かえってHAZ靱性が低下し、また加工性や溶接性も劣化させることになる。Tiを含有させるときのより好ましい下限は0.008%であり、より好ましい上限は0.025%である。
[Ti: 0.005 to 0.03%]
Ti is an element that densifies the surface rust coating, which greatly contributes to the improvement of corrosion resistance, improves its environmental barrier properties, suppresses corrosion inside the crevice, and improves crevice corrosion resistance. Ti also forms a nitride, thereby exhibiting a pinning effect that prevents the coarsening of γ grains in the HAZ during welding. In order to ensure such corrosion resistance and HAZ toughness, it is preferable to contain 0.005% or more. However, if it exceeds 0.03%, excessively dissolved Ti will increase, and HAZ toughness will decrease. In addition, workability and weldability are also deteriorated. The more preferable lower limit when Ti is contained is 0.008%, and the more preferable upper limit is 0.025%.

[N:0.003〜0.015%]
NはTiと共にTiNを形成してピンニング効果を発揮することで、HAZ靱性を向上させる。N量が0.003%未満では、TiNの生成量が不充分であり、HAZ靱性の向上効果が小さい。一方、0.015%を超えると、固溶Nが増えすぎて、かえってHAZ靱性が劣化する。Nを含有させるときのより好ましい下限は0.004%であり、より好ましい上限は0.010%である。
[N: 0.003 to 0.015%]
N forms TiN together with Ti and exhibits a pinning effect, thereby improving HAZ toughness. If the amount of N is less than 0.003%, the amount of TiN produced is insufficient, and the effect of improving HAZ toughness is small. On the other hand, when it exceeds 0.015%, the solid solution N increases too much, and the HAZ toughness deteriorates. A more preferable lower limit when N is contained is 0.004%, and a more preferable upper limit is 0.010%.

[Co:0.010〜1%]
Coは、高塩分環境において鋼材の耐食性向上に大きく寄与する緻密な表面錆皮膜を形成するのに必要不可欠な元素である。こうした効果を発揮させるためには、Co含有量は0.010%以上とすることが必要である。しかしながら1%を超えて過剰に含有させると溶接性、HAZ靱性が劣化する。こうしたことからCo含有量は、0.010〜1%とした。尚、Co含有量の好ましい下限は0.015%であり、より好ましくは0.020%以上とするのが良い。また、Co含有量の好ましい上限は0.8%であり、より好ましくは0.6%以下とするのが良い。
[Co: 0.010 to 1%]
Co is an indispensable element for forming a dense surface rust film that greatly contributes to improving the corrosion resistance of steel in a high salinity environment. In order to exert such an effect, the Co content needs to be 0.010% or more. However, if the content exceeds 1%, weldability and HAZ toughness deteriorate. For these reasons, the Co content was set to 0.010 to 1%. In addition, the minimum with preferable Co content is 0.015%, More preferably, it is good to set it as 0.020% or more. Moreover, the upper limit with preferable Co content is 0.8%, More preferably, it is good to set it as 0.6% or less.

[Mg:0.0005〜0.02%]
Mgは溶解することによってpH上昇作用を示すことから、鉄の溶解が起こっている局部アノードにおける加水分解反応によるpH低下を抑制して、腐食反応を抑制し、耐食性を向上させる作用を有する。こうした効果を発揮させるためには、Mgは0.0005%以上含有させることが必要であるが、0.02%を超えて含有させると加工性と溶接性を劣化させる。こうしたことから、Mg含有量は0.0005〜0.02%の範囲が適正である。Mg含有量の好ましい下限は0.0007%であり、より好ましくは0.00
10%以上含有させるのが良い。またMg含有量の好ましい上限は0.018%であり、より好ましくは0.015%以下とするのが良い。
[Mg: 0.0005 to 0.02%]
Since Mg exhibits a pH raising action by being dissolved, it has an action of suppressing a pH reduction due to a hydrolysis reaction in a local anode where iron is dissolved, thereby suppressing a corrosion reaction and improving corrosion resistance. In order to exert such effects, Mg needs to be contained in an amount of 0.0005% or more. However, if it exceeds 0.02%, workability and weldability are deteriorated. For these reasons, the Mg content is suitably in the range of 0.0005 to 0.02%. The minimum with preferable Mg content is 0.0007%, More preferably, it is 0.00
It is good to contain 10% or more. Moreover, the upper limit with preferable Mg content is 0.018%, It is good to set it as 0.015% or less more preferably.

本発明の船舶用鋼材における基本成分は上記の通りであり、残部は鉄および不可避不純物(例えば、P、S、O等)からなるものであるが、これら以外にも鋼材の特性を阻害しない程度の成分(例えば、Zr等)も許容できる。但しこれら許容成分は、その量が過剰になると靭性が劣化し得るので、0.1%程度以下に抑えることが好ましい。   The basic components in the marine steel of the present invention are as described above, and the balance is composed of iron and inevitable impurities (for example, P, S, O, etc.), but to the extent that does not impair the properties of the steel other than these. These components (for example, Zr) are also acceptable. However, these allowable components are preferably suppressed to about 0.1% or less because the toughness may be deteriorated when the amount thereof is excessive.

また本発明の船舶用鋼材には、上記成分のほか必要によって、(1)Cu、CrおよびNiよりなる群から選ばれる1種以上、(2)Ca、(3)Moおよび/またはW、(4)B、VおよびNbよりなる群から選ばれる1種以上、等を含有させることも有効であり、含有させる成分の種類に応じて船舶用鋼材の特性が更に改善されることになる。   In addition to the above components, the marine steel material of the present invention may include (1) one or more selected from the group consisting of Cu, Cr and Ni, (2) Ca, (3) Mo and / or W, ( 4) It is also effective to contain one or more selected from the group consisting of B, V and Nb, etc., and the characteristics of the marine steel will be further improved according to the type of component to be contained.

[Cu:1.5%以下(0%を含まない)、Cr:1%以下(0%を含まない)、Ni:2%以下(0%を含まない)よりなる群から選ばれる1種以上]
Cu、CrおよびNiは、いずれも耐食性向上に有効な元素である。このうちCuおよびCrは、Coと同様に耐食性向上に大きく寄与する緻密な表面錆被膜を形成するのに有効な元素である。こうした効果を発揮させるためには、いずれも0.01%以上含有させることが好ましいが、過剰に含有させると、溶接性、熱間加工性やHAZ靱性が劣化することから、Cu:1.5%以下、Cr:1%以下とすることが好ましい。CuおよびCrの一方または両方を含有させる場合、それぞれのより好ましい下限は0.05%であり、より好ましい上限はCuについては1.0%、Crについては0.8%である。
[Cu: 1.5% or less (not including 0%), Cr: 1% or less (not including 0%), Ni: 2% or less (not including 0%) ]
Cu, Cr and Ni are all effective elements for improving the corrosion resistance. Among these, Cu and Cr are elements that are effective for forming a dense surface rust film that contributes greatly to the improvement of corrosion resistance like Co. In order to exert such an effect, it is preferable to contain 0.01% or more of all. However, if excessively contained, the weldability, hot workability and HAZ toughness deteriorate, so Cu: 1.5 % Or less and Cr: 1% or less are preferable. When one or both of Cu and Cr are contained, the more preferable lower limit of each is 0.05%, and the more preferable upper limit is 1.0% for Cu and 0.8% for Cr.

Niは耐食性向上に大きく寄与する緻密な表面錆被膜を安定化させるのに有効な元素であり、こうした効果を発揮させるためには0.01%以上含有させることが好ましい。しかしながらNi含有量が過剰になると溶接性や熱間加工性が劣化し、さらには大幅なコストアップにつながることから、2%以下とすることが好ましい。Niを含有させるときのより好ましい下限は0.05%であり、より好ましい上限は1.5%である。   Ni is an element effective for stabilizing a dense surface rust film that greatly contributes to the improvement of corrosion resistance. In order to exert such an effect, it is preferably contained in an amount of 0.01% or more. However, if the Ni content is excessive, weldability and hot workability are deteriorated, and further, the cost is significantly increased. The more preferable lower limit when Ni is contained is 0.05%, and the more preferable upper limit is 1.5%.

[Ca:0.02%以下(0%を含まない)]
CaはMgと同様に、溶解することによってpH上昇作用を示し、鉄の溶解が起こっている局部アノードにおける加水分解反応によるpH低下を抑制して腐食反応を抑制し、耐食性向上に有効な元素である。Caによるこうした効果は、好ましくは0.0005%以上含有させることによって有効に発揮されるが、0.02%を超えて過剰に含有させると加工性と溶接性とを劣化させることになる。Caを含有させるときのより好ましい下限は0.0010%であり、より好ましい上限は0.015%である。
[Ca: 0.02% or less (excluding 0%)]
Ca, like Mg, exhibits an effect of increasing pH when dissolved, and is an element effective in improving corrosion resistance by suppressing pH reduction due to hydrolysis reaction in the local anode where iron is dissolved and suppressing corrosion reaction. is there. Such an effect by Ca is preferably exerted by adding 0.0005% or more, but if it exceeds 0.02%, the workability and weldability are deteriorated. The more preferable lower limit when Ca is contained is 0.0010%, and the more preferable upper limit is 0.015%.

[Mo:0.5%以下(0%を含まない)および/またはW:0.3%以下(0%を含まない)]
MoおよびWは、腐食の均一性を高めて局部腐食による穴あきを抑制する作用がある。特にCoと同時に含有させることによって、顕著な均一腐食性向上作用が発揮される。こうした効果を発揮させるためには、いずれも0.01%以上含有させることが好ましいが、過剰に含有させると溶接性、HAZ靱性が劣化し、さらに大幅なコストアップにつながることから、Moについて0.5%以下、Wについては0.3%以下とすることが好ましい。
MoおよびWの一方または両方を含有させる場合、それぞれのより好ましい下限は0.02%であり、より好ましい上限はMoについては0.3%、Wについては0.2%である。
[Mo: 0.5% or less (not including 0%) and / or W: 0.3% or less (not including 0%)]
Mo and W have the effect of increasing the uniformity of corrosion and suppressing perforations due to local corrosion. In particular, when it is contained simultaneously with Co, a remarkable effect of improving uniform corrosion is exhibited. In order to exert such an effect, it is preferable to contain 0.01% or more in all cases. However, if excessively contained, the weldability and HAZ toughness deteriorate, and further, the cost increases. 0.5% or less, and W is preferably 0.3% or less.
When one or both of Mo and W are contained, the more preferable lower limit of each is 0.02%, and the more preferable upper limit is 0.3% for Mo and 0.2% for W.

[B:0.01%以下(0%を含まない)、V:0.1%以下(0%を含まない)およびNb:0.05%以下(0%を含まない)よりなる群から選ばれる1種以上]
船舶用鋼材では、適用する部位によってはより高強度化が必要な場合があるが、これらの元素は強度向上に必要な元素である。このうちBは、好ましくは0.0001%以上含有させることによって焼入性が向上して強度向上に有効であるが、0.01%を超えて過剰に含有させると母材靭性、HAZ靱性が劣化するため好ましくない。Vは、好ましくは0.003%以上含有させることによって強度向上に有効であるが、0.1%を超えて過剰に含有させると鋼材の靭性およびHAZ靱性の劣化を招くことになるので好ましくない。Nbは、好ましくは0.003%以上含有させることによって強度向上に有効であるが、0.05%を超えて過剰に含有させると鋼材の靭性およびHAZ靱性の劣化を招くことになる。尚、これらの元素のより好ましい下限は、Bについては0.0003%、Vについては0.005%、Nbについては0.005%である。またより好ましい上限はBについては0.0090%、Vについては0.07%、Nbについては0.03%である。
[B: selected from the group consisting of 0.01% or less (not including 0%), V: 0.1% or less (not including 0%) and Nb: 0.05% or less (not including 0%) One or more
In marine steel materials, higher strength may be required depending on the site to be applied, but these elements are elements necessary for strength improvement. Of these, B is preferably 0.0001% or more, and hardenability is improved and effective in improving the strength. However, when B exceeds 0.01%, the base material toughness and HAZ toughness are improved. Since it deteriorates, it is not preferable. V is preferably effective to improve the strength by containing 0.003% or more, but if it exceeds 0.1%, it is not preferable because it causes deterioration of the toughness of the steel and the HAZ toughness. . Nb is preferably effective in improving the strength by containing 0.003% or more, but if it exceeds 0.05%, Nb causes the deterioration of the toughness of the steel and the HAZ toughness. More preferable lower limits of these elements are 0.0003% for B, 0.005% for V, and 0.005% for Nb. The more preferable upper limit is 0.0090% for B, 0.07% for V, and 0.03% for Nb.

本発明の船舶用鋼材は、基本的には塗装を施さなくても鋼材自体が優れた耐食性を発揮するものであるが、必要によって、後記実施例に示すタールエポキシ樹脂塗料、或はそれ以外の代表される重防食塗装、ジンクリッチペイント、ショッププライマー、電気防食などの他の防食方法と併用することも可能である。こうした防食塗装を施した場合には、以下の実施例に示すように塗装膜自体の耐食性(塗装耐食性)も良好なものとなる。   The marine steel material of the present invention basically exhibits excellent corrosion resistance even if it is not coated, but if necessary, the tar epoxy resin paint shown in the examples below, or other than that It can be used in combination with other anticorrosion methods such as heavy duty anticorrosion coating, zinc rich paint, shop primer, and anticorrosion. When such anticorrosion coating is applied, the corrosion resistance (painting corrosion resistance) of the coating film itself is also good as shown in the following examples.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより以下の実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含されるものである。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples as a matter of course, and appropriate modifications are made within a range that can meet the purpose described above and below. Of course, it is also possible to implement them, and they are all included in the technical scope of the present invention.

[1.鋼板の製造]
以下の表1に示す化学成分組成の鋼を通常の溶製法により溶製した後、溶鋼を連続鋳造機で直接スラブにし、これを熱間圧延に供して鋼板を製造した。この際、1500℃から1000℃までの冷却速度(表4中で「冷却速度」と記載)を変えて溶鋼を凝固させることにより、単位面積あたりのTiN系介在物の個数(表4中で「TiN系介在物」と記載)を変化させた。この冷却速度は、連続鋳造機の冷却水量や冷却方法を変えることにより調整した。このようにして得た鋼板を切断および表面研削して、以下の耐食性および溶接性評価のための試験片を作成した。
[1. Steel sheet manufacturing]
Steels having the chemical composition shown in Table 1 below were melted by an ordinary melting method, and then the molten steel was directly slabd by a continuous casting machine and subjected to hot rolling to produce a steel plate. At this time, by changing the cooling rate from 1500 ° C. to 1000 ° C. (described as “cooling rate” in Table 4) and solidifying the molten steel, the number of TiN inclusions per unit area ( "TiN-based inclusion"). This cooling rate was adjusted by changing the amount of cooling water and the cooling method of the continuous casting machine. The steel plate thus obtained was cut and surface ground to prepare test pieces for the following corrosion resistance and weldability evaluation.

Figure 2007177286
Figure 2007177286

Figure 2007177286
Figure 2007177286

[2.耐食性の評価]
上記のようにして得た鋼板から、100×100×25(mm)の大きさの試験片を作製した(試験片A)。試験片Aの外観形状を図1に示す。
[2. Evaluation of corrosion resistance]
A test piece having a size of 100 × 100 × 25 (mm) was produced from the steel sheet obtained as described above (test piece A). The external shape of the test piece A is shown in FIG.

また図2に示すように20×20×5(mm)の小試験片4個を、100×100×25(mm)の大試験片(前記試験片Aと同じもの)に接触させて、すきま部を形成した試験片Bを作製した。すきま形成用の小試験片と大試験片とは同じ化学成分組成の鋼材として、表面仕上げも前記試験片Aと同じ表面研削とした。そして小試験片の中心に5mmφの孔を、基材側(大試験片側)にねじ孔を開けて、M4プラスチック製ねじで固定した。   Further, as shown in FIG. 2, four small test pieces of 20 × 20 × 5 (mm) are brought into contact with a large test piece of 100 × 100 × 25 (mm) (the same as the above-mentioned test piece A), and the clearance is obtained. A test piece B in which a part was formed was produced. The small test piece and the large test piece for forming the gap were steel materials having the same chemical composition, and the surface finish was the same as that of the test piece A. Then, a hole of 5 mmφ was formed in the center of the small test piece, and a screw hole was made on the base material side (large test piece side), and fixed with an M4 plastic screw.

更に、平均厚さ250μmのタールエポキシ樹脂塗装(下塗り:ジンクリッチプライマー)を全面に施した試験片C(図3)も用いた。そして防食のための塗膜に傷が付いて素地の鋼材が露出した場合の腐食進展度合いを調べるために、試験片Cの片面には素地まで達するカット傷(長さ:100mm、幅:約0.5mm)をカッターナイフで形成した。   Further, a test piece C (FIG. 3) on which an entire thickness of 250 μm thick tar epoxy resin coating (undercoating: zinc rich primer) was applied was used. Then, in order to investigate the degree of corrosion progress when the base steel material is exposed due to scratches on the anticorrosion coating film, the cut surface reaching the base on one side of the test piece C (length: 100 mm, width: about 0) 0.5 mm) was formed with a cutter knife.

前記表1に示した各化学成分組成の供試材について、試験片A、試験片Bおよび試験片Cを夫々5個ずつ用い腐食試験に供した。このときの腐食試験の方法は次の通りである。   About the test material of each chemical component composition shown in the said Table 1, the test piece A, the test piece B, and five test pieces C were used for the corrosion test, respectively. The method of the corrosion test at this time is as follows.

(腐食試験の方法)
まず海洋環境を模擬して、海水噴霧試験と恒温恒湿試験の繰り返しによる複合サイクル腐食試験を行った。海水噴霧試験では、水平から60°の角度で傾けて供試材(各試験片A〜C)を試験槽内に設置し、35℃の人工海水(塩水)を霧状に噴霧させた。塩水の噴霧は常時連続して行った。このとき試験槽内において、水平に設置した面積80cm2
円形皿に1時間当たりに1.5±0.3mlの人工海水が任意の位置で採取されるような
噴霧量に予め調整した。恒温恒湿試験は、温度:60℃、湿度:95%に調整した試験槽内に、供試材を水平から60°の角度で傾けて設置して行った。海水噴霧試験:4時間、恒温恒湿試験:4時間を1サイクルとして、これらを交互に行って、供試材を腐食させた。トータルの試験時間は6ヶ月間とした。
(Corrosion test method)
First, a combined cycle corrosion test was conducted by simulating a marine environment and repeating a seawater spray test and a constant temperature and humidity test. In the seawater spray test, the specimen (each test piece A to C) was tilted at an angle of 60 ° from the horizontal, and was placed in a test tank, and 35 ° C artificial seawater (salt water) was sprayed in the form of a mist. Spraying of salt water was continuously performed. At this time, in the test tank, the spray amount was adjusted in advance so that 1.5 ± 0.3 ml of artificial seawater was collected at an arbitrary position per hour on a circular dish having an area of 80 cm 2 installed horizontally. The constant temperature and humidity test was carried out by placing the test material at an angle of 60 ° from the horizontal in a test tank adjusted to a temperature of 60 ° C. and a humidity of 95%. Seawater spray test: 4 hours, constant temperature and humidity test: 4 hours as one cycle, these were alternately performed to corrode the specimen. The total test time was 6 months.

(1)試験片Aについては、試験前後の重量変化を平均板厚減少量D−ave(mm)に換算し、試験片5個の平均値を算出して、各供試材の全面腐食性を評価した。また、触針式三次元形状測定装置を用いて試験片Aの最大侵食深さD−max(mm)を求め、平均板厚減少量[D−ave(mm)]で規格化して(即ち、D−max/D−aveを算出して)、腐食均一性を評価した。尚、試験後の重量測定および板厚測定は、クエン酸水素二アンモニウム水溶液中での陰極電解法[JIS K8284]により鉄錆等の腐食生成物を除去してから行った。   (1) For test piece A, the weight change before and after the test is converted into an average thickness reduction amount D-ave (mm), the average value of five test pieces is calculated, and the entire surface corrosivity of each specimen is calculated. Evaluated. Further, the maximum erosion depth D-max (mm) of the test piece A is obtained using a stylus type three-dimensional shape measuring apparatus, and normalized by the average thickness reduction amount [D-ave (mm)] (that is, D-max / D-ave was calculated) and corrosion uniformity was evaluated. In addition, the weight measurement and the plate thickness measurement after the test were performed after removing corrosion products such as iron rust by the cathodic electrolysis method [JIS K8284] in an aqueous solution of diammonium hydrogen citrate.

(2)試験片Bについては、すきま部(接触面)の目視観察を行ってすきま腐食発生の有無を調べ、すきま腐食が認められる場合には、上記陰極電解法により腐食生成物を除去し、触針式三次元形状測定装置を用いて最大すきま腐食深さD−crev(mm)を測定した。   (2) For test piece B, the crevice portion (contact surface) was visually observed to check for crevice corrosion. If crevice corrosion was observed, the corrosion product was removed by the cathodic electrolysis method, The maximum crevice corrosion depth D-crev (mm) was measured using a stylus type three-dimensional shape measuring apparatus.

(3)塗装処理を施した試験片C(カット傷付き)については、試験後にカット傷を形成した面における塗膜膨れ面積の比率(膨れ面積率)を測定した。膨れ面積率は格子点法(格子間隔1mm)によって求めた。即ち、膨れの認められた格子点の数を全格子点数で除したものを膨れ面積率と定義して、試験片5個の平均値を求めた。また、カット傷に垂直方向の塗膜膨れ幅をノギスで測定し、試験片5個の最大値を最大膨れ幅と定義した。   (3) About the test piece C (with cut flaws) which performed the coating process, the ratio (bulging area rate) of the coating film swollen area in the surface which formed the cut flaw after a test was measured. The swollen area ratio was determined by a lattice point method (lattice interval 1 mm). That is, an average value of five test pieces was obtained by defining a swelling area ratio by dividing the number of lattice points where swelling was observed by the total number of lattice points. In addition, the swollen width of the coating film in the direction perpendicular to the cut flaw was measured with calipers, and the maximum value of five test pieces was defined as the maximum swollen width.

上記耐全面腐食性(D−ave)、腐食均一性(D−max/D−ave)、耐すきま腐食性(D−crev)、塗装耐食性(膨れ面積率および最大膨れ幅)の評価基準は以下の表2に示す通りである。腐食試験の結果を以下の表3に示す。   The evaluation criteria for the overall corrosion resistance (D-ave), corrosion uniformity (D-max / D-ave), crevice corrosion resistance (D-crev), and coating corrosion resistance (blowing area ratio and maximum swollen width) are as follows: As shown in Table 2. The results of the corrosion test are shown in Table 3 below.

Figure 2007177286
Figure 2007177286

Figure 2007177286
Figure 2007177286

これらの結果から次のように考察できる。CoまたはMgの一方しか含有しないNo.2、3のもの、CoまたはMgの含有量が本発明で規定する下限値に満たないNo.4、5のものは、CoおよびMgのいずれも含有しないNo.1のものに比べて、耐全面腐食性または腐食均一性がやや改善している。しかしながら、Coが含有されていないNo.2のものおよびCo量が不足しているNo.4のものでは、腐食均一性と膨れ面積率で改善効果が認められない。またMgが含有されていないNo.3のものおよびMg量が不足しているNo.5のものでは、耐すきま腐食性と最大膨れ幅で改善効果が認められず、船舶用鋼材の耐食性としては不充分である。   These results can be considered as follows. No. containing only one of Co or Mg. Nos. 2, 3 and No. in which the content of Co or Mg is less than the lower limit specified in the present invention. Nos. 4 and 5 are No. containing neither Co nor Mg. Compared to one, the overall corrosion resistance or corrosion uniformity is slightly improved. However, no. No. 2 and No. in which the amount of Co is insufficient. In the case of 4, the improvement effect is not recognized by the corrosion uniformity and the swollen area ratio. No. No Mg is contained. No. 3 and No. with insufficient Mg content. In the case of No. 5, the improvement effect is not recognized by crevice corrosion resistance and the maximum swollen width, which is insufficient as the corrosion resistance of marine steel materials.

このうちCu、NiまたはCrを添加した供試材では、特に塗装供試材の最大膨れ幅を低減させる効果が認められ(No.9、10または24等)、これらの元素の錆緻密化がカット部の錆安定化に作用して腐食進展を抑制したものと推察される。またCaは耐すきま腐食性を高める効果が認められ(No.12、16、17等)、Caがすきま内のpH低下抑制を更に強化して腐食を低減したものと考えられる。更にMoやWの添加は、腐食均一性や塗装膨れ性の向上に非常に効果のあることが分かる(No.26〜28等)。またNo.25、28、29、30等の結果から明らかなように、([Co]/[Mg])の値を適切に調整することによって、各種耐食性が大幅に優れる結果となる。   Among these, in the test materials to which Cu, Ni or Cr was added, the effect of reducing the maximum swollen width of the coated test materials was recognized (No. 9, 10 or 24), and rust densification of these elements was observed. It is presumed that the corrosion progress was suppressed by acting on the rust stabilization of the cut part. Ca has an effect of increasing crevice corrosion resistance (No. 12, 16, 17, etc.), and it is considered that Ca further strengthened the suppression of pH reduction in the crevice and reduced corrosion. Furthermore, it can be seen that the addition of Mo and W is very effective in improving the corrosion uniformity and paint swellability (No. 26 to 28, etc.). No. As is clear from the results of 25, 28, 29, 30 and the like, various values of corrosion resistance are greatly improved by appropriately adjusting the value of ([Co] / [Mg]).

[3.溶接性試験]
上記のようにして得た鋼板から、50(mm)の厚みの試験片Dを作成した。この試験片の単位面積あたりのTiN系介在物の個数を以下のようにして計測し、またHAZ靱性を評価するため、溶接性試験に供した。
[3. Weldability test]
A test piece D having a thickness of 50 (mm) was prepared from the steel sheet obtained as described above. The number of TiN inclusions per unit area of this test piece was measured as follows, and subjected to a weldability test in order to evaluate HAZ toughness.

(TiN系介在物の個数の計測)
試験片DをTEMおよびTEMに付属するEDXで観察することにより、TiN系介在物の個数を計測した。具体的には観察倍率6万倍および観察視野1.5μm×1.5μmでのTEMにより、試験片の表面から深さ方向へt/4(表面から12.5mm)の位置を観察し、その位置で存在する介在物の中で、EDXによりTiおよびNを0.3%以上含有するTiN系介在物を確認し、その個数を測定して、単位面積(mm2)あたりの個数を計算して求め、5つの計測箇所からTiN系介在物の個数の平均値を求めた。結果を表4に示す。
(Measurement of the number of TiN inclusions)
The number of TiN inclusions was measured by observing the test piece D with TEM and EDX attached to the TEM. Specifically, the position of t / 4 (12.5 mm from the surface) is observed from the surface of the test piece in the depth direction by TEM at an observation magnification of 60,000 times and an observation field of view of 1.5 μm × 1.5 μm. Among the inclusions present at the position, check for TiN inclusions containing 0.3% or more of Ti and N by EDX, measure the number of them, and calculate the number per unit area (mm 2 ). The average value of the number of TiN inclusions was obtained from the five measurement locations. The results are shown in Table 4.

(溶接性試験)
試験片Dを、1400℃に加熱して50秒保持した後、800℃から500℃までを400秒で冷却する熱サイクルに供した後(入熱60kJ/mmでの溶接に相当)、JIS4号試験片を3本採取した。このJIS4号試験を用いて、−40℃でのVシャルピー衝撃試験を行い、3本の吸収エネルギー(vE-40)の平均値を求めた。結果を表4に示す。この溶接性試験では、vE-40が55J以上のものがHAZ靱性に優れると評価した。
(Weldability test)
Specimen D was heated to 1400 ° C. and held for 50 seconds, and then subjected to a heat cycle in which the temperature from 800 ° C. to 500 ° C. was cooled in 400 seconds (corresponding to welding at a heat input of 60 kJ / mm). Three test pieces were collected. Using this JIS No. 4 test, a V Charpy impact test at −40 ° C. was performed, and the average value of three absorbed energies (vE −40 ) was obtained. The results are shown in Table 4. In this weldability test, it was evaluated that a material having vE- 40 of 55 J or more is excellent in HAZ toughness.

Figure 2007177286
Figure 2007177286

1500℃から1000℃までの冷却速度と鋼材の単位面積あたりのTiN系介在物の個数との関係を示すグラフを図4に、鋼材の単位面積あたりのTiN系介在物の個数とvE-40との関係を示すグラフを図5に示す。表4および図4から示されるように、1500℃から1000℃までの冷却速度を1.0×10-3(℃/秒)以上とすることにより、鋼材の単位面積あたりのTiN系介在物の個数を1.0×108(個/mm2)以上とすることができる。さらに表4および図5から示されるように、TiN系介在物の個数が1.0×108(個/mm2)以上であるものは、vE-40が55J以上であり、大入熱溶接(60kJ/mmの溶接に相当)でも、HAZ靱性が良好である。 FIG. 4 is a graph showing the relationship between the cooling rate from 1500 ° C. to 1000 ° C. and the number of TiN-based inclusions per unit area of the steel material. The number of TiN-based inclusions per unit area of the steel material and vE- 40 A graph showing the relationship is shown in FIG. As shown in Table 4 and FIG. 4, by setting the cooling rate from 1500 ° C. to 1000 ° C. to 1.0 × 10 −3 (° C./second) or more, the TiN inclusions per unit area of the steel material number to be a 1.0 × 10 8 (pieces / mm 2) or more. Further, as shown in Table 4 and FIG. 5, when the number of TiN inclusions is 1.0 × 10 8 (pieces / mm 2 ) or more, vE- 40 is 55 J or more, and high heat input welding is performed. Even (corresponding to welding of 60 kJ / mm), the HAZ toughness is good.

腐食試験に用いた試験片Aの外観形状を示す説明図である。It is explanatory drawing which shows the external appearance shape of the test piece A used for the corrosion test. 腐食試験に用いた試験片Bの外観形状を示す説明図である。It is explanatory drawing which shows the external appearance shape of the test piece B used for the corrosion test. 腐食試験に用いた試験片Cの外観形状を示す説明図である。It is explanatory drawing which shows the external appearance shape of the test piece C used for the corrosion test. 1500℃から1000℃までの冷却速度とTiN系介在物の個数との関係を示すグラフである。It is a graph which shows the relationship between the cooling rate from 1500 degreeC to 1000 degreeC, and the number of TiN type inclusions. 鋼材の単位面積あたりのTiN系介在物の個数とvE-40との関係を示すグラフである。It is a graph which shows the relationship between the number of the TiN inclusions per unit area of steel materials, and vE- 40 .

Claims (6)

C:0.01〜0.2%(質量%の意味、以下同じ)、Si:0.01〜1%、Mn:0.01〜2%、Al:0.005〜0.1%、Ti:0.005〜0.03%、N:0.003〜0.015%を夫々含有する他、Co:0.010〜1%およびMg:0.0005〜0.02%を含有し、残部がFeおよび不可避不純物からなり、
単位面積あたりのTiN系介在物の個数が、1.0×108(個/mm2)以上であることを特徴とする耐食性および大入熱溶接時のHAZ靱性に優れた船舶用鋼材。
C: 0.01 to 0.2% (meaning of mass%, the same applies hereinafter), Si: 0.01 to 1%, Mn: 0.01 to 2%, Al: 0.005 to 0.1%, Ti : 0.005 to 0.03%, N: 0.003 to 0.015%, Co: 0.010 to 1% and Mg: 0.0005 to 0.02%, the balance Consists of Fe and inevitable impurities,
A marine steel material excellent in corrosion resistance and HAZ toughness during high heat input welding, wherein the number of TiN inclusions per unit area is 1.0 × 10 8 (pieces / mm 2 ) or more.
Coの含有量[Co]とMgの含有量[Mg]の比の値([Co]/[Mg])が2〜350である請求項1に記載の船舶用鋼材。   2. The marine steel material according to claim 1, wherein the value ([Co] / [Mg]) of the Co content [Co] and the Mg content [Mg] is 2 to 350. 3. 更に、Cu:1.5%以下(0%を含まない)、Cr:1%以下(0%を含まない)、Ni:2%以下(0%を含まない)よりなる群から選ばれる1種以上を含有する請求項1または2に記載の船舶用鋼材。   Furthermore, Cu: 1.5% or less (not including 0%), Cr: 1% or less (not including 0%), Ni: 2% or less (not including 0%) The marine steel material of Claim 1 or 2 containing the above. 更に、Ca:0.02%以下(0%を含まない)を含有する請求項1〜3のいずれかに記載の船舶用鋼材。   Furthermore, the marine steel material in any one of Claims 1-3 containing Ca: 0.02% or less (0% is not included). 更に、Mo:0.5%以下(0%を含まない)および/またはW:0.3%以下(0%を含まない)を含有する請求項1〜4のいずれかに記載の船舶用鋼材。   The marine steel according to any one of claims 1 to 4, further comprising Mo: 0.5% or less (excluding 0%) and / or W: 0.3% or less (excluding 0%). . 更に、B:0.01%以下(0%を含まない)、V:0.1%以下(0%を含まない)およびNb:0.05%以下(0%を含まない)よりなる群から選ばれる1種以上を含有する請求項1〜5のいずれかに記載の船舶用鋼材。   Further, from the group consisting of B: 0.01% or less (excluding 0%), V: 0.1% or less (not including 0%), and Nb: 0.05% or less (not including 0%) The marine steel material according to any one of claims 1 to 5, comprising one or more selected.
JP2005377205A 2005-12-28 2005-12-28 Marine steel with excellent HAZ toughness and corrosion resistance during high heat input welding Expired - Fee Related JP4476926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005377205A JP4476926B2 (en) 2005-12-28 2005-12-28 Marine steel with excellent HAZ toughness and corrosion resistance during high heat input welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005377205A JP4476926B2 (en) 2005-12-28 2005-12-28 Marine steel with excellent HAZ toughness and corrosion resistance during high heat input welding

Publications (2)

Publication Number Publication Date
JP2007177286A true JP2007177286A (en) 2007-07-12
JP4476926B2 JP4476926B2 (en) 2010-06-09

Family

ID=38302755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005377205A Expired - Fee Related JP4476926B2 (en) 2005-12-28 2005-12-28 Marine steel with excellent HAZ toughness and corrosion resistance during high heat input welding

Country Status (1)

Country Link
JP (1) JP4476926B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101389160B1 (en) * 2011-01-18 2014-04-24 가부시키가이샤 고베 세이코쇼 Steel material for structural member having excellent corrosion resistance

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342675A (en) * 2002-03-19 2003-12-03 Nippon Steel Corp Steel material having excellent toughness at base material and heat affected zone
JP2004169048A (en) * 2002-11-15 2004-06-17 Nippon Steel Corp Steel for crude-oil tank having superior toughness of weld heat-affected zone

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342675A (en) * 2002-03-19 2003-12-03 Nippon Steel Corp Steel material having excellent toughness at base material and heat affected zone
JP2004169048A (en) * 2002-11-15 2004-06-17 Nippon Steel Corp Steel for crude-oil tank having superior toughness of weld heat-affected zone

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101389160B1 (en) * 2011-01-18 2014-04-24 가부시키가이샤 고베 세이코쇼 Steel material for structural member having excellent corrosion resistance

Also Published As

Publication number Publication date
JP4476926B2 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
JP4868916B2 (en) Marine steel with excellent corrosion resistance
JP4898543B2 (en) Steel sheet with excellent pit resistance and method for producing the same
JP4393291B2 (en) Marine steel with excellent corrosion resistance
JP4445444B2 (en) Marine steel and welded structures with excellent combined corrosion resistance
JP4616181B2 (en) Marine steel with excellent HAZ toughness and corrosion resistance during high heat input welding
JP2006037201A (en) Marine steel material superior in corrosion resistance
JP4868917B2 (en) Steel material for crude oil tank bottom plate with excellent corrosion resistance
JP4502948B2 (en) Marine steel with excellent corrosion resistance and brittle fracture characteristics
JP2009209412A (en) Steel for ship having excellent corrosion resistance
JP3923962B2 (en) Marine steel with excellent corrosion resistance
JP4444924B2 (en) High tensile steel for marine vessels with excellent corrosion resistance and base metal toughness
JP4119941B2 (en) Marine steel with excellent crevice corrosion resistance in humid air
JP4659626B2 (en) High tensile steel for marine vessels with excellent corrosion resistance and base metal toughness
JP2007197760A (en) Marine steel with excellent corrosion resistance and brittle fracture occurrence characteristic
JP4476928B2 (en) High tensile steel for marine vessels with excellent corrosion resistance and base metal toughness
JP4763468B2 (en) Marine steel with excellent corrosion resistance and fatigue crack growth resistance
JP2008133536A (en) Steel having excellent corrosion resistance for ship use
JP4476926B2 (en) Marine steel with excellent HAZ toughness and corrosion resistance during high heat input welding
JP4786995B2 (en) Marine steel with excellent weldability and corrosion resistance
JP4728129B2 (en) Marine steel with excellent corrosion resistance and toughness
JP4476927B2 (en) High tensile steel for marine vessels with excellent corrosion resistance and base metal toughness
JP5143707B2 (en) Marine steel
JP2006118002A (en) Steel material for oil tank
JP4502950B2 (en) Marine steel with excellent corrosion resistance and fatigue crack growth resistance
KR20060048364A (en) Steel excellent in corrosion-resistance, for shipbuilding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100310

R150 Certificate of patent or registration of utility model

Ref document number: 4476926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees