JP4444924B2 - High tensile steel for marine vessels with excellent corrosion resistance and base metal toughness - Google Patents

High tensile steel for marine vessels with excellent corrosion resistance and base metal toughness Download PDF

Info

Publication number
JP4444924B2
JP4444924B2 JP2006016840A JP2006016840A JP4444924B2 JP 4444924 B2 JP4444924 B2 JP 4444924B2 JP 2006016840 A JP2006016840 A JP 2006016840A JP 2006016840 A JP2006016840 A JP 2006016840A JP 4444924 B2 JP4444924 B2 JP 4444924B2
Authority
JP
Japan
Prior art keywords
less
corrosion resistance
corrosion
steel material
preferable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006016840A
Other languages
Japanese (ja)
Other versions
JP2007197758A (en
Inventor
弘樹 今村
真司 阪下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006016840A priority Critical patent/JP4444924B2/en
Publication of JP2007197758A publication Critical patent/JP2007197758A/en
Application granted granted Critical
Publication of JP4444924B2 publication Critical patent/JP4444924B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、耐食性と母材靭性に優れた船舶用高張力鋼材に関するものであり、特に海水による塩分や高温多湿に曝される環境下における耐食性と母材靭性に優れた船舶用高張力鋼材に関するものである。   The present invention relates to a high-tensile steel material for ships excellent in corrosion resistance and base material toughness, and particularly to a high-strength steel material for ships excellent in corrosion resistance and base material toughness in an environment exposed to salinity or high temperature and high humidity due to seawater. Is.

各種船舶において主要な構造材(例えば、外板、バラストタンク、原油タンク等)として用いられている鋼材は、海水による塩分や恒温多湿に曝されることから腐食損傷を受けることが多い。こうした腐食は、浸水や沈没などの海難事故を招く恐れがあることから、鋼材には何らかの防食手段を施す必要がある。   Steel materials used as main structural materials (for example, outer plates, ballast tanks, crude oil tanks, etc.) in various ships are often corroded because they are exposed to salt from seawater and constant temperature and humidity. Since such corrosion may cause marine accidents such as inundation and sinking, it is necessary to apply some anticorrosion means to the steel.

これまでに行われている防食手段としては、塗装や電気防食等が一般的な手段として挙げられる。しかし重塗装に代表される上記塗装の場合、塗膜欠陥が存在する可能性が高く、製造工程での衝突等により塗膜に傷が付く場合もあるため、素地鋼材が露出することが多い。この様な鋼材露出部では局部的かつ集中的に鋼材が腐食するため、内容されている石油系液体燃料の早期漏洩に繋がる。   As conventional anticorrosion means, painting, cathodic protection and the like can be cited as general means. However, in the case of the above-described coating typified by heavy coating, there is a high possibility that a coating film defect exists, and the coating film may be damaged due to a collision or the like in the manufacturing process, so that the base steel material is often exposed. In such an exposed steel material, the steel material corrodes locally and intensively, which leads to early leakage of the petroleum-based liquid fuel.

一方、電気防食は、海水中に完全に浸漬された部位に対して非常に有効であるが、大気中で海水飛沫を受ける部位等では防食に必要な電気回路が形成されず、防食効果が十分に発揮されないことがある。また、防食用の流電陽極が異常消耗や脱落により消失した場合には、直ちに激しい腐食が進行することがある。   On the other hand, cathodic protection is very effective for the part completely immersed in seawater, but the part that receives seawater splashes in the atmosphere does not form the electrical circuit necessary for anticorrosion, and the anticorrosion effect is sufficient. May not be demonstrated. In addition, when the galvanic anode for anticorrosion disappears due to abnormal wear or dropout, severe corrosion may proceed immediately.

上記技術の他、鋼材自体の耐食性を向上させたものとして、例えば特許文献1のような技術も提案されている。この技術では、鋼材の化学成分を適切に調整することによって、耐食性を優れたものとし、無塗装であっても使用できる造船用耐食鋼が開示されている。また特許文献2には、鋼材の化学成分組成を適切なものとすることにより、塗膜寿命性を向上させた船舶用鋼材について開示されている。これらの技術では、従来に比べてある程度の耐食性は確保できるようになったといえる。   In addition to the above technique, for example, a technique as disclosed in Patent Document 1 has been proposed as an improvement in the corrosion resistance of the steel material itself. This technology discloses a corrosion-resistant steel for shipbuilding that has excellent corrosion resistance by appropriately adjusting the chemical composition of the steel material and can be used even without coating. Further, Patent Document 2 discloses a marine steel material whose coating film life is improved by making the chemical composition of the steel material appropriate. With these technologies, it can be said that a certain degree of corrosion resistance can be ensured as compared with the prior art.

しかし上記技術では、耐食性の改善については取り組まれているものの、船舶用高張力鋼材で要求されるEグレード(−20℃でのシャルピー衝撃試験値が55J以上)に対応できる優れた母材靭性も併せて具備させることについては検討されておらず、耐食性と母材靭性の両特性に優れた船舶用鋼材の実現が切望されている。
特開2000−17381号公報 特許請求の範囲等 特開2002−266052号公報 特許請求の範囲等
However, in the above technology, although improvement of corrosion resistance is being worked on, excellent base material toughness that can cope with E grade (Charpy impact test value at −20 ° C. of 55 J or more) required for marine high-tensile steel It has not been studied to be provided at the same time, and realization of a marine steel material excellent in both corrosion resistance and base metal toughness is desired.
JP, 2000-17381, A Claims etc. JP, 2002-266052, A Claims etc.

本発明は上記事情に鑑みてなされたものであって、その目的は、塗装や電気防食を施さなくても実用化できる耐食性(特に、電気防食が作用しないバラストタンク内の上部や原油タンク上甲板等の湿潤の大気雰囲気下での、すきま腐食に対する耐久性)に優れていると共に、優れた母材靭性を示す船舶用高張力鋼材を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to provide corrosion resistance that can be put into practical use without painting or cathodic protection (particularly, the upper part in a ballast tank or a crude oil tank upper deck where cathodic protection does not work). Another object of the present invention is to provide a high-tensile steel material for marine vessels that is excellent in durability against crevice corrosion in a humid atmospheric atmosphere such as, and that exhibits excellent base material toughness.

上記目的を達成することのできた本発明の船舶用高張力鋼材とは、C:0.01〜0.2%(質量%の意味、以下同じ)、Si:0.01〜0.5%、Mn:0.01〜2%、Al:0.05〜0.5%、Cu:0.010〜1.5%、Cr:0.010〜1%を夫々含有する他、P:0.02%以下(0%を含まない)およびS:0.01%以下(0%を含まない)に夫々抑制され、残部がFeおよび不可避的不純物からなり、島状マルテンサイトの分率が1.1%以下で且つ残部がベイナイト組織である点に要旨を有するものである。この船舶用鋼材においては、Crの含有量[Cr]とAlの含有量[Al]の比の値([Cr]/[Al])を1〜15の範囲に調整することが好ましい。   The high-tensile steel material for marine use of the present invention capable of achieving the above object is C: 0.01 to 0.2% (meaning of mass%, the same shall apply hereinafter), Si: 0.01 to 0.5%, Mn: 0.01-2%, Al: 0.05-0.5%, Cu: 0.010-1.5%, Cr: 0.010-1%, P: 0.02 % Or less (not including 0%) and S: 0.01% or less (not including 0%), respectively, the balance is made of Fe and inevitable impurities, and the fraction of island martensite is 1.1. % And the balance is a bainite structure. In this marine steel material, it is preferable to adjust the ratio value ([Cr] / [Al]) of the Cr content [Cr] and the Al content [Al] to a range of 1 to 15.

また本発明の船舶用高張力鋼材においては、必要により、(A)Ni:2%以下(0%を含まない)、Co:1%以下(0%を含まない)およびTi:0.1%以下(0%を含まない)よりなる群から選ばれる1種以上、(B)Ca:0.02%以下(0%を含まない)および/またはMg0.02%以下(0%を含まない)、(C)Se:0.5%以下(0%を含まない)、(D)Sb:0.5%以下(0%を含まない)および/またはSn:0.5%以下(0%を含まない)、(E)B:0.01%以下(0%を含まない)、V:0.1%以下(0%を含まない)およびNb:0.05%以下(0%を含まない)よりなる群から選ばれる1種以上、等を含有させることも有効であり、含有させる成分の種類に応じて船舶用鋼材の特性が更に改善される。   In the high-tensile steel for marine use of the present invention, (A) Ni: 2% or less (not including 0%), Co: 1% or less (not including 0%), and Ti: 0.1%, if necessary. One or more selected from the group consisting of the following (not including 0%), (B) Ca: 0.02% or less (not including 0%) and / or Mg 0.02% or less (not including 0%) (C) Se: 0.5% or less (excluding 0%), (D) Sb: 0.5% or less (excluding 0%) and / or Sn: 0.5% or less (0% (E) B: 0.01% or less (not including 0%), V: 0.1% or less (not including 0%), and Nb: 0.05% or less (not including 0%) It is also effective to contain one or more selected from the group consisting of, It is improved.

尚、上記島状マルテンサイトの分率は、後述する実施例に示す方法で測定した値をいうものとする。   In addition, the said island-like martensite fraction shall say the value measured by the method shown in the Example mentioned later.

本発明の船舶用鋼材は、所定量のAlとCrを併用して含有させると共に、化学成分組成と製造方法を適切に調整することによって、塗装および電気防食を施さなくても実用化できる耐食性(特に、電気防食が作用しないバラストタンク内の上部や原油タンク上甲板等の湿潤の大気雰囲気における、すきま腐食に対する優れた耐久性)を発揮すると共に、高い母材靭性を示すことから、原油タンカー、貨物船、貨客船、客船、軍艦等の船舶における外板等の素材として有用である。   The marine steel material of the present invention contains a predetermined amount of Al and Cr in combination, and by appropriately adjusting the chemical composition and manufacturing method, corrosion resistance that can be put into practical use without coating and cathodic protection ( In particular, it exhibits excellent durability against crevice corrosion in wet air atmosphere such as the upper part of the ballast tank where the anti-corrosion protection does not work and the upper deck of the crude oil tank, etc. It is useful as a material for outer panels in ships such as cargo ships, freight passenger ships, passenger ships and warships.

本発明者らは、前記課題を解決するために鋭意研究を重ねた。その結果、所定量のAlとCrを併用して含有させると共に、化学成分組成および製造方法を適切に調整すれば、上記課題を解決することのできる船舶用高張力鋼材を実現できることを見出し、本発明を完成した。以下、本発明について詳述する。   The inventors of the present invention have made extensive studies to solve the above problems. As a result, it is found that a high-strength steel material for a ship that can solve the above-described problems can be realized if a predetermined amount of Al and Cr are contained in combination and the chemical composition and manufacturing method are appropriately adjusted. Completed the invention. Hereinafter, the present invention will be described in detail.

本発明の鋼材においては、AlとCrを併用して含有させることが重要であり、これらの成分のいずれを欠いても、本発明の目的を達成することができない。これらの成分における各作用効果は後述するが、これらを併用することにより耐食性が向上した理由は、次のように考えられる。   In the steel material of the present invention, it is important to contain Al and Cr in combination, and the object of the present invention cannot be achieved without any of these components. Although each effect in these components is mentioned later, the reason that corrosion resistance improved by using these together is considered as follows.

Alは鋼表面に安定な酸化物防食皮膜を形成する効果がある。鋼中より腐食溶解したAl3+イオンが溶存酸素などと結びついてAl酸化物となり、これが表面に堆積して防食皮膜を形成する。この皮膜による防食効果は、船舶における高塩化物環境においては十分とはいえない。一方、Crは上記Alと同様に表面に安定な酸化物皮膜を形成して鋼材を防食する効果を発揮するが、Cr酸化物単独ではその防食効果が十分であるとはいえない。 Al has the effect of forming a stable oxide anticorrosion film on the steel surface. Al 3+ ions corroded and dissolved in the steel are combined with dissolved oxygen or the like to become Al oxide, which is deposited on the surface to form an anticorrosion film. The anticorrosive effect of this film is not sufficient in a high chloride environment on ships. On the other hand, Cr, like Al, forms a stable oxide film on the surface and exhibits an effect of preventing corrosion of the steel material. However, Cr oxide alone cannot be said to have sufficient corrosion protection effect.

上記Al酸化皮膜は、pHが5〜8.5程度のほぼ中性域では非常に安定性が高いが、pHが8.5を超えるあたりから溶解性が高くなる。船舶用鋼材の曝される海水のpHは、清浄な場合8程度であるが、海藻などが繁殖している海域ではpHが9.5程度にまでアルカリ化することがある。また、腐食のカソード反応が起こっているサイトでは溶存酸素の還元で生成したOHイオンのためpHが上昇する傾向にある。こうしたことから、船舶環境でのAl酸化物は必ずしも安定には存在せず、むしろ容易に溶解してAl酸化皮膜による保護性が失われる場合の方が多い。これに対して、Cr酸化物はアルカリ領域での安定性が高いことに加え、微量に溶解したCrイオンの加水分解平衡によりpHを低下させる効果があるため、海水のpH上昇によるAl酸化物の溶解を抑止して、その保護性を確保する作用を発揮する。従って、Cr酸化物とAl酸化物が適切な量で共存することによって、鋼材の防食効果は相乗的に高くなるものと考えられる。 The Al oxide film has a very high stability in a substantially neutral range where the pH is about 5 to 8.5, but the solubility increases when the pH exceeds 8.5. The pH of seawater exposed to marine steel is about 8 when it is clean, but it may be alkalized to about 9.5 in sea areas where seaweed and the like are breeding. Further, at the site where the cathodic reaction of corrosion occurs, the pH tends to increase due to OH ions generated by the reduction of dissolved oxygen. For these reasons, Al oxides in the marine environment do not necessarily exist stably, but rather are easily dissolved and the protective properties due to the Al oxide film are often lost. In contrast, Cr oxide has a high stability in the alkaline region, and has the effect of lowering the pH due to the hydrolysis equilibrium of Cr ions dissolved in a small amount. Depresses dissolution and exerts the effect of securing its protection. Therefore, it is considered that the anticorrosion effect of the steel material is synergistically enhanced by the coexistence of Cr oxide and Al oxide in appropriate amounts.

こうした効果は、AlおよびCrを後述する適切な量に制御することにより発揮されるが、より確実に耐食性を高めるには、これらの含有量の比の値([Cr]/[Al]:質量比)も適切に制御することが好ましい。上記([Cr]/[Al])が1未満であると、腐食均一性が不十分となりやすい。より好ましくは3以上である。一方、([Cr]/[Al])が15を超えると耐すきま腐食性が不十分となる。より好ましくは10以下である。   Such an effect is exhibited by controlling Al and Cr to appropriate amounts described later. However, in order to improve the corrosion resistance more reliably, the value of the ratio of these contents ([Cr] / [Al]: mass) It is preferable to appropriately control the ratio. If the above ([Cr] / [Al]) is less than 1, the corrosion uniformity tends to be insufficient. More preferably, it is 3 or more. On the other hand, when ([Cr] / [Al]) exceeds 15, the crevice corrosion resistance becomes insufficient. More preferably, it is 10 or less.

本発明では、鋼材としての基本的特性を満足させるために、C,Si,Mn,Cu,P,S等の成分も適切に調整する必要がある。これらの成分の範囲限定理由について、上記Al,Cr各元素の作用効果と共に次に示す。   In the present invention, it is necessary to appropriately adjust components such as C, Si, Mn, Cu, P, and S in order to satisfy the basic characteristics as a steel material. The reasons for limiting the ranges of these components will be described below together with the effects of the above Al and Cr elements.

〈C:0.01〜0.2%〉
Cは、材料の強度確保のために必要な元素である。船舶の構造部材としての最低強度、即ち概ね400MPa程度(使用する鋼材の肉厚にもよるが)を得るには、0.01%以上含有させる必要がある。しかし、0.2%を超えて過剰に含有させると靱性、溶接性が劣化する。こうしたことから、C含有量の範囲は0.01〜0.2%とした。尚、C含有量の好ましい下限は0.02%であり、より好ましくは0.04%以上とするのが良い。また、C含有量の好ましい上限は0.18%であり、より好ましくは0.17%以下とするのが良い。
<C: 0.01 to 0.2%>
C is an element necessary for ensuring the strength of the material. In order to obtain the minimum strength as a structural member of a ship, that is, approximately 400 MPa (depending on the thickness of the steel material used), it is necessary to contain 0.01% or more. However, if the content exceeds 0.2%, the toughness and weldability deteriorate. For these reasons, the C content range was set to 0.01 to 0.2%. In addition, the minimum with preferable C content is 0.02%, More preferably, it is good to set it as 0.04% or more. Moreover, the upper limit with preferable C content is 0.18%, It is good to set it as 0.17% or less more preferably.

〈Si:0.01〜0.5%〉
Siは、脱酸と強度確保のために必要な元素であり、0.01%に満たないと構造部材としての最低強度を確保できない。しかし、0.5%を超えて過剰に含有させると溶接性、HAZ靭性が劣化する。尚、Si含有量の好ましい下限は0.02%であり、より好ましくは0.05%以上、更に好ましくは0.1%以上である。また、Si含有量の好ましい上限は0.45%であり、より好ましくは0.4%以下である。
<Si: 0.01 to 0.5%>
Si is an element necessary for deoxidation and securing strength, and if it is less than 0.01%, the minimum strength as a structural member cannot be secured. However, if the content exceeds 0.5%, weldability and HAZ toughness deteriorate. In addition, the minimum with preferable Si content is 0.02%, More preferably, it is 0.05% or more, More preferably, it is 0.1% or more. Moreover, the upper limit with preferable Si content is 0.45%, More preferably, it is 0.4% or less.

〈Mn:0.01〜2%〉
MnもSiと同様に脱酸および強度確保のために必要な元素であり、0.01%に満たないと構造部材としての最低強度を確保できない。しかし、2%を超えて過剰に含有させると靱性が劣化する。尚、Mn含有量の好ましい下限は0.05%であり、より好ましくは0.1%以上、更に好ましくは0.3%以上とするのが良い。また、Mn含有量の好ましい上限は1.8%であり、より好ましくは1.6%以下とするのが良い。
<Mn: 0.01-2%>
Like Si, Mn is an element necessary for deoxidation and securing strength, and if it is less than 0.01%, the minimum strength as a structural member cannot be secured. However, if the content exceeds 2%, the toughness deteriorates. In addition, the minimum with preferable Mn content is 0.05%, More preferably, it is good to set it as 0.1% or more, More preferably, it is 0.3% or more. Moreover, the upper limit with preferable Mn content is 1.8%, It is good to set it as 1.6% or less more preferably.

〈Al:0.05〜0.5%〉
上述したように、Alには鋼表面に安定な酸化物防食皮膜を形成する効果がある。Al含有量が少ないと、腐食溶解したAl3+イオンが海水中に飛散して鋼材表面に堆積されず、防食皮膜が形成されない。Cr酸化物との共存下で十分な防食効果を発揮させるには、Alを0.05%以上含有させる必要がある。通常の鋼材であれば、Al含有量が0.10%を超えると溶接部の靭性がやや低下するなど溶接性の点で問題があったが、本発明の鋼材のようにC,Si,P,Sを適正範囲とすることによって、Al含有量が0.1%超〜0.5%の範囲であっても従来鋼と同等の溶接性を確保することができる。しかしながら、Al含有量が0.5%を超えると、溶接性を害することになる。こうしたことから、Al含有量の範囲は0.05〜0.5%とした。尚、Al含有量の好ましい下限は0.06%であり、より好ましくは0.07%以上、更に好ましくは0.08%以上とするのが良い。また、Al含有量の好ましい上限は0.45%であり、より好ましくは0.4%以下、更に好ましくは0.35%以下とするのが良い。
<Al: 0.05 to 0.5%>
As described above, Al has an effect of forming a stable oxide anticorrosive film on the steel surface. When the Al content is low, the Al 3+ ions that have been dissolved by corrosion are scattered in the seawater and are not deposited on the surface of the steel material, and no anticorrosion film is formed. In order to exhibit a sufficient anticorrosion effect in the presence of Cr oxide, it is necessary to contain Al by 0.05% or more. In the case of a normal steel material, if the Al content exceeds 0.10%, there is a problem in weldability such as a decrease in the toughness of the welded portion, but C, Si, P like the steel material of the present invention. By setting S and S within the proper range, weldability equivalent to that of conventional steel can be ensured even if the Al content is in the range of more than 0.1% to 0.5%. However, if the Al content exceeds 0.5%, the weldability is impaired. For these reasons, the Al content range was set to 0.05 to 0.5%. In addition, the minimum with preferable Al content is 0.06%, More preferably, it is 0.07% or more, More preferably, it is good to set it as 0.08% or more. Moreover, the upper limit with preferable Al content is 0.45%, More preferably, it is 0.4% or less, More preferably, it is good to set it as 0.35% or less.

〈Cu:0.010〜1.5%〉
Cuは、耐食性向上に大きく寄与する緻密な表面錆皮膜の形成に有効な元素である。また、Cuを含有させることによって形成される緻密な錆皮膜と、Al酸化物とCr酸化物が共存する安定な酸化物防食皮膜とが母材の保護性を相乗的に高めて、優れた耐食性が発揮される。こうした効果を発揮させるには、0.010%以上含有させることが必要である。しかしCuを過剰に含有させると、溶接性や熱間加工性が劣化することから1.5%以下とすることが好ましい。尚、Cuを含有させるときの好ましい下限は0.05%である。また、好ましい上限は1.3%であり、より好ましくは1%以下である。
<Cu: 0.010 to 1.5%>
Cu is an element effective for forming a dense surface rust film that greatly contributes to the improvement of corrosion resistance. In addition, the dense rust film formed by containing Cu and the stable oxide anti-corrosion film in which Al oxide and Cr oxide coexist synergistically enhance the protection of the base material, and have excellent corrosion resistance. Is demonstrated. In order to exert such effects, it is necessary to contain 0.010% or more. However, if Cu is excessively contained, the weldability and hot workability deteriorate, so the content is preferably made 1.5% or less. In addition, a preferable lower limit when Cu is contained is 0.05%. Moreover, a preferable upper limit is 1.3%, More preferably, it is 1% or less.

〈Cr:0.010〜1%〉
Crは、Alと同様に鋼表面に安定な酸化物皮膜を形成して鋼材を防食する効果を発揮する。本発明では上述のように、Al酸化物とCr酸化物を共存させることによって、鋼材の耐食性が飛躍的に向上するが、こうした効果を発揮させるには、0.010%以上含有させる必要がある。しかしながら、過剰に含有させると溶接性が劣化することから、1%以下とする必要がある。尚、Cr含有量の好ましい下限は0.05%であり、より好ましくは0.1%以上である。また好ましい上限は0.9%であり、より好ましくは0.8%以下である。
<Cr: 0.010 to 1%>
Cr, like Al, exhibits the effect of forming a stable oxide film on the steel surface and preventing corrosion of the steel material. In the present invention, as described above, the coexistence of Al oxide and Cr oxide dramatically improves the corrosion resistance of the steel material, but in order to exert such effects, it is necessary to contain 0.010% or more. . However, if it is contained excessively, weldability deteriorates, so it is necessary to make it 1% or less. In addition, the minimum with preferable Cr content is 0.05%, More preferably, it is 0.1% or more. Moreover, a preferable upper limit is 0.9%, More preferably, it is 0.8% or less.

〈P:0.02%以下(0%を含まない)〉
Pは靭性や溶接性を劣化させる元素であり、可能な限り含有量を抑えることが好ましい。P含有量の許容される上限は0.02%であり、これを超えると船舶用鋼材としての溶接性を確保できない。こうしたことから、P含有量は0.02%以下とした。尚、P含有量の好ましい上限は0.018%であり、より好ましくは0.015%以下である。
<P: 0.02% or less (excluding 0%)>
P is an element that deteriorates toughness and weldability, and the content is preferably suppressed as much as possible. The allowable upper limit of the P content is 0.02%, and if it exceeds this, weldability as marine steel cannot be ensured. For these reasons, the P content is set to 0.02% or less. In addition, the upper limit with preferable P content is 0.018%, More preferably, it is 0.015% or less.

〈S:0.01%以下(0%を含まない)〉
SもPと同様に靭性や溶接性を劣化させる元素であり、可能な限り含有量を抑えることが好ましい。S含有量の許容される上限は0.01%であり、これを超えると船舶用鋼材としての溶接性を確保できない。こうしたことから、S含有量は0.01%以下とした。尚、S含有量の好ましい上限は0.008%である。
<S: 0.01% or less (excluding 0%)>
S, like P, is an element that deteriorates toughness and weldability, and the content is preferably suppressed as much as possible. The allowable upper limit of the S content is 0.01%, and if it exceeds this, weldability as a steel material for ships cannot be ensured. For these reasons, the S content is set to 0.01% or less. In addition, the upper limit with preferable S content is 0.008%.

本発明の船舶用鋼材における基本成分は上記の通りであり、残部はFeおよび不可避的不純物(例えば、O等)であるが、これら以外に鋼材の特性を阻害しない程度の成分(例えば、Zr,N等)も許容できる。但し、これら許容成分は、その量が過剰になると靭性が劣化するので、0.1%程度以下に抑えるべきである。   The basic components in the marine steel of the present invention are as described above, and the balance is Fe and unavoidable impurities (for example, O, etc.), but other components that do not impair the properties of the steel (for example, Zr, N etc.) is also acceptable. However, these allowable components should be suppressed to about 0.1% or less because their toughness deteriorates when the amount is excessive.

また、本発明の船舶用鋼材には、上記成分の他、必要によって(A)Ni:2%以下(0%を含まない)、Co:1%以下(0%を含まない)およびTi:0.1%以下(0%を含まない)よりなる群から選ばれる1種以上、(B)Ca:0.02%以下(0%を含まない)および/またはMg0.02%以下(0%を含まない)、(C)Se:0.5%以下(0%を含まない)、(D)Sb:0.5%以下(0%を含まない)および/またはSn:0.5%以下(0%を含まない)、(E)B:0.01%以下(0%を含まない)、V:0.1%以下(0%を含まない)およびNb:0.05%以下(0%を含まない)よりなる群から選ばれる1種以上、等を含有させることも有効であり、含有させる成分の種類に応じて船舶用鋼材の特性が更に改善される。   Further, in the marine steel of the present invention, in addition to the above components, if necessary, (A) Ni: 2% or less (not including 0%), Co: 1% or less (not including 0%) and Ti: 0 1 or more selected from the group consisting of 1% or less (excluding 0%), (B) Ca: 0.02% or less (excluding 0%) and / or Mg 0.02% or less (0% (Not including), (C) Se: 0.5% or less (not including 0%), (D) Sb: 0.5% or less (not including 0%) and / or Sn: 0.5% or less ( (E) B: 0.01% or less (not including 0%), V: 0.1% or less (not including 0%), and Nb: 0.05% or less (0%) It is also effective to include one or more selected from the group consisting of, and the properties of marine steels depending on the type of component to be included It is further improved.

〈Ni:2%以下(0%を含まない)、Co:1%以下(0%を含まない)およびTi:0.1%以下(0%を含まない)よりなる群から選ばれる1種以上〉
Ni,CoおよびTiは、いずれも耐食性向上に有効な元素である。このうちNiおよびCoは、耐食性向上に大きく寄与する緻密な表面錆被膜の形成に有効な元素であり、こうした効果を発揮させるには、いずれの元素を含有させる場合にも0.01%以上とすることが好ましい。しかし過剰に含有させると、溶接性や熱間加工性が劣化し、大幅なコストアップも招くことから、Niは2%以下、Coは1%以下とすることが好ましい。Niを含有させるときのより好ましい下限は0.05%であり、更に好ましくは0.1%以上である。Coを含有させるときのより好ましい下限は0.015%であり、更に好ましくは0.03%以上である。Niのより好ましい上限は1.5%であり、更に好ましくは1%以下である。また、Coのより好ましい上限は0.8%であり、更に好ましくは0.6%以下である。
<One or more selected from the group consisting of Ni: 2% or less (not including 0%), Co: 1% or less (not including 0%), and Ti: 0.1% or less (not including 0%) >
Ni, Co and Ti are all effective elements for improving corrosion resistance. Of these, Ni and Co are effective elements for the formation of a dense surface rust film that greatly contributes to the improvement of corrosion resistance, and in order to exert such an effect, 0.01% or more in any of the elements. It is preferable to do. However, if it is excessively contained, weldability and hot workability deteriorate, and a significant cost increase is caused. Therefore, it is preferable that Ni is 2% or less and Co is 1% or less. The more preferable lower limit when Ni is contained is 0.05%, more preferably 0.1% or more. The more preferable lower limit when Co is contained is 0.015%, and more preferably 0.03% or more. The upper limit with more preferable Ni is 1.5%, More preferably, it is 1% or less. The more preferable upper limit of Co is 0.8%, and more preferably 0.6% or less.

Tiは、上記耐食性向上に大きく寄与する表面錆被膜を緻密化して環境遮断性を向上させると共に、すきま内部における腐食を抑制して、耐すきま腐食性も向上させる元素である。上記効果を十分に発揮させるには、0.005%以上含有させることが好ましいが、0.1%を超えて過剰に含有させると、加工性および溶接性が劣化するので好ましくない。尚、Tiを含有させる場合のより好ましい下限は0.008%である。また、より好ましい上限は0.090%であり、更に好ましくは0.05%以下である。   Ti is an element that improves the environmental barrier properties by densifying the surface rust coating that greatly contributes to the improvement of the corrosion resistance, and also suppresses the corrosion inside the crevice and improves the crevice corrosion resistance. In order to exhibit the said effect fully, it is preferable to make it contain 0.005% or more, but when it contains exceeding 0.1% excessively, workability and weldability will deteriorate, it is unpreferable. In addition, the more preferable lower limit in the case of containing Ti is 0.008%. Moreover, a more preferable upper limit is 0.090%, and further preferably 0.05% or less.

〈Ca:0.02%以下(0%を含まない)および/またはMg0.02%以下(0%を含まない)〉
CaおよびMgは、溶解することによってpH上昇作用を示し、鉄の溶解が起こっている局部アノードにおいて、加水分解反応によるpH低下を抑制して腐食反応を抑制し、耐食性を向上させるのに有効な元素である。こうした効果は、いずれの元素を含有させる場合にも0.0005%以上とすることによって有効に発揮される。しかし過剰に含有させると、加工性および溶接性が劣化するため、Ca、Mgそれぞれの上限は0.02%とすることが好ましい。これらの元素を含有させるときのより好ましい下限は0.001%であり、より好ましい上限は0.015%であり、更に好ましくは0.01%以下である。
<Ca: 0.02% or less (not including 0%) and / or Mg 0.02% or less (not including 0%)>
Ca and Mg have an effect of increasing pH when dissolved, and in a local anode where dissolution of iron occurs, it is effective to suppress a decrease in pH due to a hydrolysis reaction to suppress a corrosion reaction and to improve corrosion resistance. It is an element. Such an effect is effectively exhibited by setting it to 0.0005% or more when any element is contained. However, if excessively contained, workability and weldability deteriorate, so the upper limit of each of Ca and Mg is preferably 0.02%. The more preferable lower limit when these elements are contained is 0.001%, the more preferable upper limit is 0.015%, and further preferably 0.01% or less.

〈Se:0.5%以下(0%を含まない)〉
Seは、腐食の溶解反応が起こっているサイトのpH低下を抑制して腐食反応を抑制し、耐食性を向上させる作用を発揮する元素である。こうした作用により局部的なpH変化が起こりにくくなるため、腐食均一性が向上する。特に、物質移動が制限され、局所的なpH低下の生じやすい「すきま部」において、上記効果(局部腐食抑制効果)が有効に発揮される。こうした環境で要求される耐食性を確保するには、Seの含有量を0.005%以上とすることが好ましい。しかしながら、0.5%を超えて過剰に含有させると加工性と溶接性が劣化する。尚、Se含有量のより好ましい下限は0.008%であり、更に好ましくは0.010%以上とするのが良い。また、Se含有量のより好ましい上限は0.45%であり、更に好ましくは0.40%以下とするのが良い。
<Se: 0.5% or less (excluding 0%)>
Se is an element that exerts an action of suppressing the corrosion reaction by suppressing the pH drop of the site where the corrosion dissolution reaction is occurring and improving the corrosion resistance. Such an action makes it difficult for local pH changes to occur, so that the corrosion uniformity is improved. In particular, the above-mentioned effect (local corrosion inhibitory effect) is effectively exhibited in a “gap portion” where mass transfer is limited and local pH reduction is likely to occur. In order to ensure the corrosion resistance required in such an environment, the Se content is preferably 0.005% or more. However, if the content exceeds 0.5%, workability and weldability deteriorate. A more preferable lower limit of the Se content is 0.008%, and more preferably 0.010% or more. Moreover, the upper limit with more preferable Se content is 0.45%, More preferably, it is good to set it as 0.40% or less.

〈Sb:0.5%以下(0%を含まない)および/またはSn:0.5%以下(0%を含まない)〉
SbおよびSnは、Cu,Ni,Ti等による生成錆緻密化作用や、Se,Ca,Mg等によるpH低下作用を助長して耐食性を向上させる元素である。こうした作用を発揮させるには、いずれの元素を含有させる場合にも0.01%以上とすることが好ましい。しかし、過剰に含有させると加工性と溶接性が劣化することから、Sb、Snのいずれを含有させる場合にも0.5%以下とすることが好ましい。これらの元素を含有させるときのより好ましい下限はいずれも0.02%であり、より好ましい上限は0.4%である。
<Sb: 0.5% or less (not including 0%) and / or Sn: 0.5% or less (not including 0%)>
Sb and Sn are elements that enhance the corrosion resistance by promoting the effect of densification of rust produced by Cu, Ni, Ti, etc., and the effect of lowering the pH by Se, Ca, Mg, etc. In order to exert such an effect, it is preferable that the content is 0.01% or more when any element is contained. However, since workability and weldability deteriorate when contained excessively, it is preferable to make it 0.5% or less in the case of containing either Sb or Sn. A more preferable lower limit when these elements are contained is 0.02%, and a more preferable upper limit is 0.4%.

〈B:0.01%以下(0%を含まない)、V:0.1%以下(0%を含まない)およびNb:0.05%以下(0%を含まない)よりなる群から選ばれる1種以上〉
船舶への適用部位によっては更なる高強度化の必要な場合があるが、これらの元素は強度をより向上させるのに有効な元素である。このうちBは、焼入性を向上させて強度を高めるのに有効な元素であり、該効果を発揮させるには、0.0001%以上含有させることが好ましい。しかし0.01%を超える過剰のBを含有させると、母材靭性が劣化するため好ましくない。Vにより強度向上を図るには、0.003%以上含有させることが好ましいが、0.1%を超えて過剰に含有させると鋼材の靭性劣化を招くため好ましくない。またNbにより強度を高めるには0.003%以上含有させることが有効であるが、0.05%を超えて過剰に含有させると鋼材の靭性劣化を招くため好ましくない。尚、これらの元素のより好ましい下限は、Bについては0.0003%、Vについては0.005%、Nbについては0.005%である。またより好ましい上限は、Bについては0.009%、Vについては0.07%、Nbについては0.045%である。
<B: 0.01% or less (not including 0%), V: 0.1% or less (not including 0%) and Nb: 0.05% or less (not including 0%) One or more types>
Depending on the site of application to the ship, further enhancement of strength may be necessary, but these elements are effective elements for further improving the strength. Among these, B is an element effective for improving the hardenability and increasing the strength, and in order to exert the effect, it is preferable to contain 0.0001% or more. However, if an excessive amount of B exceeding 0.01% is contained, the toughness of the base material deteriorates, which is not preferable. In order to improve the strength by V, the content is preferably 0.003% or more, but if it exceeds 0.1%, it is not preferable because it causes toughness deterioration of the steel material. Further, in order to increase the strength with Nb, it is effective to contain 0.003% or more, but if it exceeds 0.05%, it is not preferable because it causes toughness deterioration of the steel material. More preferable lower limits of these elements are 0.0003% for B, 0.005% for V, and 0.005% for Nb. The more preferable upper limit is 0.009% for B, 0.07% for V, and 0.045% for Nb.

高強度と優れた母材靭性を兼備させるには、金属組織を、全組織に占める島状マルテンサイトの分率が1.1%以下で且つ残部がベイナイト組織のものとする必要がある。ベイナイト組織を主体とする高強度鋼では、硬質相である島状マルテンサイト(Martensite-Austenite constituent,以下「MA」ということがある)が生成し易く、これが破壊の起点となり、母材靭性に悪影響を及ぼすからである。図1は、島状マルテンサイトの分率(MA分率)とvTrs(破面遷移温度)の関係を示すグラフであり、後述する実施例の実験結果を整理したものであるが、この図1より、vTrs:−40℃以下と優れた母材靭性を示す鋼材を得るには、MA分率を1.1%以下に抑える必要があることがわかる。より好ましくは、上記MA分率を0.8%以下とするのがよい。   In order to combine high strength and excellent base material toughness, it is necessary that the metal structure has an island-like martensite fraction in the entire structure of 1.1% or less and the balance is a bainite structure. In high-strength steels mainly composed of bainite structure, martensite-Austenite constituent (hereinafter sometimes referred to as “MA”), which is a hard phase, is likely to form, which becomes the starting point of fracture and adversely affects the base material toughness. It is because it exerts. FIG. 1 is a graph showing the relationship between the fraction of island-like martensite (MA fraction) and vTrs (fracture surface transition temperature), and is a summary of the experimental results of Examples described later. From this, it can be seen that in order to obtain a steel material exhibiting excellent base material toughness of vTrs: −40 ° C. or lower, it is necessary to suppress the MA fraction to 1.1% or lower. More preferably, the MA fraction is 0.8% or less.

尚、本発明でいう「残部がベイナイト組織」とは、全組織に占めるベイナイト組織が90%以上であって、ベイナイト組織以外に、製造工程で不可避的に形成され得るその他の組織(フェライト、パーライト、MA)を合計で10%以下含む意図である。   The “remaining bainite structure” as used in the present invention means that the bainite structure occupies 90% or more of the entire structure, and besides the bainite structure, other structures that can be inevitably formed in the manufacturing process (ferrite, pearlite). , MA) is intended to contain 10% or less in total.

上記組織を得るには、上記成分組成を満たす鋼材を用い、製造過程における熱間圧延終了後、仕上圧延終了温度から、ベイナイト変態終了温度(Bf)以下でマルテンサイト変態開始温度(Ms)以上の温度域までを、6℃/s以上で冷却することが推奨される。この様に、冷却速度の制御をBf以下まで行うことによって、組織をベイナイト主体とすることができ、一方、冷却速度の制御をMs以上までとすることで、未変態オーステナイトが硬質相であるMAになることを十分抑制できる。尚、上記仕上圧延終了温度とは、後述する実施例に示す要領で求める仕上圧延終了時のt(板厚)/4部位の温度をいうものとする。   In order to obtain the above structure, a steel material satisfying the above component composition is used. After the hot rolling in the production process is finished, the finish rolling finish temperature is not higher than the bainite transformation end temperature (Bf) and not higher than the martensitic transformation start temperature (Ms). It is recommended to cool to a temperature range at 6 ° C./s or more. Thus, by controlling the cooling rate to Bf or less, the structure can be mainly composed of bainite. On the other hand, by controlling the cooling rate to Ms or more, MA in which untransformed austenite is a hard phase. Can be sufficiently suppressed. The finish rolling end temperature is the temperature at the t (plate thickness) / 4 portion at the end of finish rolling determined in the manner shown in the examples described later.

前記速度での冷却を行う方法としては、直接焼入れ、加速冷却等の方法が挙げられるが、理論的限界冷却速度を実現できる直接焼入れ法を採用することが推奨される。   Examples of the method for cooling at the speed include direct quenching and accelerated cooling, but it is recommended to adopt a direct quenching method capable of realizing a theoretical limit cooling rate.

また、熱間圧延に際して行う加熱の温度は950〜1200℃とすればよく、熱間圧延時の仕上圧延終了温度(後述する実施例に示す要領で求めるt/4部位の温度)は、800〜900℃の範囲に制御すれば、高強度と高靭性を両立できるので好ましい。   Moreover, the temperature of the heating performed in the case of hot rolling should just be 950-1200 degreeC, and the finish rolling completion | finish temperature at the time of hot rolling (temperature of the t / 4 site | part calculated | required in the way shown in the Example mentioned later) is 800- Controlling the temperature within the range of 900 ° C. is preferable because both high strength and high toughness can be achieved.

本発明の船舶用高張力鋼材は、基本的には塗装を施さなくても鋼材自体が優れた耐食性を発揮するものであるが、必要によって、後記実施例に示すタールエポキシ樹脂塗料、或はそれ以外の代表される重防食塗装、ジンクリッチペイント、ショッププライマーなどの他の防食方法と併用することも可能である。こうした防食塗装を施した場合には、後記実施例に示すように塗装膜自体の耐食性(塗装耐食性)も良好なものとなる。   The high-tensile steel material for marine use of the present invention basically exhibits excellent corrosion resistance even if it is not coated, but if necessary, the tar epoxy resin paint shown in the examples below, or It can also be used in combination with other anticorrosion methods such as heavy duty anticorrosion coating, zinc rich paint, shop primer and the like. When such anticorrosion coating is applied, the corrosion resistance of the coating film itself (coating corrosion resistance) is also good as shown in the examples described later.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含されるものである。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

下記表1に示す化学成分組成の鋼材を転炉で溶製し、連続鋳造スラブ(スラブ厚は表2に示す通り)に熱間圧延を施して、表2に示す板厚の鋼板を製作した。   Steel materials having the chemical composition shown in Table 1 below were melted in a converter and hot-rolled on a continuously cast slab (slab thickness as shown in Table 2) to produce a steel plate having a thickness shown in Table 2. .

表1に示すBf(ベイナイト変態終了温度)およびMs(マルテンサイト変態開始温度)は、加工フォーマスター試験によりCCT曲線を作成してそれぞれ求めたものである。具体的には、加工フォーマスター試験片を1100℃に加熱して10秒間保持後、1000℃で累積圧下率25%の加工、更に800℃で累積圧下率25%の加工を施し、その後、700℃からの冷却速度を1〜100℃/sの間で7段階変化させ、冷却中の体積変化が生じる温度を測定して変態温度を求めた。更に、冷却後の組織を観察すると共にビッカース硬さを測定して最終組織を同定した。これらの結果から、CCT曲線を作成し、Bf、Msを求めた。   Bf (Bainite transformation end temperature) and Ms (Martensite transformation start temperature) shown in Table 1 are respectively obtained by creating a CCT curve by a processing for master test. Specifically, the processed formaster specimen is heated to 1100 ° C. and held for 10 seconds, then processed at 1000 ° C. with a cumulative rolling reduction of 25%, further processed at 800 ° C. with a cumulative rolling reduction of 25%, and then 700 The cooling rate from 0 ° C. was changed in 7 steps between 1 to 100 ° C./s, and the temperature at which the volume change during cooling was measured to determine the transformation temperature. Further, the final structure was identified by observing the cooled structure and measuring the Vickers hardness. From these results, a CCT curve was created to obtain Bf and Ms.

熱間圧延に際して行う加熱の温度、仕上圧延終了温度(仕上圧延終了時のt/4部位の温度)、仕上圧延終了後の冷却速度、該冷却速度での冷却終了温度を表2に示す。尚、表2には、仕上圧延終了時の表面温度(実測値)も参考までに示す。上記仕上圧延終了時のt/4部位の温度は、下記(1)〜(6)の要領で求めたものである。
(1)プロセスコンピュータにおいて、加熱開始から加熱終了までの雰囲気温度、在炉時間に基づき、鋼片の表面から裏面までの板厚方向の任意の位置の加熱温度を算出する。
(2)上記算出した加熱温度を用い、圧延中の圧延パススケジュールやパス間の冷却方法(水冷あるいは空冷)のデータに基づいて、板厚方向の任意の位置の圧延温度を差分法など計算に適した方法を用いて算出しつつ、圧延を実施する。
(3)鋼板表面温度は、圧延ライン上に設置された放射型温度計を用いて実測する(ただし、プロセスコンピュータ上においても計算を実施する)。
(4)粗圧延開始時、粗圧延終了時および仕上圧延開始時にそれぞれ実測した鋼板表面温度を、プロセスコンピュータ上の計算温度と照合する。
(5)粗圧延開始時、粗圧延終了時および仕上圧延開始時の計算温度と上記実測温度の差が±30℃以上の場合は、実測表面温度と計算表面温度が一致する様に再計算し、プロセスコンピュータ上の計算温度とする。
(6)上記計算温度の補正を行って、t/4部位の仕上圧延終了温度を求める。
Table 2 shows the temperature of heating performed at the time of hot rolling, finish rolling end temperature (temperature at the t / 4 portion at the end of finish rolling), cooling rate after finish rolling, and cooling end temperature at the cooling rate. In Table 2, the surface temperature (measured value) at the end of finish rolling is also shown for reference. The temperature at the t / 4 portion at the end of the finish rolling is determined in the following manner (1) to (6).
(1) In the process computer, based on the atmospheric temperature from the start of heating to the end of heating and the in-furnace time, the heating temperature at an arbitrary position in the thickness direction from the front surface to the back surface of the steel slab is calculated.
(2) Using the calculated heating temperature, calculate the rolling temperature at any position in the plate thickness direction based on the rolling pass schedule during rolling and the cooling method between the passes (water cooling or air cooling). Rolling while calculating using a suitable method.
(3) The steel sheet surface temperature is measured using a radiation type thermometer installed on the rolling line (however, calculation is also performed on a process computer).
(4) The steel plate surface temperature measured at the start of rough rolling, at the end of rough rolling and at the start of finish rolling is collated with the calculated temperature on the process computer.
(5) When the difference between the calculated temperature at the start of rough rolling, at the end of rough rolling and at the start of finish rolling and the above measured temperature is ± 30 ° C or more, recalculate so that the measured surface temperature matches the calculated surface temperature. The calculated temperature on the process computer.
(6) The above calculated temperature is corrected to determine the finish rolling finish temperature at the t / 4 part.

上記の様にして得られた鋼板を用いて、金属組織の観察、機械的性質(引張特性、衝撃特性)および耐食性の評価を行った。   Using the steel sheet obtained as described above, the metal structure was observed, and the mechanical properties (tensile properties, impact properties) and corrosion resistance were evaluated.

〈金属組織の観察〉
島状マルテンサイトの分率は下記の様にして測定した。即ち、圧延方向に平行で且つ鋼板表面に対して垂直な、鋼板表裏面を含む板厚断面を観察できるよう上記鋼板からサンプルを採取し、観察面を鏡面研磨した後、レペラー腐食液で腐食した。そして、t(板厚)/4部位を、光学顕微鏡にて1000倍の倍率で撮影し(1視野サイズ:60μm×80μm)、主体の組織がベイナイト(B)、またはフェライト(F)+パーライト(P)であるかを判断した上で、主体の組織がベイナイトの場合には、上記撮影した写真を画像解析装置に取り込み、白黒に画像処理してから白い部分(MA)の面積率を求めた。
上記測定を任意の3視野について行い、その平均値をMA分率とした。
<Observation of metal structure>
The fraction of island martensite was measured as follows. That is, a sample was taken from the steel sheet so that the cross section including the front and back surfaces of the steel sheet, which was parallel to the rolling direction and perpendicular to the steel sheet surface, could be observed. . Then, t (plate thickness) / 4 portion was photographed with an optical microscope at a magnification of 1000 times (1 visual field size: 60 μm × 80 μm), and the main structure was bainite (B) or ferrite (F) + pearlite ( P), if the main organization is bainite, the photograph taken is taken into an image analysis device, processed in black and white, and then the area ratio of the white portion (MA) was obtained. .
The above measurement was performed for any three visual fields, and the average value was taken as the MA fraction.

〈機械的性質の評価〉
[引張特性の評価]
各鋼板のt/4部位から、圧延方向に対して直角の方向にJIS Z 2201の4号試験片を採取して、JISZ 2241の要領で引張試験を行ない、引張強度(TS)を測定した。そして、YPが390MPa以上でかつTSが510MPa以上のもの(YP:390MPa級鋼材の船級規格値)を、高張力であり、船舶用鋼材としての引張特性を具備していると評価した。
<Evaluation of mechanical properties>
[Evaluation of tensile properties]
A JIS Z 2201 No. 4 test piece was taken from the t / 4 part of each steel plate in a direction perpendicular to the rolling direction, and subjected to a tensile test according to the procedure of JISZ 2241 to measure the tensile strength (TS). And YP of 390 MPa or more and TS of 510 MPa or more (YP: ship class standard value of 390 MPa class steel material) were evaluated as having high tension and having tensile properties as marine steel material.

[母材靭性の評価]
各鋼板のt/4部位からJIS Z 2202のVノッチ試験片を採取して、JISZ 2242の要領でシャルピー衝撃試験を行い、破面遷移温度(vTrs)を測定した。そして、vTrsが−40℃以下のものを、母材靭性に優れる[船級Eグレード鋼材規格値(−20℃で55J以上)を安定して確保できる]と評価した。
[Evaluation of base metal toughness]
A V-notch test piece of JIS Z 2202 was taken from the t / 4 part of each steel plate, and subjected to a Charpy impact test in the manner of JISZ 2242, and the fracture surface transition temperature (vTrs) was measured. And the thing whose vTrs is -40 degrees C or less was evaluated as being excellent in base-material toughness [The ship E grade steel material specification value (55J or more at -20 degrees C can be ensured stably)].

これらの結果を表2に併記する。   These results are also shown in Table 2.

〈耐食性の評価〉
[試料の調製]
上記鋼板を切断し、表面研削を行って、最終的に100×100×25(mm)の大きさの試験片を作製した(試験片A)。試験片Aの外観形状を図3に示す。
<Evaluation of corrosion resistance>
[Sample preparation]
The steel plate was cut and subjected to surface grinding to finally produce a test piece having a size of 100 × 100 × 25 (mm) (test piece A). The external shape of the test piece A is shown in FIG.

また、図4に示すように20×20×5(mm)の小試験片4個を、100×100×25(mm)の大試験片(前記試験片Aと同じもの)に接触させて、すきま部を形成した試験片Bを作製した。すきま形成用の小試験片と大試験片とは同じ化学成分組成の鋼材として、表面仕上げも前記試験片Aと同じ表面研削とした。そして小試験片の中心に5mmφの孔を、基材側(大試験片側)にねじ孔を開けて、M4プラスチック製ねじで固定した。   Further, as shown in FIG. 4, four small test pieces of 20 × 20 × 5 (mm) are brought into contact with a large test piece of 100 × 100 × 25 (mm) (the same as the test piece A), A test piece B having a clearance was formed. The small test piece and the large test piece for forming the gap were steel materials having the same chemical composition, and the surface finish was the same as that of the test piece A. Then, a hole of 5 mmφ was formed in the center of the small test piece, and a screw hole was made on the base material side (large test piece side), and fixed with an M4 plastic screw.

更に、平均厚さ250μmのタールエポキシ樹脂塗装(下塗り:ジンクリッチプライマー)を全面に施した試験片C(図5)を用意した。図5に示す様に、防食のための塗膜に傷が付き素地の鋼材が露出した場合の腐食進展度合いを調べるため、樹脂塗装鋼板の片面に素地まで達するカット傷(長さ:100mm、幅:約0.5mm)をカッターナイフで形成した。   Furthermore, a test piece C (FIG. 5) was prepared in which tar epoxy resin coating (undercoating: zinc rich primer) having an average thickness of 250 μm was applied to the entire surface. As shown in FIG. 5, in order to investigate the degree of corrosion progress when the coating material for anticorrosion is scratched and the base steel material is exposed, cut scratches reaching the base material on one side of the resin-coated steel plate (length: 100 mm, width) : About 0.5 mm) was formed with a cutter knife.

下記腐食試験A、腐食試験Bのそれぞれについて、前記表2に示した実験No.ごとに試験片A、試験片Bまたは試験片Cを夫々5個ずつ用い、下記の方法で腐食試験を行った。   For each of the following corrosion test A and corrosion test B, the experiment No. A corrosion test was conducted by the following method using five test pieces A, B and C, respectively.

[腐食試験方法]
電気防食が作用しないバラストタンク内の上部などの湿潤の大気雰囲気を模擬して、海塩粒子を付着させて湿潤状態に保持する腐食試験を行った(腐食試験A)。具体的には、兵庫県加古川市にて採取した実海水7.5mLをほぼ均一に試験面に滴下して、乾燥させた試験片を温度:50℃、湿度:95%RHの恒温恒湿試験槽内に水平に設置して腐食させた。試験時間は6ヶ月間であり、1ヶ月毎に実海水5.0mLを追加で試験面に滴下した。この試験では、前記試験片Aを用いて耐全面腐食性、腐食均一性を評価し、前記試験片Bを用いて耐すきま腐食性を評価した。
[Corrosion test method]
A corrosion test was conducted in which a moist air atmosphere such as the upper part of the ballast tank where the cathodic protection does not act was simulated and the sea salt particles were adhered and kept in a wet state (corrosion test A). Specifically, 7.5 mL of real seawater collected in Kakogawa City, Hyogo Prefecture, was dropped almost uniformly onto the test surface, and the dried test piece was subjected to a constant temperature and humidity test at a temperature of 50 ° C. and a humidity of 95% RH. It was installed horizontally in the tank and corroded. The test time was 6 months, and 5.0 mL of actual seawater was added dropwise to the test surface every month. In this test, overall corrosion resistance and corrosion uniformity were evaluated using the test piece A, and crevice corrosion resistance was evaluated using the test piece B.

また原油タンク内の上甲板の腐食環境を模擬して、温度を50℃に保持した試験槽内に試験片を水平に設置し、組成:5vol%O2-10vol%CO2-0.01vol%SO2-0.3vol%H2Sの腐食性ガスを1L/min通気させて試験片を腐食させた(腐食試験B)。このとき、試験槽内は常時水蒸気飽和状態となるように湿度は98%RH以上に制御して、湿潤状態を保持した。試験時間は6ヶ月間とした。また1ヶ月毎に実海水5.0mLを追加で試験面に滴下した。この試験では、前記試験片Aを用いて耐全面腐食性、腐食均一性を評価し、前記試験片Cを用いて塗装腐食性を評価した。
(a)試験片Aについては、試験前後の重量変化を平均板厚減少量D-ave(mm)に換算し、試験片5個の平均値を算出して、各供試材の全面腐食性を評価した。また、触針式三次元形状測定装置を用いて試験片Aの最大侵食深さD-max(mm)を求め、平均板厚減少量[D-ave(mm)]で規格化して(即ち、D-max/D-aveを算出して)、腐食均一性を評価した。尚、試験後の重量測定および板厚測定は、クエン酸水素二アンモニウム水溶液中での陰極電解法[JIS K8284]により鉄錆等の腐食生成物を除去してから行った。
(b)試験片Bについては、すきま部(接触面)の目視観察を行ってすきま腐食発生の有無を調べ、すきま腐食が認められる場合には、上記陰極電解法により腐食生成物を除去し、触針式三次元形状測定装置を用いて最大すきま腐食深さD-crev(mm)を測定し、耐すきま腐食性を評価した。
(c)塗装処理を施した試験片C(カット傷付き)については、カット傷に垂直方向の塗膜膨れ幅をノギスで測定し、試験片5個の最大値を最大膨れ幅と定義し、この最大膨れ幅で塗装腐食性を評価した。
In addition, simulating the corrosive environment of the upper deck in the crude oil tank, the test piece was installed horizontally in a test tank maintained at a temperature of 50 ° C, composition: 5vol% O 2 -10vol% CO 2 -0.01vol% SO The test piece was corroded by aeration of 2 -0.3 vol% H 2 S corrosive gas at 1 L / min (corrosion test B). At this time, the humidity was controlled to 98% RH or higher so that the inside of the test tank was always saturated with water vapor, and the wet state was maintained. The test time was 6 months. In addition, 5.0 mL of actual seawater was added dropwise to the test surface every month. In this test, overall corrosion resistance and corrosion uniformity were evaluated using the test piece A, and coating corrosion resistance was evaluated using the test piece C.
(A) For test piece A, the change in weight before and after the test is converted into an average thickness reduction amount D-ave (mm), and the average value of five test pieces is calculated. Evaluated. Further, the maximum erosion depth D-max (mm) of the test piece A is obtained using a stylus type three-dimensional shape measuring apparatus, and normalized by the average thickness reduction amount [D-ave (mm)] (that is, D-max / D-ave was calculated) and corrosion uniformity was evaluated. In addition, the weight measurement and the plate thickness measurement after the test were performed after removing corrosion products such as iron rust by the cathodic electrolysis method [JIS K8284] in an aqueous solution of diammonium hydrogen citrate.
(B) For test piece B, the crevice portion (contact surface) was visually observed to check for crevice corrosion. If crevice corrosion was observed, the corrosion product was removed by the cathodic electrolysis method, The maximum crevice corrosion depth D-crev (mm) was measured using a stylus type three-dimensional shape measuring device to evaluate crevice corrosion resistance.
(C) For the test piece C (with cut flaws) subjected to the coating treatment, the swollen width of the coating film in the direction perpendicular to the cut flaws is measured with a caliper, and the maximum value of five test pieces is defined as the maximum swollen width. The coating corrosivity was evaluated by this maximum swollen width.

上記耐全面腐食性(D-ave)、腐食均一性(D-max/D-ave)、耐すきま腐食性(D-crev)、塗装耐食性(最大膨れ幅)の評価基準は下記表3に示す通りである。腐食試験結果を下記表4に示す。   Table 3 below shows the evaluation criteria for the overall corrosion resistance (D-ave), corrosion uniformity (D-max / D-ave), crevice corrosion resistance (D-crev), and coating corrosion resistance (maximum swollen width). Street. The corrosion test results are shown in Table 4 below.

表1〜4から次のように考察できる(尚、下記No.は、表2,4の実験No.を示す)。   Tables 1 to 4 can be considered as follows (note that the following numbers indicate the experiment numbers in Tables 2 and 4).

まず、Al,CuおよびCrの含有量が本発明で規定する範囲を満たさない場合(No.2〜6)、従来鋼(No.1)に比べて耐全面腐食性はやや改善しているが、腐食均一性、耐すきま腐食性、塗装耐食性については改善効果がみられない。   First, when the contents of Al, Cu and Cr do not satisfy the range defined in the present invention (No. 2 to 6), the overall corrosion resistance is slightly improved compared to the conventional steel (No. 1). There is no improvement in corrosion uniformity, crevice corrosion resistance, and paint corrosion resistance.

更に、No.12、13は、推奨される冷却速度での冷却を、Msを下回る温度域まで行なったため、MA分率が大きくなり優れた母材靭性を確保できていない。また、No.14は、推奨される冷却速度を下回る速度での冷却を、Bfよりも高い温度で終了したため、フェライトが生成し、所望の強度が得られていない。No.16は、推奨される冷却速度を下回る速度で冷却したためフェライトが生成し、強度が不足している。   Furthermore, no. In Nos. 12 and 13, since cooling at a recommended cooling rate was performed to a temperature range lower than Ms, the MA fraction was large and excellent base metal toughness could not be secured. No. In No. 14, cooling at a rate lower than the recommended cooling rate was completed at a temperature higher than Bf, so ferrite was generated and the desired strength was not obtained. No. No. 16 was cooled at a rate lower than the recommended cooling rate, so that ferrite was generated and the strength was insufficient.

これに対し、本発明で規定する要件を満たす鋼材は、優れた母材靭性を具備すると共に耐食性に優れている。即ち、Al、CuおよびCrを適量含有させたものは、これらの元素の相乗効果により、耐全面腐食性、腐食均一性、耐すきま腐食性および塗装耐食性の全てが向上していることが分かる。こうした耐食性向上には、Al酸化物とCr酸化物とが共存する安定な酸化物防食皮膜と、Cu含有により形成される緻密な錆皮膜の保護作用が相乗的に寄与しているものと考えられる。   In contrast, a steel material that satisfies the requirements defined in the present invention has excellent base material toughness and excellent corrosion resistance. That is, it can be seen that a material containing appropriate amounts of Al, Cu, and Cr has improved overall corrosion resistance, corrosion uniformity, crevice corrosion resistance, and coating corrosion resistance due to the synergistic effect of these elements. It is considered that such an improvement in corrosion resistance is synergistically contributed by the protective action of a stable oxide anticorrosive film in which Al oxide and Cr oxide coexist and a dense rust film formed by containing Cu. .

このうちAl、CuおよびCrの併用に加えて、更にNi,Co,Ti,Ca,Mg等の耐食性向上元素を含有させることにより(No.10、11、19〜23等)、鋼材の耐全面腐食性が大幅に向上していることが分かる。特に、CaやMgを含有させることによって、腐食均一性や耐すきま腐食性の向上が認められており(No.20、23等)、これらの元素による局部pH低下の抑制作用によって、局所的な腐食が抑制されたものと推察される。   Of these, in addition to the combined use of Al, Cu, and Cr, by further containing an element for improving corrosion resistance such as Ni, Co, Ti, Ca, Mg, etc. (No. 10, 11, 19-23, etc.) It can be seen that the corrosivity is greatly improved. In particular, the inclusion of Ca and Mg has been confirmed to improve corrosion uniformity and crevice corrosion resistance (No. 20, 23, etc.), and the local pH lowering action by these elements can be improved locally. It is presumed that corrosion was suppressed.

またNi,Co或いはTiを含有することによって、塗装耐食性の向上効果が認められ(No.19、22等)、これらの元素の錆緻密化作用の相乗効果により塗膜傷部における腐食進行が阻止されたものと推察される。   In addition, by containing Ni, Co or Ti, the effect of improving the coating corrosion resistance is recognized (No. 19, 22, etc.), and the progress of corrosion at the scratches on the coating film is prevented by the synergistic effect of the rust densification action of these elements. It is inferred that

更に、Seを含有させることによって、耐食性は大幅に向上することが明らかであり(No.29,30等)、Seによる局所的なpH変化の抑制効果がすきま腐食等の局部腐食に対する耐食性の向上に寄与しているものと考えられる。また([Cr]/[Al])の値を適切に調整することによって、各種耐食性が大幅に優れる結果となっていることが分かる。   Furthermore, it is clear that the corrosion resistance is significantly improved by containing Se (No. 29, 30 etc.), and the local pH change suppression effect by Se is improved in the corrosion resistance against local corrosion such as crevice corrosion. It is thought that it contributes to. It can also be seen that various corrosion resistances are significantly improved by appropriately adjusting the value of ([Cr] / [Al]).

島状マルテンサイトの分率(MA分率)とvTrs(破面遷移温度)の関係を示すグラフである。It is a graph which shows the relationship between the fraction (MA fraction) of island-like martensite, and vTrs (fracture surface transition temperature). 耐食性試験に用いた試験片Aの外観形状を示す説明図である。It is explanatory drawing which shows the external appearance shape of the test piece A used for the corrosion resistance test. 耐食性試験に用いた試験片Bの外観形状を示す説明図である。It is explanatory drawing which shows the external appearance shape of the test piece B used for the corrosion resistance test. 耐食性試験に用いた試験片Cの外観形状を示す説明図である。It is explanatory drawing which shows the external appearance shape of the test piece C used for the corrosion resistance test.

Claims (6)

C:0.01〜0.2%(質量%の意味、以下同じ)、Si:0.01〜0.5%、Mn:0.01〜2%、Al:0.05〜0.5%、Cu:0.010〜1.5%、Cr:0.010〜1%を夫々含有する他、P:0.02%以下(0%を含まない)およびS:0.01%以下(0%を含まない)に夫々抑制され、残部がFeおよび不可避的不純物からなり、Crの含有量[Cr]とAlの含有量[Al]の比の値([Cr]/[Al])が1〜10であり、島状マルテンサイトの分率が1.1%以下で且つ残部がベイナイト組織であることを特徴とする耐食性と母材靭性に優れた船舶用高張力鋼材。 C: 0.01 to 0.2% (meaning mass%, the same applies hereinafter), Si: 0.01 to 0.5%, Mn: 0.01 to 2%, Al: 0.05 to 0.5% Cu: 0.010 to 1.5%, Cr: 0.010 to 1%, P: 0.02% or less (excluding 0%) and S: 0.01% or less (0 %), The balance is made of Fe and inevitable impurities, and the ratio of Cr content [Cr] to Al content [Al] ([Cr] / [Al]) is 1 10 a and, island martensite fraction is high-tensile steel for ship and balance excellent in corrosion resistance and the base material toughness, which is a bainite structure at 1.1% or less. 更に、Ni:2%以下(0%を含まない)、Co:1%以下(0%を含まない)およびTi:0.1%以下(0%を含まない)よりなる群から選ばれる1種以上を含有する請求項1に記載の船舶用高張力鋼材。 Furthermore, Ni: 2% or less (not including 0%), Co: 1% or less (not including 0%), and Ti: 0.1% or less (not including 0%) marine high-tensile steel material according to claim 1 containing more. 更に、Ca:0.02%以下(0%を含まない)および/またはMg0.02%以下(0%を含まない)を含有する請求項1または2に記載の船舶用高張力鋼材。 The marine high-tensile steel material according to claim 1 or 2 , further comprising Ca: 0.02% or less (not including 0%) and / or Mg 0.02% or less (not including 0%). 更に、Se:0.5%以下(0%を含まない)を含有する請求項1〜のいずれかに記載の船舶用高張力鋼材。 Furthermore, Se: 0.5% or less (0% is not included) The high-tensile steel material for ships according to any one of claims 1 to 3 . 更に、Sb:0.5%以下(0%を含まない)および/またはSn:0.5%以下(0%を含まない)を含有する請求項1〜のいずれかに記載の船舶用高張力鋼材。 Furthermore, Sb: 0.5% or less (not including 0%) and / or Sn: 0.5% or less (not including 0%), the ship height according to any one of claims 1 to 4. Tensile steel. 更に、B:0.01%以下(0%を含まない)、およびV:0.1%以下(0%を含まない)よりなる群から選ばれる1種以上を含有する請求項1〜のいずれかに記載の船舶用高張力鋼材。 Furthermore, B: 0.01% or less (not including 0%), and V: claim 1-5 containing one or more selected from 0.1% or less (not including 0%) good Li Cheng group The high-tensile steel material for ships according to any one of the above.
JP2006016840A 2006-01-25 2006-01-25 High tensile steel for marine vessels with excellent corrosion resistance and base metal toughness Expired - Fee Related JP4444924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006016840A JP4444924B2 (en) 2006-01-25 2006-01-25 High tensile steel for marine vessels with excellent corrosion resistance and base metal toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006016840A JP4444924B2 (en) 2006-01-25 2006-01-25 High tensile steel for marine vessels with excellent corrosion resistance and base metal toughness

Publications (2)

Publication Number Publication Date
JP2007197758A JP2007197758A (en) 2007-08-09
JP4444924B2 true JP4444924B2 (en) 2010-03-31

Family

ID=38452643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006016840A Expired - Fee Related JP4444924B2 (en) 2006-01-25 2006-01-25 High tensile steel for marine vessels with excellent corrosion resistance and base metal toughness

Country Status (1)

Country Link
JP (1) JP4444924B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008062984A1 (en) * 2006-11-21 2008-05-29 Posco Steel excellent in resistance to corrosion by sulfuric acid and method for manufacturing the same
JP5155097B2 (en) * 2008-10-21 2013-02-27 株式会社神戸製鋼所 Steel used for containers containing minerals
CN113234988B (en) * 2021-04-15 2022-06-10 华南理工大学 Method for producing weathering steel with yield strength of 700MPa grade by online quenching and product thereof
CN113201682B (en) * 2021-04-15 2022-05-24 华南理工大学 Bainite weathering steel and production method thereof

Also Published As

Publication number Publication date
JP2007197758A (en) 2007-08-09

Similar Documents

Publication Publication Date Title
JP4868916B2 (en) Marine steel with excellent corrosion resistance
JP4898543B2 (en) Steel sheet with excellent pit resistance and method for producing the same
JP4393291B2 (en) Marine steel with excellent corrosion resistance
JP4445444B2 (en) Marine steel and welded structures with excellent combined corrosion resistance
JP4616181B2 (en) Marine steel with excellent HAZ toughness and corrosion resistance during high heat input welding
JP4868917B2 (en) Steel material for crude oil tank bottom plate with excellent corrosion resistance
JP2006037201A (en) Marine steel material superior in corrosion resistance
JP6260755B1 (en) Steel for ship ballast tank and ship
JP6601258B2 (en) Corrosion-resistant steel for ballast tanks
JP4502948B2 (en) Marine steel with excellent corrosion resistance and brittle fracture characteristics
JP4444924B2 (en) High tensile steel for marine vessels with excellent corrosion resistance and base metal toughness
JP4659626B2 (en) High tensile steel for marine vessels with excellent corrosion resistance and base metal toughness
JP4119941B2 (en) Marine steel with excellent crevice corrosion resistance in humid air
JP4763468B2 (en) Marine steel with excellent corrosion resistance and fatigue crack growth resistance
JP4579837B2 (en) Marine steel with excellent corrosion resistance and brittle fracture characteristics
JP3923962B2 (en) Marine steel with excellent corrosion resistance
JP4476928B2 (en) High tensile steel for marine vessels with excellent corrosion resistance and base metal toughness
JP2008133536A (en) Steel having excellent corrosion resistance for ship use
JP4476927B2 (en) High tensile steel for marine vessels with excellent corrosion resistance and base metal toughness
JP4476926B2 (en) Marine steel with excellent HAZ toughness and corrosion resistance during high heat input welding
JP4786995B2 (en) Marine steel with excellent weldability and corrosion resistance
JP4502950B2 (en) Marine steel with excellent corrosion resistance and fatigue crack growth resistance
JP4579838B2 (en) Marine steel with excellent corrosion resistance and brittle crack stopping properties
JP4502949B2 (en) Marine steel with excellent corrosion resistance and brittle crack stopping properties
JP2007197763A (en) Marine steel with excellent corrosion resistance and toughness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100114

R150 Certificate of patent or registration of utility model

Ref document number: 4444924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees