JP3879581B2 - Marine steel with excellent coating film peel resistance and high heat input weld toughness, and method for producing the same - Google Patents

Marine steel with excellent coating film peel resistance and high heat input weld toughness, and method for producing the same Download PDF

Info

Publication number
JP3879581B2
JP3879581B2 JP2002124702A JP2002124702A JP3879581B2 JP 3879581 B2 JP3879581 B2 JP 3879581B2 JP 2002124702 A JP2002124702 A JP 2002124702A JP 2002124702 A JP2002124702 A JP 2002124702A JP 3879581 B2 JP3879581 B2 JP 3879581B2
Authority
JP
Japan
Prior art keywords
less
steel
toughness
heat input
coating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002124702A
Other languages
Japanese (ja)
Other versions
JP2003313633A (en
Inventor
克行 一宮
和彦 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002124702A priority Critical patent/JP3879581B2/en
Publication of JP2003313633A publication Critical patent/JP2003313633A/en
Application granted granted Critical
Publication of JP3879581B2 publication Critical patent/JP3879581B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐塗膜剥離性および大入熱溶接部靭性に優れた船舶用鋼材ならびにその製造方法に関し、とくに、高温多湿等の厳しい環境下で使用されるバラストタンク等の構成材料に用いて好適な耐塗膜剥離性および大入熱溶接部靭性に優れた船舶用鋼材ならびにその製造方法に関する。
〔用語の定義〕
本発明において、鋼材とは、鋼板(厚鋼板、薄鋼板の総称)および形鋼の総称であり、また、大入熱溶接とは、入熱 60kJ/cm以上の溶接であり、また、成分含有量に係る%およびppm はそれれ質量百分率、質量百万分率を意味し、また、REM は希土類元素を意味する。
【0002】
【従来の技術】
通常、バラストタンクの防食は、タールエポキシ樹脂塗料と電気防食とを併用している。しかし、バラストタンクは、同タンク内に海水が出入することから、厳しい腐食環境に曝されている。とくにタンカーでは、次のような周期的腐食環境となる。
【0003】
中近東から日本に原油を輸送する場合、貨油タンクを空にして中近東に向かう往路では、船のバランスを保ち、航行の安全を図るためにバラストタンク内は海水をほぼ満水にする。このときの腐食環境は、バラストタンクの中部〜下部は海水中にあり、上部は飛沫帯に近い状態にある。一方、貨油タンクに原油を満載して日本に向かう復路では、バラストタンク内は海水を抜いて空にする。このときバラストタンク内は、船底に残留した海水と甲板からの熱で高温(40℃程度)多湿環境となる。タンカーは1往復するのに約80日を要するから、バラストタンク内は約80日周期で海水の出入による厳しい腐食環境に曝されることになる。
【0004】
バラストタンク内に海水が充満しているときは、海水浸漬部分は電気防食効果によってほとんど腐食されないが、バラストタンクの最上部やアッパーデッキ裏側等の非浸漬部分は、高温に加え、飛沫帯という厳しい腐食環境下にある。一方、バラストタンク内に海水がないときは高温多湿環境となり、電気防食効果は期待できず、タールエポキシ樹脂塗料のみの防食となる。また、バラストタンク内に海水を充満させる際、海水中に含まれている小石や砂塵等も一緒に侵入し、塗膜にスクラッチ(傷)が生じてしまうため、スクラッチ部から腐食が進行する。
【0005】
このようなことから、バラストタンクの塗膜寿命は、船舶寿命(20年)の約半分の約10年とされており、残りの約10年は補修塗装で安全性を維持する必要がある。しかし、補修塗装にはそれ相応の費用がかかるのみならず、バラストタンク内は劣悪な塗装作業環境となっていることから作業者の確保に難渋する問題がある。
【0006】
バラストタンクでは、このような問題があるため、鋼材面からの改善、すなわち、塗膜寿命の延長が可能な船舶用鋼材の開発が望まれている。
ところで、海洋環境下での使用を目的とした耐海水鋼の分野では、耐食性向上のためにCrやNi、Mo、Cu等が添加され、飛沫帯用、海水用あるいはこれら両用といった使用環境に合わせた種々の溶接構造用耐海水鋼が開発されている。そして、これらは、水門や鋼矢板、ブイ、桟橋などに使用されている。
【0007】
かような耐海水鋼としては、特開昭51−25420 号公報所載の鋼材が知られているが、この鋼材の用途は上記の類の海洋構造物や港湾施設であり、その使用環境は常温(25℃程度)以下の海水である。また、特開昭63−255341号公報には、大気環境での耐塩害性を向上させた溶接構造用耐食性鋼板が提案されているが、これについても同様である。
【0008】
それゆえ、バラストタンク内のような高温多湿になる厳しい腐食環境下では、通常の船舶用鋼材と同様、 塗膜なしでは使用に耐え得ず、また、その塗膜寿命も通常の船舶用鋼材と同程度となるにすぎない。
一方、造船、建築、土木の各分野における鋼構造物は、一般に鋼材を溶接により接合し、所望の形状に組み立てられることが多い。こうした溶接構造物に使用される鋼材には、安全性確保の観点から、母材靭性はもちろん、溶接部靭性にも優れることが要求されている。
【0009】
しかるに近年、溶接構造物の大型化に伴い、構造物の施工効率の向上と施工コストの低減の観点から溶接効率の向上が求められ、溶接入熱の増大が指向されてきた. その際最も問題となるのは溶接ボンド部の靭性である。溶接ボンド部は溶接時に溶融点直下の高温に曝され、結晶粒が最も粗大化しやすく、しかも溶接入熱が増大するにしたがい冷却速度が低下し、脆弱な上部ベイナイト組織が形成されやすくなる。さらに溶接ボンド部ではウィドマンステッテン組織や島状マルテンサイトといった脆化組織が生成しやすく、靭性が低下しやすい。
【0010】
この問題に対し、溶接ボンド部あるいはその近傍の溶接熱影響部の靭性改善を図る手段として以下のような提案がなされている。
・TiN を鋼中に微細分散させ、MnS またはREM オキシサルファイドと複合してオーステナイト粒の粗大化を抑制するもの(特開平2−250917号公報、特開平2−254118号公報、特公平3−53367 号公報)
・REM とTiとを複合添加し、鋼中に微細粒子を分散させてオーステナイトの粒成長を抑制(特開昭60−184663号公報)
・Ti酸化物を微細分散させ、フェライト変態の核生成サイトとして利用するもの(特開昭60−245768号公報、特開昭61−79745 号公報)
・溶接時の冷却過程でTiN などの上に析出するBNをフェライト変態の核として利用するもの(特開昭61−253344号公報)
・固溶Nを徹底的に低減すべくTiと十分な量(0.05〜0.10%)のAlを含有せしめ、さらに微細分散粒子としてCa酸化物を活用するもの(特開2000−107177号公報)
・CaやREM を添加し硫化物の形態制御を行うもの(特開昭60−204863号公報、特公平4−14180 号公報)
【0011】
【発明が解決しようとする課題】
上述のように、従来の耐海水鋼は、バラストタンク内のような高温多湿になる厳しい腐食環境下では、通常の船舶用鋼材程度の耐食性、防食性を呈するにすぎず、塗膜寿命を延長し得る材料特性を有するものは見当らない。
一方、溶接部靭性に関しては、上述のように種々の改善手段が提案されているものの、以下のような問題があった。
・Ti酸化物を用いる手段では、酸化物を均一かつ微細に分散させるのがかなり困難で、溶接部靭性のばらつきが大きくなる。
・TiN を主体に利用する手段では、溶接ボンド部近傍が長時間高温に曝される入熱条件では、TiN が溶解し、結晶粒微細化作用が失われて溶接部靭性が向上せず、また、固溶Tiと固溶Nの増加に起因して脆化組織が生成し、溶接部靭性が著しく低下する。
・Al、Caを活用する手段では、添加量が多くなるために酸化物がクラスター化し、破壊の起点となって靭性が低下する場合がある。
・CaやREM で硫化物形態制御を行う手段では、溶接入熱60kJ/cm を超える大入熱溶接部で、高靱性を確保することが困難であるという問題があった。
【0012】
本発明は、上記従来技術の現状に鑑み、厳しい腐食環境とくに高温多湿環境下でも塗膜の剥離が起こり難いとともに高位で安定した大入熱溶接部靭性を有する耐塗膜剥離性および大入熱溶接部靭性に優れた船舶用鋼材ならびにその製造方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明者らは、耐塗膜剥離性の改善に向けて、種々の合金元素を種々の割合で含有させた暴露試験片を多数作製し、これらの試験片を実際のバラストタンク内で2年間の暴露試験に供し、以下の知見を得た。
1-1) 主にCuレスでかつNiを添加した試験片で、塗膜スクラッチからのさびによる塗膜膨れが著しく軽減される。例えば、Niを1.0 %含有させ、Cuを0.02%まで低減した鋼材は、その膨れ面積が従来の1/10にまで低減した。
【0014】
1-2) MoやCo、Sb、Wを添加した試験片も、さびによる塗膜膨れが抑制された。
すなわち、これら合金元素には、スクラッチ部からの腐食の進行を抑制し、塗膜損傷を軽減する効果がある。
また一方では、大入熱溶接部靭性の高位安定化に向けて、該靭性に影響を及ぼす種々の要因について研究、 検討を重ね、以下の知見を得た。
【0015】
2-1) 大入熱溶接部とくに溶接ボンド部の靭性は、脆化組織の生成の有無に大きく影響される。
2-2) 上記脆化組織の生成は、高温に加熱された領域におけるオーステナイトの粗大化抑制、および、冷却時にフェライト変態を促進するフェライト生成核の微細分散により防止できる。従来はこれらが不十分であったために、溶接部靭性の高位安定化を実現しえなかった。
【0016】
2-3) フェライト生成核の微細分散のためには、硫化物形態制御の役割を担うCaを活用し、凝固時にCaS を晶出させることが有効である。CaS は酸化物に比べて低温で晶出するので、凝固後の鋼中での微細かつ均一な分散が可能となる。
2-4) CaS 晶出のためには、Ca添加直前の溶鋼中の溶存酸素量を30ppm 以下に調整する必要がある。
【0017】
2-5) 溶存酸素量30ppm 以下に調整した溶鋼にCa(あるいはさらにS)を、
ACR =(Ca−(0.18+130 ×Ca)×O)/1.25×
(ここで、Ca、O、Sは各合金元素の含有量(質量%))
が0.00〜1.00になる量添加することにより、CaS 晶出後に固溶S量を確保でき、CaS の表面上にMnS が析出してなる複合硫化物を形成できる。MnS はフェライト核生成能を有し、さらにはその周囲にMnの希薄帯が形成されるので、フェライト変態がさらに促進される。
【0018】
2-6) MnS 上にTiN 、BN、AlN 等のフェライト生成核が析出することにより、より一層フェライト変態が促進される。本発明は、上記の知見に基づき、さらに検討を加えてなされたもので、その要旨は以下のとおりである。
〔1〕質量%で、C:0.001 〜0.025 %、Si:0.60%以下、Mn:0.10〜3.0 %、P:0.005〜0.030 %、S:0.0005〜0.01%、Al:0.10%以下、Cu:0.10%以下、Ni:0.10〜4.0 %、Ti:0.005 〜0.030 %、N:0.0030〜0.0070%、O:0.0030%以下、Ca:0.0005〜0.0030%を含有し、残部Feおよび不可避的不純物からなり、かつ下記ACR が0.00 超1.00未満になることを特徴とする耐塗膜剥離性および大入熱溶接部靭性に優れた船舶用鋼材。
【0019】

ACR =(Ca−(0.18+130 ×Ca)×O)/1.25×
ただし、Ca、O、Sは各元素の成分含有量(質量%)
〔2〕さらに、質量%で、Mo:0.05〜0.50%、Co:0.05〜0.50%、W:0.05〜0.50%、Sb:0.05〜0.50%から選ばれた1種または2種以上を含有することを特徴とする〔1〕記載の耐塗膜剥離性および大入熱溶接部靭性に優れた船舶用鋼材。
〔3〕さらに、質量%で、下記(a)〜(c)のうち一または二以上を含有することを特徴とする〔1〕または〔2〕に記載の耐塗膜剥離性および大入熱溶接部靭性に優れた船舶用鋼材。
【0020】

(a)Nb:0.005 〜0.20%、V:0.005 〜0.20%から選ばれた1種または2種
(b)REM :0.004 〜0.02%
(c)B:0.0003〜0.0050%
〔4〕質量%で、C:0.001 〜0.025 %、Si:0.60%以下、Mn:0.10〜3.0 %、P:0.005〜0.030 %、S:0.0005〜0.01%、Al:0.10%以下、Cu:0.10%以下、Ni:0.10〜4.0 %、Ti:0.005 〜0.030 %、N:0.0030〜0.0070%、O:0.0030%以下、Ca:0.0005〜0.0030%を含有し、あるいはさらに、下記(A)〜(D)のうち一または二以上を含有する成分組成に溶製後凝固させた鋼素材を熱間圧延する鋼材の製造方法において、溶存酸素量30ppm 以下に調整した直後の溶鋼にCaを下記ACR が0.00 超1.00未満になる量添加することを特徴とする耐塗膜剥離性および大入熱溶接部靭性に優れた船舶用鋼材の製造方法。
【0021】

(A)Mo:0.05〜0.50%、Co:0.05〜0.50%、W:0.05〜0.50%、Sb:0.05〜0.50%から選ばれた1種または2種以上
(B)Nb:0.005 〜0.20%、V:0.005 〜0.20%から選ばれた1種または2種
(C)REM :0.004 〜0.02%
(D)B:0.0003〜0.0050%
ACR =(Ca−(0.18+130 ×Ca)×O)/1.25×
ただし、Ca、O、Sは各元素の成分含有量(質量%)
【0022】
【発明の実施の形態】
まず、本発明鋼材の組成限定理由について説明する。
C:0.001 〜0.025 %
Cは、強度の向上に有効な元素であるが、含有量が0.001 %に満たないとその効果に乏しく、一方、0.025 %を超えると母材靭性および溶接部靭性の劣化を招くので、0.001 〜0.025 %の範囲とした。
Si:0.60%以下
Siは、脱酸剤として有用なだけでなく、鋼の強度を向上させる点でも有用な元素であるが、過剰に含有させると母材靭性および溶接部靭性が劣化するので、0.60%以下とした。好ましくは0.15〜0.50%の範囲である。
Mn:0.10〜3.0 %
Mnは、鋼の強度のみならず、 母材靭性および溶接部靭性に大きな影響を与える元素であり、本発明では所望の強度を確保するために0.10%以上含有させるものとした。しかし、3.0 %を超えて含有させると母材靭性および溶接部靭性に悪影響を及ぼすため、0.10〜3.0 %の範囲とした。好ましくは0.10〜2.0 %の範囲である。
P:0.005 〜0.030 %
Pは、緻密なさびを形成するために0.005 %以上含有を必要とするが、過剰の含有は母材靭性および溶接部靭性を劣化させるので、0.005 〜0.03%とした。
S:0.0005〜0.01%
Sは、溶鋼凝固時にCaS を微細分散状態で晶出させ、その上にMnS 、あるいはさらにその上にTiN 等を析出させてフェライト生成核として機能させるために0.0005%以上の含有を必要とするが、過剰の含有は母材靭性および溶接部靭性を劣化させるので、0.0005〜0.01%とした。なお、好ましくは0.0010〜0.0050%の範囲である。
Al:0.10%以下
Alは、脱酸剤として添加するが、0.01%を超える含有は溶接部靭性に悪影響を及ぼすので、0.10%以下に制限した。
Cu:0.10%以下
Cuは、一般的に耐食性向上元素であり、橋梁など大気環境で使用される耐候性鋼に添加されている。しかしながら、本発明で用途目標にしているバラストタンクの内部環境は高温多湿でほとんど濡れている状態にあり、かような環境ではCuは有効に働くどころか、逆に不利に働く。
【0023】
これは、Cuが、さびの緻密化促進と鋼の溶解活性化という2つの作用を有しているためである。すなわち、大気環境では濡れている時間が比較的短く、そのため鋼の溶解時間が短い。したがってこの場合には、Cuのさびの緻密化促進作用により形成された保護性さび層が、Cuの溶解活性化による鋼の腐食反応を抑制する。一方、常に濡れている状態では、Cuの溶解活性化による鋼の腐食反応が、Cuのさびの緻密化促進作用によるさび層の保護作用よりも大きくなるため、鋼の腐食が進行する。鋼の腐食が進行すれば、塗膜膨れも進行する。
【0024】
ここに、Cu含有量が0.10%を超えると鋼の腐食ひいては塗膜膨れが進行するようになるので、Cu含有量は0.10%以下に制限した。
Ni:0.10〜4.0 %
Niは、塗膜膨れを顕著に抑制する元素として、本発明において最も重要な元素である。その効果は、さび粒子を緻密化し、地鉄への水、酸素、塩素等の腐食因子の透過を阻止することによって発揮される。このように、ある程度のさびが形成された後、このさび層が腐食因子の透過を阻止することによって、その後の地鉄の腐食が抑制される。腐食が抑制されれば、さび発生も少なく、さびによる塗膜膨れも抑制されるのである。この効果は、Ni含有量が0.10%未満では小さく、一方、4.0 %を超えると効果は飽和し、むしろ経済的に不利となるので、Ni含有量は0.1 〜4.0 %に制限した。
Ti:0.005 〜0.030 %
Tiは、Nとの親和力が強くTiN として析出して、溶接熱影響部でのオーステナイト粒の粗大化を抑制し、あるいはフェライト生成核として溶接熱影響部の高靭性化に寄与する。このような効果は0.005 %以上の含有で認められるが、0.030 %を超えて含有するとTiN 粒子が粗大化して前記効果が期待できなくなる。このためTiは0.005 〜0.030 %の範囲に制限した。
N:0.0030〜0.0070%
Nは、Tiと結合しTiN として析出して、溶接熱影響部でのオーステナイト粒の粗大化を抑制し、あるいはフェライト変態核として溶接熱影響部の高靭性化に寄与する。このような効果を有するTIN の必要量を確保するために、Nは0.0030%以上含有する必要がある。一方、0.0070%を超えて含有すると、溶接熱によってTIN が溶解する温度まで加熱される領域では固溶N量が増加し、靭性が著しく低下する。このため、Nは0.0030〜0.0070%の範囲に制限した。
O:0.0030%以下
Oは、不可避的不純物として含有され、鋼中では酸化物として存在し、清浄度を低下させるので、本発明ではできるだけ低減することが好ましい。O含有量が0.0030%を超えるとCaO 系介在物が粗大化して、靭性に悪影響を及ぼす。また、本発明では、CaをCaS として晶出させるために、Caとの結合力が強いOはCa添加前に、脱ガスを強化するか、脱酸剤を投入するかして、溶鋼中のOを0.0030%以下に低減しておくことが好ましい。
Ca:0.0005〜0.0030%
Caは、硫化物の形態を制御して鋼の靭性向上に寄与する元素である。このような効果を発揮させるには少なくとも0.0005%含有することが必要であるが、0.0030%を超えて含有しても効果が飽和する。このため、Ca含有量は0.0005〜0.0030%の範囲に制限する。
【0025】
また、後述の本発明製造方法によれば、CaはCaS として鋼材中に微細かつ均一に分散し、MnS と複合してフェライト生成核として作用し、溶接部靭性の向上に寄与する。
ACR :0.00超1.00未満
ACR =(Ca−(0.18+130 ×Ca)×O)/1.25×;ただし、Ca、O、Sは各元素の成分含有量(質量%)
ACR が0.00以下では、溶製段階でCaS が晶出しないためMnS がCaS との複合硫化物にならず単独で析出し、圧延で伸長された形態で鋼材中に存在しているので、母材の靭性低下を惹起するとともに、溶接熱影響部靭性の向上が達成されない。一方、ACR が1.00以上では、SがCaにより完全に固定され、フェライト生成核として働くMnS がCaS 上に析出しないため、溶接熱影響部靭性の向上が達成されない。ACR を0.00超1.00未満とすることではじめてCaS 上にMnS が析出した複合硫化物の微細分散状態が実現する。この複合硫化物がフェライト生成核として機能し、溶接熱影響部の組織が微細化され、溶接熱影響部靭性が向上する。
【0026】
以上、必須成分について説明したが、本発明ではこれら必須成分の他に、以下の成分を適宜含有させることができる。
Mo,Co,W,Sb:0.05〜0.50%
Mo,Co,W,Sbはいずれも、塗膜膨れを抑制する効果があるが、含有量が0.05%未満ではその効果が小さく、一方0.50%を超えると効果が飽和し、むしろ経済的に不利となるので、これらの元素は単独、複合のいずれで添加するにしても、それぞれ0.05〜0.50%の範囲で含有させるのが好ましい。
Nb,V:0.005 〜0.20%
Nb,Vはいずれも、鋼材の強度を増加させる元素であるが、含有量が0.005 %に満たないとその添加効果に乏しく、一方0.20%を超えると効果が飽和するため、これらの元素は単独、複合のいずれで添加するにしても、それぞれ0.005 〜0.20%の範囲で含有させるのが好ましい。
REM :0.004 〜0.02%
REM は、溶接部靭性の向上に寄与するが、含有量が0.004 %に満たないとその添加効果に乏しく、一方0.02%を超えると鋼材の清浄度が劣化するので、0.004 〜0.02%の範囲で含有させるのが好ましい。
B:0.0003〜0.0050%
Bは、強度の向上に有利な元素であるが、含有量が0.0003%に満たないとその添加効果に乏しく、一方0.0050%を超えると母材靭性および溶接部靭性を劣化させるので、0.0003〜0.0050%の範囲で含有させるのが好ましい。
【0027】
次に、本発明鋼材の製造方法について説明する。
この製造方法では、転炉, 電気炉等通常の方法で鋼を上記成分組成となるように溶製したのち、連続鋳造法あるいは造塊法によりスラブ等の鋳片素材となす。また、溶製に際しては、真空脱ガス製錬等を実施してもよい。
溶製時の留意点は、次の2点である。
【0028】
第1点は、Ca添加直前の溶鋼中の溶存酸素量を0.0030%以下に調整することである。これにより、Ca酸化物の生成が抑制され、CaS の晶出が助成される。CaS は、溶鋼中で酸化物に比べて低温で晶出するため、凝固後の鋳片内で微細かつ均一に分散しうる。このようなCaS の微細分散粒子はMnS と複合して溶接時にフェライト生成核として作用し、溶接部靭性の向上に寄与する。
【0029】
第2点は、第1点を満たした上で、溶鋼中にCaを、前記ACR が0.00超1.00未満となる量添加することである。こうすることで、上述した理由により、溶接熱影響部の組織を微細化し、溶接熱影響部靭性を向上させることができる。なお、Caの添加にあたっては、溶鋼中のS含有量をモニタしてそれに応じてCa添加量を決定すればよい。また、溶鋼中にSが不足するような場合は、該不足分のSを添加してもよい。
【0030】
これら2つの留意点以外の溶鋼成分調整方法については、通常の鋼精錬方法によればよい。
ついで、得られた鋳片素材を熱間圧延して所望の形状の鋼材となす。素材は加熱炉等で加熱したものを圧延してもよく、また、前記加熱を省略し、凝固後冷却途上の熱片をそのまま圧延してもよい。熱間圧延方法については、本発明では特に限定されず、通常の方法のうちから適宜のものを選んで実施すればよい。
【0031】
【実施例】
表1に示す成分組成になる鋼を転炉で溶製し、連続鋳造法でスラブとした。ついで、これらのスラブを1150℃に加熱した後、熱間圧延により25mm厚×2500mm幅の鋼板(厚鋼板)とした。
これらの鋼板の板厚1/4 位置でC方向からJISZ2201の4号試験片およびJISZ2202のVノッチ試験片を採取し、引張特性および衝撃特性を調査した。
【0032】
また、大入熱溶接部靭性として、入熱100kJ/cmの溶接熱影響部1mm(フュージョンラインから母材側に1mm入った箇所) 相当の再現熱サイクルを付与し、シャルピー衝撃試験により0℃での吸収エネルギーvE0 を測定した。
さらに、これらの鋼板から5mm×100mm ×200mm の暴露試験片を採取し、これらの試験片に、ショットブラスト後、ジンクリッチプライマーを塗膜厚約15μm となるように塗布し、ついでタールエポキシ樹脂塗料を塗膜厚約200 μm となるように塗布した。その後、この塗膜にカッターナイフで試験片の地鉄表面まで達する80mm長さのスクラッチを入れた。そしてこれらの試験片を実船のバラストタンク内に装着し、2年間の暴露試験に供した。このバラストタンク内の環境は、海水の入った湿期約40日、海水の入っていない乾期約40日を1サイクルとした乾湿繰返し環境であった。暴露試験後、スクラッチ周囲のさびに起因した塗膜膨れ面積を測定した。
【0033】
上記調査結果を表2に示す。
表2より、比較例についてみると、No.9,10 では塗膜膨れ面積が1000mm2 程度と大きく、No.7,8,11-16ではvE0 が30J程度以下と低く、耐塗膜剥離性、溶接部靭性のいずれかが不十分なものとなっている。これに対し、本発明例No.1-6では、塗膜膨れ面積が187 〜295mm2、溶接部靭性がvE0 97J以上と、耐塗膜剥離性、溶接部靭性の両方とも優れたものとなっている。
【0034】
【表1】

Figure 0003879581
【0035】
【表2】
Figure 0003879581
【0036】
【発明の効果】
本発明の船舶用鋼材は、優れた耐塗膜剥離性および大入熱溶接部靭性を有し、苛酷な腐食環境に置かれるバラストタンクへ適用した場合に、溶接施工の高能率化に加え、補修塗装や再塗装といった保守費用を大幅に削減することができるという効果を奏し、産業上その貢献度は極めて大である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a marine steel material excellent in coating film peeling resistance and large heat input weld toughness, and a method for producing the same, and in particular, used as a constituent material for ballast tanks and the like used in severe environments such as high temperature and high humidity. The present invention relates to a marine steel material excellent in coating film peeling resistance and high heat input weld toughness, and a method for producing the same.
〔Definition of terms〕
In the present invention, the steel material is a general term for steel plates (generic terms for thick steel plates and thin steel plates) and shape steels, and large heat input welding is welding with a heat input of 60 kJ / cm or more, and also contains components. % and ppm are, respectively it mass percentage according to the amount, means mass per million, also, REM means rare earth elements.
[0002]
[Prior art]
Normally, the anti-corrosion of the ballast tank uses a tar epoxy resin paint and an anti-corrosion in combination. However, the ballast tank is exposed to a severe corrosive environment because seawater enters and exits the tank. Especially in tankers, the following periodic corrosive environment occurs.
[0003]
When transporting crude oil from the Middle East to Japan, the ballast tank is almost full of water in order to maintain the balance of the ship and ensure navigation safety on the outbound route toward the Middle East with emptying the oil tank. The corrosive environment at this time is that the middle to lower part of the ballast tank is in seawater, and the upper part is in a state close to a splash zone. On the other hand, on the return trip to Japan where the oil tank is filled with crude oil, the ballast tank is emptied by emptying the seawater. At this time, the inside of the ballast tank becomes a high temperature (about 40 ° C) and high humidity environment by the seawater remaining on the bottom of the ship and the heat from the deck. Since a tanker takes about 80 days to make one round trip, the ballast tank is exposed to a severe corrosive environment due to the entry and exit of seawater at intervals of about 80 days.
[0004]
When the ballast tank is filled with seawater, the seawater immersion part is hardly corroded by the anti-corrosion effect, but the non-immersion parts such as the top of the ballast tank and the back side of the upper deck are severely called splash zones in addition to the high temperature. Under corrosive environment. On the other hand, when there is no seawater in the ballast tank, it becomes a hot and humid environment, and the anticorrosive effect cannot be expected, and only the tar epoxy resin paint is protected. Further, when the ballast tank is filled with seawater, pebbles, dust, etc. contained in the seawater also enter together, and scratches (scratches) are generated in the coating film, so that corrosion progresses from the scratch portion.
[0005]
For this reason, the paint film life of the ballast tank is about 10 years, which is about half of the ship life (20 years), and the remaining about 10 years need to be maintained by repair painting. However, the repair coating not only requires a corresponding cost, but also has a problem that it is difficult to secure workers because the interior of the ballast tank is in a poor painting work environment.
[0006]
Since the ballast tank has such a problem, it is desired to develop a marine steel material capable of improving from the steel surface, that is, extending the life of the coating film.
By the way, in the field of seawater-resistant steel intended for use in the marine environment, Cr, Ni, Mo, Cu, etc. are added to improve the corrosion resistance. Various seawater-resistant steels for welded structures have been developed. These are used for sluices, steel sheet piles, buoys, piers, and the like.
[0007]
As such seawater-resistant steel, steel materials described in Japanese Patent Application Laid-Open No. 51-25420 are known, but the use of these steel materials is the above-mentioned marine structures and port facilities, and the usage environment is as follows. Seawater at room temperature (about 25 ° C) or lower. Japanese Laid-Open Patent Publication No. 63-255341 proposes a corrosion-resistant steel sheet for welded structures with improved salt damage resistance in the atmospheric environment. The same applies to this.
[0008]
Therefore, in a severe corrosive environment where the temperature and humidity are high, such as in a ballast tank, it cannot be used without a paint film, and the life of the paint film is also different from that of ordinary ship steels. It will only be comparable.
On the other hand, steel structures in the fields of shipbuilding, architecture, and civil engineering are generally often assembled by joining steel materials by welding. Steel materials used in such welded structures are required to have excellent weld toughness as well as base metal toughness from the viewpoint of ensuring safety.
[0009]
However, in recent years, with the increase in the size of welded structures, improvement in welding efficiency has been demanded from the viewpoint of improving the construction efficiency of the structure and reducing the construction cost, and an increase in welding heat input has been aimed at. It is the toughness of the weld bond. The weld bond portion is exposed to a high temperature just below the melting point during welding, the crystal grains are most likely to be coarsened, and the cooling rate is lowered as the welding heat input increases, and a fragile upper bainite structure is likely to be formed. Further, in the weld bond portion, an embrittled structure such as a Widmann-Stätten structure or an island martensite is easily generated, and the toughness is likely to be lowered.
[0010]
In order to solve this problem, the following proposals have been made as means for improving the toughness of the welded heat affected zone or the welded heat affected zone in the vicinity thereof.
・ TiN is finely dispersed in steel and combined with MnS or REM oxysulfide to suppress austenite grain coarsening (JP-A-2-250917, JP-A-2-254118, JP-B-3-53367) No.)
・ Combined addition of REM and Ti to disperse fine particles in steel to suppress austenite grain growth (JP-A-60-184663)
・ Ti oxide is finely dispersed and used as a nucleation site for ferrite transformation (JP 60-245768, JP 61-79745)
・ Using BN precipitated on TiN during the cooling process during welding as the core of ferrite transformation (Japanese Patent Laid-Open No. 61-253344)
・ Including Ti and a sufficient amount (0.05 to 0.10%) of Al to thoroughly reduce solid solution N, and using Ca oxide as finely dispersed particles (Japanese Patent Laid-Open No. 2000-107177)
· Addition of Ca or REM to control sulfide morphology (Japanese Patent Laid-Open No. 60-204863, Japanese Patent Publication No. 4-14180)
[0011]
[Problems to be solved by the invention]
As mentioned above, conventional seawater-resistant steel only exhibits corrosion resistance and corrosion resistance comparable to those of ordinary marine steels in a severely corrosive environment that is hot and humid, such as in a ballast tank. There are no material properties that can be used.
On the other hand, regarding the toughness of the welded part, although various improvement means have been proposed as described above, there are the following problems.
-With the means using Ti oxide, it is quite difficult to disperse the oxide uniformly and finely, and the variation in weld toughness becomes large.
・ With TiN-based means, TiN dissolves and loses grain refinement under heat input conditions in which the vicinity of the weld bond is exposed to high temperatures for a long time, and the weld grain toughness is not improved. An embrittlement structure is generated due to the increase in solid solution Ti and solid solution N, and the toughness of the welded portion is remarkably lowered.
-In the means using Al and Ca, since the amount of addition increases, the oxides cluster, and the toughness may be lowered as a starting point of fracture.
-The means for controlling sulfide morphology with Ca and REM has the problem that it is difficult to ensure high toughness at high heat input welds with welding heat input exceeding 60kJ / cm2.
[0012]
In view of the current state of the prior art described above, the present invention is resistant to peeling of the coating film even in severe corrosive environments, particularly in a high temperature and high humidity environment, and has a high heat input weld toughness that is stable at a high level and has a high heat input resistance. An object of the present invention is to provide a marine steel material having excellent weld toughness and a method for producing the same.
[0013]
[Means for Solving the Problems]
In order to improve the peel resistance of the coating film, the present inventors produced a large number of exposed test pieces containing various alloy elements at various ratios, and these test pieces were stored in an actual ballast tank for 2 years. The following findings were obtained in the exposure test.
1-1) This test piece is mainly Cu-less and Ni is added, and the swelling of the paint film due to rust from paint film scratch is remarkably reduced. For example, a steel material containing 1.0% Ni and Cu reduced to 0.02% has a swollen area reduced to 1/10 of the conventional steel.
[0014]
1-2) The test piece to which Mo, Co, Sb, and W were added also suppressed the swelling of the coating film due to rust.
That is, these alloy elements have an effect of suppressing the progress of corrosion from the scratch portion and reducing the damage to the coating film.
On the other hand, in order to stabilize the toughness of high heat input welds, various factors affecting the toughness were studied and studied, and the following knowledge was obtained.
[0015]
2-1) The toughness of high heat input welds, especially welded bonds, is greatly influenced by the presence or absence of embrittlement.
2-2) Formation of the embrittled structure can be prevented by suppressing the coarsening of austenite in the region heated to a high temperature and by finely dispersing ferrite-forming nuclei that promote ferrite transformation during cooling. Conventionally, since these were insufficient, it was not possible to achieve high level stabilization of weld zone toughness.
[0016]
2-3) In order to finely disperse ferrite-forming nuclei, it is effective to use Ca, which plays a role in sulfide morphology control, to crystallize CaS during solidification. Since CaS crystallizes at a lower temperature than oxides, fine and uniform dispersion in the solidified steel is possible.
2-4) In order to crystallize CaS, it is necessary to adjust the dissolved oxygen content in the molten steel immediately before Ca addition to 30 ppm or less.
[0017]
2-5) Ca (or S) is added to the molten steel adjusted to below 30ppm of dissolved oxygen.
ACR = (Ca-(0.18 + 130 x Ca) x O) / ( 1.25 x S )
(Ca, O, and S are the contents of each alloy element ( mass %))
By adding in an amount of 0.00 to 1.00, a solid solution S amount can be ensured after CaS crystallization, and a composite sulfide in which MnS is precipitated on the surface of CaS can be formed. MnS has the ability to form ferrite nuclei, and further, a Mn dilute band is formed around it, so that the ferrite transformation is further promoted.
[0018]
2-6) Ferrite transformation is further promoted by precipitation of ferrite-forming nuclei such as TiN, BN and AlN on MnS. The present invention has been made on the basis of the above findings and further studied, and the gist thereof is as follows.
[1] By mass%, C: 0.001 to 0.025%, Si: 0.60% or less, Mn: 0.10 to 3.0%, P: 0.005 to 0.030%, S: 0.0005 to 0.01%, Al: 0.10% or less, Cu: 0.10 %: Ni: 0.10 to 4.0%, Ti: 0.005 to 0.030%, N: 0.0030 to 0.0070%, O: 0.0030% or less, Ca: 0.0005 to 0.0030%, comprising the balance Fe and inevitable impurities, and A marine steel with excellent coating peel resistance and high heat input weld toughness characterized by the following ACR exceeding 0.00 and less than 1.00.
[0019]
Record
ACR = (Ca-(0.18 + 130 x Ca) x O) / ( 1.25 x S )
However, Ca, O, and S are component contents of each element ( mass %)
[2] Further, by mass%, one or more selected from Mo: 0.05 to 0.50%, Co: 0.05 to 0.50%, W: 0.05 to 0.50%, Sb: 0.05 to 0.50% [1] A marine steel material excellent in coating film peeling resistance and high heat input weld zone toughness.
[3] The coating film peel resistance and large heat input according to [1] or [2], further comprising one or more of the following (a) to (c) by mass%: Marine steel with excellent weld toughness.
[0020]
(A) Nb: 0.005 to 0.20%, V: One or two selected from 0.005 to 0.20% (b) REM: 0.004 to 0.02%
(C) B: 0.0003 to 0.0050%
[4] By mass%, C: 0.001 to 0.025%, Si: 0.60% or less, Mn: 0.10 to 3.0%, P: 0.005 to 0.030%, S: 0.0005 to 0.01%, Al: 0.10% or less, Cu: 0.10 %: Ni: 0.10 to 4.0%, Ti: 0.005 to 0.030%, N: 0.0030 to 0.0070%, O: 0.0030% or less, Ca: 0.0005 to 0.0030%, or, in addition, (A) to (D In the method of manufacturing a steel material in which a steel material that has been melted and solidified to a component composition containing one or more of the above is hot-rolled, Ca is added to the molten steel immediately after the dissolved oxygen content is adjusted to 30 ppm or less. A method for producing marine steel having excellent coating film peeling resistance and high heat input weld toughness, characterized by adding an amount of less than 1.00.
[0021]
(A) Mo: 0.05 to 0.50%, Co: 0.05 to 0.50%, W: 0.05 to 0.50%, Sb: One or more selected from 0.05 to 0.50% (B) Nb: 0.005 to 0.20% V: One or two selected from 0.005 to 0.20% (C) REM: 0.004 to 0.02%
(D) B: 0.0003 to 0.0050%
ACR = (Ca-(0.18 + 130 x Ca) x O) / ( 1.25 x S )
However, Ca, O, and S are component contents of each element ( mass %)
[0022]
DETAILED DESCRIPTION OF THE INVENTION
First, the reasons for limiting the composition of the steel of the present invention will be described.
C: 0.001 to 0.025%
C is an element effective for improving the strength. However, if the content is less than 0.001%, the effect is poor. On the other hand, if it exceeds 0.025%, the base metal toughness and weld toughness are deteriorated. The range was 0.025%.
Si: 0.60% or less
Si is an element useful not only as a deoxidizer but also in terms of improving the strength of the steel. However, if excessively contained, the base metal toughness and weld zone toughness deteriorate, so the content was made 0.60% or less. . Preferably it is 0.15 to 0.50% of range.
Mn: 0.10 to 3.0%
Mn is an element that greatly affects not only the strength of steel but also the base metal toughness and weld zone toughness. In the present invention, Mn is contained in an amount of 0.10% or more in order to ensure the desired strength. However, if the content exceeds 3.0%, the base material toughness and weld zone toughness are adversely affected, so the range was made 0.10 to 3.0%. Preferably it is 0.10 to 2.0% of range.
P: 0.005 to 0.030%
P needs to be contained in an amount of 0.005% or more in order to form a dense rust, but an excessive content deteriorates the base metal toughness and weld zone toughness, so it was made 0.005 to 0.03%.
S: 0.0005-0.01%
S needs to be contained in an amount of 0.0005% or more in order to cause CaS to crystallize in a finely dispersed state during solidification of molten steel and to precipitate MnS or TiN or the like thereon to function as ferrite nuclei. Further, since excessive inclusion deteriorates the base metal toughness and the welded portion toughness, it is set to 0.0005 to 0.01%. In addition, Preferably it is 0.0010 to 0.0050% of range.
Al: 0.10% or less
Al is added as a deoxidizer, but if it exceeds 0.01%, the weld toughness is adversely affected, so it was limited to 0.10% or less.
Cu: 0.10% or less
Cu is generally an element for improving corrosion resistance, and is added to weathering steel used in an atmospheric environment such as a bridge. However, the internal environment of the ballast tank, which is the application target in the present invention, is in a state of being almost wet with high temperature and humidity, and in such an environment, Cu does not work effectively but acts adversely.
[0023]
This is because Cu has two actions of promoting rust densification and activating the dissolution of steel. That is, the wet time is relatively short in the atmospheric environment, so that the steel melting time is short. Therefore, in this case, the protective rust layer formed by the Cu rust densification promoting action suppresses the corrosion reaction of the steel due to the dissolution activation of Cu. On the other hand, in a constantly wet state, the corrosion reaction of the steel due to Cu dissolution activation is greater than the protective effect of the rust layer due to the Cu rust densification promoting action, and thus the corrosion of the steel proceeds. If the corrosion of steel progresses, the swelling of the coating also progresses.
[0024]
Here, when the Cu content exceeds 0.10%, the corrosion of the steel, and thus the swelling of the coating film proceeds, so the Cu content is limited to 0.10% or less.
Ni: 0.10 to 4.0%
Ni is the most important element in the present invention as an element that remarkably suppresses blistering. The effect is exhibited by densifying the rust particles and preventing the penetration of corrosion factors such as water, oxygen, and chlorine into the ground iron. Thus, after a certain amount of rust is formed, this rust layer prevents the penetration of corrosion factors, thereby suppressing subsequent corrosion of the ground iron. If corrosion is suppressed, the occurrence of rust is reduced and the swelling of the coating film due to rust is also suppressed. This effect is small when the Ni content is less than 0.10%. On the other hand, when the Ni content exceeds 4.0%, the effect is saturated and rather disadvantageous economically, so the Ni content is limited to 0.1 to 4.0%.
Ti: 0.005 to 0.030%
Ti has a strong affinity with N and precipitates as TiN, thereby suppressing the coarsening of austenite grains in the weld heat affected zone, or contributes to increasing the toughness of the weld heat affected zone as a ferrite nucleus. Such an effect is recognized when the content is 0.005% or more. However, if the content exceeds 0.030%, the TiN particles are coarsened and the effect cannot be expected. For this reason, Ti was limited to the range of 0.005 to 0.030%.
N: 0.0030-0.0070%
N combines with Ti and precipitates as TiN to suppress the coarsening of austenite grains in the weld heat affected zone, or contributes to increasing the toughness of the weld heat affected zone as a ferrite transformation nucleus. In order to secure the necessary amount of TIN having such an effect, N needs to be contained in an amount of 0.0030% or more. On the other hand, if the content exceeds 0.0070%, the amount of solute N increases in the region heated to a temperature at which TIN is melted by welding heat, and the toughness is significantly reduced. For this reason, N was limited to the range of 0.0030 to 0.0070%.
O: 0.0030% or less O is contained as an unavoidable impurity, exists as an oxide in steel, and lowers cleanliness. Therefore, it is preferably reduced as much as possible in the present invention. If the O content exceeds 0.0030%, CaO inclusions are coarsened, which adversely affects toughness. Further, in the present invention, in order to crystallize Ca as CaS, O having a strong binding force with Ca is strengthened in degassing or added with a deoxidizing agent before adding Ca. It is preferable to reduce O to 0.0030% or less.
Ca: 0.0005 to 0.0030%
Ca is an element that contributes to improving the toughness of steel by controlling the form of sulfide. In order to exert such an effect, it is necessary to contain at least 0.0005%, but even if it exceeds 0.0030%, the effect is saturated. For this reason, the Ca content is limited to a range of 0.0005 to 0.0030%.
[0025]
Further, according to the production method of the present invention, which will be described later, Ca is finely and uniformly dispersed in the steel as CaS and combined with MnS to act as ferrite nuclei, contributing to the improvement of weld toughness.
ACR: More than 0.00 and less than 1.00
ACR = (Ca- (0.18 + 130 × Ca) × O) / (1.25 × S); however, Ca, O, S component content of each element (mass%)
When the ACR is 0.00 or less, CaS does not crystallize at the melting stage, so MnS does not become a composite sulfide with CaS but precipitates alone and is present in the steel material in a form stretched by rolling. As a result, the toughness of the welded heat-affected zone is not improved. On the other hand, when the ACR is 1.00 or more, S is completely fixed by Ca, and MnS acting as a ferrite nuclei does not precipitate on CaS, so that the improvement of the weld heat affected zone toughness cannot be achieved. The fine dispersion state of composite sulfide in which MnS is deposited on CaS is realized only when the ACR is more than 0.00 and less than 1.00. This composite sulfide functions as a ferrite formation nucleus, the structure of the weld heat affected zone is refined, and the weld heat affected zone toughness is improved.
[0026]
Although the essential components have been described above, in the present invention, in addition to these essential components, the following components can be appropriately contained.
Mo, Co, W, Sb: 0.05-0.50%
Mo, Co, W, and Sb all have the effect of suppressing the swelling of the coating film, but the effect is small when the content is less than 0.05%, while the effect is saturated when the content exceeds 0.50%, which is rather economically disadvantageous. Therefore, it is preferable to contain these elements in the range of 0.05 to 0.50% regardless of whether they are added alone or in combination.
Nb, V: 0.005 to 0.20%
Nb and V are elements that increase the strength of the steel material. However, if the content is less than 0.005%, the effect of addition is poor, while if it exceeds 0.20%, the effect is saturated. Even if it is added in any of the composites, it is preferably contained in the range of 0.005 to 0.20%.
REM: 0.004 to 0.02%
REM contributes to the improvement of weld toughness, but if the content is less than 0.004%, the effect of addition is poor. On the other hand, if it exceeds 0.02%, the cleanliness of the steel deteriorates, so the range of 0.004 to 0.02% It is preferable to contain.
B: 0.0003-0.0050%
B is an element advantageous for improving the strength. However, if the content is less than 0.0003%, the effect of addition is poor. On the other hand, if it exceeds 0.0050%, the base metal toughness and weld toughness are deteriorated, so 0.0003 to 0.0050 It is preferable to make it contain in the range of%.
[0027]
Next, the manufacturing method of this invention steel material is demonstrated.
In this manufacturing method, steel is melted by the usual method such as a converter or an electric furnace so as to have the above component composition, and then a slab material such as a slab is formed by a continuous casting method or an ingot forming method. Moreover, you may implement vacuum degassing smelting etc. in the case of melting.
There are two points to keep in mind when melting.
[0028]
The first point is to adjust the dissolved oxygen content in the molten steel immediately before Ca addition to 0.0030% or less. Thereby, the formation of Ca oxide is suppressed and the crystallization of CaS is promoted. Since CaS crystallizes in molten steel at a lower temperature than oxides, it can be finely and uniformly dispersed in the slab after solidification. Such finely dispersed CaS particles are combined with MnS to act as ferrite nuclei during welding and contribute to improving weld toughness.
[0029]
The second point is that, after satisfying the first point, Ca is added to the molten steel in such an amount that the ACR is more than 0.00 and less than 1.00. By carrying out like this, the structure | tissue of a welding heat affected zone can be refined | miniaturized for the reason mentioned above, and a weld heat affected zone toughness can be improved. In addition, in addition of Ca, what is necessary is just to monitor S content in molten steel and to determine Ca addition amount according to it. Moreover, when S runs short in molten steel, you may add this shortage of S.
[0030]
About the molten steel component adjustment method other than these two points to keep in mind, a normal steel refining method may be used.
Next, the obtained slab material is hot-rolled to obtain a steel material having a desired shape. The material heated in a heating furnace or the like may be rolled, or the heating may be omitted and the hot piece being cooled after solidification may be rolled as it is. The hot rolling method is not particularly limited in the present invention, and an appropriate method may be selected from normal methods.
[0031]
【Example】
Steels having the composition shown in Table 1 were melted in a converter and made into slabs by a continuous casting method. Next, these slabs were heated to 1150 ° C. and then hot rolled to form steel plates (thick steel plates) 25 mm thick × 2500 mm wide.
JISZ2201 No. 4 test piece and JISZ2202 V-notch test piece were sampled from the C direction at the thickness 1/4 position of these steel plates, and the tensile properties and impact properties were investigated.
[0032]
In addition, as a high heat input weld zone toughness, a reproducible thermal cycle equivalent to 1 mm of weld heat affected zone with a heat input of 100 kJ / cm (1 mm from the fusion line on the base metal side) was given, and at 0 ° C by Charpy impact test The absorption energy vE 0 of was measured.
In addition, 5 mm x 100 mm x 200 mm exposure test specimens were collected from these steel sheets, and after shot blasting, a zinc rich primer was applied to a coating thickness of about 15 μm, and then a tar epoxy resin paint was applied. Was applied to a coating thickness of about 200 μm. Thereafter, a scratch having a length of 80 mm reaching the surface of the test piece with a cutter knife was put into the coating film. These test pieces were mounted in an actual ship's ballast tank and subjected to a two-year exposure test. The environment in this ballast tank was a wet and dry environment with one cycle of about 40 days of wet season with seawater and about 40 days of dry season without seawater. After the exposure test, the swollen area of the coating film due to rust around the scratch was measured.
[0033]
The survey results are shown in Table 2.
From Table 2, the comparative example shows that the swollen area of the paint film is as large as about 1000 mm 2 for No. 9 and 10, and vE 0 is as low as about 30 J or less for No. 7 , 8, and 11-16. Either the heat resistance or the weld zone toughness is insufficient. On the other hand, in Invention Example No. 1-6, the swollen area of the coating film was 187 to 295 mm 2 and the weld zone toughness was vE 0 97J or more, and both the coating film peeling resistance and the weld zone toughness were excellent. It has become.
[0034]
[Table 1]
Figure 0003879581
[0035]
[Table 2]
Figure 0003879581
[0036]
【The invention's effect】
The marine steel of the present invention has excellent coating film peeling resistance and large heat input weld toughness, and when applied to a ballast tank placed in a severe corrosive environment, in addition to improving the efficiency of welding construction, The maintenance cost such as repair painting and repainting can be greatly reduced, and the contribution to the industry is extremely large.

Claims (4)

質量%で、C:0.001 〜0.025 %、Si:0.60%以下、Mn:0.10〜3.0 %、P:0.005 〜0.030 %、S:0.0005〜0.01%、Al:0.10%以下、Cu:0.10%以下、Ni:0.10〜4.0 %、Ti:0.005 〜0.030 %、N:0.0030〜0.0070%、O:0.0030%以下、Ca:0.0005〜0.0030%を含有し、残部Feおよび不可避的不純物からなり、かつ下記ACR が0.00 超1.00未満になることを特徴とする耐塗膜剥離性および大入熱溶接部靭性に優れた船舶用鋼材。

ACR =(Ca−(0.18+130 ×Ca)×O)/1.25×
ただし、Ca、O、Sは各元素の成分含有量(質量%)
In mass%, C: 0.001 to 0.025%, Si: 0.60% or less, Mn: 0.10 to 3.0%, P: 0.005 to 0.030%, S: 0.0005 to 0.01%, Al: 0.10% or less, Cu: 0.10% or less, Ni: 0.10 to 4.0%, Ti: 0.005 to 0.030%, N: 0.0030 to 0.0070%, O: 0.0030% or less, Ca: 0.0005 to 0.0030%, consisting of the balance Fe and unavoidable impurities, and the following ACR: A marine steel with excellent film peeling resistance and high heat input weld toughness characterized by exceeding 0.00 and less than 1.00.
Record
ACR = (Ca-(0.18 + 130 x Ca) x O) / ( 1.25 x S )
However, Ca, O, and S are component contents of each element ( mass %)
さらに、質量%で、Mo:0.05〜0.50%、Co:0.05〜0.50%、W:0.05〜0.50%、Sb:0.05〜0.50%から選ばれた1種または2種以上を含有することを特徴とする請求項1記載の耐塗膜剥離性および大入熱溶接部靭性に優れた船舶用鋼材。Furthermore, it is characterized by containing one or more selected from Mo: 0.05 to 0.50%, Co: 0.05 to 0.50%, W: 0.05 to 0.50%, Sb: 0.05 to 0.50% by mass%. The marine steel material excellent in coating film peeling resistance and high heat input weld toughness according to claim 1. さらに、質量%で、下記(a)〜(c)のうち一または二以上を含有することを特徴とする請求項1または2に記載の耐塗膜剥離性および大入熱溶接部靭性に優れた船舶用鋼材。

(a)Nb:0.005 〜0.20%、V:0.005 〜0.20%から選ばれた1種または2種
(b)REM :0.004 〜0.02%
(c)B:0.0003〜0.0050%
Furthermore, it is excellent in coating film peeling resistance and large heat input weld toughness according to claim 1 or 2, characterized by containing one or more of the following (a) to (c) in mass%. Marine steel.
(A) Nb: 0.005 to 0.20%, V: One or two selected from 0.005 to 0.20% (b) REM: 0.004 to 0.02%
(C) B: 0.0003 to 0.0050%
質量%で、C:0.001 〜0.025 %、Si:0.60%以下、Mn:0.10〜3.0 %、P:0.005 〜0.030 %、S:0.0005〜0.01%、Al:0.10%以下、Cu:0.10%以下、Ni:0.10〜4.0 %、Ti:0.005 〜0.030 %、N:0.0030〜0.0070%、O:0.0030%以下、Ca:0.0005〜0.0030%を含有し、あるいはさらに、下記(A)〜(D)のうち一または二以上を含有する目標組成に溶製後凝固させた鋼素材を熱間圧延する鋼材の製造方法において、溶存酸素量30ppm 以下に調整した直後の溶鋼にCaを下記ACR が0.00 超1.00未満になる量添加することを特徴とする耐塗膜剥離性および大入熱溶接部靭性に優れた船舶用鋼材の製造方法。

(A)Mo:0.05〜0.50%、Co:0.05〜0.50%、W:0.05〜0.50%、Sb:0.05〜0.50%から選ばれた1種または2種以上
(B)Nb:0.005 〜0.20%、V:0.005 〜0.20%から選ばれた1種または2種
(C)REM :0.004 〜0.02%
(D)B:0.0003〜0.0050%
ACR =(Ca−(0.18+130 ×Ca)×O)/1.25×
ただし、Ca、O、Sは各元素の成分含有量(質量%)
In mass%, C: 0.001 to 0.025%, Si: 0.60% or less, Mn: 0.10 to 3.0%, P: 0.005 to 0.030%, S: 0.0005 to 0.01%, Al: 0.10% or less, Cu: 0.10% or less, Ni: 0.10 to 4.0%, Ti: 0.005 to 0.030%, N: 0.0030 to 0.0070%, O: 0.0030% or less, Ca: 0.0005 to 0.0030%, or further, among the following (A) to (D) In a method of manufacturing a steel material that hot-rolls a steel material that has been solidified after melting to a target composition containing one or more, Ca is added to the molten steel immediately after the dissolved oxygen content is adjusted to 30 ppm or less, and the following ACR is less than 0.00 and less than 1.00 A method for producing a marine steel material excellent in coating film peeling resistance and high heat input weld toughness, characterized by adding an amount of
(A) Mo: 0.05 to 0.50%, Co: 0.05 to 0.50%, W: 0.05 to 0.50%, Sb: One or more selected from 0.05 to 0.50% (B) Nb: 0.005 to 0.20% V: One or two selected from 0.005 to 0.20% (C) REM: 0.004 to 0.02%
(D) B: 0.0003 to 0.0050%
ACR = (Ca-(0.18 + 130 x Ca) x O) / ( 1.25 x S )
However, Ca, O, and S are component contents of each element ( mass %)
JP2002124702A 2002-04-25 2002-04-25 Marine steel with excellent coating film peel resistance and high heat input weld toughness, and method for producing the same Expired - Fee Related JP3879581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002124702A JP3879581B2 (en) 2002-04-25 2002-04-25 Marine steel with excellent coating film peel resistance and high heat input weld toughness, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002124702A JP3879581B2 (en) 2002-04-25 2002-04-25 Marine steel with excellent coating film peel resistance and high heat input weld toughness, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003313633A JP2003313633A (en) 2003-11-06
JP3879581B2 true JP3879581B2 (en) 2007-02-14

Family

ID=29539683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002124702A Expired - Fee Related JP3879581B2 (en) 2002-04-25 2002-04-25 Marine steel with excellent coating film peel resistance and high heat input weld toughness, and method for producing the same

Country Status (1)

Country Link
JP (1) JP3879581B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4449691B2 (en) * 2004-04-14 2010-04-14 住友金属工業株式会社 Steel material for cargo oil tanks
CN104752385B (en) * 2015-01-26 2018-02-02 汕头市骏码凯撒有限公司 A kind of IC package ultra-soft bonding wire and its manufacture method

Also Published As

Publication number Publication date
JP2003313633A (en) 2003-11-06

Similar Documents

Publication Publication Date Title
JP5119595B2 (en) Corrosion resistant steel for shipbuilding
JP5979063B2 (en) Method for producing marine steel with excellent corrosion resistance and base metal toughness
JP5861335B2 (en) Welded joint with excellent corrosion resistance
JP4577158B2 (en) Corrosion resistant steel for crude oil tanks
JP4687531B2 (en) Steel for crude oil tank and method for producing the same
JP5076961B2 (en) High strength marine corrosion resistant steel with excellent high heat input weld toughness and method for producing the same
JP2009046750A (en) Corrosion-resistant steel material for ship and manufacturing method therefor
JP5453835B2 (en) Corrosion resistant steel for ships
JP5796409B2 (en) Corrosion resistant steel for ship ballast tank
JP5239615B2 (en) Welded joints for crude oil tanks with excellent corrosion resistance and ductile fracture resistance
JP5481980B2 (en) Marine steel with excellent film swell resistance
JP2010185108A (en) Corrosion-resistant steel material for ship, and method of manufacturing the same
JP2009046749A (en) High-strength corrosion-resistant steel material for ship and manufacturing method therefor
JP5958102B2 (en) Corrosion-resistant steel for ship ballast tank with excellent corrosion resistance and method for producing the same
JP5146033B2 (en) High-strength thick steel plate with excellent toughness and brittle crack propagation stopping characteristics for high heat input welds and its manufacturing method
JP2009046751A (en) Corrosion-resistant steel material for ship and manufacturing method therefor
JP5157519B2 (en) Corrosion-resistant steel for marine vessels with excellent high heat input weld toughness and method for producing the same
JP2013256701A (en) Steel material for vessel ballast tank excellent in coating film blistering resistance
JP4483107B2 (en) Marine steel with excellent coating life
JP2010229526A (en) Highly-corrosion-resistant painted steel material
JP4189206B2 (en) Crude oil tank steel with excellent weld heat-affected zone toughness
JP3879581B2 (en) Marine steel with excellent coating film peel resistance and high heat input weld toughness, and method for producing the same
JP5413392B2 (en) Corrosion resistant steel for shipbuilding
JP2009235458A (en) High strength thick steel plate having excellent high heat input weld zone toughness and brittle crack propagation stop property, and method for producing the same
KR101125886B1 (en) High strength ship-building steel with excellent general corrosion and pitting corrosion resistance at low ph chloride solution and excellent haz toughness and manufacturing method for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061030

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees