JP4243863B2 - Welded joint for crude oil tank and crude oil tank - Google Patents

Welded joint for crude oil tank and crude oil tank Download PDF

Info

Publication number
JP4243863B2
JP4243863B2 JP2004325879A JP2004325879A JP4243863B2 JP 4243863 B2 JP4243863 B2 JP 4243863B2 JP 2004325879 A JP2004325879 A JP 2004325879A JP 2004325879 A JP2004325879 A JP 2004325879A JP 4243863 B2 JP4243863 B2 JP 4243863B2
Authority
JP
Japan
Prior art keywords
crude oil
content
weld metal
less
oil tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004325879A
Other languages
Japanese (ja)
Other versions
JP2006137963A (en
Inventor
和幸 鹿島
英昭 幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004325879A priority Critical patent/JP4243863B2/en
Publication of JP2006137963A publication Critical patent/JP2006137963A/en
Application granted granted Critical
Publication of JP4243863B2 publication Critical patent/JP4243863B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、原油タンク用溶接継手及び原油タンクに関し、詳しくは、積荷である原油を入れる原油タンカーのタンクや同様の腐食環境におかれた陸上タンクのように、原油が入った環境下での耐食性に優れた原油タンク用溶接継手及びその溶接継手を用いた原油タンクに関する。   The present invention relates to a welded joint for a crude oil tank and a crude oil tank. More specifically, the present invention relates to a crude oil tank such as a tank of a crude oil tanker for containing crude oil as a load or a land tank in a similar corrosive environment. The present invention relates to a welded joint for a crude oil tank excellent in corrosion resistance and a crude oil tank using the welded joint.

原油タンカーに積まれる原油は、精製される前のもので、硫化水素(H2S)などの腐食性の成分を含んでいる。このため、原油と接する鋼材には、原油に含まれる腐食性成分による激しい腐食が生じる。そして、原油タンクが腐食すれば、タンク修理の必要が生じて修理費用が嵩むばかりか、タンクの稼働率も低下してしまう。また、原油タンクの腐食が甚だしい場合には、そのタンクを廃却して、新たに製造し直す必要も生じる。 The crude oil loaded on the crude oil tanker is not refined and contains corrosive components such as hydrogen sulfide (H 2 S). For this reason, severe corrosion due to the corrosive components contained in the crude oil occurs in the steel material in contact with the crude oil. And if a crude oil tank corrodes, the need for tank repair will arise and the repair cost will increase, and the operating rate of the tank will also decrease. In addition, when the crude oil tank is severely corroded, the tank needs to be discarded and remanufactured again.

原油タンク内の腐食については、上甲板裏と底板が問題となっている。上甲板裏は剥離性の腐食生成物をともなう全面腐食、底板は孔食(局部的な腐食)の形態であり、腐食速度はそれぞれ0.1〜0.3mm/年、1〜3mm/年である。   Regarding corrosion in the crude oil tank, the upper deck and the bottom plate are problematic. The back of the upper deck is in the form of full surface corrosion with peelable corrosion products, and the bottom plate is in the form of pitting corrosion (local corrosion), with corrosion rates of 0.1 to 0.3 mm / year and 1 to 3 mm / year, respectively. is there.

このため、原油タンクの腐食を防止するための技術が種々開示されている。   For this reason, various techniques for preventing the corrosion of the crude oil tank have been disclosed.

特許文献1には、原油タンク内の腐食形態に着目し、特定の化学組成を有するか、或いは特定の化学組成を有するとともに特定の組織と介在物を備える、耐全面腐食と耐局部腐食の両方の面に優れた鋼材が提案されている。   Patent Document 1 focuses on the corrosion form in a crude oil tank and has both a specific chemical composition, or a specific chemical composition and a specific structure and inclusions, and both general corrosion resistance and local corrosion resistance. Steel materials that are superior in terms of surface area have been proposed.

特許文献2には、石油や天然ガス等の輸送に使用されるラインパイプや、貯蔵に使用される容器等への使用に好適な、母材及び溶接金属を有する溶接鋼管であって、母材及び溶接金属がそれぞれ、特定の化学組成を有するとともに、(母材のMo含有量+0.2%)≦(溶接金属のMo含有量)を満足する、耐炭酸ガス腐食特性及び耐硫化水素割れ性に優れた溶接鋼管が提案されている。   Patent Document 2 discloses a welded steel pipe having a base metal and a weld metal suitable for use in a line pipe used for transportation of oil, natural gas, etc., a container used for storage, and the like. And weld metal each having a specific chemical composition and satisfying (Mo content of base metal + 0.2%) ≦ (Mo content of weld metal) ≦ CO 2 corrosion resistance and hydrogen sulfide cracking resistance An excellent welded steel pipe has been proposed.

特許文献3には、X線回折法で分析したとき、硫黄と硫化鉄を合計で1.0〜70%,α−FeOOHと非晶質成分を合計で20%以上含有する特定の化学組成を有する錆層が形成された、原油及び重油の貯蔵容器用耐食鋼材が提案されている。   Patent Document 3 discloses a specific chemical composition containing 1.0 to 70% in total of sulfur and iron sulfide and 20% or more in total of α-FeOOH and amorphous components when analyzed by X-ray diffraction. Corrosion-resistant steel materials for crude oil and heavy oil storage containers in which a rust layer is formed have been proposed.

特開2003−82435号公報JP 2003-82435 A 特開2001−294992号公報JP 2001-294992 A 特開2003−253393号公報JP 2003-253393 A

本発明の目的は、原油が入った環境下での耐食性に優れた原油タンク用溶接継手及びその溶接継手を用いた原油タンクを提供することである。   The objective of this invention is providing the crude oil tank using the welded joint for crude oil tanks excellent in the corrosion resistance in the environment containing crude oil, and the welded joint.

一般に、原油タンクは溶接によって組み立てられる。このため、溶接部の耐食性をいかにして高めるかが、原油タンク全体の腐食寿命を決定する重要な要素となる。   Generally, crude oil tanks are assembled by welding. For this reason, how to increase the corrosion resistance of the weld is an important factor in determining the corrosion life of the entire crude oil tank.

すなわち、原油タンクの母材となる鋼材の耐食性を向上させても、溶接部の耐食性を高めなければ、原油タンク全体の腐食寿命を高めることはできない。これは、溶接金属が圧延や鍛造などの加工を受ける母材とは異なって凝固ままの組織を呈するため、溶接部を母材と全く同じ状態にすることができず、したがって、溶接部と母材の腐食に対する感受性が異なるためである。   That is, even if the corrosion resistance of the steel material used as the base material of the crude oil tank is improved, the corrosion life of the entire crude oil tank cannot be increased unless the corrosion resistance of the welded portion is increased. This is because the weld metal exhibits a solidified structure unlike the base metal that undergoes processing such as rolling or forging, so the weld cannot be made exactly the same as the base metal. This is because the sensitivity of the material to corrosion is different.

このように、原油タンク環境下で使用に耐える溶接継手を開発することは、耐食性に優れた原油タンクを製造する上で極めて重要である。   Thus, it is extremely important to develop a welded joint that can be used in a crude oil tank environment in order to produce a crude oil tank having excellent corrosion resistance.

前述の特許文献1で開示された技術によれば、全面腐食や局部腐食に対する抵抗性に優れたカーゴオイルタンク用鋼材を提供できる。しかし、溶接継手部の耐食性についての配慮が十分にはなされておらず、例えば溶接継手が必ず存在する実際の原油タンカーにおいて、溶接継手部の耐食性が低下すると問題である。   According to the technique disclosed in Patent Document 1 described above, a steel material for a cargo oil tank excellent in resistance to general corrosion and local corrosion can be provided. However, sufficient consideration has not been given to the corrosion resistance of the welded joint. For example, in an actual crude oil tanker in which a welded joint always exists, there is a problem if the corrosion resistance of the welded joint is lowered.

特許文献2で開示された技術は、湿潤な炭酸ガスや硫化水素を多量に含み、低合金鋼では対処できないような非常に厳しい環境を対象とするものである。このため、少なくとも母材は、質量%で、Cr:10.0〜14.0%、Mo:2.0〜3.0%及びNi:3.0〜8.0%という多量の合金元素を含む高合金鋼とする必要があり、溶接継手部の耐食性も高めることができるもののコストが極めて高くなる。   The technique disclosed in Patent Document 2 is intended for a very harsh environment that contains a large amount of wet carbon dioxide and hydrogen sulfide and cannot be handled by low alloy steel. For this reason, at least the base material contains a large amount of alloy elements such as Cr: 10.0 to 14.0%, Mo: 2.0 to 3.0%, and Ni: 3.0 to 8.0%. Although it is necessary to make it the high alloy steel containing, although the corrosion resistance of a welded joint part can be improved, the cost becomes very high.

特許文献3で開示された技術は、特殊な錆層を形成することを特徴とするものでしかなく、腐食性の成分を含む原油環境での耐食性に顕著な効果を有するWやMoを母材中に含んでいない。このため、摩擦などによって錆が除去されてしまうと母材部においても十分な耐食性を確保することができない。しかも、溶接部についてはほとんど言及されておらず、溶接継手部の耐食性の向上を如何にして成し遂げるかという大きな課題が残ったままである。   The technique disclosed in Patent Document 3 is characterized only by the formation of a special rust layer, and is based on W or Mo, which has a remarkable effect on corrosion resistance in a crude oil environment containing corrosive components. Not included. For this reason, if rust is removed by friction etc., sufficient corrosion resistance cannot be secured even in the base material portion. Moreover, almost no mention is made of the welded portion, and there remains a great problem of how to improve the corrosion resistance of the welded joint portion.

本発明者らは、上述のような問題点を解決するために鋭意検討を重ねた結果、母材及び溶接金属それぞれの組成を適正化するとともに、質量%での、溶接金属中のCu、Ni、W及びMoの含有量から、それぞれ、母材中のCu、Ni、W及びMoの含有量を引いた値が特定の関係を有し、その特定の関係が満たす値を適正化することによって、原油が入った環境下で優れた耐食性を示す原油タンク用溶接継手を提供することができることを知見して、本発明を完成した。   As a result of intensive studies in order to solve the above-described problems, the present inventors have optimized the compositions of the base material and the weld metal, and have Cu, Ni in the weld metal in mass%. By subtracting the contents of Cu, Ni, W, and Mo in the base material from the contents of W, Mo, and Mo, respectively, have a specific relationship, and by optimizing the value that the specific relationship satisfies The present invention was completed by discovering that a welded joint for a crude oil tank exhibiting excellent corrosion resistance in an environment containing crude oil can be provided.

本発明の要旨は、下記(1)〜(5)に示す原油タンク用溶接継手及び(6)に示す原油タンクにある。   The gist of the present invention is a crude oil tank weld joint shown in the following (1) to (5) and a crude oil tank shown in (6).

(1)母材及び溶接金属を有する溶接継手であって、
前記母材が、質量%で、C:0.01 〜0.2%、Si:0.01〜1%、Mn:0.05〜2%、P:0.05%以下(0%を含まない)、S:0.01%以下(0%を含まない)、Ni:0.01〜1.0%、Cu:0.01〜2%、Cr:0.1%以下(0%を含まない)、Al:0.1%以下(0%を含まない)、N:0.001〜0.01%、及びO(酸素):0.0001〜0.005%を含有するとともに、W:0.01〜1%及びMo:0.01〜1%のうちの少なくとも一方を含有し、残部はFe及び不純物からなる鋼組成を有し、
前記溶接金属が、質量%で、C:0.01 〜0.2%、Si:0.01〜1%、Mn:0.2 〜2%、P:0.03%以下(0%を含まない)、S:0.01%以下(0%を含まない)、Ni:0.01〜1.0%、Cu:0.01〜1%、Cr:0.5%以下(0%を含まない)、Nb:0.07%以下(0%を含まない)、V:0.07%以下(0%を含まない)、Ti:0.07%以下(0%を含まない)、B:0.005%以下(0%を含まない)、Al:0.05%以下(0%を含まない)、N:0.001〜0.03%及びO(酸素):0.001〜0.05%に加えて、W:0.01〜1%及びMo:0.01〜1%のうちの少なくとも一方を含有する鋼からなり、
更に、下記(a)式で表されるfnの値が−0.3〜0.3を満足することを特徴とする原油タンク用溶接継手。
fn=△Cu+0.3×△Ni+0.2×△W+1.3×△Mo・・・(a)。
なお、上記(a)式中の△Cu、△Ni、△W及び△Moは、それぞれ、Cu、Ni、W及びMoの質量%での、溶接金属中の含有量から母材中の含有量を引いた値を表す。
(1) A welded joint having a base material and a weld metal,
The base material is, in mass%, C: 0.01 to 0.2%, Si: 0.01 to 1%, Mn: 0.05 to 2%, P: 0.05% or less (including 0%) S): 0.01% or less (excluding 0%), Ni: 0.01 to 1.0%, Cu: 0.01 to 2%, Cr: 0.1% or less (including 0%) Not contained), Al: 0.1% or less (excluding 0%), N: 0.001 to 0.01%, and O (oxygen): 0.0001 to 0.005%, and W: Containing at least one of 0.01 to 1% and Mo: 0.01 to 1%, the balance having a steel composition composed of Fe and impurities,
The weld metal is, in mass%, C: 0.01 to 0.2%, Si: 0.01 to 1%, Mn: 0.2 to 2%, P: 0.03% or less (including 0%) No), S: 0.01% or less (excluding 0%), Ni: 0.01 to 1.0%, Cu: 0.01 to 1%, Cr: 0.5% or less (including 0%) Nb: 0.07% or less (not including 0%), V: 0.07% or less (not including 0%), Ti: 0.07% or less (not including 0%), B: 0.005% or less (not including 0%), Al: 0.05% or less (not including 0%), N: 0.001 to 0.03%, and O (oxygen): 0.001 to 0.00. In addition to 05%, it consists of steel containing at least one of W: 0.01-1% and Mo: 0.01-1%,
Furthermore, the weld joint for crude oil tanks characterized in that the value of fn represented by the following formula (a) satisfies −0.3 to 0.3.
fn = ΔCu + 0.3 × ΔNi + 0.2 × ΔW + 1.3 × ΔMo (a).
In addition, ΔCu, ΔNi, ΔW and ΔMo in the above formula (a) are the contents in the base metal from the contents in the weld metal in terms of mass% of Cu, Ni, W and Mo, respectively. Represents the value minus.

(2)母材が、Feの一部に代えて、質量%で、Ti:0.005〜0.1%、Zr:0.005〜0.2%、Sb:0.01〜0.2%、Sn:0.01〜0.2%、Ca:0.0003〜0.01%及びMg:0.0003〜0.01%のうちの1種以上を含有する上記(1)に記載の原油タンク用溶接継手。   (2) Substrate is replaced by a part of Fe in mass%, Ti: 0.005-0.1%, Zr: 0.005-0.2%, Sb: 0.01-0.2 %, Sn: 0.01 to 0.2%, Ca: 0.0003 to 0.01%, and Mg: 0.0003 to 0.01% as described in (1) above Welded joint for crude oil tank.

(3)母材が、Feの一部に代えて、質量%で、Nb:0.005〜0.1%、V:0.005〜0.1%及びB:0.0003〜0.01%のうちの1種以上を含有する上記(1)又は(2)に記載の原油タンク用溶接継手。   (3) The base material is mass% instead of part of Fe, Nb: 0.005 to 0.1%, V: 0.005 to 0.1%, and B: 0.0003 to 0.01. The weld joint for crude oil tanks according to the above (1) or (2), which contains one or more of%.

(4)母材が、下記(b)式で表されるαが0.75以下、下記(c)式で表されるβが0.8以下及び下記(d)式で表されるCeq*が0.38以下であることを特徴とする上記(1)から(3)までのいずれかに記載の原油タンク用溶接継手。
α=(1−0.691×Cu)×(1−0.221×Ni)×(1−0.142×W)×(1−0.148Mo)・・・(b)、
β=(1−0.444×Cu)×(1−0.156×Ni)×(1−0.630×W)×(1−0.178Mo)・・・(c)、
Ceq*=C+(Mn/6)+(Ni/15)+(Cu/15)+(W/10)+(Cr/5)+(Mo/5)・・・(d)。
なお、(b)〜(d)式中の元素記号は、その元素の質量%での母材中の含有量を表す。
(4) The base material is represented by the following formula (b) α is 0.75 or less, the following formula (c) is represented by β is 0.8 or less, and Ceq * represented by the following formula (d) The weld joint for a crude oil tank according to any one of the above (1) to (3), characterized in that is 0.38 or less.
α = (1−0.691 × Cu) × (1−0.221 × Ni) × (1−0.142 × W) × (1−0.148Mo) (b),
β = (1−0.444 × Cu) × (1−0.156 × Ni) × (1−0.630 × W) × (1−0.178Mo) (c),
Ceq * = C + (Mn / 6) + (Ni / 15) + (Cu / 15) + (W / 10) + (Cr / 5) + (Mo / 5) (d).
In addition, the element symbol in (b)-(d) type | formula represents content in the base material in the mass% of the element.

(5)少なくとも一部の面に防食処理が施された上記(1)から(4)までのいずかに記載の原油タンク用溶接継手。   (5) The weld joint for a crude oil tank according to any one of (1) to (4), wherein at least a part of the surface is subjected to anticorrosion treatment.

(6)上記(1)から(5)までのいずれかに記載の原油タンク用溶接継手を用いた原油タンク。   (6) A crude oil tank using the weld joint for a crude oil tank according to any one of (1) to (5) above.

以下、上記(1)〜(5)の原油タンク用溶接継手及び(6)の原油タンクに係る発明を、それぞれ「(1)の発明」〜「(6)の発明」という。また、総称して「本発明」ということがある。   Hereinafter, the inventions relating to the welded joints for crude oil tanks of (1) to (5) and the crude oil tank of (6) are referred to as “the invention of (1)” to “the invention of (6)”, respectively. Also, it may be collectively referred to as “the present invention”.

本発明の原油タンク用溶接継手は、原油が入った環境下での耐食性に優れるので、積荷である原油を入れる原油タンカーのタンクや同様の腐食環境におかれた陸上タンクのような、原油タンク用溶接継手として利用することができる。また、本発明の原油タンク用溶接継手を用いた原油タンクは、原油が入った環境下での耐食性に優れるため、メンテナンス費用を大幅に削減することができる。   Since the welded joint for crude oil tank of the present invention has excellent corrosion resistance in an environment containing crude oil, a crude oil tank such as a tank of a crude oil tanker for containing crude oil as a load or an onshore tank placed in a similar corrosive environment. It can be used as a welded joint. Moreover, since the crude oil tank using the welded joint for crude oil tanks of the present invention has excellent corrosion resistance in an environment containing crude oil, maintenance costs can be greatly reduced.

以下、本発明の各要件について詳しく説明する。なお、各元素の含有量の「%」表示は「質量%」を意味する。   Hereinafter, each requirement of the present invention will be described in detail. In addition, "%" display of the content of each element means "mass%".

(A)母材の成分について
C:0.01〜0.2%
Cは、材料としての強度を確保するために必要な元素であり、0.01%以上の含有量が必要である。しかしながら、0.2%を超えて含有させると溶接性が低下する。また、C含有量の増大とともに、酸性水による乾湿繰り返しの環境でカソードとなるセメンタイトの生成量が増えて腐食が促進される。特に、Cの含有量が0.2%を超えると、セメンタイトの生成量増大に伴う腐食の増大と溶接性の低下が著しくなる。このため、Cの含有量を0.01〜0.2%とした。
(A) About component of base material C: 0.01 to 0.2%
C is an element necessary for securing strength as a material, and a content of 0.01% or more is necessary. However, if the content exceeds 0.2%, weldability decreases. Further, as the C content increases, the amount of cementite that becomes the cathode increases in an environment of repeated wet and dry with acidic water, and corrosion is promoted. In particular, when the C content exceeds 0.2%, an increase in corrosion and a decrease in weldability are accompanied by an increase in the amount of cementite produced. For this reason, the C content is set to 0.01 to 0.2%.

Si:0.01〜1%
Siは、脱酸に必要な元素であり、十分な脱酸効果を得るためには0.01%以上含有させる必要がある。しかしながら、1%を超えて含有させると母材及び溶接継手部の靱性が損なわれる。このため、Siの含有量を0.01〜1%とした。Siの好ましい含有量の範囲は0.01〜0.8%であり、より好ましい範囲は0.01〜0.5%である。
Si: 0.01 to 1%
Si is an element necessary for deoxidation, and in order to obtain a sufficient deoxidation effect, it is necessary to contain 0.01% or more. However, if the content exceeds 1%, the toughness of the base material and the welded joint is impaired. Therefore, the Si content is set to 0.01 to 1%. The range of preferable content of Si is 0.01 to 0.8%, and the more preferable range is 0.01 to 0.5%.

Mn:0.05〜2%
Mnは、低コストで鋼の強度を高める作用を有する元素であり、この効果を得るためには0.05%以上の含有量が必要である。しかし、2%を超えて含有させると溶接性が劣化するとともに溶接継手部の靱性も劣化する。このため、Mnの含有量を0.05〜2%とした。Mnの好ましい含有量の範囲は0.05〜1.8%であり、より好ましい範囲は0.05〜1.5%である。
Mn: 0.05-2%
Mn is an element having an effect of increasing the strength of steel at a low cost, and a content of 0.05% or more is necessary to obtain this effect. However, if the content exceeds 2%, the weldability deteriorates and the toughness of the welded joint also deteriorates. Therefore, the Mn content is set to 0.05 to 2%. The range of preferable content of Mn is 0.05 to 1.8%, and the more preferable range is 0.05 to 1.5%.

P:0.05%以下(0%を含まない)
Pは、鋼中に含まれる不純物元素で、溶接性を低下させる。特に、その含有量が0.05%を超えると、溶接性の低下が著しくなる。このため、Pの含有量を0.05%以下(0%を含まない)とした。なお、Pは溶接性を低下させる一方で原油タンク内の耐全面腐食性及び耐孔食性を向上させる作用を有するので、これら耐食性を高めるために積極的にPを0.005%以上を含有させてもよい。Pの含有量の好ましい上限は0.04%で、より好ましい上限は0.03%である。なお、Pの含有量は低ければ低いほどよい。
P: 0.05% or less (excluding 0%)
P is an impurity element contained in the steel and reduces weldability. In particular, when the content exceeds 0.05%, the weldability is significantly lowered. Therefore, the P content is set to 0.05% or less (not including 0%). In addition, since P has the effect | action which improves the general corrosion resistance and pitting corrosion resistance in a crude oil tank while reducing weldability, in order to improve these corrosion resistance, P is made to contain 0.005% or more positively. May be. The upper limit with preferable P content is 0.04%, and a more preferable upper limit is 0.03%. The lower the P content, the better.

S:0.01%以下(0%を含まない)
Sは、鋼中に含まれる不純物元素で、その含有量が0.01%を超えると鋼中にMnSが多く生成し、MnSが腐食の起点となって全面腐食及び孔食が生じる。このため、Sの含有量を0.01%以下(0%を含まない)とした。S含有量の好ましい上限は0.008%、より好ましい上限は0.005%である。なお、Sの含有量は低ければ低いほどよい。
S: 0.01% or less (excluding 0%)
S is an impurity element contained in the steel. When the content exceeds 0.01%, a large amount of MnS is formed in the steel, and MnS becomes a starting point of corrosion, resulting in overall corrosion and pitting corrosion. Therefore, the S content is set to 0.01% or less (not including 0%). The upper limit with preferable S content is 0.008%, and a more preferable upper limit is 0.005%. The lower the S content, the better.

Ni:0.01〜1.0%
Niは、H2Sを含まない乾湿繰り返し環境での耐全面腐食性を向上させる元素である。Niには、H2S環境において防食性の硫化物皮膜を形成して耐全面腐食性を高める効果や、耐孔食性を向上させる効果もある。これらの効果はNiを0.01%以上含有させることにより得られ、特に、0.05%以上含有させれば一層顕著な効果が得られる。しかし、Niを1%を超えて含有させても前記の各効果が飽和し、コストが嵩むばかりである。したがって、Niの含有量を0.01〜1%とした。なお、Niの好ましい含有量の範囲は0.05〜1%であり、より好ましい範囲は0.1〜1%である。
Ni: 0.01 to 1.0%
Ni is an element that improves the overall corrosion resistance in a wet and dry repeated environment that does not contain H 2 S. Ni also has the effect of improving the overall corrosion resistance by forming a corrosion-resistant sulfide film in an H 2 S environment and the effect of improving the pitting resistance. These effects can be obtained by containing 0.01% or more of Ni, and particularly remarkable effects can be obtained by containing 0.05% or more. However, even if Ni is contained in excess of 1%, the above-described effects are saturated and the cost is increased. Therefore, the Ni content is set to 0.01 to 1%. In addition, the range of preferable content of Ni is 0.05 to 1%, and a more preferable range is 0.1 to 1%.

Cu:0.01〜2%
Cuは、H2Sを含まない乾湿繰り返し環境での耐全面腐食性を向上させる元素であり、この効果はCuを0.01%以上含有させることにより得られ、特に、0.1%以上含有させれば一層顕著な効果が得られる。Cuには、酸性水による乾湿繰り返しの環境での耐全面腐食性を高める効果、H2S存在下で難溶性の硫化物皮膜を形成して耐全面腐食性及び耐孔食性を著しく向上させる効果、更には、S存在下での孔食発生の抑制にも効果がある。これらの効果を得るためには、Cuは0.01%以上の含有量とする必要があり、0.1%以上含有させれば一層確実な効果が得られる。しかし、いずれの場合もCuを2%を超えて含有させてもその効果が飽和し、更に、溶接性の低下も生じる。したがって、Cuの含有量を0.01〜2%とした。なお、Cuの好ましい含有量の範囲は0.1〜2%である。
Cu: 0.01-2%
Cu is an element that improves the general corrosion resistance in a dry and wet repeated environment that does not contain H 2 S, and this effect is obtained by containing Cu in an amount of 0.01% or more, in particular, containing 0.1% or more. By doing so, a more remarkable effect can be obtained. Cu has the effect of enhancing the overall corrosion resistance in repeated wet and dry environments with acidic water, and the effect of significantly improving the overall corrosion resistance and pitting corrosion resistance by forming a sparingly soluble sulfide film in the presence of H 2 S. Furthermore, it is also effective in suppressing the occurrence of pitting corrosion in the presence of S. In order to obtain these effects, Cu needs to be contained in an amount of 0.01% or more. If 0.1% or more is contained, a more reliable effect can be obtained. However, in any case, even if Cu is contained in excess of 2%, the effect is saturated, and further, weldability is reduced. Therefore, the Cu content is set to 0.01 to 2%. In addition, the range of preferable content of Cu is 0.1 to 2%.

Cr:0.1%以下(0%を含まない)
Crは、酸性水による乾湿繰り返しの環境における耐全面腐食性を著しく低下させる。特に、その含有量が0.1%を超えると、上記環境での耐全面腐食性の低下が著しくなる。したがって、Crの含有量を0.1%以下(0%を含まない)とした。Cr含有量の好ましい上限は0.05%である。なお、Crの含有量は低ければ低いほどよい。
Cr: 0.1% or less (excluding 0%)
Cr remarkably reduces the general corrosion resistance in an environment of repeated wet and dry with acidic water. In particular, when the content exceeds 0.1%, the overall corrosion resistance in the environment is significantly reduced. Therefore, the Cr content is set to 0.1% or less (not including 0%). The upper limit with preferable Cr content is 0.05%. In addition, the lower the Cr content, the better.

Al:0.1%以下(0%を含まない)
Alは、酸性水による乾湿繰り返しの環境における耐全面腐食性の著しい劣化を招き、更に、粗大な窒化物を形成して靱性の低下もきたす。特に、その含有量が0.1%を超えると、上記環境での耐全面腐食性の劣化が著しくなり、また、靱性の低下も大きくなる。したがって、Alの含有量を0.1%以下(0%を含まない)とした。Al含有量の好ましい上限は0.08%である。なお、Alの含有量は低ければ低いほどよい。
Al: 0.1% or less (excluding 0%)
Al causes significant deterioration of the general corrosion resistance in an environment of repeated wet and dry with acidic water, and further, coarse nitrides are formed, resulting in a decrease in toughness. In particular, when the content exceeds 0.1%, the overall corrosion resistance in the above environment is significantly deteriorated, and the toughness is greatly reduced. Therefore, the Al content is set to 0.1% or less (not including 0%). The upper limit with preferable Al content is 0.08%. In addition, the lower the content of Al, the better.

N:0.001〜0.01%
Nは、原油が入った環境下でアンモニアとなって溶解し、原油タンク底板孔食部のpH値の低下を抑制することにより耐孔食性を向上させる効果を有する。この効果は、Nを0.001%以上含有することにより得られるが、Nの含有量が0.01%を超えると溶接熱影響部の靱性が劣化する。したがって、Nの含有量を0.001〜0.01%とした。Nの好ましい含有量の範囲は0.001〜0.006%であり、より好ましい範囲は0.001〜0.005%である。
N: 0.001 to 0.01%
N dissolves as ammonia in an environment containing crude oil, and has an effect of improving pitting corrosion resistance by suppressing a decrease in pH value of the bottom plate pitting portion of the crude oil tank. This effect can be obtained by containing 0.001% or more of N. However, if the N content exceeds 0.01%, the toughness of the weld heat affected zone deteriorates. Therefore, the N content is set to 0.001 to 0.01%. A preferable content range of N is 0.001 to 0.006%, and a more preferable range is 0.001 to 0.005%.

O(酸素):0.0001〜0.005%
O(酸素)は、フェライトの生成核となる酸化物を形成して組織を微細化し、溶接熱影響部の靱性を向上させる作用を有する元素であり、この効果を得るためには0.0001%以上含有させる必要がある。しかしながら、過度に含有すると、孔食の起点となりやすい酸化物系非金属介在物を形成して耐食性の低下を招くとともに母材の靱性を劣化させる。特に、Oの含有量が0.005%を超えると耐食性の低下及び母材の靱性劣化が著しくなる。したがって、Oの含有量を0.0001〜0.005%とした。なお、Oの好ましい含有量は、0.0002〜0.005%である
W:0.01〜1%及びMo:0.01〜1%のうちの少なくとも一方
W及びMoは、H2Sを含まない乾湿繰り返し環境での耐全面腐食性を向上させる元素である。W及びMoには、酸性水による乾湿繰り返し環境における耐食性を向上させる効果や、H2S環境において防食性の硫化物皮膜を形成して耐孔食性を向上させる効果がある。これらの効果は、特に、前記した量のNi及びCuとの共存下で、WとMoのうちの少なくとも一方を0.01%以上含有させることにより得られる。しかし、W及びMoの両元素とも、それぞれ、1%を超えて含有させても前記の効果は飽和しコストが嵩むし、溶接性の低下を招く。したがって、W:0.01〜1%及びMo:0.01〜1%のうちの少なくとも一方を含有させることとした。なお、Moを添加しないでWを単独で添加する場合、Wの含有量の好ましい下限は0.05%であり、より好ましい下限は0.1%である。また、Wを添加しないでMoを単独で添加する場合、Moの含有量の好ましい下限は0.05%、より好ましい下限は0.1%である。一方、WとMoを複合添加する場合には、Wの含有量の好ましい下限は0.01%で、より好ましい下限は0.05%であり、また、Moの含有量の好ましい下限は0.01%、より好ましい下限は0.05%である。
O (oxygen): 0.0001 to 0.005%
O (oxygen) is an element that has an action of forming an oxide which becomes a nucleus for forming ferrite to refine the structure and improving the toughness of the heat affected zone. To obtain this effect, 0.0001% It is necessary to contain above. However, when it contains excessively, the oxide type nonmetallic inclusion which tends to become a starting point of pitting corrosion is formed, the corrosion resistance is lowered, and the toughness of the base material is deteriorated. In particular, when the O content exceeds 0.005%, the corrosion resistance decreases and the toughness of the base material deteriorates significantly. Therefore, the content of O is set to 0.0001 to 0.005%. In addition, the preferable content of O is 0.0002 to 0.005% W: 0.01 to 1% and Mo: 0.01 to 1% At least one of W and Mo is H 2 S. It is an element that improves the general corrosion resistance in a dry and wet repeated environment. W and Mo have the effect of improving the corrosion resistance in a wet and dry repeated environment with acidic water, and the effect of improving the pitting resistance by forming a corrosion-resistant sulfide film in an H 2 S environment. In particular, these effects can be obtained by including at least one of W and Mo in an amount of 0.01% or more in the presence of the above-described amounts of Ni and Cu. However, even if both W and Mo elements are contained in amounts exceeding 1%, the above effects are saturated, the cost increases, and the weldability is reduced. Therefore, at least one of W: 0.01 to 1% and Mo: 0.01 to 1% is included. In addition, when adding W independently, without adding Mo, the minimum with preferable W content is 0.05%, and a more preferable minimum is 0.1%. Moreover, when adding Mo independently, without adding W, the preferable minimum of content of Mo is 0.05%, and a more preferable minimum is 0.1%. On the other hand, when W and Mo are added in combination, the preferable lower limit of the W content is 0.01%, the more preferable lower limit is 0.05%, and the preferable lower limit of the Mo content is 0.00%. 01%, and a more preferred lower limit is 0.05%.

したがって、本発明(1)に係る原油タンク用溶接継手の母材を、上述した範囲のCから、W及びMoのうちの少なくとも一方までの元素を含み、残部はFe及び不純物からなる鋼組成を有するものとした。   Therefore, the base material of the welded joint for a crude oil tank according to the present invention (1) includes an element from C in the above range to at least one of W and Mo, with the balance being a steel composition composed of Fe and impurities. It was supposed to have.

なお、本発明(1)における母材は溶接金属との関係で、前記(a)式で表されるfnの値が−0.3〜0.3を満足する必要があるが、このことについては後述する。   In addition, the base material in this invention (1) needs to satisfy the value of fn represented by the said (a) formula -0.3-0.3 in relation to a weld metal, About this Will be described later.

本発明に係る原油タンク用溶接継手の母材には、必要に応じて、Feの一部に代えて、後述する第1群及び第2群のうちの少なくとも1群のうちから選んだ1種以上の元素を任意添加元素として添加し、含有させてもよい。   The base material of the weld joint for a crude oil tank according to the present invention may be one type selected from at least one of a first group and a second group, which will be described later, instead of a part of Fe, if necessary. The above elements may be added and included as optional additional elements.

以下、任意添加元素に関して説明する。   Hereinafter, the optional additive element will be described.

第1群:Ti:0.005〜0.1%、Zr:0.005〜0.2%、Sb:0.01〜0.2%、Sn:0.01〜0.2%、Ca:0.0003〜0.01%及びMg:0.0003〜0.01%
Tiは、原油が入った環境下での耐食性を高める作用を有する。すなわち、Tiは、硫化物(TiS)を優先的に形成することによって腐食の起点となるMnSの生成を抑制し、耐全面腐食性及び耐孔食性を高める作用を有する。Tiには、鋼の強度を高める作用や鋼の靱性を向上させる作用もある。こうした効果を確実に得るには、Tiは0.005%以上の含有量とすることが好ましい。しかし、Tiを0.1%を超えて含有させても前記の効果は飽和しコストが嵩むばかりである。したがって、添加する場合のTiの含有量を0.005〜0.1%とした。なお、添加する場合のTi含有量の下限は0.01%であることが更に好ましい。
First group: Ti: 0.005-0.1%, Zr: 0.005-0.2%, Sb: 0.01-0.2%, Sn: 0.01-0.2%, Ca: 0.0003-0.01% and Mg: 0.0003-0.01%
Ti has the effect | action which improves the corrosion resistance in the environment containing crude oil. In other words, Ti preferentially forms sulfide (TiS), thereby suppressing the generation of MnS as a starting point of corrosion, and has the effect of increasing the overall corrosion resistance and pitting resistance. Ti also has the effect | action which raises the intensity | strength of steel and the effect | action which improves the toughness of steel. In order to surely obtain such an effect, Ti is preferably contained in a content of 0.005% or more. However, even if Ti is contained more than 0.1%, the above effect is saturated and the cost is increased. Therefore, when Ti is added, the content of Ti is set to 0.005 to 0.1%. In addition, it is more preferable that the lower limit of the Ti content when added is 0.01%.

Zrは、原油が入った環境下での耐食性を高める作用を有する。すなわち、Zrは、Tiと同様に硫化物(ZrS)を優先的に形成し、腐食の起点となるMnSの生成を抑制して、耐全面腐食性及び耐孔食性を高める作用を有する。この効果を確実に得るには、Zrは0.005%以上の含有量とすることが好ましい。しかし、Zrを0.2%を超えて含有させると靱性の低下を招く。したがって、添加する場合のZrの含有量を0.005〜0.2%とした。なお、添加する場合のZr含有量の下限は0.01%であることが更に好ましく、0.02%であれば一層好ましい。   Zr has the effect of enhancing the corrosion resistance in an environment containing crude oil. That is, Zr preferentially forms sulfide (ZrS) like Ti, and suppresses the generation of MnS that is the starting point of corrosion, and has the effect of improving overall corrosion resistance and pitting resistance. In order to reliably obtain this effect, the Zr content is preferably 0.005% or more. However, when Zr exceeds 0.2%, toughness is reduced. Therefore, the content of Zr when added is set to 0.005 to 0.2%. In addition, it is more preferable that the lower limit of the Zr content in the case of addition is 0.01%, and it is more preferable if it is 0.02%.

Sbは、原油が入った環境下での耐食性を高める作用を有する。すなわち、Sbは、酸性水による乾湿繰り返し環境での耐全面腐食性を向上させる作用及び孔食部のpH値が低い環境における耐食性を高めることによる耐孔食性の向上作用を有する。こうした効果を確実に得るには、Sbは0.01%以上の含有量とすることが好ましい。しかし、Sbを0.2%を超えて含有させても前記の効果は飽和する。したがって、添加する場合のSbの含有量を0.01〜0.2%とした。なお、添加する場合のSb含有量の下限は0.05%であることが更に好ましい。   Sb has the effect | action which improves the corrosion resistance in the environment containing crude oil. That is, Sb has the effect of improving the general corrosion resistance in a dry and wet repeated environment with acidic water and the effect of improving the pitting corrosion resistance by enhancing the corrosion resistance in an environment where the pH value of the pitting portion is low. In order to reliably obtain such an effect, the Sb content is preferably 0.01% or more. However, the above effect is saturated even if Sb is contained in excess of 0.2%. Therefore, the content of Sb when added is set to 0.01 to 0.2%. In addition, it is more preferable that the lower limit of the Sb content when added is 0.05%.

Snは、原油が入った環境下での耐食性を高める作用を有する。すなわち、Snは、Sbと同様に、酸性水による乾湿繰り返し環境での耐全面腐食性を向上させる作用及び孔食部のpH値が低い環境における耐食性を高めることによる耐孔食性の向上作用を有する。こうした効果を確実に得るには、Snは0.01%以上の含有量とすることが好ましい。しかし、Snを0.2%を超えて含有させても前記の効果は飽和する。したがって、添加する場合のSnの含有量を0.01〜0.2%とした。なお、添加する場合のSn含有量の下限は0.05%であることが更に好ましい。   Sn has the effect | action which improves the corrosion resistance in the environment containing crude oil. That is, Sn, like Sb, has the effect of improving the general corrosion resistance in a dry and wet repeated environment with acidic water and the effect of improving the pitting corrosion resistance by increasing the corrosion resistance in an environment where the pH value of the pitting portion is low. . In order to surely obtain such an effect, it is preferable that Sn has a content of 0.01% or more. However, the effect is saturated even if Sn is contained in excess of 0.2%. Therefore, the content of Sn when added is set to 0.01 to 0.2%. In addition, when adding, the lower limit of Sn content is more preferably 0.05%.

Caは、原油が入った環境下での耐食性を高める作用を有する。すなわち、Caは、腐食反応時に水に溶けてアルカリとなり鋼材界面のpH値の低下を抑制することにより耐食性を向上させる作用があって、低pH環境である原油タンク内の気相部及び底板の孔食部での耐食性向上に効果を有する。この効果を確実に得るには、Caは0.0003%以上の含有量とすることが好ましい。しかし、Caを0.01%を超えて含有させても前記の効果は飽和する。したがって、添加する場合のCaの含有量を0.0003〜0.01%とした。なお、添加する場合のCa含有量の上限は0.006%であることが更に好ましく、0.005%であれば一層好ましい。   Ca has the effect | action which improves the corrosion resistance in the environment containing crude oil. That is, Ca dissolves in water at the time of the corrosion reaction and becomes alkali, and has the effect of improving the corrosion resistance by suppressing the decrease in the pH value of the steel material interface, and the gas phase portion and bottom plate in the crude oil tank which is a low pH environment. Effective in improving corrosion resistance at the pitting portion. In order to reliably obtain this effect, the Ca content is preferably 0.0003% or more. However, the effect is saturated even if Ca is contained in excess of 0.01%. Therefore, when Ca is added, the content of Ca is set to 0.0003 to 0.01%. The upper limit of the Ca content when added is more preferably 0.006%, and even more preferably 0.005%.

Mgは、原油が入った環境下での耐食性を高める作用を有する。すなわち、Mgは、Caと同様に、腐食反応時に水に溶けてアルカリとなり鋼材界面のpH値の低下を抑制することにより耐食性を向上させる作用があって、低pH環境である原油タンク内の気相部及び底板の孔食部での耐食性向上に効果を有する。この効果を確実に得るには、Mgは0.0003%以上の含有量とすることが好ましい。しかし、Mgを0.01%を超えて含有させても前記の効果は飽和する。したがって、添加する場合のMgの含有量を0.0003〜0.01%とした。なお、添加する場合のMg含有量の上限は0.006%であることが更に好ましく、0.005%であれば一層好ましい。   Mg has the effect of enhancing the corrosion resistance in an environment containing crude oil. In other words, Mg, like Ca, dissolves in water during a corrosion reaction and becomes alkali, and has the effect of improving the corrosion resistance by suppressing the decrease in the pH value at the steel interface, so that the gas in the crude oil tank, which is in a low pH environment, is used. Effective in improving corrosion resistance at the pitting portion of the phase portion and the bottom plate. In order to reliably obtain this effect, the Mg content is preferably 0.0003% or more. However, the above effect is saturated even if Mg is contained in excess of 0.01%. Therefore, the content of Mg when added is set to 0.0003 to 0.01%. The upper limit of the Mg content when added is more preferably 0.006%, and even more preferably 0.005%.

なお、上記のTi、Zr、Sb、Sn、Ca及びMgはいずれか1種のみ、又は2種以上の複合で添加することができる。   In addition, said Ti, Zr, Sb, Sn, Ca, and Mg can be added in only 1 type, or 2 or more types of composites.

第2群:Nb:0.005〜0.1%、V:0.005〜0.1%及びB:0.0003〜0.01%
Nbは、鋼の強度を高める作用を有する。この効果を確実に得るには、Nbは0.005%以上の含有量とすることが好ましい。しかし、Nbを0.1%を超えて含有させると靱性の低下を招く。したがって、添加する場合のNbの含有量を0.005〜0.1%とした。なお、添加する場合のNb含有量は0.005〜0.06%であることが更に好ましく、0.005〜0.05%であれば一層好ましい。
Second group: Nb: 0.005-0.1%, V: 0.005-0.1% and B: 0.0003-0.01%
Nb has the effect | action which raises the intensity | strength of steel. In order to reliably obtain this effect, the Nb content is preferably 0.005% or more. However, when Nb exceeds 0.1%, toughness is reduced. Therefore, when Nb is added, the content of Nb is set to 0.005 to 0.1%. When Nb is added, the Nb content is more preferably 0.005 to 0.06%, and further preferably 0.005 to 0.05%.

Vは、鋼の強度を高める作用を有する。この効果を確実に得るには、Vは0.005%以上の含有量とすることが好ましい。しかし、Vを0.1%を超えて含有させると靱性及び溶接性の低下を招く。したがって、添加する場合のVの含有量を0.005〜0.1%とした。なお、添加する場合のVの含有量は0.005〜0.06%であることが更に好ましく、0.005〜0.05%であれば一層好ましい。   V has the effect | action which raises the intensity | strength of steel. To obtain this effect with certainty, V is preferably 0.005% or more. However, when V exceeds 0.1%, toughness and weldability are reduced. Therefore, when V is added, the content of V is set to 0.005 to 0.1%. When V is added, the V content is more preferably 0.005 to 0.06%, and even more preferably 0.005 to 0.05%.

Bは、鋼の強度を高める作用を有する。この効果を確実に得るには、Bは0.0003%以上の含有量とすることが好ましい。しかし、Bを0.01%を超えて含有させると靱性の低下を招く。したがって、添加する場合のBの含有量を0.0003〜0.01%とした。なお、添加する場合のB含有量は0.0003〜0.006%であることが更に好ましく、0.0003〜0.005%であれば一層好ましい。   B has the effect | action which raises the intensity | strength of steel. In order to reliably obtain this effect, it is preferable that B has a content of 0.0003% or more. However, when B exceeds 0.01%, the toughness is reduced. Therefore, when B is added, the content of B is set to 0.0003 to 0.01%. When B is added, the B content is more preferably 0.0003 to 0.006%, and even more preferably 0.0003 to 0.005%.

なお、上記のNb、V及びBはいずれか1種のみ、又は2種以上の複合で添加することができる。   In addition, said Nb, V, and B can be added only with any 1 type or 2 or more types of composite.

上記の理由から、本発明(2)に係る原油タンク用溶接継手の母材の鋼組成を、本発明(1)における原油タンク用溶接継手の母材のFeの一部に代えて、Ti:0.005〜0.1%、Zr:0.005〜0.2%、Sb:0.01〜0.2%、Sn:0.01〜0.2%、Ca:0.0003〜0.01%及びMg:0.0003〜0.01%のうちの1種以上を含有することと規定した。   For the above reasons, the steel composition of the base material of the weld joint for crude oil tanks according to the present invention (2) is replaced with a part of Fe of the base material of the weld joint for crude oil tanks of the present invention (1). 0.005-0.1%, Zr: 0.005-0.2%, Sb: 0.01-0.2%, Sn: 0.01-0.2%, Ca: 0.0003-0. 01% and Mg: specified to contain one or more of 0.0003 to 0.01%.

また、本発明(3)に係る原油タンク用溶接継手の母材の鋼組成を、本発明(1)又は本発明(2)における原油タンク用溶接継手の母材のFeの一部に代えて、Nb:0.005〜0.1%、V:0.005〜0.1%及びB:0.0003〜0.01%のうちの1種以上を含有することと規定した。   Further, the steel composition of the base material of the weld joint for crude oil tank according to the present invention (3) is replaced with a part of Fe of the base material of the weld joint for crude oil tank of the present invention (1) or the present invention (2). Nb: 0.005 to 0.1%, V: 0.005 to 0.1%, and B: 0.0003 to 0.01%.

なお、本発明者らの詳細な実験によって、本発明に係る原油タンク用溶接継手の母材は、下記(b)式で表されるαを0.75以下とすれば原油が入った環境下での耐全面腐食性を一層高めることができ、更に、下記(c)式で表されるβを0.8以下とすれば前記環境での耐孔食性を一層高めることができることが明らかになった。なお、(b)式及び(c)式は実験によって得られた実験式である。
α=(1−0.691×Cu)×(1−0.221×Ni)×(1−0.142×W)×(1−0.148Mo)・・・(b)、
β=(1−0.444×Cu)×(1−0.156×Ni)×(1−0.630×W)×(1−0.178Mo)・・・(c)。
In addition, according to the detailed experiments of the present inventors, the base material of the welded joint for crude oil tanks according to the present invention is an environment in which crude oil enters if α expressed by the following formula (b) is 0.75 or less. It is clear that the overall corrosion resistance in the above environment can be further increased, and further, if β represented by the following formula (c) is 0.8 or less, the pitting corrosion resistance in the above environment can be further increased. It was. The expressions (b) and (c) are empirical expressions obtained by experiments.
α = (1−0.691 × Cu) × (1−0.221 × Ni) × (1−0.142 × W) × (1−0.148Mo) (b),
β = (1−0.444 × Cu) × (1−0.156 × Ni) × (1−0.630 × W) × (1−0.178Mo) (c).

そして、原油タンク用鋼材は、通常、溶接施工によってタンクに組み立てられるが、炭素当量である下記(d)式で表されるCeq*を0.38以下とすれば、良好な溶接性を確保することが可能である。
Ceq*=C+(Mn/6)+(Ni/15)+(Cu/15)+(W/10)+(Cr/5)+(Mo/5)・・・(d)。
And although the steel material for crude oil tanks is normally assembled into a tank by welding construction, if Ceq * represented by the following formula (d) which is a carbon equivalent is 0.38 or less, good weldability is ensured. It is possible.
Ceq * = C + (Mn / 6) + (Ni / 15) + (Cu / 15) + (W / 10) + (Cr / 5) + (Mo / 5) (d).

したがって、本発明(4)に係る原油タンク用溶接継手の母材の鋼組成を、上記(b)式で表されるαが0.75以下、上記(c)式で表されるβが0.8以下及び上記(d)式で表されるCeq*が0.38以下である本発明(1)から本発明(3)までのいずれかに記載のものと規定した。   Therefore, the steel composition of the base material of the welded joint for a crude oil tank according to the present invention (4) has an α represented by the above formula (b) of 0.75 or less and a β represented by the above formula (c) of 0. .8 or less and the Ceq * represented by the above formula (d) is 0.38 or less. The present invention is defined as any one of the present invention (1) to the present invention (3).

(B)溶接金属の成分について
C:0.01 〜0.2%
Cは、母材同様溶接金属としての強度を確保するために必要な元素であり、0.01%以上の含有量が必要である。しかし、0.2%を超えて含有させると溶接金属に高温割れを生じたり溶接金属の靱性が低下する。また、C含有量の増大とともに、酸性水による乾湿繰り返しの環境でカソードとなって腐食を促進するセメンタイトの生成量が増大するとともに溶接性が低下する。特に、Cの含有量が0.2%を超えると、腐食が著しくなるとともに溶接性の低下も著しくなる。このため、Cの含有量を0.01〜0.2%とした。
(B) About the component of a weld metal C: 0.01-0.2%
C is an element necessary for ensuring the strength as a weld metal as well as the base material, and a content of 0.01% or more is necessary. However, if the content exceeds 0.2%, hot cracking occurs in the weld metal or the toughness of the weld metal decreases. In addition, as the C content increases, the amount of cementite that acts as a cathode and promotes corrosion in an environment of repeated wet and dry with acidic water increases and weldability decreases. In particular, when the C content exceeds 0.2%, the corrosion becomes significant and the weldability deteriorates remarkably. For this reason, the C content is set to 0.01 to 0.2%.

Si:0.01〜1%
Siは、脱酸に必要な元素であり、十分な脱酸効果を得るためには0.01%以上含有させる必要がある。しかし、1%を超えて含有させると溶接金属の靱性が損なわれる。このため、Siの含有量を0.01〜1%とした。Siの好ましい含有量の範囲は0.01〜0.8%であり、より好ましい範囲は0.01〜0.5%である。
Si: 0.01 to 1%
Si is an element necessary for deoxidation, and in order to obtain a sufficient deoxidation effect, it is necessary to contain 0.01% or more. However, if the content exceeds 1%, the toughness of the weld metal is impaired. Therefore, the Si content is set to 0.01 to 1%. The range of preferable content of Si is 0.01 to 0.8%, and the more preferable range is 0.01 to 0.5%.

Mn:0.2 〜2%
Mnは、低コストで溶接金属の強度を高める作用を有する元素であり、この効果を得るためには0.2%以上の含有量が必要である。しかし、2%を超えて含有させると溶接金属の靱性が劣化する。このため、Mnの含有量を0.2〜2%とした。Mnの好ましい含有量の範囲は0.5〜1.8%であり、より好ましい範囲は0.6〜1.5%である。
Mn: 0.2 to 2%
Mn is an element having an effect of increasing the strength of the weld metal at a low cost, and a content of 0.2% or more is necessary to obtain this effect. However, if the content exceeds 2%, the toughness of the weld metal deteriorates. For this reason, the Mn content is set to 0.2 to 2%. The range of preferable content of Mn is 0.5 to 1.8%, and the more preferable range is 0.6 to 1.5%.

P:0.03%以下(0%を含まない)
Pは、鋼中に含まれる不純物元素で、溶接金属に高温割れを生じさせる。特に、その含有量が0.03%を超えると、溶接金属における高温割れ発生の割合が著しく高くなる。このため、Pの含有量を0.03%以下(0%を含まない)とした。なお、Pは溶接金属に高温割れを生じさせる一方で原油タンク内の耐全面腐食性及び耐孔食性を向上させる作用を有するので、溶接金属における高温割れが避けられる場合には、これら耐食性を高めるために0.005%以上を含有させてもよい。Pの含有量の好ましい上限は0.025%で、より好ましい上限は0.02%である。なお、溶接金属においても、Pの含有量は低ければ低いほどよい。
P: 0.03% or less (excluding 0%)
P is an impurity element contained in steel and causes hot cracking in the weld metal. In particular, when the content exceeds 0.03%, the rate of occurrence of hot cracks in the weld metal is significantly increased. Therefore, the P content is set to 0.03% or less (excluding 0%). In addition, P has the effect of improving the overall corrosion resistance and pitting corrosion resistance in the crude oil tank while causing hot cracks in the weld metal, and therefore, when hot cracks in the weld metal can be avoided, these corrosion resistances are increased. Therefore, 0.005% or more may be contained. The upper limit with preferable P content is 0.025%, and a more preferable upper limit is 0.02%. Also in the weld metal, the lower the P content, the better.

S:0.01%以下(0%を含まない)
Sは、鋼中に含まれる不純物元素で、その含有量が0.01%を超えると鋼中にMnSが多く生成し、溶接金属においてもMnSが腐食の起点となって全面腐食及び孔食が生じる。このため、Sの含有量を0.01%以下(0%を含まない)とした。S含有量の好ましい上限は0.008%、より好ましい上限は0.005%である。なお、溶接金属においても、Sの含有量は低ければ低いほどよい。
S: 0.01% or less (excluding 0%)
S is an impurity element contained in steel, and if its content exceeds 0.01%, a large amount of MnS is produced in the steel, and MnS also causes corrosion and pitting corrosion in the weld metal as a starting point of corrosion. Arise. Therefore, the S content is set to 0.01% or less (not including 0%). The upper limit with preferable S content is 0.008%, and a more preferable upper limit is 0.005%. Also in the weld metal, the lower the S content, the better.

Ni:0.01〜1.0%
Niは、溶接金属においても、H2Sを含まない乾湿繰り返し環境での耐全面腐食性を向上させる元素である。Niには、湿潤H2S環境において防食性の硫化物皮膜を形成して耐全面腐食性を高める効果や、耐孔食性を向上させる効果もある。これらの効果は溶接金属中にNiを0.01%以上含有させることにより得られ、特に、0.05%以上含有させれば一層顕著な効果が得られる。しかし、Niを1%を超えて含有させても前記の各効果が飽和し、コストが嵩むばかりである。したがって、Niの含有量を0.01〜1%とした。Niの好ましい含有量の範囲は0.05〜1%であり、より好ましい範囲は0.1〜1%である。
Ni: 0.01 to 1.0%
Ni is an element that improves the general corrosion resistance in a wet and dry repeated environment that does not contain H 2 S even in a weld metal. Ni also has the effect of improving the overall corrosion resistance by forming a corrosion-resistant sulfide film in a wet H 2 S environment and the effect of improving the pitting resistance. These effects can be obtained by containing 0.01% or more of Ni in the weld metal, and more particularly remarkable effects can be obtained by containing 0.05% or more. However, even if Ni is contained in excess of 1%, the above-described effects are saturated and the cost is increased. Therefore, the Ni content is set to 0.01 to 1%. The range of preferable content of Ni is 0.05 to 1%, and the more preferable range is 0.1 to 1%.

Cu:0.01〜1%
Cuは、溶接金属においても、H2Sを含まない乾湿繰り返し環境での耐全面腐食性を向上させる元素であり、この効果はCuを0.01%以上含有させることにより得られ、特に、0.1%以上含有させれば一層顕著な効果が得られる。Cuには、酸性水による乾湿繰り返しの環境での耐全面腐食性を高める効果、H2S存在下で難溶性の硫化物皮膜を形成して耐全面腐食性及び耐孔食性を著しく向上させる効果、更には、S存在下での孔食発生の抑制にも効果がある。これらの効果を得るためには、Cuは0.01%以上の含有量とする必要があり、0.1%以上含有させれば一層確実な効果が得られる。しかし、いずれの場合もCuを1%を超えて含有させてもその効果が飽和し、更に、溶接金属における高温割れ発生の割合が著しく高くなる。したがって、Cuの含有量を0.01〜1%とした。なお、Cuの好ましい含有量の範囲は0.1〜1%である。
Cu: 0.01 to 1%
Cu is an element that improves the overall corrosion resistance in a wet and dry repeated environment that does not contain H 2 S even in a weld metal, and this effect is obtained by containing 0.01% or more of Cu. If the content is 1% or more, a more remarkable effect can be obtained. Cu has the effect of enhancing the overall corrosion resistance in repeated wet and dry environments with acidic water, and the effect of significantly improving the overall corrosion resistance and pitting corrosion resistance by forming a sparingly soluble sulfide film in the presence of H 2 S. Furthermore, it is also effective in suppressing the occurrence of pitting corrosion in the presence of S. In order to obtain these effects, Cu needs to be contained in an amount of 0.01% or more. If 0.1% or more is contained, a more reliable effect can be obtained. However, in any case, even if Cu is contained in excess of 1%, the effect is saturated, and the rate of occurrence of hot cracks in the weld metal is remarkably increased. Therefore, the Cu content is set to 0.01 to 1%. In addition, the range of preferable content of Cu is 0.1 to 1%.

Cr:0.5%以下(0%を含まない)
Crは、溶接金属においても、H2Sを含む乾湿繰り返し環境、すなわち、酸性水による乾湿繰り返しの環境における耐全面腐食性を著しく低下させる。特に、溶接金属においてはその組織形態から、Crの含有量が0.5%を超えると、上記環境での耐全面腐食性の低下が著しくなる。したがって、Crの含有量を0.5%以下(0%を含まない)とした。Cr含有量の好ましい上限は0.2%である。なお、溶接金属においても、Crの含有量は低ければ低いほどよい。
Cr: 0.5% or less (excluding 0%)
Even in the weld metal, Cr significantly lowers the general corrosion resistance in a wet and dry repeated environment containing H 2 S, that is, in an environment of repeated wet and dry with acidic water. In particular, in a weld metal, when the Cr content exceeds 0.5% due to the structure of the weld metal, the overall corrosion resistance in the environment is significantly reduced. Therefore, the Cr content is 0.5% or less (excluding 0%). The upper limit with preferable Cr content is 0.2%. Also in the weld metal, the lower the Cr content, the better.

Nb:0.07%以下(0%を含まない)
Nbは、母材に含まれない場合でも溶接材料から溶接金属に混入してくる元素であり、溶接金属の強度を高める作用を有する。この効果を確実に得るには、溶接金属におけるNbは0.003%以上の含有量とすることが好ましい。しかし、Nbの含有量が0.07%を超えると、溶接金属の靱性が劣化する。したがって、溶接金属におけるNbの含有量を0.07%以下(0%を含まない)とした。溶接金属におけるNbの好ましい含有量の範囲は0.003〜0.07%で、より好ましい範囲は0.003〜0.06%であり、極めて好ましい範囲は0.003〜0.05%である。
Nb: 0.07% or less (excluding 0%)
Nb is an element mixed into the weld metal from the welding material even when it is not included in the base material, and has an effect of increasing the strength of the weld metal. In order to reliably obtain this effect, the Nb content in the weld metal is preferably 0.003% or more. However, if the Nb content exceeds 0.07%, the toughness of the weld metal deteriorates. Therefore, the Nb content in the weld metal is set to 0.07% or less (excluding 0%). The range of the preferable content of Nb in the weld metal is 0.003 to 0.07%, the more preferable range is 0.003 to 0.06%, and the very preferable range is 0.003 to 0.05%. .

V:0.07%以下(0%を含まない)
Vは、母材に含まれない場合でも溶接材料から溶接金属に混入してくる元素であり、溶接金属の強度を高める作用を有する。この効果を確実に得るには、溶接金属におけるVは0.005%以上の含有量とすることが好ましい。しかし、Vの含有量が0.07%を超えると、溶接金属の靱性が劣化するとともに溶接性の低下をきたす。したがって、溶接金属におけるVの含有量を0.07%以下(0%を含まない)とした。溶接金属におけるVの好ましい含有量の範囲は0.005〜0.07%で、より好ましい範囲は0.005〜0.06%であり、極めて好ましい範囲は0.005〜0.05%である。
V: 0.07% or less (excluding 0%)
V is an element mixed into the weld metal from the welding material even when it is not contained in the base material, and has an effect of increasing the strength of the weld metal. In order to reliably obtain this effect, the V content in the weld metal is preferably 0.005% or more. However, if the V content exceeds 0.07%, the toughness of the weld metal deteriorates and the weldability decreases. Therefore, the V content in the weld metal is set to 0.07% or less (not including 0%). The range of the preferable content of V in the weld metal is 0.005 to 0.07%, the more preferable range is 0.005 to 0.06%, and the very preferable range is 0.005 to 0.05%. .

Ti:0.07%以下(0%を含まない)
Tiは、母材に含まれない場合でも溶接材料から溶接金属に混入してくる元素である。すなわち、Tiは溶接金属において脱酸剤として作用するため溶接ワイヤ中に添加されたものが溶接金属中に入る。そして、溶接金属中のTiは、溶接金属の組織を微細化する作用や組織微細化を通じて溶接金属の靱性を向上させる作用を有する。更に、TiSを形成することによって腐食の起点となるMnSの生成を抑制し、原油が入った環境下における溶接金属の耐全面腐食性及び耐孔食性を高める作用もある。これらの効果を確実に得るには、溶接金属におけるTiは0.005%以上の含有量とすることが好ましい。しかし、溶接金属にTiを0.07%を超えて含有させても前記の効果は飽和しコストが嵩む。したがって、溶接金属におけるTiの含有量を0.07%以下(0%を含まない)とした。溶接金属におけるTi含有量の下限は0.01%であることが更に好ましく、0.015%であれば一層好ましい。
Ti: 0.07% or less (excluding 0%)
Ti is an element mixed into the weld metal from the welding material even when not contained in the base material. That is, since Ti acts as a deoxidizer in the weld metal, what is added to the weld wire enters the weld metal. And Ti in a weld metal has the effect | action which improves the toughness of a weld metal through the effect | action which refines | miniaturizes the structure | tissue of weld metal, or refinement | miniaturization of a structure | tissue. Further, the formation of TiS suppresses the generation of MnS, which is the starting point of corrosion, and has the effect of increasing the overall corrosion resistance and pitting corrosion resistance of the weld metal in an environment containing crude oil. In order to reliably obtain these effects, it is preferable that Ti in the weld metal has a content of 0.005% or more. However, even if Ti is contained in the weld metal in excess of 0.07%, the above effect is saturated and the cost increases. Therefore, the Ti content in the weld metal is set to 0.07% or less (not including 0%). The lower limit of the Ti content in the weld metal is more preferably 0.01%, and even more preferably 0.015%.

B:0.005%以下(0%を含まない)
Bは、母材に含まれない場合でも溶接材料から溶接金属に混入してくる元素であり、溶接金属の焼入れ性を高める作用を有する。この効果を確実に得るには、溶接金属におけるBは0.0003%以上の含有量とすることが好ましい。しかし、Bの含有量が0.005%を超えると、溶接金属における高温割れ発生の割合が著しく高くなる。したがって、溶接金属におけるBの含有量を0.005%以下(0%を含まない)とした。溶接金属におけるBの好ましい含有量の範囲は0.0003〜0.005%で、より好ましい範囲は0.0003〜0.004%であり、極めて好ましい範囲は0.0003〜0.0035%である。
B: 0.005% or less (excluding 0%)
B is an element mixed into the weld metal from the welding material even when it is not contained in the base material, and has the effect of improving the hardenability of the weld metal. In order to reliably obtain this effect, the B content in the weld metal is preferably 0.0003% or more. However, if the content of B exceeds 0.005%, the rate of occurrence of hot cracks in the weld metal is significantly increased. Therefore, the B content in the weld metal is set to 0.005% or less (not including 0%). The range of the preferable content of B in the weld metal is 0.0003 to 0.005%, the more preferable range is 0.0003 to 0.004%, and the very preferable range is 0.0003 to 0.0035%. .

Al:0.05%以下(0%を含まない)
Alは、溶接金属においても、酸性水による乾湿繰り返しの環境における耐全面腐食性の著しい劣化を招き、特に、その含有量が0.1%を超えると、上記環境での耐全面腐食性の劣化が著しくなる。したがって、Alの含有量を0.05%以下(0%を含まない)とした。Al含有量の好ましい上限は0.01%である。なお、溶接金属におけるAlの含有量は低ければ低いほどよい。
Al: 0.05% or less (excluding 0%)
Al also causes a significant deterioration of the general corrosion resistance in a wet and dry environment with acid water even in a weld metal. Particularly, when its content exceeds 0.1%, the deterioration of the general corrosion resistance in the above environment is caused. Becomes remarkable. Therefore, the Al content is set to 0.05% or less (not including 0%). The upper limit with preferable Al content is 0.01%. In addition, the lower the content of Al in the weld metal, the better.

N:0.001〜0.03%
Nは、溶接金属においても、原油が入った環境下でアンモニアとなって溶解し、原油タンク底板孔食部のpH値の低下を抑制することにより耐孔食性を向上させる効果を有する。この効果は、Nを0.001%以上含有することにより得られるが、Nの含有量が0.03%を超えると、溶接金属の靱性が劣化する。したがって、Nの含有量を0.001〜0.03%とした。Nの好ましい含有量の範囲は0.001〜0.006%であり、より好ましい範囲は0.001〜0.005%である。
N: 0.001 to 0.03%
N also has an effect of improving pitting corrosion resistance by dissolving as ammonia in an environment containing crude oil and suppressing a decrease in pH value of the bottom plate pitting portion of the crude oil tank even in a weld metal. This effect is obtained by containing 0.001% or more of N, but when the N content exceeds 0.03%, the toughness of the weld metal deteriorates. Therefore, the N content is set to 0.001 to 0.03%. A preferable content range of N is 0.001 to 0.006%, and a more preferable range is 0.001 to 0.005%.

O(酸素):0.001〜0.05%
O(酸素)は、フェライトの生成核となる酸化物を形成して組織を微細化し、溶接金属の靱性を向上させる作用を有する。この効果を得るためには、溶接金属におけるOの含有量を0.001%以上とする必要がある。しかしながら、過度に含有すると、孔食の起点となりやすい酸化物系非金属介在物を形成して耐食性の低下を招くとともに却って溶接金属の靱性を劣化させる。特に、溶接金属におけるOの含有量が0.05%を超えると、溶接金属における耐食性と靱性の低下が著しくなる。したがって、Oの含有量を0.001〜0.05%とした。なお、Oの好ましい含有量は、0.002〜0.05%である
W:0.01〜1%及びMo:0.01〜1%のうちの少なくとも一方
W及びMoは、溶接金属においても、H2Sを含まない乾湿繰り返し環境での耐全面腐食性を向上させる元素であり、酸性水による乾湿繰り返し環境における耐食性を向上させる効果や、H2S環境において防食性の硫化物皮膜を形成して耐孔食性を向上させる効果を有する。Moには、片面サブマージアーク溶接などの大入熱溶接の場合に、溶接金属の組織を改善してその強度及び靱性を高める効果もある。上記の各効果は、特に、前記した量のNi及びCuとの共存下で、WとMoのうちの少なくとも一方を0.01%以上含有させることにより得られる。しかし、W及びMoの両元素とも、それぞれ、1%を超えて含有させても前記の効果は飽和しコストが嵩むだけでなく、溶接性の低下が生じる。したがって、W:0.01〜1%及びMo:0.01〜1%のうちの少なくとも一方を含有させることとした。なお、溶接金属がWを単独で含む場合におけるWの含有量の好ましい下限は0.05%である。また、溶接金属がMoを単独で含む場合におけるMoの含有量の好ましい下限は0.1%、より好ましい下限は0.15%である。一方、溶接金属がWとMoを複合して含む場合のW含有量の好ましい下限は0.05%であり、また、Mo含有量の好ましい下限は0.05%である。
O (oxygen): 0.001 to 0.05%
O (oxygen) has an effect of forming an oxide serving as a nucleus for forming ferrite to refine the structure and improve the toughness of the weld metal. In order to obtain this effect, the content of O in the weld metal needs to be 0.001% or more. However, if excessively contained, oxide-based non-metallic inclusions that tend to be the starting point of pitting corrosion are formed, leading to a decrease in corrosion resistance, and on the contrary, the toughness of the weld metal is deteriorated. In particular, when the O content in the weld metal exceeds 0.05%, the corrosion resistance and toughness of the weld metal are significantly reduced. Therefore, the content of O is set to 0.001 to 0.05%. In addition, the preferable content of O is 0.002 to 0.05% W: 0.01 to 1% and Mo: 0.01 to 1% At least one of W and Mo is also in the weld metal. It is an element that improves the general corrosion resistance in dry and wet repeated environments that do not contain H 2 S, and has the effect of improving the corrosion resistance in dry and wet repeated environments with acidic water, and forms an anti-corrosive sulfide film in H 2 S environments. And has the effect of improving pitting corrosion resistance. In the case of high heat input welding such as single-sided submerged arc welding, Mo also has an effect of improving the structure of the weld metal and increasing its strength and toughness. Each of the above effects can be obtained by containing at least one of W and Mo in an amount of 0.01% or more, particularly in the presence of the above amounts of Ni and Cu. However, even if both W and Mo elements are contained in excess of 1%, the above effects are saturated and the cost is increased, and the weldability is deteriorated. Therefore, at least one of W: 0.01 to 1% and Mo: 0.01 to 1% is included. In addition, when a weld metal contains W independently, the minimum with preferable content of W is 0.05%. Moreover, when a weld metal contains Mo independently, the preferable minimum of content of Mo is 0.1%, and a more preferable minimum is 0.15%. On the other hand, the preferable lower limit of the W content when the weld metal contains W and Mo in combination is 0.05%, and the preferable lower limit of the Mo content is 0.05%.

したがって、本発明(1)に係る原油タンク用溶接継手の溶接金属を、上述した範囲のCから、W及びMoのうちの少なくとも一方までの元素を含有する鋼からなることと規定した。   Therefore, the weld metal of the crude oil tank weld joint according to the present invention (1) is defined as being made of steel containing an element from C in the above-described range to at least one of W and Mo.

なお、本発明(1)における溶接金属は母材との関係で、前記(a)式で表されるfnの値が−0.3〜0.3を満足する必要があるが、このことについては後述する。   Note that the weld metal in the present invention (1) needs to satisfy the value of fn represented by the above formula (a) in the range of −0.3 to 0.3 in relation to the base material. Will be described later.

溶接金属における上述のCから、W及びMoのうちの少なくとも一方までの元素の含有量は、母材のCから、W及びMoのうちの少なくとも一方までの元素の含有量と、溶接材料のCから、W及びMoのうちの少なくとも一方までの元素の含有量を勘案することによって、経験的に制御することができる。   The content of the element from the above-mentioned C to at least one of W and Mo in the weld metal is the content of the element from C to at least one of W and Mo and the C of the welding material. Therefore, it can be controlled empirically by taking into account the content of at least one of W and Mo.

また、常用される溶接材料を用いて溶接する限り、溶接金属は上述した量のCから、W及びMoのうちの少なくとも一方までの元素を含む鋼からなりさえすればよく、他の元素については特に規定する必要はない。   In addition, as long as welding is performed using a commonly used welding material, the weld metal only needs to be made of steel containing an element from the above-mentioned amount of C to at least one of W and Mo. For other elements, There is no need to specify in particular.

(C)母材と溶接金属との成分差について
原油が入った環境下で、原油タンク用溶接継手に十分な耐食性を確保させるためには、△Cu、△Ni、△W及び△Moを、それぞれ、Cu、Ni、W及びMoの、溶接金属中の含有量から母材中の含有量を引いた値として、下記(a)式で表されるfnの値が−0.3〜0.3を満足する必要がある。
fn=△Cu+0.3×△Ni+0.2×△W+1.3×△Mo・・・(a)。
(C) About the component difference between the base metal and the weld metal In order to ensure sufficient corrosion resistance in the weld joint for crude oil tanks in an environment containing crude oil, ΔCu, ΔNi, ΔW and ΔMo are: As values obtained by subtracting the content in the base metal from the content in the weld metal of Cu, Ni, W and Mo, the value of fn represented by the following formula (a) is −0.3 to 0. It is necessary to satisfy 3.
fn = ΔCu + 0.3 × ΔNi + 0.2 × ΔW + 1.3 × ΔMo (a).

以下、上記の事柄に関して詳しく説明する。   Hereinafter, the above matters will be described in detail.

原油タンク用溶接継手の母材及び溶接金属が、それぞれ、前記(A)項で述べた母材の成分及び(B)項で述べた溶接金属の成分を有する場合であっても、成分の母材中含有量と溶接金属中含有量との差が大きければ母材の耐食性と溶接金属の耐食性に大きな差が生じ、局部電池を形成して母材又は溶接金属の腐食が著しく進むことが想定される。しかし、溶接金属の成分組成は、溶接法や溶接条件などによって変化するため、母材の成分と溶接金属の成分とを全く同一にすることは困難である。   Even when the base metal and the weld metal of the weld joint for crude oil tank have the base metal component described in the above section (A) and the weld metal component described in the above section (B), respectively, If the difference between the content in the material and the content in the weld metal is large, there will be a large difference in the corrosion resistance of the base metal and the weld metal, and it is assumed that the corrosion of the base material or the weld metal will progress significantly by forming a local battery. Is done. However, since the component composition of the weld metal varies depending on the welding method, welding conditions, and the like, it is difficult to make the base metal component and the weld metal component exactly the same.

そこで、本発明者らは、原油タンク用溶接継手に十分な耐食性を確保させるために、母材及び溶接金属を、それぞれ、前記(A)項で述べた母材の成分及び(B)項で述べた溶接金属の成分としたうえで、溶接継手における成分の母材中含有量と溶接金属中含有量との差が、原油が入った環境下で溶接継手の腐食挙動に及ぼす影響について詳細な検討を行った。   Therefore, in order to ensure sufficient corrosion resistance for the weld joint for crude oil tanks, the present inventors set the base material and the weld metal in the component of the base material described in the section (A) and the section (B), respectively. The effect of the difference between the base metal content and the weld metal content of welded joints on the corrosion behavior of welded joints in an environment containing crude oil is described in detail. Study was carried out.

その結果、Cu、Ni、W及びMoの母材中含有量と溶接金属中含有量との差が、上記環境下での溶接継手の腐食挙動に大きな影響を及ぼすことが明らかになり、回帰分析を行った結果、前記(a)式が得られた。   As a result, it became clear that the difference between the Cu, Ni, W and Mo content in the base metal and the content in the weld metal has a significant effect on the corrosion behavior of the welded joint in the above environment. As a result of the above, the equation (a) was obtained.

図1は、前記(a)式で表されるfnの値が、溶接金属の腐食速度と母材の腐食速度の比に及ぼす影響を示す図である。なお、図1では、「溶接金属の腐食速度と母材の腐食速度の比」を「腐食速度比(溶金/母材)」と表記した。   FIG. 1 is a diagram showing the influence of the value of fn represented by the above equation (a) on the ratio between the corrosion rate of the weld metal and the corrosion rate of the base metal. In FIG. 1, the “ratio between the corrosion rate of the weld metal and the corrosion rate of the base metal” is expressed as “corrosion rate ratio (molten metal / base metal)”.

(a)式で表されるfnの値は、「溶接金属の腐食速度と母材の腐食速度の比」と直線関係にあり、fnの値が−0.3より小さい場合には、溶接金属の耐食性が不足するために溶接金属側が選択的に腐食して、「溶接金属の腐食速度と母材の腐食速度の比」は大きな値となる。一方、fnの値が0.3より大きい場合には、母材の耐食性が不足するために母材側が選択的に腐食して、「溶接金属の腐食速度と母材の腐食速度の比」は小さな値となる。このいずれの場合にも、溶接継手の耐食性としては不十分である。   The value of fn expressed by equation (a) is linearly related to the “ratio of the corrosion rate of the weld metal to the corrosion rate of the base metal”, and when the value of fn is less than −0.3, the weld metal Since the corrosion resistance of the weld metal is insufficient, the weld metal side is selectively corroded, and the “ratio between the corrosion rate of the weld metal and the corrosion rate of the base metal” becomes a large value. On the other hand, if the value of fn is larger than 0.3, the base metal side is selectively corroded because the base metal has insufficient corrosion resistance, and the “ratio of the corrosion rate of the weld metal to the base metal corrosion rate” is Small value. In either case, the corrosion resistance of the welded joint is insufficient.

これに対して、fnの値が−0.3〜0.3の範囲の場合には、母材と溶接金属の耐食性の差が小さくなって、選択腐食を防止することができる。   On the other hand, when the value of fn is in the range of −0.3 to 0.3, the difference in corrosion resistance between the base material and the weld metal is reduced, and selective corrosion can be prevented.

溶接継手が溶接金属及び母材のいずれにもWを含まない場合には、前記(a)式で表されるfn中の「△W」が0となるため、fnは、「fn=△Cu+0.3×△Ni+1.3×△Mo」となり、また、溶接金属及び母材のいずれにもMoを含まない場合には、前記(a)式で表されるfn中の「△Mo」が0となるため、fnは、「fn=△Cu+0.3×△Ni+0.2×△W」となるが、式の技術的意味づけとしては同じである。   When the welded joint does not contain W in either the weld metal or the base metal, “ΔW” in fn represented by the above equation (a) is 0, so that fn is “fn = ΔCu + 0”. .3 × ΔNi + 1.3 × ΔMo ”, and when neither the weld metal nor the base metal contains Mo,“ ΔMo ”in fn represented by the formula (a) is 0. Therefore, fn becomes “fn = ΔCu + 0.3 × ΔNi + 0.2 × ΔW”, but the technical meaning of the equation is the same.

上述のことから、本発明(1)に係る原油タンク用溶接継手は、前記(a)式で表されるfnの値が−0.3〜0.3を満足するものとした。   From the above, in the welded joint for crude oil tanks according to the present invention (1), the value of fn represented by the above formula (a) satisfies −0.3 to 0.3.

なお、本発明者らの検討により、溶接金属中のSi含有量が母材中のSi含有量より少ない場合にも、選択腐食が抑制されることが明らかになった。したがって、本発明に係る原油タンク用溶接継手は、選択腐食防止効果をより一層高めるために、「△Si<0」を満たすようにするのがよい。上記の△Siは、溶接金属中のSi含有量から母材中のSi含有量を引いた値を指す。   In addition, it became clear by examination of the present inventors that selective corrosion is suppressed also when Si content in a weld metal is less than Si content in a base material. Therefore, the crude oil tank weld joint according to the present invention should satisfy “ΔSi <0” in order to further enhance the selective corrosion prevention effect. Said (DELTA) Si points out the value which subtracted Si content in a base material from Si content in a weld metal.

先に(B)項で述べたとおり、本発明に係る原油タンク用溶接継手の溶接金属におけるCから、W及びMoのうちの少なくとも一方までの元素の含有量は、母材のCから、W及びMoのうちの少なくとも一方までの元素の含有量と、溶接材料のCから、W及びMoのうちの少なくとも一方までの元素の含有量を勘案することによって、経験的に制御することができる。   As described above in the section (B), the content of elements from C to at least one of W and Mo in the weld metal of the weld joint for crude oil tanks according to the present invention is from C to W of the base material. It can be controlled empirically by taking into account the content of the element up to at least one of Mo and Mo and the content of the element from C in the welding material to at least one of W and Mo.

そして、本(C)項における上記fnの値を満足する原油タンク用溶接継手は、溶接ワイヤの組成や組合せを適宜調節して溶接を行うことで得られ、また、サブマージアーク溶接以外の溶接、例えば、炭酸ガスアーク溶接などであっても、溶接材料と溶接条件を適宜選択することによって得られる。具体的には、例えば、前記(A)項で述べた成分組成を有する母材に対するCu、Ni、W及びMoの含有量の差が1%以内であるワイヤを用いて、入熱が5〜500kJ/cm、溶接速度が5〜150cm/分の条件で溶接を行うことによって、前記fnの値を満足する原油タンク用溶接継手を得ることができる。   And the welded joint for crude oil tanks satisfying the value of fn in the present (C) section is obtained by performing welding by appropriately adjusting the composition and combination of welding wires, and welding other than submerged arc welding, For example, carbon dioxide arc welding can be obtained by appropriately selecting a welding material and welding conditions. Specifically, for example, using a wire in which the difference in content of Cu, Ni, W and Mo with respect to the base material having the component composition described in the section (A) is within 1%, the heat input is 5 to 5%. By performing welding under conditions of 500 kJ / cm and a welding speed of 5 to 150 cm / min, a weld joint for a crude oil tank that satisfies the value of fn can be obtained.

また、上記△Siの値を満足する原油タンク用溶接継手も、例えば、前記(A)項で述べた成分組成を有する母材に対するSiの含有量の差が1%以内であるワイヤを用いて、入熱が5〜500kJ/cm、溶接速度が5〜150cm/分の条件で溶接を行うことによって得ることができる。   Moreover, the welded joint for crude oil tanks satisfying the value of ΔSi also uses, for example, a wire in which the difference in Si content with respect to the base material having the component composition described in the item (A) is within 1%. The heat input is 5 to 500 kJ / cm and the welding speed is 5 to 150 cm / min.

以上に説明した本発明に係る原油タンク用溶接継手は、そのままの状態で使用しても原油が入った環境下で良好な耐食性を示す。しかし、その表面に防食処理を施した場合には、すなわち、有機樹脂や金属からなる防食被膜で覆った場合には、耐食性がより一段と向上する。   The above-described welded joint for a crude oil tank according to the present invention exhibits good corrosion resistance in an environment containing crude oil even when used as it is. However, when the surface is subjected to anticorrosion treatment, that is, when it is covered with an anticorrosion coating made of an organic resin or metal, the corrosion resistance is further improved.

このため、本発明(5)に係る原油タンク用溶接継手は、本発明(1)から本発明(4)までのいずれかの溶接継手において、少なくとも一部の面に防食処理が施されたものと規定した。   For this reason, the welded joint for crude oil tanks according to the present invention (5) is a welded joint according to any one of the present invention (1) to the present invention (4), wherein at least a part of the surface is subjected to anticorrosion treatment. Stipulated.

ここで、上述の有機樹脂からなる防食被膜としては、ビニルブチラール系、エポキシ系、ウレタン系、フタル酸系等の樹脂被膜を挙げることができ、また、金属からなる防食被膜としては、ZnやAl等のメッキ被膜や溶射被膜を挙げることができる。なお、上記の防食被膜で覆う防食処理は通常の方法で行えばよい。   Here, examples of the anticorrosion coating made of the organic resin include vinyl butyral, epoxy, urethane, and phthalic acid resin coatings, and examples of the anticorrosion coating made of metal include Zn and Al. Examples thereof include a plating coating and a thermal spray coating. In addition, what is necessary is just to perform the anticorrosion process covered with said anticorrosion film by a normal method.

本発明(1)から本発明(4)までのいずれかの原油タンク用溶接継手を用いた原油タンクは、原油が入った環境下での耐食性に優れ、また、本発明(5)の原油タンク用溶接継手を用いた原油タンクは、原油が入った環境下での耐食性により一層優れる。   The crude oil tank using the weld joint for a crude oil tank according to any one of the present invention (1) to the present invention (4) has excellent corrosion resistance in an environment containing crude oil, and the crude oil tank of the present invention (5) Crude oil tanks using welded joints are even more excellent in corrosion resistance in environments containing crude oil.

したがって、本発明(6)に係る原油タンクは、本発明(1)から本発明(5)までのいずれかの原油タンク用溶接継手を用いたものと規定した。   Therefore, the crude oil tank according to the present invention (6) is defined as using any of the weld joints for crude oil tanks of the present invention (1) to the present invention (5).

以下、実施例により本発明を更に詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

表1に示す化学組成を有する鋼A〜Qを真空溶解炉を用いて溶製して50kg鋼塊とした後、通常の方法で熱間鍛造して厚さが120mmのブロックを作製した。   Steels A to Q having the chemical composition shown in Table 1 were melted using a vacuum melting furnace to form a 50 kg steel ingot, and then hot forged by a normal method to produce a block having a thickness of 120 mm.

Figure 0004243863
Figure 0004243863

上記のようにして得た厚さ120mmのブロックを、1150℃で2時間加熱した後、仕上げ温度が750℃となるように熱間圧延し、室温まで大気中で放冷して厚さ20mmの鋼板を作製した。   The 120 mm thick block obtained as described above was heated at 1150 ° C. for 2 hours, then hot-rolled so that the finishing temperature was 750 ° C., allowed to cool to room temperature in the air, and then 20 mm thick. A steel plate was produced.

次いで、これらの鋼板を母材として、表2に示す条件で手溶接又は「FCB(Flux Cu Backing)」法によって溶接継手を作製した。すなわち、上記の鋼板について、図2又は図3に示す開先加工を施し、図2に示す開先形状を施した鋼板は手溶接を行って、また、図3に示す開先形状を施した鋼板はFCB法によって、溶接継手を作製した。   Next, using these steel plates as base materials, welded joints were produced by hand welding or the “FCB (Flux Cu Backing)” method under the conditions shown in Table 2. That is, with respect to the steel plate, the groove processing shown in FIG. 2 or 3 was performed, the steel plate subjected to the groove shape shown in FIG. 2 was subjected to manual welding, and the groove shape shown in FIG. 3 was applied. The steel plate produced the welded joint by FCB method.

Figure 0004243863
Figure 0004243863

手溶接では、棒径が4.0mmのJIS Z 3211(1991)に記載されたD4301相当の被覆アーク溶接棒、すなわち、表3に示す市販の被覆アーク溶接棒(記号:DA)を用いた。   In the manual welding, a coated arc welding rod equivalent to D4301 described in JIS Z 3211 (1991) having a rod diameter of 4.0 mm, that is, a commercially available coated arc welding rod (symbol: DA) shown in Table 3 was used.

Figure 0004243863
Figure 0004243863

FCB法では、表4に示す化学成分を有するワイヤ径が4.8mmのサブマージアーク溶接ワイヤ(記号:WA、WB)と表5に示す化学成分を有するサブマージアーク溶接フラックス(記号:FA、FB、FC)とを用いた。   In the FCB method, a submerged arc welding wire (symbol: WA, WB) having a chemical diameter shown in Table 4 having a chemical diameter of 4.8 mm and a submerged arc welding flux (symbol: FA, FB, FC).

サブマージアーク溶接ワイヤ「WA」と「WB」は、いずれもJIS Z 3351(1988)に記載されたYS−S6に相当する市販の溶接ワイヤである。   The submerged arc welding wires “WA” and “WB” are both commercially available welding wires corresponding to YS-S6 described in JIS Z 3351 (1988).

また、サブマージアーク溶接フラックス「FA」と「FB」は、いずれもJIS Z 3352(1988)に記載されたFS−BN1に相当する市販の高塩基性のボンドフラックスである。なお、「FA」にはFeMoを0.5〜5%添加し、溶接金属中に0.1〜0.2%のMoが含有されるように調節した。同様に、「FB」にはFeWを0.5〜5%添加して、溶接金属中に0.1〜0.2%のWが含有されるように調節した。   Submerged arc welding fluxes “FA” and “FB” are both commercially available high basic bond fluxes corresponding to FS-BN1 described in JIS Z 3352 (1988). In addition, 0.5 to 5% of FeMo was added to “FA” and adjusted so that 0.1 to 0.2% of Mo was contained in the weld metal. Similarly, 0.5 to 5% of FeW was added to “FB” and adjusted so that 0.1 to 0.2% of W was contained in the weld metal.

一方、サブマージアーク溶接フラックス「FC」はJIS Z 3352(1988)に記載されたFS−BT2に相当する市販の高塩基性のボンドフラックスであり、FCB片面溶接の裏当てフラックスとして用いた。なお、「FC」には、Fe粉を0.5〜5%添加して、溶け落ち防止と溶着量の増加効果が得られるようにした。   On the other hand, the submerged arc welding flux “FC” is a commercially available high basic bond flux corresponding to FS-BT2 described in JIS Z 3352 (1988), and was used as a backing flux for FCB single-sided welding. In addition, Fe powder was added to “FC” in an amount of 0.5 to 5% so as to prevent melting and increase the amount of welding.

Figure 0004243863
Figure 0004243863

Figure 0004243863
Figure 0004243863

表6に、作製した各溶接継手における母材、溶接方法、被覆アーク溶接棒、サブマージアーク溶接ワイヤ及びサブマージアーク溶接フラックスの詳細を示す。なお、表6において、溶接条件が2の場合の「溶接材料」欄における「WA/FA/FC」等は、使用したワイヤ、表フラックス、裏フラックスの組み合わせを意味する。   Table 6 shows details of the base material, welding method, covered arc welding rod, submerged arc welding wire, and submerged arc welding flux in each welded joint produced. In Table 6, “WA / FA / FC” or the like in the “welding material” column when the welding condition is 2 means a combination of the used wire, front flux, and back flux.

Figure 0004243863
Figure 0004243863

上記のようにして作製した溶接継手について、その溶接金属の化学成分の調査を行った。また、原油が入った原油タンク環境を模擬した腐食試験を実施した。   About the welded joint produced as mentioned above, the chemical component of the weld metal was investigated. In addition, a corrosion test simulating the environment of a crude oil tank containing crude oil was conducted.

すなわち、各溶接継手のビード中央部から、JIS G 1253による分光分析用試験片を採取して溶接金属の成分分析を行った。   That is, a specimen for spectroscopic analysis according to JIS G 1253 was collected from the center of the bead of each welded joint, and the component analysis of the weld metal was performed.

原油が入った原油タンク環境を模擬した腐食試験の詳細は次に示すとおりである。   Details of the corrosion test simulating the environment of the crude oil tank containing the crude oil are as follows.

先ず、各溶接継手から、長さ方向に20mm、幅方向に100mm、表面から板厚方向に4mmの寸法の試験片を、溶接ビードが中央となるように採取した後、表面を切削し、更に、エメリー紙600番まで研磨して、直径が5mmの円状の部分残して研磨面全体にスラッジ1−1を塗布し、これを腐食試験片2とした。なお、上記のスラッジ1−1を塗布しなかった直径が5mmの円状の部分はスラッジ欠陥1−2と見なした部分である。このスラッジ欠陥1−2を上記試験片の母材部分に設けたもの、及び溶接金属の中央部分に設けたものを作製し、それぞれ母材の耐食性評価用腐食試験片、溶接金属の耐食性評価用腐食試験片とした。   First, from each welded joint, a test piece having a dimension of 20 mm in the length direction, 100 mm in the width direction, and 4 mm in the plate thickness direction from the surface is taken so that the weld bead is in the center, and then the surface is cut. The emery paper was polished up to No. 600, and sludge 1-1 was applied to the entire polished surface, leaving a circular portion with a diameter of 5 mm. In addition, the circular part with a diameter of 5 mm where the sludge 1-1 is not applied is a part regarded as the sludge defect 1-2. The sludge defect 1-2 is prepared in the base material portion of the test piece and the center portion of the weld metal, and the corrosion test piece for evaluating the corrosion resistance of the base material and the corrosion resistance evaluation of the weld metal are prepared. A corrosion test piece was obtained.

次いで、40℃の人工海水3を入れたガラス容器4を準備し、腐食試験片2を人工海水3中に浸漬し、ガス供給口5及びガス排出口6を有するアクリル製の蓋7によって上記ガラス容器4の開口上端を密閉した。最後に、図4に示すように、密閉後のガラス容器3を40℃の恒温槽8内に設置し、28日間浸漬試験を実施した。その際、ガラス容器4内の人工海水3中に、前記のガス供給口5から、体積%で、13%CO2−5%O2−0.02%SO2−0.25%H2S−残部N2のガスを吹き込んだ。 Next, a glass container 4 containing 40 ° C. artificial seawater 3 is prepared, the corrosion test piece 2 is immersed in the artificial seawater 3, and the glass is covered with an acrylic lid 7 having a gas supply port 5 and a gas discharge port 6. The upper open end of the container 4 was sealed. Finally, as shown in FIG. 4, the sealed glass container 3 was placed in a constant temperature bath 8 at 40 ° C., and an immersion test was performed for 28 days. At that time, 13% CO 2 -5% O 2 -0.02% SO 2 -0.25% H 2 S in volume% from the gas supply port 5 into the artificial seawater 3 in the glass container 4. - it was blown into the gas balance of N 2.

28日間の腐食試験の後、各試験片について、溶接金属と母材の腐食速度を求めた。すなわち、試験後の腐食試験片の母材と溶接金属のそれぞれについて、孔食発生部の深さを、孔食の発生していない部分であるスラッジ1の塗布部分を基準として、マイクロメータを用いて測定した。なお、深さの最も大きい孔食値を孔食深さとして採用し、その孔食深さを試験期間で割った値から母材と溶接金属のそれぞれにおける腐食速度を求めた。   After the 28-day corrosion test, the corrosion rate of the weld metal and the base metal was determined for each test piece. That is, for each of the base material and the weld metal of the corrosion test piece after the test, the depth of the pitting corrosion occurrence portion is determined using a micrometer on the basis of the application portion of the sludge 1 where pitting corrosion does not occur. Measured. In addition, the pitting corrosion value with the largest depth was adopted as the pitting corrosion depth, and the corrosion rate in each of the base metal and the weld metal was obtained from the value obtained by dividing the pitting corrosion depth by the test period.

表7及び表8に、各溶接継手についての溶接金属の化学成分を示す。なお、表1に示す母材並びに、表4及び表5に示す溶接材料(つまり、表4のサブマージアーク溶接ワイヤ及び表5のサブマージアーク溶接フラックス)にNbやTiの記載がないのに、上記の表7、表8にNBやTi等の記載があるものは、溶接材料に含まれる合金元素が分析されたものと考えられる。   Tables 7 and 8 show the chemical components of the weld metal for each weld joint. In addition, although there is no description of Nb or Ti in the base material shown in Table 1 and the welding materials shown in Table 4 and Table 5 (that is, the submerged arc welding wire in Table 4 and the submerged arc welding flux in Table 5), the above Table 7 and Table 8 in which NB, Ti, etc. are described are considered to be the analysis of the alloy elements contained in the welding material.

Figure 0004243863
Figure 0004243863

Figure 0004243863
Figure 0004243863

表9に、各溶接継手についての腐食試験の結果を示す。なお、表9の腐食試験結果は、上記のようにして求めた「溶接金属の腐食速度と母材の腐食速度の比」(表9中では、「腐食速度比(溶金/母材)」と表記した。)を示した。   Table 9 shows the results of the corrosion test for each welded joint. The results of the corrosion test shown in Table 9 are the “ratio between the corrosion rate of the weld metal and the corrosion rate of the base metal” obtained as described above (in Table 9, “corrosion rate ratio (molten metal / base metal)”). .).

Figure 0004243863
Figure 0004243863

表7〜9に示す結果からわかるように、本発明で規定する条件を満たす溶接継手(溶接継手番号2〜8及10〜25)の場合、母材と溶接金属の耐食性がほぼ同等であり、選択腐食を起こさず耐食性に優れていることが明らかである。   As can be seen from the results shown in Tables 7 to 9, in the case of the welded joints (welded joint numbers 2 to 8 and 10 to 25) that satisfy the conditions specified in the present invention, the corrosion resistance of the base metal and the weld metal is substantially equivalent. It is clear that selective corrosion does not occur and the corrosion resistance is excellent.

これに対して、本発明で規定する条件から外れた溶接継手(溶接継手番号1及び9)の場合は、母材と溶接金属の耐食性のバランスが悪く溶接金属での腐食が大きく、耐食性が劣っている。   On the other hand, in the case of welded joints (welded joint numbers 1 and 9) that deviate from the conditions specified in the present invention, the corrosion resistance balance between the base metal and the weld metal is poor, and the corrosion with the weld metal is large and the corrosion resistance is poor. ing.

本発明の原油タンク用溶接継手は、原油が入った環境下での耐食性に優れるので、積荷である原油を入れる原油タンカーのタンクや同様の腐食環境におかれた陸上タンクのような、原油タンク用溶接継手として利用することができる。また、本発明の原油タンク用溶接継手を用いた原油タンクは、原油が入った環境下での耐食性に優れるため、メンテナンス費用を大幅に削減することができる。   Since the welded joint for crude oil tank of the present invention has excellent corrosion resistance in an environment containing crude oil, a crude oil tank such as a tank of a crude oil tanker for containing crude oil as a load or an onshore tank placed in a similar corrosive environment. It can be used as a welded joint. Moreover, since the crude oil tank using the welded joint for crude oil tanks of the present invention has excellent corrosion resistance in an environment containing crude oil, maintenance costs can be greatly reduced.

(a)式で表されるfnの値が、溶接金属の腐食速度と母材の腐食速度の比に及ぼす影響を示す図である。なお、図では、溶接金属の腐食速度と母材の腐食速度の比を「腐食速度比(溶金/母材)」と表記した。It is a figure which shows the influence which the value of fn represented by (a) has on the ratio of the corrosion rate of a weld metal and the corrosion rate of a base material. In the figure, the ratio between the corrosion rate of the weld metal and the corrosion rate of the base metal is expressed as “corrosion rate ratio (molten metal / base metal)”. 実施例で手溶接を行ったものに施した開先形状を示す図である。It is a figure which shows the groove shape given to what performed the manual welding in the Example. 実施例でFCB法を行ったものに施した開先形状を示す図である。It is a figure which shows the groove shape given to what performed the FCB method in the Example. 実施例で実施した原油が入った原油タンク環境を模擬した腐食試験方法を説明する図である。It is a figure explaining the corrosion test method which simulated the crude oil tank environment containing the crude oil implemented in the Example.

符号の説明Explanation of symbols

1−1:スラッジ、
1−2:スラッジ欠陥、
2:腐食試験片、
3:人工海水、
4:ガラス容器、
5:ガス供給口、
6:ガス排出口、
7:アクリル製の蓋、
8:恒温槽。
1-1: Sludge,
1-2: sludge defect,
2: Corrosion test piece,
3: Artificial seawater
4: Glass container,
5: Gas supply port
6: Gas outlet,
7: Acrylic lid,
8: Thermostatic bath.

Claims (6)

母材及び溶接金属を有する溶接継手であって、
前記母材が、質量%で、C:0.01 〜0.2%、Si:0.01〜1%、Mn:0.05〜2%、P:0.05%以下(0%を含まない)、S:0.01%以下(0%を含まない)、Ni:0.01〜1.0%、Cu:0.01〜2%、Cr:0.1%以下(0%を含まない)、Al:0.1%以下(0%を含まない)、N:0.001〜0.01%、及びO(酸素):0.0001〜0.005%を含有するとともに、W:0.01〜1%及びMo:0.01〜1%のうちの少なくとも一方を含有し、残部はFe及び不純物からなる鋼組成を有し、
前記溶接金属が、質量%で、C:0.01 〜0.2%、Si:0.01〜1%、Mn:0.2 〜2%、P:0.03%以下(0%を含まない)、S:0.01%以下(0%を含まない)、Ni:0.01〜1.0%、Cu:0.01〜1%、Cr:0.5%以下(0%を含まない)、Nb:0.07%以下(0%を含まない)、V:0.07%以下(0%を含まない)、Ti:0.07%以下(0%を含まない)、B:0.005%以下(0%を含まない)、Al:0.05%以下(0%を含まない)、N:0.001〜0.03%及びO(酸素):0.001〜0.05%に加えて、W:0.01〜1%及びMo:0.01〜1%のうちの少なくとも一方を含有する鋼からなり、
更に、下記(a)式で表されるfnの値が−0.3〜0.3を満足することを特徴とする原油タンク用溶接継手。
fn=△Cu+0.3×△Ni+0.2×△W+1.3×△Mo・・・(a)
なお、上記(a)式中の△Cu、△Ni、△W及び△Moは、それぞれ、Cu、Ni、W及びMoの質量%での、溶接金属中の含有量から母材中の含有量を引いた値を表す。
A welded joint having a base material and a weld metal,
The base material is, in mass%, C: 0.01 to 0.2%, Si: 0.01 to 1%, Mn: 0.05 to 2%, P: 0.05% or less (including 0%) S): 0.01% or less (excluding 0%), Ni: 0.01 to 1.0%, Cu: 0.01 to 2%, Cr: 0.1% or less (including 0%) Not contained), Al: 0.1% or less (excluding 0%), N: 0.001 to 0.01%, and O (oxygen): 0.0001 to 0.005%, and W: Containing at least one of 0.01 to 1% and Mo: 0.01 to 1%, the balance having a steel composition composed of Fe and impurities,
The weld metal is, in mass%, C: 0.01 to 0.2%, Si: 0.01 to 1%, Mn: 0.2 to 2%, P: 0.03% or less (including 0%) No), S: 0.01% or less (excluding 0%), Ni: 0.01 to 1.0%, Cu: 0.01 to 1%, Cr: 0.5% or less (including 0%) Nb: 0.07% or less (not including 0%), V: 0.07% or less (not including 0%), Ti: 0.07% or less (not including 0%), B: 0.005% or less (not including 0%), Al: 0.05% or less (not including 0%), N: 0.001 to 0.03%, and O (oxygen): 0.001 to 0.00. In addition to 05%, it consists of steel containing at least one of W: 0.01-1% and Mo: 0.01-1%,
Furthermore, the weld joint for crude oil tanks characterized in that the value of fn represented by the following formula (a) satisfies −0.3 to 0.3.
fn = ΔCu + 0.3 × ΔNi + 0.2 × ΔW + 1.3 × ΔMo (a)
In addition, ΔCu, ΔNi, ΔW and ΔMo in the above formula (a) are the contents in the base metal from the contents in the weld metal in terms of mass% of Cu, Ni, W and Mo, respectively. Represents the value minus.
母材が、Feの一部に代えて、質量%で、Ti:0.005〜0.1%、Zr:0.005〜0.2%、Sb:0.01〜0.2%、Sn:0.01〜0.2%、Ca:0.0003〜0.01%及びMg:0.0003〜0.01%のうちの1種以上を含有する請求項1に記載の原油タンク用溶接継手。   Substrate is replaced with a part of Fe in mass%, Ti: 0.005-0.1%, Zr: 0.005-0.2%, Sb: 0.01-0.2%, Sn The crude oil tank welding according to claim 1, comprising one or more of: 0.01 to 0.2%, Ca: 0.0003 to 0.01%, and Mg: 0.0003 to 0.01%. Fittings. 母材が、Feの一部に代えて、質量%で、Nb:0.005〜0.1%、V:0.005〜0.1%及びB:0.0003〜0.01%のうちの1種以上を含有する請求項1又は2に記載の原油タンク用溶接継手。   The base material is mass% in place of part of Fe, Nb: 0.005 to 0.1%, V: 0.005 to 0.1%, and B: 0.0003 to 0.01% The weld joint for crude oil tanks according to claim 1 or 2 containing at least one of the following. 母材が、下記(b)式で表されるαが0.75以下、下記(c)式で表されるβが0.8以下及び下記(d)式で表されるCeq*が0.38以下であることを特徴とする請求項1から3までのいずれかに記載の原油タンク用溶接継手。
α=(1−0.691×Cu)×(1−0.221×Ni)×(1−0.142×W)×(1−0.148Mo)・・・(b)
β=(1−0.444×Cu)×(1−0.156×Ni)×(1−0.630×W)×(1−0.178Mo)・・・(c)
Ceq*=C+(Mn/6)+(Ni/15)+(Cu/15)+(W/10)+(Cr/5)+(Mo/5)・・・(d)
なお、(b)〜(d)式中の元素記号は、その元素の質量%での母材中の含有量を表す。
In the base material, α represented by the following formula (b) is 0.75 or less, β represented by the following formula (c) is 0.8 or less, and Ceq * represented by the following formula (d) is 0. The weld joint for a crude oil tank according to any one of claims 1 to 3, wherein the weld joint is 38 or less.
α = (1−0.691 × Cu) × (1−0.221 × Ni) × (1−0.142 × W) × (1−0.148Mo) (b)
β = (1−0.444 × Cu) × (1−0.156 × Ni) × (1−0.630 × W) × (1−0.178Mo) (c)
Ceq * = C + (Mn / 6) + (Ni / 15) + (Cu / 15) + (W / 10) + (Cr / 5) + (Mo / 5) (d)
In addition, the element symbol in (b)-(d) type | formula represents content in the base material in the mass% of the element.
少なくとも一部の面に防食処理が施された請求項1から4までのいずれかに記載の原油タンク用溶接継手。   The welded joint for a crude oil tank according to any one of claims 1 to 4, wherein at least a part of the surface is subjected to anticorrosion treatment. 請求項1から5までのいずれかに記載の原油タンク用溶接継手を用いた原油タンク。
A crude oil tank using the weld joint for a crude oil tank according to claim 1.
JP2004325879A 2004-11-10 2004-11-10 Welded joint for crude oil tank and crude oil tank Active JP4243863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004325879A JP4243863B2 (en) 2004-11-10 2004-11-10 Welded joint for crude oil tank and crude oil tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004325879A JP4243863B2 (en) 2004-11-10 2004-11-10 Welded joint for crude oil tank and crude oil tank

Publications (2)

Publication Number Publication Date
JP2006137963A JP2006137963A (en) 2006-06-01
JP4243863B2 true JP4243863B2 (en) 2009-03-25

Family

ID=36618969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004325879A Active JP4243863B2 (en) 2004-11-10 2004-11-10 Welded joint for crude oil tank and crude oil tank

Country Status (1)

Country Link
JP (1) JP4243863B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103056555A (en) * 2013-01-23 2013-04-24 宝山钢铁股份有限公司 Low-cost H2S-resistant submerged arc welding wire for pipeline
JP7232915B2 (en) 2019-01-30 2023-03-03 廣東生益科技股▲ふん▼有限公司 Thermosetting resin composition, and prepreg, metal foil clad laminate and printed circuit board containing the same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5239615B2 (en) * 2008-08-18 2013-07-17 新日鐵住金株式会社 Welded joints for crude oil tanks with excellent corrosion resistance and ductile fracture resistance
JP4968393B2 (en) 2010-05-18 2012-07-04 Jfeスチール株式会社 Welded joints and crude oil tanks with excellent corrosion resistance
JP4968395B2 (en) 2010-05-18 2012-07-04 Jfeスチール株式会社 Welded joints and crude oil tanks with excellent corrosion resistance
JP4968394B2 (en) * 2010-05-18 2012-07-04 Jfeスチール株式会社 Welded joints and crude oil tanks with excellent corrosion resistance
JP6022421B2 (en) * 2013-07-23 2016-11-09 株式会社神戸製鋼所 Method for estimating corrosion rate of steel for crude oil tank
JP6191393B2 (en) * 2013-10-28 2017-09-06 新日鐵住金株式会社 Submerged arc welding metal with excellent cryogenic toughness, and wire and flux for forming submerged arc welding
JP2016084489A (en) * 2014-10-23 2016-05-19 株式会社神戸製鋼所 Weld joint for ship excellent in corrosion resistance
CN105033503B (en) * 2015-08-17 2017-03-01 武汉铁锚焊接材料股份有限公司 One kind is used for corrosion-resisting steel welding welding rod
CN105886920A (en) * 2016-06-15 2016-08-24 成都高普石油工程技术有限公司 Steel material resistant to high-pressure fluid pressure and used for oil drilling and production
CN113574197B (en) * 2019-03-14 2022-09-06 日本制铁株式会社 Steel sheet and method for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103056555A (en) * 2013-01-23 2013-04-24 宝山钢铁股份有限公司 Low-cost H2S-resistant submerged arc welding wire for pipeline
CN103056555B (en) * 2013-01-23 2016-03-30 宝山钢铁股份有限公司 The anti-H of a kind of pipeline low cost 2s welding wire for submerged-arc welding
JP7232915B2 (en) 2019-01-30 2023-03-03 廣東生益科技股▲ふん▼有限公司 Thermosetting resin composition, and prepreg, metal foil clad laminate and printed circuit board containing the same

Also Published As

Publication number Publication date
JP2006137963A (en) 2006-06-01

Similar Documents

Publication Publication Date Title
JP4502075B1 (en) Corrosion resistant steel for crude oil tankers
JP4640529B2 (en) Corrosion resistant steel material for crude oil tank, method for producing the same, and crude oil tank
JP4449691B2 (en) Steel material for cargo oil tanks
JP4941620B2 (en) Corrosion resistant steel for cargo oil tanks
JP4577158B2 (en) Corrosion resistant steel for crude oil tanks
JP2007270196A (en) Steel material for cargo oil tank
JP4687531B2 (en) Steel for crude oil tank and method for producing the same
JP4525687B2 (en) Corrosion resistant steel for ships
JP5861335B2 (en) Welded joint with excellent corrosion resistance
JP2007046148A (en) Corrosion resistant steel for shipbuilding
JP5239615B2 (en) Welded joints for crude oil tanks with excellent corrosion resistance and ductile fracture resistance
JP5145897B2 (en) Corrosion resistant steel for cargo oil tanks
JP4088231B2 (en) Welded joints for crude oil tanks with excellent corrosion resistance
JP3753088B2 (en) Steel material for cargo oil tanks
JP5481980B2 (en) Marine steel with excellent film swell resistance
JP4968395B2 (en) Welded joints and crude oil tanks with excellent corrosion resistance
JP4968394B2 (en) Welded joints and crude oil tanks with excellent corrosion resistance
JP4243863B2 (en) Welded joint for crude oil tank and crude oil tank
JP2010196079A (en) Corrosion-resistant steel material for ship
JP2005290479A (en) Steel material for bottom plate of crude oil tank
JP5216199B2 (en) Marine welded joints and welded structures with excellent crevice corrosion resistance
JP6048104B2 (en) Corrosion resistant steel for holding coal ships and coal / ore combined ships
JP5949526B2 (en) Corrosion resistant steel for holding coal ships and coal / ore combined ships
RU2447187C1 (en) Steel of higher corrosion and cold resistance
JP5629279B2 (en) Welded joints and welded structures with excellent corrosion resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081223

R150 Certificate of patent or registration of utility model

Ref document number: 4243863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350