JP2012153933A - Steel product for ship, excellent in corrosion resistance - Google Patents

Steel product for ship, excellent in corrosion resistance Download PDF

Info

Publication number
JP2012153933A
JP2012153933A JP2011013366A JP2011013366A JP2012153933A JP 2012153933 A JP2012153933 A JP 2012153933A JP 2011013366 A JP2011013366 A JP 2011013366A JP 2011013366 A JP2011013366 A JP 2011013366A JP 2012153933 A JP2012153933 A JP 2012153933A
Authority
JP
Japan
Prior art keywords
less
corrosion
test
content
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011013366A
Other languages
Japanese (ja)
Other versions
JP5763929B2 (en
Inventor
Shinji Sakashita
真司 阪下
Seiji Yoshida
誠司 吉田
Keisuke Ozawa
敬祐 小澤
Tetsushi Shimoyama
哲史 下山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2011013366A priority Critical patent/JP5763929B2/en
Priority to CN2012100178151A priority patent/CN102618786A/en
Priority to KR1020120006698A priority patent/KR101382009B1/en
Publication of JP2012153933A publication Critical patent/JP2012153933A/en
Application granted granted Critical
Publication of JP5763929B2 publication Critical patent/JP5763929B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide steel products for a ship, exhibiting excellent long term corrosion resistance in a severe corrosive environment, and various structures configured using the steel products for a ship.SOLUTION: The steel products for a ship includes 0.04-0.30% of C, 0.05-1.0% of Si, 0.1-2.0% of Mn, 0.010-0.040% of P, 0.011-0.025% of S, 0.010-0.10% Al, 0.10-1.0% of Cu, 0.01-0.3% of Cr, and 0.0030-0.010% of N, respectively, with the balance composed of iron and unavoidable impurities, and a ratio ([S]/[N]) of S content [S] to N content [N] is 1.50-6.0.

Description

本発明は、原油タンカー、コンテナ船、LNG船、バラ積み船、貨物船、客船、雑貨船、軍艦等の船舶において、主要な構造部材として用いられる船舶用鋼材に関するものであり、特にバラストタンク等の高温多湿で塩分の多い環境下や、原油タンク内等のSO2,SO3等の腐食性ガスや油分を含む環境下において、優れた耐食性を発揮する船舶用鋼材に関するものである。 The present invention relates to marine steel materials used as main structural members in ships such as crude oil tankers, container ships, LNG ships, bulk carriers, cargo ships, passenger ships, miscellaneous ships, warships, etc. The present invention relates to a marine steel material that exhibits excellent corrosion resistance in a high-temperature and high-humidity environment with a high amount of salt, or in an environment containing a corrosive gas or oil such as SO 2 or SO 3 in a crude oil tank.

各種船舶において主要な構造部材として用いられている鋼材は、海水による塩分や高温多湿の雰囲気、原油中に含まれる水分の他、腐食性ガス成分等により厳しい腐食環境に晒されることになる。例えば、船舶が不安定になることを防ぐために海水を積載するためのバラストタンクでは、高温多湿と高塩分による鋼材腐食が著しくなり、船舶の安全性確保と長寿命化のために防食方法の適用が必要不可欠である。   Steel materials used as main structural members in various ships are exposed to severe corrosive environments due to salt content from seawater, hot and humid atmosphere, moisture contained in crude oil, corrosive gas components, and the like. For example, in a ballast tank for loading seawater to prevent the ship from becoming unstable, corrosion of steel due to high temperature and humidity and high salinity becomes significant, and anticorrosion methods are applied to ensure ship safety and extend the life of the ship. Is indispensable.

船舶の防食方法としては、塗装(防食塗装)と電気防食(犠牲防食)による方法が一般的であり、或は両者の方法を併用することもある。上記バラストタンクの防食方法としては、エポキシ樹脂系塗料による塗装と併用して、鋼材よりも卑な金属である亜鉛を鋼材と短絡するように設置する電気防食が採用されることが多い。また、タンカーの原油タンク内は硫化水素や硫黄酸化物(SOx)などによる腐食が顕著であり、エポキシ樹脂系塗料による塗装が施されて防食されるのが一般的である。   As a corrosion prevention method for a ship, a method by painting (corrosion prevention coating) and an electric corrosion prevention (sacrificial corrosion prevention) are generally used, or both methods may be used in combination. As the anti-corrosion method for the ballast tank, there is often adopted an anti-corrosion method in which zinc, which is a base metal rather than steel, is installed so as to be short-circuited with the steel in combination with painting with an epoxy resin-based paint. Further, the inside of a tanker crude oil tank is significantly corroded by hydrogen sulfide, sulfur oxide (SOx) or the like, and is generally coated with an epoxy resin paint to be anticorrosive.

防食塗装は、船舶で一般的に採用されている防食手段であるが、外的要因や経年劣化などによって、塗膜に疵がついたり、塗装が剥離してしまったりして防食性能が維持できない場合があり、その検査および補修のためのメンテナンスが必要となる。特に、バラストタンクや原油タンク等のように、甲板裏面での塗装の検査や補修には、タンク内で足場を組む必要がある場所も多く、メンテナンスに要する時間と費用が多大になるという問題がある。   Anti-corrosion coating is a general anti-corrosion measure used in ships, but the anti-corrosion performance cannot be maintained due to wrinkles on the coating film or peeling off of the coating due to external factors or deterioration over time. In some cases, maintenance for the inspection and repair is required. In particular, there are many places where it is necessary to build a scaffolding in the tank, such as ballast tanks and crude oil tanks, for inspection and repair of the coating on the back of the deck, and there is a problem that the time and cost required for maintenance become large. is there.

一方、亜鉛等の犠牲陽極や外部電極による電気防食を適用する場合には、海水等の電解質水溶液に浸漬された状態で電気回路を形成する必要があるが、電解質水溶液に浸漬されないタンク内の気相部(空隙部)においては、電気防食効果が十分に発揮されないという問題がある。   On the other hand, when applying anti-corrosion with a sacrificial anode such as zinc or an external electrode, it is necessary to form an electric circuit in a state of being immersed in an aqueous electrolyte solution such as seawater, but the air in the tank that is not immersed in the aqueous electrolyte solution is required. In the phase part (void part), there is a problem that the anticorrosive effect is not sufficiently exhibited.

船舶の安全性向上や長寿命化を図るために、これまでよりも更に効果的な防食手段が要求されるようになっている。こうしたことから、鋼材の化学成分を調整することによって、鋼材自体の耐食性を向上させる技術も提案されている。例えば特許文献1には、鋼材の表面に、金属亜鉛分30質量%以上を含有する無機ジンクリッチプライマー層を形成する表面処理と、電気防食を併用することを前提とし、下地鋼材の化学成分を調整する技術について開示されている。また、特許文献2には、化学成分組成を厳密に規定すると共に、各元素が所定の関係を満足する様に制御した技術が開示されている。これらの技術によって、従来の防食手段よりも優れた耐食性を確保できたといえる。   In order to improve the safety of ships and extend their life, more effective anticorrosion means are required than before. For these reasons, a technique for improving the corrosion resistance of the steel material itself by adjusting the chemical composition of the steel material has also been proposed. For example, in Patent Document 1, on the premise that a surface treatment for forming an inorganic zinc rich primer layer containing a metal zinc content of 30% by mass or more on the surface of a steel material and an anticorrosion are used together, the chemical components of the base steel material are described. A technique for adjusting is disclosed. Patent Document 2 discloses a technique in which the chemical component composition is strictly defined and controlled so that each element satisfies a predetermined relationship. It can be said that the corrosion resistance superior to the conventional anti-corrosion means was ensured by these techniques.

しかしながら、バラストタンクや原油タンク等の甲板裏面の様に、厳しい腐食環境下では、依然として十分な耐食性が発揮できているとはいえず、更なる耐食性の向上が望まれているのが実情である。また、上記各技術では、耐食性向上元素としてSbまたはSn等を含み得ることが記載されているが、これらの元素は環境負荷の面から推奨されないものである。   However, in the severe corrosive environment like the backside of decks such as ballast tanks and crude oil tanks, it cannot be said that sufficient corrosion resistance is still being demonstrated, and the fact is that further improvement of corrosion resistance is desired. . In addition, each of the above technologies describes that Sb or Sn can be included as an element for improving corrosion resistance, but these elements are not recommended in terms of environmental load.

特開2008−144204号公報JP 2008-144204 A 特開2010−222701号公報JP 2010-222701 A

本発明は上記の様な事情に着目してなされたものであって、その目的は、厳しい腐食環境下において、優れた長期耐食性を示す船舶用鋼材、およびこのような船舶用鋼材を用いて構成した各種構造物を提供することにある。   The present invention has been made paying attention to the circumstances as described above, and its purpose is to use a marine steel material exhibiting excellent long-term corrosion resistance in a severe corrosive environment, and such a marine steel material. It is to provide various structures.

上記目的を達成することのできた本発明の船舶用鋼材とは、C:0.04〜0.30%(質量%の意味、以下同じ)、Si:0.05〜1.0%、Mn:0.1〜2.0%、P:0.010〜0.040%、S:0.011〜0.025%、Al:0.010〜0.10%、Cu:0.10〜1.0%、Cr:0.01〜0.3%、およびN:0.0030〜0.010%を夫々含有し、残部が鉄および不可避的不純物からなり、且つSの含有量[S]とNの含有量[N]の比([S]/[N])が1.50〜6.0である点に要旨を有するものである。   The marine steel material of the present invention that has achieved the above object is C: 0.04 to 0.30% (meaning of mass%, the same shall apply hereinafter), Si: 0.05 to 1.0%, Mn: 0.1-2.0%, P: 0.010-0.040%, S: 0.011-0.025%, Al: 0.010-0.10%, Cu: 0.10-10. 0%, Cr: 0.01 to 0.3%, and N: 0.0030 to 0.010%, respectively, the balance is made of iron and inevitable impurities, and S content [S] and N The content [N] ratio ([S] / [N]) is 1.50 to 6.0.

本発明の船舶用鋼材においては、必要によって、更に、(a)Co:2.0%以下(0%を含まない)および/またはNi:2.0%以下(0%を含まない)、(b)Mg:0.005%以下(0%を含まない)および/またはCa:0.005%以下(0%を含まない)、(c)Ti:0.1%以下(0%を含まない)、Zr:0.1%以下(0%を含まない)およびHf:0.1%以下(0%を含まない)よりなる群から選ばれる1種以上、(d)Mo:0.5%以下(0%を含まない)および/またはW:0.5%以下(0%を含まない)、(e)B:0.005%以下(0%を含まない)、V:0.1%以下(0%を含まない)およびNb:0.1%以下(0%を含まない)よりなる群から選ばれる1種以上、等を含有させることも有効であり、これらを含有させることによって成分の種類に応じて船舶用鋼材の特性が更に改善される。   In the marine steel material of the present invention, if necessary, (a) Co: 2.0% or less (not including 0%) and / or Ni: 2.0% or less (not including 0%), ( b) Mg: 0.005% or less (not including 0%) and / or Ca: 0.005% or less (not including 0%), (c) Ti: 0.1% or less (not including 0%) ), Zr: 0.1% or less (excluding 0%) and Hf: 0.1% or less (not including 0%), (d) Mo: 0.5% Or less (excluding 0%) and / or W: 0.5% or less (not including 0%), (e) B: 0.005% or less (not including 0%), V: 0.1% The following may be included (not including 0%) and Nb: not less than 0.1% (not including 0%), etc. Is effective, the characteristics of marine steel according to the type of components by incorporating them can be further improved.

上記のような船舶用鋼材を用いて構成することによって、優れた耐食性を発揮する船舶タンク、タンカー原油タンク上甲板、タンカー原油タンクの気相部等の各種構造物が得られる。   By using the marine steel as described above, various structures such as a marine tank, a tanker crude oil tank upper deck, and a gas phase part of the tanker crude oil tank exhibiting excellent corrosion resistance can be obtained.

本発明においては、化学成分組成を厳密に規定すると共に、SとNの含有量の比([S]/[N])の値を適正な範囲に制御することによって、厳しい腐食環境下でも優れた耐食性を示し、長時間に亘って良好な耐食性を確保できる船舶用鋼材が実現できる。こうした船舶用鋼材は、船舶タンク、タンカー原油タンク上甲板、タンカー原油タンクの気相部等の構造物の素材として極めて有用である。   In the present invention, the chemical composition is strictly defined, and the ratio of S and N content ([S] / [N]) is controlled within an appropriate range, so that it is excellent even in severe corrosive environments. It is possible to realize a marine steel material that exhibits high corrosion resistance and can ensure good corrosion resistance over a long period of time. Such marine steel materials are extremely useful as materials for structures such as marine tanks, tanker crude oil tank upper decks, and gas phase parts of tanker crude oil tanks.

耐食性試験に用いた塗装試験片の外観形状を示す説明図である。It is explanatory drawing which shows the external appearance shape of the coating test piece used for the corrosion resistance test. 耐食性試験に用いた裸試験片の外観形状を示す説明図である。It is explanatory drawing which shows the external appearance shape of the bare test piece used for the corrosion resistance test. 塗膜膨れ幅測定方法を示す概略説明図である。It is a schematic explanatory drawing which shows the coating-film swelling width measuring method. 原油タンク内気相部を模擬した試験装置を示す概略説明図である。It is a schematic explanatory drawing which shows the test device which simulated the gas phase part in a crude oil tank. タンカーの断面を模式的に示した説明図である。It is explanatory drawing which showed the cross section of the tanker typically.

本発明者らは、前記課題を解決するために鋭意研究を重ねた。その結果、C,Si,Mn,P,S,Al,Cu,Cr,N等の元素を厳密に調整すると共に、SとNの含有量の比([S]/[N])の値を1.50〜6.0の範囲に制御すれば、耐食性に優れた船舶用鋼材が得られることを見出し、本発明を完成した。また、本発明の鋼材によれば、環境負荷の面から推奨されないSbやSn等の特殊な添加元素を用いなくても良いという利点もある。   The inventors of the present invention have made extensive studies to solve the above problems. As a result, elements such as C, Si, Mn, P, S, Al, Cu, Cr, and N are strictly adjusted, and the ratio of S and N content ([S] / [N]) is set. It has been found that a marine steel material excellent in corrosion resistance can be obtained by controlling in the range of 1.50 to 6.0, and the present invention has been completed. Moreover, according to the steel material of this invention, there also exists an advantage that it is not necessary to use special additive elements, such as Sb and Sn which are not recommended from the surface of an environmental load.

腐食環境においては、腐食生成物として酸化鉄やオキシ水酸化鉄等のいわゆる鉄錆が鋼材表面に形成され、これら腐食生成物による保護性が耐食性を発揮させることは従来から良く知られている。本発明者らは、バラストタンクや原油タンク内等の気相部腐食環境での腐食メカニズムと、鋼材の耐食性との関係について検討した。   In a corrosive environment, so-called iron rust such as iron oxide and iron oxyhydroxide is formed on a steel material surface as a corrosion product, and it is well known that protection by these corrosion products exerts corrosion resistance. The present inventors examined the relationship between the corrosion mechanism in a gas phase corrosive environment such as in a ballast tank or a crude oil tank, and the corrosion resistance of the steel material.

その結果、上記のような気相部の腐食環境では、鉄錆以外の腐食生成物も鋼材の耐食性を発揮することを明らかにした。具体的には、化学成分組成を適切に調整した鋼材においては、CuおよびCrを含む複合硫化物が、沈殿によって化合物皮膜として鋼材表面に形成され、この皮膜の存在が鋼材の腐食反応を大きく抑制させることが判明した。   As a result, it was clarified that corrosion products other than iron rust also exhibit the corrosion resistance of steel materials in the corrosive environment of the gas phase as described above. Specifically, in steel materials with appropriately adjusted chemical composition, complex sulfide containing Cu and Cr is formed on the steel surface as a compound film by precipitation, and the presence of this film greatly suppresses the corrosion reaction of the steel material. Turned out to be.

耐食性発現に作用する複合硫化物は、Cuの硫化物であるCu2SとCuS、およびCrの硫化物であるCr23が複合的に生成して形成されたものであり、この複合硫化物は鋼材中に含有させたCu,CrおよびSに起因して生成するものである。CuおよびCrを含む複合硫化物は、鋼中のPによる化合物を安定化させる作用、および鋼中のNによる化合物の生成を触媒する作用等によって、有効に生成されるものである。従って、鋼材の腐食抑制に効果的な複合硫化物を生成させるためには、Cu,CrおよびSの含有量だけでなく、通常では不可避的不純物として捉えられるP,Nの含有量、およびSとNの含有量の比([S]/[N])の値も適切に調整する必要がある。 The composite sulfide that acts to develop corrosion resistance is formed by compositely forming Cu 2 S and CuS, which are Cu sulfides, and Cr 2 S 3, which is a sulfide of Cr. The product is generated due to Cu, Cr and S contained in the steel material. The composite sulfide containing Cu and Cr is effectively produced by the action of stabilizing the compound by P in the steel and the action of catalyzing the production of the compound by N in the steel. Therefore, in order to produce a composite sulfide effective for inhibiting corrosion of steel materials, not only the contents of Cu, Cr and S, but also the contents of P and N which are usually regarded as inevitable impurities, and S The value of the N content ratio ([S] / [N]) also needs to be adjusted appropriately.

[Sの含有量[S]とNの含有量[N]の比([S]/[N])の値:1.50〜6.0]
上記複合硫化物による腐食性向上効果を有効に発揮させるためには、SとNの含有量(単位:質量%)の比([S]/[N])の値を適切に調整する必要がある。この比([S]/[N])の値が、1.50未満であると、硫化物生成反応に対するNの触媒作用(化合物生成触媒作用)が不十分となって、耐食性向上効果が発揮され難くなる。また、比([S]/[N])の値が、6.0を超えると、Sの含有量が少なくなって、複合硫化物生成反応が進み難く、十分な耐食性が発揮されない。このような理由から、比([S]/[N])の値は1.50〜6.0の範囲とする必要がある。尚、比([S]/[N])の値の好ましい下限は1.6(より好ましくは1.8以上)、好ましい上限は5.9(より好ましくは5.5以下)である。
[Value of ratio of S content [S] to N content [N] ([S] / [N]): 1.50 to 6.0]
In order to effectively exert the corrosive improvement effect by the composite sulfide, it is necessary to appropriately adjust the value of the ratio of S and N (unit: mass%) ([S] / [N]). is there. If the value of this ratio ([S] / [N]) is less than 1.50, the catalytic action of N (sulfide formation catalytic action) for the sulfide formation reaction becomes insufficient, and the effect of improving corrosion resistance is exhibited. It becomes difficult to be done. On the other hand, if the value of the ratio ([S] / [N]) exceeds 6.0, the content of S decreases, the composite sulfide formation reaction is difficult to proceed, and sufficient corrosion resistance is not exhibited. For this reason, the value of the ratio ([S] / [N]) needs to be in the range of 1.50 to 6.0. The preferable lower limit of the ratio ([S] / [N]) is 1.6 (more preferably 1.8 or more), and the preferable upper limit is 5.9 (more preferably 5.5 or less).

本発明の鋼材では、その鋼材としての基本的特性(機械的特性や溶接性)および耐食性を満足させるために、C,Si,Mn,P,S,Al,Cu,Cr,N等の成分を適切に調整する必要がある。これらの成分の範囲限定理由は、次の通りである。   In the steel material of the present invention, components such as C, Si, Mn, P, S, Al, Cu, Cr, and N are added to satisfy the basic properties (mechanical properties and weldability) and corrosion resistance of the steel material. It is necessary to adjust appropriately. The reasons for limiting the ranges of these components are as follows.

[C:0.04〜0.30%]
Cは、鋼材の強度確保のために必要な基本的添加元素である。こうした効果を発揮させるためには、0.04%以上含有させる必要がある。しかし、Cを過剰に含有させると、耐食性が劣化することに加えて、靱性も劣化する。このようなCの悪影響を避けるためには、C含有量は0.30%以下とする必要がある。尚、C含有量の好ましい下限は0.045%であり、より好ましくは0.05%以上とするのが良い。また、C含有量の好ましい上限は0.29%であり、より好ましくは0.28%以下とするのが良い。
[C: 0.04 to 0.30%]
C is a basic additive element necessary for securing the strength of the steel material. In order to exhibit such an effect, it is necessary to contain 0.04% or more. However, when C is contained excessively, in addition to deterioration of corrosion resistance, toughness is also deteriorated. In order to avoid such an adverse effect of C, the C content needs to be 0.30% or less. In addition, the minimum with preferable C content is 0.045%, It is good to set it as 0.05% or more more preferably. Moreover, the upper limit with preferable C content is 0.29%, More preferably, it is good to set it as 0.28% or less.

[Si:0.05〜1.0%]
Siは、脱酸と強度確保のために必要な元素であり、0.05%に満たないと構造部材として要求される最低強度を確保できない。しかし、1.0%を超えてSiを過剰に含有させると、溶接性が劣化する。尚、Si含有量の好ましい下限は0.08%であり、より好ましくは0.10%以上とするのが良い。また、Si含有量の好ましい上限は0.95%であり、より好ましくは0.90%以下とするのが良い。
[Si: 0.05-1.0%]
Si is an element necessary for deoxidation and securing strength, and the minimum strength required as a structural member cannot be secured unless it is less than 0.05%. However, if the Si content exceeds 1.0%, the weldability deteriorates. In addition, the minimum with preferable Si content is 0.08%, More preferably, it is good to set it as 0.10% or more. Moreover, the upper limit with preferable Si content is 0.95%, It is good to set it as 0.90% or less more preferably.

[Mn:0.1〜2.0%]
Mnは、Siと同様に、脱酸と強度確保のために必要な元素であり、0.1%に満たないと構造部材として要求される最低強度を確保できない。しかし、2.0%を超えて過剰に含有させると靭性が劣化する。尚、Mn含有量の好ましい下限は0.15%であり、より好ましくは0.20%以上とするのが良い。またMn含有量の好ましい上限は1.9%であり、より好ましくは1.8%以下とするのが良い。
[Mn: 0.1 to 2.0%]
Mn, like Si, is an element necessary for deoxidation and securing strength, and if it is less than 0.1%, the minimum strength required as a structural member cannot be secured. However, if the content exceeds 2.0%, the toughness deteriorates. In addition, the minimum with preferable Mn content is 0.15%, More preferably, it is good to set it as 0.20% or more. Moreover, the upper limit with preferable Mn content is 1.9%, More preferably, it is good to set it as 1.8% or less.

[P:0.010〜0.040%]
Pは、腐食環境において溶解した場合に、リン酸塩を生成してCuおよびCrを含む複合硫化物を安定化させる作用があるため、本発明の鋼材において必要不可欠な添加元素である。このような効果は、特に薄い水膜形成による腐食が進行する気相部腐食環境において大きなものとなる。こうした効果を発揮させるためには、Pは0.010%以上含有させる必要がある。しかし、Pを過剰に含有させると靭性や溶接性が劣化するので、0.040%までとする。尚、P含有量の好ましい下限は0.011%であり、より好ましくは0.012%以上とするのが良い。またP含有量の好ましい上限は0.038%であり、より好ましくは0.035%以下とするのが良い。
[P: 0.010 to 0.040%]
P is an indispensable additive element in the steel material of the present invention because it has an effect of stabilizing a composite sulfide containing Cu and Cr when it is dissolved in a corrosive environment. Such an effect is particularly significant in a gas phase corrosive environment where corrosion due to the formation of a thin water film proceeds. In order to exhibit such an effect, P needs to be contained 0.010% or more. However, if P is contained excessively, toughness and weldability deteriorate, so the content is limited to 0.040%. In addition, the minimum with preferable P content is 0.011%, More preferably, it is good to set it as 0.012% or more. Moreover, the upper limit with preferable P content is 0.038%, More preferably, it is good to set it as 0.035% or less.

[S:0.011〜0.025%]
Sは、腐食環境において溶解した後に、同じく溶解したCuおよびCrとともに、鋼材表面に皮膜(沈殿によって形成される皮膜)を生成して腐食溶解反応(腐食による溶解反応)を低減する作用があり、耐食性向上に必要な元素である。このような効果は、特に薄い水膜形成による腐食が進行する気相部腐食環境において大きなものとなる。こうした効果を発揮させるためには、Sは0.011%以上含有させる必要がある。但し、SもPと同様に、過剰に含有させると鋼材の靭性や溶接性が劣化するので、許容される含有量は0.025%までとする。尚、S含有量の好ましい下限は0.012%であり、より好ましくは0.013%以上とすることが推奨される。またS含有量の好ましい上限は0.024%であり、より好ましくは0.023%以下とするのが良い。
[S: 0.011 to 0.025%]
S, after dissolving in a corrosive environment, has the effect of reducing the corrosion dissolution reaction (dissolution reaction due to corrosion) by producing a film (film formed by precipitation) on the steel material surface together with the dissolved Cu and Cr. It is an element necessary for improving corrosion resistance. Such an effect is particularly significant in a gas phase corrosive environment where corrosion due to the formation of a thin water film proceeds. In order to exert such an effect, S needs to be contained by 0.011% or more. However, as in the case of P, when S is excessively contained, the toughness and weldability of the steel material deteriorate, so the allowable content is limited to 0.025%. In addition, the minimum with preferable S content is 0.012%, More preferably, it is recommended to set it as 0.013% or more. Moreover, the upper limit with preferable S content is 0.024%, It is good to set it as 0.023% or less more preferably.

[Al:0.010〜0.10%]
Alは、腐食環境において溶解した場合に、安定なAl酸化物となって鋼材表面に皮膜を形成して腐食溶解反応を低減する作用があり、耐食性向上に必要な元素である。また、AlもSi、Mnと同様に、脱酸および強度確保のためにも必要な元素である。これらの効果を発揮させるためには、Alは0.010%以上含有させる必要がある。しかし、Alを過剰に含有させると溶接性を害するので、0.10%までとする。尚、Al含有量の好ましい下限は0.011%であり、より好ましくは0.012%以上である。またAl含有量の好ましい上限は0.095%であり、より好ましくは0.090%以下とするのが良い。
[Al: 0.010 to 0.10%]
Al, when dissolved in a corrosive environment, becomes a stable Al oxide and forms a film on the steel surface to reduce the corrosion dissolution reaction, and is an element necessary for improving corrosion resistance. Al is also an element necessary for deoxidation and securing strength, like Si and Mn. In order to exhibit these effects, Al needs to be contained 0.010% or more. However, if Al is contained excessively, weldability is impaired, so the content is limited to 0.10%. In addition, the minimum with preferable Al content is 0.011%, More preferably, it is 0.012% or more. Moreover, the upper limit with preferable Al content is 0.095%, More preferably, it is good to set it as 0.090% or less.

[Cu:0.10〜1.0%]
Cuは、腐食環境において溶解した後に、同じく溶解したS,Crと共に鋼材表面に緻密な皮膜(沈殿によって形成される皮膜)を形成して、腐食反応を低減させる作用があり、耐食性向上に必要な元素である。このような効果を発揮させるためには、Cuは0.10%以上含有させる必要がある。しかし、Cuを過剰に含有させると、鋼材の溶接性や熱間加工性を劣化させるので、1.0%までとする必要がある。尚、Cu含有量の好ましい下限は0.11%であり、より好ましくは0.12%以上である。またCu含有量の好ましい上限は0.95%であり、より好ましくは0.90%以下とするのが良い。
[Cu: 0.10 to 1.0%]
Cu dissolves in a corrosive environment and then forms a dense film (film formed by precipitation) on the steel material surface together with the dissolved S and Cr to reduce the corrosion reaction, and is necessary for improving corrosion resistance. It is an element. In order to exert such an effect, it is necessary to contain 0.10% or more of Cu. However, if Cu is excessively contained, the weldability and hot workability of the steel material are deteriorated, so that it is necessary to be up to 1.0%. In addition, the minimum with preferable Cu content is 0.11%, More preferably, it is 0.12% or more. Moreover, the upper limit with preferable Cu content is 0.95%, It is good to set it as 0.90% or less more preferably.

[Cr:0.01〜0.3%]
Crは、腐食環境において溶解した後に、同じく溶解したS,Cuと共に鋼材表面に緻密な皮膜(沈殿によって形成される皮膜)を形成して、腐食反応を低減させる作用があり、耐食性向上に必要な元素である。このような効果を発揮させるためには、Crは0.01%以上含有させる必要がある。しかし、Crを過剰に含有させると、腐食先端のpH低下を招いてかえって耐食性を劣化させることに加えて、溶接性や熱間加工性が劣化することから、0.3%までとする必要がある。尚、Cr含有量の好ましい下限は0.02%であり、より好ましくは0.03%以上である。またCr含有量の好ましい上限は0.28%であり、より好ましくは0.26%以下とするのが良い。
[Cr: 0.01 to 0.3%]
Cr dissolves in a corrosive environment and then forms a dense film (film formed by precipitation) on the steel material surface together with the dissolved S and Cu to reduce the corrosion reaction and is necessary for improving corrosion resistance. It is an element. In order to exhibit such an effect, it is necessary to contain Cr 0.01% or more. However, if Cr is excessively contained, in addition to deteriorating the corrosion resistance due to a decrease in pH at the corrosion tip, weldability and hot workability are also degraded. is there. In addition, the minimum with preferable Cr content is 0.02%, More preferably, it is 0.03% or more. Moreover, the upper limit with preferable Cr content is 0.28%, It is good to set it as 0.26% or less more preferably.

[N:0.0030〜0.010%]
Nは、CuおよびCrを含む複合硫化物(沈殿によって形成される皮膜)を安定に生成させるために、その含有量を調整する必要がある。Nは、CuおよびCrを含む複合硫化物の生成に対して触媒的に作用すると考えられる。このような効果を発揮させるためには、Nは0.0030%以上含有させる必要がある。しかし、Nを過剰に含有させると、固溶Nが増加し、鋼材の延性や靭性に悪影響を及ぼすために、その上限0.010%とする必要がある。尚、N含有量の好ましい下限は0.0033%であり、より好ましくは0.0035%以上である。またN含有量の好ましい上限は0.0095%であり、より好ましくは0.0090%以下とするのが良い。
[N: 0.0030 to 0.010%]
The content of N needs to be adjusted in order to stably produce a composite sulfide containing Cu and Cr (a film formed by precipitation). N is thought to act catalytically on the formation of complex sulfides containing Cu and Cr. In order to exert such an effect, N needs to be contained by 0.0030% or more. However, when N is contained excessively, the solute N increases, which adversely affects the ductility and toughness of the steel material. Therefore, the upper limit thereof needs to be 0.010%. In addition, the minimum with preferable N content is 0.0033%, More preferably, it is 0.0035% or more. Moreover, the upper limit with preferable N content is 0.0095%, More preferably, it is good to set it as 0.0090% or less.

本発明の船舶用鋼材における基本成分は上記の通りであり、残部は鉄および不可避的不純物からなるものである。不可避不純物としては、例えばO,H等が挙げられ、これらの元素は鋼材の特性を害さない程度で含有しても良い。但し、これらの不可避的不純物は、好ましくはその合計で0.1%以下(より好ましくは0.09%以下)に抑えることによって、本発明における耐食性発現効果を極大化させることができる。   The basic components in the marine steel of the present invention are as described above, and the balance consists of iron and inevitable impurities. Examples of inevitable impurities include O and H, and these elements may be contained to the extent that they do not impair the properties of the steel material. However, these inevitable impurities are preferably suppressed to a total of 0.1% or less (more preferably 0.09% or less), so that the effect of developing corrosion resistance in the present invention can be maximized.

また、本発明の船舶用鋼材には、上記成分の他に必要によって、更に、(a)Co:2.0%以下(0%を含まない)および/またはNi:2.0%以下(0%を含まない)、(b)Mg:0.005%以下(0%を含まない)および/またはCa:0.005%以下(0%を含まない)、(c)Ti:0.1%以下(0%を含まない)、Zr:0.1%以下(0%を含まない)およびHf:0.1%以下(0%を含まない)よりなる群から選ばれる1種以上、(d)Mo:0.5%以下(0%を含まない)および/またはW:0.5%以下(0%を含まない)、(e)B:0.005%以下(0%を含まない)、V:0.1%以下(0%を含まない)およびNb:0.1%以下(0%を含まない)よりなる群から選ばれる1種以上、等を含有させることも有効であり、含有させる成分に応じて船舶用鋼材の特性が更に改善される。   In addition to the above components, the marine steel of the present invention may further include (a) Co: 2.0% or less (excluding 0%) and / or Ni: 2.0% or less (0 %), (B) Mg: 0.005% or less (not including 0%) and / or Ca: 0.005% or less (not including 0%), (c) Ti: 0.1% 1 or more selected from the group consisting of: (not including 0%), Zr: not more than 0.1% (not including 0%), and Hf: not more than 0.1% (not including 0%), (d ) Mo: 0.5% or less (not including 0%) and / or W: 0.5% or less (not including 0%), (e) B: 0.005% or less (not including 0%) V: 0.1% or less (not including 0%) and Nb: 0.1% or less (not including 0%) It is also effective to the characteristics of marine steel according to the components to be contained is further improved.

[Co:2.0%以下(0%を含まない)および/またはNi:2.0%以下(0%を含まない)]
CoとNiは、錆皮膜による保護効果を高めて耐食性を向上させる作用を有している。また、Niは鋼材の靭性を向上させる効果も発揮する。しかしながら、過剰に含有させると溶接性や熱間加工性が劣化することから、2.0%以下とすることが好ましい(より好ましくは1.9%以下)。尚、こうした効果を発揮させるためには、CoまたはNiは、0.01%以上含有させることが好ましい(より好ましくは0.02%以上)。
[Co: 2.0% or less (not including 0%) and / or Ni: 2.0% or less (not including 0%)]
Co and Ni have the effect | action which raises the protection effect by a rust film and improves corrosion resistance. Ni also exhibits the effect of improving the toughness of the steel material. However, since excessive weldability deteriorates weldability and hot workability, the content is preferably 2.0% or less (more preferably 1.9% or less). In order to exert such effects, it is preferable to contain Co or Ni in an amount of 0.01% or more (more preferably 0.02% or more).

[Mg:0.005%以下(0%を含まない)および/またはCa:0.005%以下(0%を含まない)]
MgとCaは、塩化物環境や酸結露環境において、錆中のpHを上昇させる作用を有しており、カソード反応を抑制して耐食性を向上するのに有効な元素である。しかしながら、過剰に含有させると加工性と溶接性を劣化させるので、夫々0.005%以下とすることが好ましい。尚、こうした効果を発揮させるための好ましい下限は、夫々0.0003%以上(より好ましくは夫々0.0004%以上、更に好ましくは0.0005%以上)である。また、より好ましい上限は、夫々0.0045%(更に好ましくは0.004%以下)である。
[Mg: 0.005% or less (not including 0%) and / or Ca: 0.005% or less (not including 0%)]
Mg and Ca have an effect of increasing pH in rust in a chloride environment or an acid condensation environment, and are effective elements for improving the corrosion resistance by suppressing the cathode reaction. However, since it will degrade workability and weldability if it is contained excessively, it is preferable to make it 0.005% or less respectively. In addition, the preferable minimum for exhibiting such an effect is 0.0003% or more (more preferably 0.0004% or more, and further preferably 0.0005% or more), respectively. Further, the more preferable upper limit is 0.0045% (more preferably 0.004% or less).

[Ti:0.1%以下(0%を含まない)、Zr:0.1%以下(0%を含まない)およびHf:0.1%以下(0%を含まない)よりなる群から選ばれる1種以上]
Ti、ZrおよびHfは、鋼材表面に生成される錆皮膜による保護効果を向上させる作用を有している。しかしながら、過剰に含有させると溶接性や熱間加工性が劣化することから、夫々0.1%以下とすることが好ましい。尚、これら元素における含有量の好ましい下限は、夫々0.003%(より好ましくは0.005%以上)であり、より好ましい上限は、夫々0.09%(更に好ましくは0.08%以下)である。
[Ti: 0.1% or less (not including 0%), Zr: 0.1% or less (not including 0%), and Hf: 0.1% or less (not including 0%) One or more
Ti, Zr, and Hf have the effect | action which improves the protective effect by the rust film | membrane produced | generated on the steel material surface. However, if it is excessively contained, weldability and hot workability deteriorate, so it is preferable to make each 0.1% or less. In addition, the preferable minimum of content in these elements is 0.003% (more preferably 0.005% or more), respectively, and a more preferable upper limit is 0.09% (more preferably 0.08% or less), respectively. It is.

[Mo:0.5%以下(0%を含まない)および/またはW:0.5%以下(0%を含まない)]
MoおよびWは、モリブデン酸イオンおよびタングステン酸イオンを生成して、インヒビター効果により耐食性を向上させる作用を有する元素であり、特に塩化物環境(塩化物が存在する環境)においてその効果は大きくなる。しかしながら、過剰に含有させると溶接性や靭性が劣化することから、MoまたはWの含有量は、夫々0.5%以下とすることが好ましい。尚、MoまたはWの含有量は、夫々0.001%以上とすることが好ましい。これら元素における含有量のより好ましい下限は、夫々0.003%以上(更に好ましくは0.005%以上)であり、より好ましい上限は、夫々0.48%以下(更に好ましくは0.46%以下)である。
[Mo: 0.5% or less (not including 0%) and / or W: 0.5% or less (not including 0%)]
Mo and W are elements having an action of generating molybdate ions and tungstate ions and improving the corrosion resistance by an inhibitor effect, and the effect is particularly great in a chloride environment (an environment where chloride exists). However, since the weldability and toughness deteriorate when contained in excess, the content of Mo or W is preferably 0.5% or less. The Mo or W content is preferably 0.001% or more. The more preferable lower limit of the content in these elements is 0.003% or more (more preferably 0.005% or more), respectively, and the more preferable upper limit is 0.48% or less (more preferably 0.46% or less). ).

[B:0.005%以下(0%を含まない)、V:0.1%以下(0%を含まない)およびNb:0.1%以下(0%を含まない)よりなる群から選ばれる1種以上]
B、VおよびNbは、強度向上に有効な元素である。しかしながら、過剰に含有させると鋼材の靭性が劣化することから、Bで0.005%以下、VまたはNbで夫々0.1%以下とすることが好ましい。尚、B、VまたはNbの含有量は、Bで0.0001%以上、VまたはNbで夫々0.001%以上とすることが好ましい。これら元素における含有量のより好ましい下限は、Bで0.0002%(更に好ましくは0.0003%以上)、VまたはNbで夫々0.002%(更に好ましくは0.003%以上)である。またより好ましい上限は、Bで0.0045%(更に好ましくは0.004%以下)、VまたはNbで夫々0.095%(更に好ましくは0.09%以下)である。
[B: selected from the group consisting of 0.005% or less (not including 0%), V: 0.1% or less (not including 0%), and Nb: 0.1% or less (not including 0%) One or more
B, V and Nb are effective elements for improving the strength. However, since an excessive content deteriorates the toughness of the steel material, it is preferable that the B content is 0.005% or less and the V or Nb content is 0.1% or less. The B, V or Nb content is preferably 0.0001% or more for B and 0.001% or more for V or Nb. The more preferable lower limit of the content in these elements is 0.0002% (more preferably 0.0003% or more) for B, and 0.002% (more preferably 0.003% or more) for V or Nb, respectively. Further, more preferable upper limit is 0.0045% (more preferably 0.004% or less) for B, and 0.095% (more preferably 0.09% or less) for V or Nb, respectively.

本発明の船舶用鋼材は、例えば以下の方法により製造することができる。まず転炉または電気炉から取鍋に出鋼した溶鋼に対して、真空循環脱ガス装置(RH装置)を用いて、成分調整・温度調整を含む二次精錬を行う。その後、連続鋳造法、造塊法等の通常の鋳造方法で鋼塊とする。このときの脱酸形式としては、機械特性や溶接性の観点からしてキルド鋼を用いることが好ましく、更に好ましくはAlキルド鋼が推奨される。   The marine steel material of the present invention can be produced, for example, by the following method. First, secondary refining including component adjustment and temperature adjustment is performed on the molten steel discharged from the converter or electric furnace to the ladle using a vacuum circulation degassing device (RH device). Then, it is made into a steel ingot by a normal casting method such as a continuous casting method or an ingot-making method. As a deoxidation type at this time, it is preferable to use killed steel from the viewpoint of mechanical properties and weldability, and Al killed steel is more preferable.

次で、得られた鋼塊を、1000〜1300℃の温度域に加熱した後、熱間圧延を行って、所望の形状にすることが好ましい。このときの熱間圧延終了温度を、650〜850℃に制御し、熱間圧延終了から500℃までの冷却速度を0.1〜15℃/秒の範囲に制御することによって、所定の強度特性が得られる。   Next, after heating the obtained steel ingot to 1000-1300 degreeC temperature range, it is preferable to perform hot rolling and to make a desired shape. By controlling the hot rolling end temperature at this time to 650 to 850 ° C., and controlling the cooling rate from the end of hot rolling to 500 ° C. in the range of 0.1 to 15 ° C./second, the predetermined strength characteristics Is obtained.

本発明の船舶用鋼材は、基本的に塗装や電気防食等の防食手段を必須にしなくても鋼材自体が優れた耐食性を発揮するものであるが、必要によって、タールエポキシ樹脂塗料、或はそれ以外の代表される重防食塗装、ジンクリッチペイント、ショッププライマーなどの他の防食方法と併用することも可能である。また、船舶用鋼材では、化学成分組成が適切に調整されることによって、溶接性や熱間加工性も通常の船舶用鋼と同等以上であるという効果も発揮する。   The marine steel material of the present invention basically exhibits excellent corrosion resistance without requiring anticorrosion means such as painting or electrocorrosion. However, depending on necessity, the tar epoxy resin paint or It can also be used in combination with other anticorrosion methods such as heavy duty anticorrosion coating, zinc rich paint, shop primer and the like. Further, in the marine steel material, the chemical component composition is appropriately adjusted, so that the weldability and hot workability are also equal to or higher than those of ordinary marine steel.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含されるものである。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

下記表1、2に示す化学成分組成の鋼材(試験No.1〜55)を電気炉により溶製し、40kgの鋼塊とした。得られた鋼塊を1150℃に加熱した後、熱間圧延を行って、板厚:10mmの鋼素材とした。このときの熱間圧延終了温度は650〜850℃の範囲とし、熱間圧延終了後から500℃までの冷却速度を0.1〜15℃/秒の範囲で適宜調整した。下記の試験に供した試験片(TP)は、全て最終的に50×30×4(mm)であり、上記鋼素材から切り出した。   Steel materials (test Nos. 1 to 55) having the chemical composition shown in Tables 1 and 2 were melted in an electric furnace to obtain a 40 kg steel ingot. The obtained steel ingot was heated to 1150 ° C. and then hot-rolled to obtain a steel material having a plate thickness of 10 mm. At this time, the hot rolling end temperature was in the range of 650 to 850 ° C., and the cooling rate from the end of hot rolling to 500 ° C. was appropriately adjusted in the range of 0.1 to 15 ° C./second. All the test pieces (TP) subjected to the following tests were finally 50 × 30 × 4 (mm) and cut out from the steel material.

バラストタンク内環境の模擬試験には、カット傷付き塗装試験片を用いた。このカット傷付き塗装試験片は、次の手順によって作製した。まず、試験面一面(塗装面)をショットブラスト仕上げし、アセトン洗浄および乾燥し無機ジンクリッチプライマーを厚さが15μmとなるように塗布した。その後、変性エポキシ樹脂塗料をエアスプレーにより厚さ300μmで塗布し、乾燥させた。試験面以外は腐食を防ぐために、塗装面以外にシリコンシーラントを塗布して被覆を施した。塗膜およびシリコンシーラントが乾燥した後、長さ:100mm、幅:0.5mmの素地まで達するカット傷1本を試験面側にカッターナイフで形成した。塗装試験片の外観形状を図1に示す。   For the simulation test of the environment in the ballast tank, a paint specimen with cut scratches was used. The cut scratched coating test piece was produced by the following procedure. First, the entire test surface (painted surface) was shot blasted, washed with acetone and dried, and an inorganic zinc rich primer was applied to a thickness of 15 μm. Thereafter, the modified epoxy resin paint was applied by air spray at a thickness of 300 μm and dried. In order to prevent corrosion on the surfaces other than the test surface, a silicon sealant was applied on the surfaces other than the painted surface and coated. After the coating film and the silicone sealant were dried, one cut wound reaching a substrate having a length of 100 mm and a width of 0.5 mm was formed on the test surface side with a cutter knife. The appearance shape of the coating test piece is shown in FIG.

タンカー原油タンク気相部の環境模擬試験には、裸(無塗装)の試験片(裸試験片)を用いた。この裸試験片は、湿式回転研磨機でSiC♯600まで全面研磨し、水洗およびアセトンで洗浄し、乾燥させてから試験に用いた。   Bare (unpainted) test pieces (bare test pieces) were used for the environmental simulation test of the gas phase part of the tanker crude oil tank. This bare test piece was polished on the entire surface up to SiC # 600 with a wet rotary polishing machine, washed with water and acetone, dried and then used for the test.

Figure 2012153933
Figure 2012153933

Figure 2012153933
Figure 2012153933

前記表1、2に示した各化学成分組成の供試材について、各種試験片(塗装試験片および裸試験片)を用いて腐食試験に供した。このときの腐食試験方法は次の通りである。   About the test material of each chemical composition shown in the said Table 1, 2, it used for the corrosion test using various test pieces (a coating test piece and a bare test piece). The corrosion test method at this time is as follows.

[腐食試験方法]
バラストタンク内環境およびタンカー原油タンクの気相部環境を模擬した腐食試験を実施した。バラストタンク内環境の模擬試験として、カット傷付き塗装試験片を用い、1日間の人工海水浸漬試験と、6日間の乾湿サイクル試験を繰り返す複合サイクル試験を実施した(腐食試験A)。1日間の人工海水浸漬試験では、30℃に保持した人工海水にカット傷付き塗装試験片を1日間浸漬した。その後の乾湿サイクル試験では、温度:50℃、湿度:40%RH(25℃)で5時間の保持(第1工程)と、温度:30℃、湿度:95%RH(25℃)での5時間の保持(第2工程)とを、繰り返した(相互の工程への移行時間は各1時間)。試験期間は3ヶ月とした。
[Corrosion test method]
Corrosion tests were performed simulating the environment in the ballast tank and the gas phase environment of the tanker crude oil tank. As a simulation test of the environment in the ballast tank, a combined cycle test in which a one-day artificial seawater immersion test and a six-day wet and dry cycle test were repeated using a coated test piece with cut scratches (corrosion test A). In the one-day artificial seawater immersion test, the cut specimen with cut scratches was immersed in artificial seawater maintained at 30 ° C. for one day. In the subsequent wet / dry cycle test, temperature: 50 ° C., humidity: 40% RH (25 ° C.) held for 5 hours (first step), temperature: 30 ° C., humidity: 95% RH (25 ° C.) 5 The time retention (second step) was repeated (the transition time to each step was 1 hour each). The test period was 3 months.

この腐食試験では、表1、2に示した試験No.1〜55の鋼材の試験片を夫々3枚づつ準備し、試験後に塗膜傷部の塗膜膨れ幅を図3(塗膜膨れ幅測定方法)に示した要領で測定(「膨れ発生部の頂部」のカット傷部からの距離を測定)し、各々供試した3個の試験片の膨れ幅のうち最も大きいものを最大膨れ幅とした。   In this corrosion test, the test numbers shown in Tables 1 and 2 were used. Three test pieces of steel materials 1 to 55 were prepared for each three pieces, and after the test, the coating film swelling width of the coating film scratched part was measured in the manner shown in FIG. 3 (coating film swelling width measuring method). The distance from the cut flaw portion of the “top portion” was measured), and the largest of the three test specimens that were tested was defined as the maximum swelling width.

タンカー原油タンクの気相部の環境試験は、タンク内模擬ガスとして、0.1vol%H2S、0.01vol%SO2、10vol%CO2、5vol%O2を含むガス(残部:N2)を用い、ガス腐食試験を実施し、耐食性を評価した(腐食試験B)。このとき用いた腐食試験装置を模式的に図4に示す。また、この腐食試験で想定している気相部を模式的に図5(図5は、タンカーの断面を模式的に示した説明図)に示す。 The environmental test of the gas phase part of the tanker crude oil tank was conducted using a gas containing 0.1 vol% H 2 S, 0.01 vol% SO 2 , 10 vol% CO 2 , and 5 vol% O 2 as the simulated gas in the tank (remainder: N 2 ) Was used to conduct a gas corrosion test to evaluate the corrosion resistance (corrosion test B). The corrosion test apparatus used at this time is schematically shown in FIG. Moreover, the gas phase part assumed in this corrosion test is schematically shown in FIG. 5 (FIG. 5 is an explanatory diagram schematically showing the cross section of the tanker).

模擬ガスを40℃に保持した蒸留水に通気して、裸試験片(TP)を設置した試験槽に流量:50mL/minで導入した(図4参照)。試験槽は、50℃で20時間の保持と、30℃で2時間の保持(移行時間は各1時間)を繰り返す温度サイクルを付与した。この温度サイクルにおいて、試験片は50℃では乾燥状態となり、30℃では湿潤状態となり、乾燥と湿潤の繰り返しを行った。試験期間は3ヶ月とした。この腐食試験では、表1、2に示した試験No.1〜55の鋼材の試験片を夫々3枚づつ準備し、腐食量は試験片3枚の平均値として算出した。腐食量は、試験前後の質量変化とした。尚、試験後の質量は室温(25℃)の10%クエン酸水素アンモニウム水溶液中での陰極電解により腐食生成物を除去し、水洗およびアセトンで洗浄し、乾燥させた後に測定した。   The simulated gas was passed through distilled water maintained at 40 ° C. and introduced into a test tank in which a bare test piece (TP) was installed at a flow rate of 50 mL / min (see FIG. 4). The test tank was provided with a temperature cycle that repeated holding at 50 ° C. for 20 hours and holding at 30 ° C. for 2 hours (transition time was 1 hour each). In this temperature cycle, the test piece was dried at 50 ° C. and wet at 30 ° C., and drying and wetting were repeated. The test period was 3 months. In this corrosion test, the test numbers shown in Tables 1 and 2 were used. Three test pieces of 1 to 55 steel materials were prepared, and the corrosion amount was calculated as an average value of the three test pieces. The amount of corrosion was the change in mass before and after the test. The mass after the test was measured after removing the corrosion products by cathodic electrolysis in a 10% aqueous solution of ammonium hydrogen citrate at room temperature (25 ° C.), washing with water and acetone, and drying.

[試験結果]
腐食試験Aによる塗膜の最大膨れ幅、および腐食試験Bによる腐食量の測定結果は下記表3、4に示す通りであり、夫々試験No.1の鋼材を100としたときの相対値で表している。総合評価としては、腐食試験Aによる塗膜の最大膨れ幅(試験No.1のものが100)が75以下であり、且つ腐食量(試験No.1のものが100)が50以下のものを「ランク2」とし、最大膨れ幅が75以下であり、且つ腐食量が40以下のものを「ランク3」とし、両者が40以下のものを「ランク4」、両者が30以下のものを「ランク5」と、夫々表示した。また、最大膨れ幅が75を超え、且つ腐食量が50を超えるものを「ランク1」と表示した。
[Test results]
The measurement results of the maximum swollen width of the coating film by the corrosion test A and the corrosion amount by the corrosion test B are as shown in Tables 3 and 4 below. It represents with the relative value when 1 steel material is set to 100. As a comprehensive evaluation, the maximum swollen width (100 for the test No. 1) of the coating film by the corrosion test A is 75 or less and the corrosion amount (100 for the test No. 1) is 50 or less. “Rank 2”, the maximum swollen width of 75 or less and the corrosion amount of 40 or less are “rank 3”, both are 40 or less “rank 4”, and both are 30 or less “ "Rank 5" is displayed. In addition, the case where the maximum swelling width exceeds 75 and the corrosion amount exceeds 50 is indicated as “rank 1”.

Figure 2012153933
Figure 2012153933

Figure 2012153933
Figure 2012153933

これらの結果から、次の様に考察できる。試験No.1〜12のものは、本発明で規定する要件(化学成分組成、または比[S]/[N])が外れる比較例であり、塗膜の最大膨れ幅が75を超えており、腐食量の相対値も50を超えており、耐食性が十分でない(ランク1)。このうち、試験No.2のものは、P含有量が十分でないため、腐食環境でのリン酸塩の生成が不十分であり、CuおよびCrの硫化物が安定生成しなかったために、耐食性が不十分になったものと考えられる。   From these results, it can be considered as follows. Test No. Samples 1 to 12 are comparative examples in which the requirements (chemical component composition or ratio [S] / [N]) specified in the present invention are removed. The maximum swollen width of the coating film exceeds 75, and the amount of corrosion The relative value of also exceeds 50, and the corrosion resistance is not sufficient (rank 1). Of these, Test No. In the case of No. 2, the P content was insufficient, so that phosphate was not sufficiently produced in a corrosive environment, and Cu and Cr sulfides were not stably produced, resulting in insufficient corrosion resistance. it is conceivable that.

試験No.3〜6のものは、S含有量が少な過ぎるため、CuおよびCrを含む複合硫化物生成量が少なくなっており、腐食抑制効果が不十分になったものと考えられる。試験No.7および試験No.8のものは、夫々CuまたはCrの含有量が少な過ぎるため、CuおよびCrを含む複合硫化物の生成量が少なくなっており、腐食抑制効果が不十分になったものと考えられる。   Test No. In the case of 3-6, since the S content is too small, the amount of composite sulfides containing Cu and Cr is reduced, and it is considered that the corrosion inhibiting effect is insufficient. Test No. 7 and test no. In No. 8, since the content of Cu or Cr is too small, the amount of composite sulfide containing Cu and Cr is reduced, and it is considered that the corrosion inhibiting effect is insufficient.

試験No.9のものは、N含有量が少な過ぎるため、CuまたはCrの硫化物生成に対する触媒作用が十分でなく、それらの沈殿皮膜生成量が少な過ぎて、腐食抑制効果が不十分になったものと考えられる。試験No.10〜12のものは、比([S]/[N])が本発明で規定する範囲を外れるため、CuおよびCrを含む複合硫化物沈殿皮膜の生成量が少な過ぎて、耐食性向上効果が得られなかったと考えられる。   Test No. In No. 9, the N content is too small, so the catalytic action for the formation of sulfides of Cu or Cr is not sufficient, and the amount of precipitate film formation is too small, and the corrosion inhibition effect is insufficient. Conceivable. Test No. In the case of 10 to 12, the ratio ([S] / [N]) is out of the range specified in the present invention, so that the amount of the composite sulfide precipitation film containing Cu and Cr is too small, and the corrosion resistance improving effect is obtained. It is thought that it was not obtained.

これらに対し、本発明で規定する要件を満足する試験No.13〜55の鋼材はいずれも、塗膜の最大膨れ幅が75以下であり、且つ腐食量が50以下となっており、優れた耐食性が発揮される結果となっている。これらの耐食性は、P,S,Cu,CrおよびNの含有量を適正に制御し、且つ比([S]/[N])を適正な範囲に制御することによって得られるCuおよびCrを含む硫化物沈殿皮膜の防食作用によって発現されるものであり、またCo,Ni,Mg,Ca等の元素添加が腐食抑制に効果的であることが明らかである。   On the other hand, Test No. satisfying the requirements defined in the present invention. In each of the 13 to 55 steel materials, the maximum swollen width of the coating film is 75 or less, and the corrosion amount is 50 or less, which results in excellent corrosion resistance. These corrosion resistances include Cu and Cr obtained by appropriately controlling the contents of P, S, Cu, Cr and N and controlling the ratio ([S] / [N]) to an appropriate range. It is manifested by the anticorrosive action of the sulfide precipitate film, and it is clear that the addition of elements such as Co, Ni, Mg, and Ca is effective for inhibiting corrosion.

上記のように優れた耐食性を発揮する鋼材は、バラストタンク内の湿潤環境やタンカー原油タンクの気相部の環境等、電気防食が不十分となる部位での耐食性が優れたものとなり、船舶タンク等の構造部材として極めて有用である。   Steel materials that exhibit excellent corrosion resistance as described above have excellent corrosion resistance in areas where electrocorrosion is insufficient, such as the wet environment in ballast tanks and the environment in the gas phase of tanker crude oil tanks. It is extremely useful as a structural member.

Claims (9)

C:0.04〜0.30%(質量%の意味、以下同じ)、Si:0.05〜1.0%、Mn:0.1〜2.0%、P:0.010〜0.040%、S:0.011〜0.025%%、Al:0.010〜0.10%、Cu:0.10〜1.0%、Cr:0.01〜0.3%、およびN:0.0030〜0.010%を夫々含有し、残部が鉄および不可避的不純物からなり、且つSの含有量[S]とNの含有量[N]の比([S]/[N])が1.50〜6.0であることを特徴とする耐食性に優れた船舶用鋼材。   C: 0.04 to 0.30% (meaning of mass%, the same shall apply hereinafter), Si: 0.05 to 1.0%, Mn: 0.1 to 2.0%, P: 0.010 to 0. 040%, S: 0.011-0.025%, Al: 0.010-0.10%, Cu: 0.10-1.0%, Cr: 0.01-0.3%, and N : 0.0030 to 0.010% each, the balance being iron and inevitable impurities, and the ratio of S content [S] to N content [N] ([S] / [N] ) Is 1.50 to 6.0, a marine steel material excellent in corrosion resistance. 更に、Co:2.0%以下(0%を含まない)および/またはNi:2.0%以下(0%を含まない)を含有するものである請求項1に記載の船舶用鋼材。   The marine steel material according to claim 1, further comprising Co: 2.0% or less (excluding 0%) and / or Ni: 2.0% or less (not including 0%). 更に、Mg:0.005%以下(0%を含まない)および/またはCa:0.005%以下(0%を含まない)を含有するものである請求項1または2に記載の船舶用鋼材。   The marine steel material according to claim 1 or 2, further comprising Mg: 0.005% or less (excluding 0%) and / or Ca: 0.005% or less (not including 0%). . 更に、Ti:0.1%以下(0%を含まない)、Zr:0.1%以下(0%を含まない)およびHf:0.1%以下(0%を含まない)よりなる群から選ばれる1種以上を含有するものである請求項1〜3のいずれかに記載の船舶用鋼材。   Further, Ti: 0.1% or less (excluding 0%), Zr: 0.1% or less (not including 0%), and Hf: 0.1% or less (not including 0%) The marine steel material according to any one of claims 1 to 3, wherein the marine steel material contains one or more selected. 更に、Mo:0.5%以下(0%を含まない)および/またはW:0.5%以下(0%を含まない)を含有するものである請求項1〜4のいずれかに記載の船舶用鋼材。   Furthermore, Mo: 0.5% or less (not including 0%) and / or W: 0.5% or less (not including 0%) are contained. Marine steel. 更に、B:0.005%以下(0%を含まない)、V:0.1%以下(0%を含まない)およびNb:0.1%以下(0%を含まない)よりなる群から選ばれる1種以上を含有するものである請求項1〜5のいずれかに記載の船舶用鋼材。   Furthermore, from the group consisting of B: 0.005% or less (not including 0%), V: 0.1% or less (not including 0%), and Nb: 0.1% or less (not including 0%) The steel material for ships according to any one of claims 1 to 5, which contains at least one selected from the above. 請求項1〜6のいずれかに記載の鋼材を用いて構成される船舶タンク。   The ship tank comprised using the steel materials in any one of Claims 1-6. 請求項1〜6のいずれかに記載の鋼材を用いて構成されるタンカー原油タンク上甲板。   The tanker crude oil tank upper deck comprised using the steel materials in any one of Claims 1-6. 請求項1〜6のいずれかに記載の鋼材を用いて構成されるタンカー原油タンク気相部。   A tanker crude oil tank gas phase part constituted using the steel materials according to any one of claims 1 to 6.
JP2011013366A 2011-01-25 2011-01-25 Marine steel with excellent corrosion resistance Expired - Fee Related JP5763929B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011013366A JP5763929B2 (en) 2011-01-25 2011-01-25 Marine steel with excellent corrosion resistance
CN2012100178151A CN102618786A (en) 2011-01-25 2012-01-19 Ship steel with excellent corrosion resistance
KR1020120006698A KR101382009B1 (en) 2011-01-25 2012-01-20 Steel for ship having excellent corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011013366A JP5763929B2 (en) 2011-01-25 2011-01-25 Marine steel with excellent corrosion resistance

Publications (2)

Publication Number Publication Date
JP2012153933A true JP2012153933A (en) 2012-08-16
JP5763929B2 JP5763929B2 (en) 2015-08-12

Family

ID=46558985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011013366A Expired - Fee Related JP5763929B2 (en) 2011-01-25 2011-01-25 Marine steel with excellent corrosion resistance

Country Status (3)

Country Link
JP (1) JP5763929B2 (en)
KR (1) KR101382009B1 (en)
CN (1) CN102618786A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103290337A (en) * 2013-06-14 2013-09-11 首钢总公司 Corrosion-resistant steel for upper deck of cargo oil tank of crude oil tanker
JP2015151571A (en) * 2014-02-13 2015-08-24 株式会社神戸製鋼所 Coated steel excellent in corrosion resistance
JP2016199777A (en) * 2015-04-07 2016-12-01 株式会社神戸製鋼所 Steel material for coating with excellent anticorrosion
JP2019109061A (en) * 2017-12-15 2019-07-04 日本製鉄株式会社 Corrosion test method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104195459B (en) * 2014-09-01 2016-04-20 浙江工贸职业技术学院 A kind of preparation method making ship steel
CN104745953B (en) * 2015-03-31 2017-01-11 马鞍山市兴隆铸造有限公司 Marine side plate low-carbon chromium alloy material and preparation method thereof
JP2018009218A (en) * 2016-07-13 2018-01-18 株式会社神戸製鋼所 Coated steel and method of manufacturing the same
CN106282770B (en) * 2016-08-30 2018-02-13 南阳汉冶特钢有限公司 A kind of high-strength corrosion-resistant steel HY800 slabs and production method
CN113549822B (en) * 2021-06-29 2022-06-14 鞍钢股份有限公司 High-performance steel plate for resisting marine atmospheric corrosion and production method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008274379A (en) * 2007-05-02 2008-11-13 Kobe Steel Ltd Steel sheet having excellent pit resistance, and method for producing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1946864A (en) * 2004-04-14 2007-04-11 住友金属工业株式会社 Steel product for cargo oil tank
JP4997808B2 (en) * 2006-03-30 2012-08-08 Jfeスチール株式会社 Sulfuric acid dew-point corrosion steel with excellent hydrochloric acid resistance
CN100419115C (en) * 2006-11-23 2008-09-17 武汉钢铁(集团)公司 Ultrahigh-strength atmospheric-corrosion resistant steel
US7862667B2 (en) * 2007-07-06 2011-01-04 Tenaris Connections Limited Steels for sour service environments
JP5265944B2 (en) * 2008-03-04 2013-08-14 株式会社神戸製鋼所 Marine steel with excellent corrosion resistance
CN101928886A (en) * 2010-07-15 2010-12-29 南京钢铁股份有限公司 Corrosion resistant steel for cargo oil tanks and application thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008274379A (en) * 2007-05-02 2008-11-13 Kobe Steel Ltd Steel sheet having excellent pit resistance, and method for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103290337A (en) * 2013-06-14 2013-09-11 首钢总公司 Corrosion-resistant steel for upper deck of cargo oil tank of crude oil tanker
JP2015151571A (en) * 2014-02-13 2015-08-24 株式会社神戸製鋼所 Coated steel excellent in corrosion resistance
JP2016199777A (en) * 2015-04-07 2016-12-01 株式会社神戸製鋼所 Steel material for coating with excellent anticorrosion
JP2019109061A (en) * 2017-12-15 2019-07-04 日本製鉄株式会社 Corrosion test method
JP7043823B2 (en) 2017-12-15 2022-03-30 日本製鉄株式会社 Corrosion test method

Also Published As

Publication number Publication date
JP5763929B2 (en) 2015-08-12
KR20120086263A (en) 2012-08-02
CN102618786A (en) 2012-08-01
KR101382009B1 (en) 2014-04-04

Similar Documents

Publication Publication Date Title
JP5763929B2 (en) Marine steel with excellent corrosion resistance
JP4868916B2 (en) Marine steel with excellent corrosion resistance
JP4393291B2 (en) Marine steel with excellent corrosion resistance
JP5662894B2 (en) Steel material for the upper deck of crude oil tankers with excellent corrosion resistance or cargo for bulk carriers
JP4577158B2 (en) Corrosion resistant steel for crude oil tanks
JP5058574B2 (en) Anti-corrosion steel plate for ship ballast tanks to be anticorrosive and rust prevention method for ship ballast tanks
JP5481980B2 (en) Marine steel with excellent film swell resistance
JP2019127636A (en) Mooring chain steel and mooring chain
JP2016084489A (en) Weld joint for ship excellent in corrosion resistance
JP5702683B2 (en) Corrosion-resistant steel for bulk carriers and hold of bulk carriers
JP2007291494A (en) Corrosion-resistant steel material for crude oil storage tank, and crude oil storage tank
JP2006037201A (en) Marine steel material superior in corrosion resistance
JP5265944B2 (en) Marine steel with excellent corrosion resistance
JP6645462B2 (en) Steel material and method of manufacturing the same
JP2017150003A (en) Corrosion resistant steel material for ballast tank
CN102605277A (en) Steel material for structural member having excellent corrosion resistance
JP2017014554A (en) Corrosion resistant steel material for ballast tank
JP4119941B2 (en) Marine steel with excellent crevice corrosion resistance in humid air
JP3923962B2 (en) Marine steel with excellent corrosion resistance
JP4444924B2 (en) High tensile steel for marine vessels with excellent corrosion resistance and base metal toughness
JP2008133536A (en) Steel having excellent corrosion resistance for ship use
JP5862166B2 (en) Corrosion-resistant steel for ship outfitting
JP4728129B2 (en) Marine steel with excellent corrosion resistance and toughness
JP5284769B2 (en) Steel tank for crude oil tank with excellent corrosion resistance, upper deck of crude oil tank and crude oil tanker
JP2006118002A (en) Steel material for oil tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150612

R150 Certificate of patent or registration of utility model

Ref document number: 5763929

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees