JP2016199777A - Steel material for coating with excellent anticorrosion - Google Patents

Steel material for coating with excellent anticorrosion Download PDF

Info

Publication number
JP2016199777A
JP2016199777A JP2015078624A JP2015078624A JP2016199777A JP 2016199777 A JP2016199777 A JP 2016199777A JP 2015078624 A JP2015078624 A JP 2015078624A JP 2015078624 A JP2015078624 A JP 2015078624A JP 2016199777 A JP2016199777 A JP 2016199777A
Authority
JP
Japan
Prior art keywords
steel material
coating
corrosion
base steel
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015078624A
Other languages
Japanese (ja)
Inventor
真司 阪下
Shinji Sakashita
真司 阪下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2015078624A priority Critical patent/JP2016199777A/en
Priority to CN201610203844.5A priority patent/CN106048449A/en
Priority to KR1020160042113A priority patent/KR101792406B1/en
Publication of JP2016199777A publication Critical patent/JP2016199777A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements

Abstract

PROBLEM TO BE SOLVED: To provide a steel material for coating with excellent anticorrosion, capable of preventing corrosion by an effect of a corrosive action such as seawater or airborne sea salt particles.SOLUTION: In a steel material for coating, a base steel material includes: 0.04-0.30% C, 0.05-1.0% Si, 0.1-2.5% Mn, over 0% and 0.04% or less P, over 0% or 0.04% or less S, 0.005-0.20% Al, 0.05-1.0% Cu, 0.05-1.0% Cr, 0.001-0.015% N, and in addition, one or two kinds of 0.005-0.1% Ti and 0.005-0.1% Nb. A surface layer thereof includes 20-200 g/mZn, 0.3-20.0 g/mCu and in addition, one or two kinds of 0.3-20.0 g/mCr and 0.3-20.0 g/mNi.SELECTED DRAWING: None

Description

本発明は、船舶、海洋構造物、橋梁などの鋼構造物に用いられる塗装用鋼材に関するものであり、特に詳しくは、海水或いは飛来海塩粒子が主因となる腐食環境下で使用される耐食性に優れる塗装用鋼材に関するものである。   The present invention relates to a steel material for coating used in steel structures such as ships, marine structures, and bridges, and more particularly to corrosion resistance used in a corrosive environment mainly caused by seawater or flying sea salt particles. It relates to an excellent steel material for painting.

鋼材は各種構造物の構造用部材として多用されているが、船舶、海洋構造物、橋梁などの海水の影響を受ける構造物の構造用部材として使用した場合、鋼材が海水などの腐食作用を受けることになり、板厚減少や穴あきなどによって構造物が強度低下することがあるという問題があった。   Steel is widely used as a structural member for various structures, but when used as a structural member for structures affected by seawater such as ships, marine structures, bridges, etc., steel is subject to corrosive effects such as seawater. As a result, there is a problem that the strength of the structure may decrease due to a reduction in plate thickness or perforation.

このような鋼材の海水による腐食は、鋼材を海水に完全に浸漬される部位だけに用いる場合、電気防食によって防止することが可能であるが、海面の近傍や海面付近などの海水に常時浸漬されない部位では電気防食が作用せず、海水の飛沫による激しい腐食環境に曝されることになり、電気防食では防止が困難である。   Corrosion due to seawater of such steel materials can be prevented by electro-corrosion when steel materials are used only in parts that are completely immersed in seawater, but they are not always immersed in seawater near the sea surface or near the sea surface. Electrocorrosion protection does not act on the part, and it will be exposed to a severe corrosive environment caused by splash of seawater, which is difficult to prevent with electrocorrosion.

また、鋼材を船舶のバラストタンクの構造用部材として用いた場合、バラストタンクには積載荷重に応じて海水を注入、排出する必要があるため、その内表面は常時海水に浸された状態とはならず、電気防食作用を十分に得ることができない。   Also, when steel is used as a structural member for ship ballast tanks, it is necessary to inject and discharge seawater into the ballast tank according to the load, so the inner surface is always immersed in seawater. In other words, a sufficient anticorrosive action cannot be obtained.

更には、海岸に近い鉄橋梁などの構造物も飛来海塩粒子による大気腐食環境に曝されるため、このような構造物の構造用部材として鋼材を用いた場合も、電気防食の適用は必ずしも有効でない場合が多い。   Furthermore, since structures such as iron bridges close to the coast are exposed to atmospheric corrosive environments caused by flying sea salt particles, even when steel is used as a structural member for such structures, application of anticorrosion is not necessarily required. Often not valid.

このように、海水の影響を受ける船舶、海洋構造物、橋梁などの構造物では、電気防食の適用は必ずしも有効とはいえないため、従来から鋼材の表面に防食塗装により防食塗膜を形成して用いることが多かった。防食塗装に用いられる塗料としては、エポキシ樹脂系、塩化ゴム系、アクリル樹膜、ウレタン樹脂、およびフッ素樹脂系などの様々な防食塗料を挙げることができ、環境に応じて最適な塗装系が使用されており、これらを複層化して使用される場合もあった。   In this way, the application of cathodic protection is not always effective for ships, marine structures, bridges, and other structures that are affected by seawater. Often used. Various anti-corrosion paints such as epoxy resin, chlorinated rubber, acrylic resin film, urethane resin, and fluororesin can be listed as paints used for anti-corrosion coating. In some cases, these are used in multiple layers.

しかしながら、防食塗膜は、紫外線による経時劣化や、何らかの外的な機械的作用により損傷することがある。このような防食塗膜の疵部では鋼材腐食が進展するため、定期的なメンテナンスが必要である。しかし、船舶、海洋構造物、橋梁などの構造物においては、防食塗装の状態の検査やメンテナンスのため、足場を組む必要がある高所、海中、或いは構造的に入り組んだ箇所などがあり、防食塗装の状態の検査やメンテナンスが容易でない箇所も多い。このように、安全性の確保とメンテナンス負荷低減の観点から、防食塗膜の疵部を起点とした腐食の抑制が非常に重要な技術的課題となっている。   However, the anticorrosive coating film may be damaged by deterioration with time due to ultraviolet rays or some external mechanical action. Since the steel material corrosion progresses in the heel part of such an anticorrosion coating film, regular maintenance is required. However, in structures such as ships, offshore structures, bridges, etc., there are high places where it is necessary to build scaffolds for inspection and maintenance of the anti-corrosion coating, underwater, or structurally intricate places. There are many places where coating inspection and maintenance are not easy. Thus, from the viewpoint of ensuring safety and reducing the maintenance load, the suppression of corrosion starting from the buttocks of the anticorrosion coating film is a very important technical issue.

このような課題への対応策として、鋼材の化学成分の調整や製造方法の改良により、鋼材自体の耐食性を向上させ、防食塗膜の疵部の腐食抑制に寄与する技術が、特許文献1,2等により数多く提案されている。これらの技術を採用することにより塗装用鋼材の耐食性は確かに向上してはいるものの、更なる耐食性の向上が要求されていることが現状である。   As a countermeasure to such a problem, the technology that improves the corrosion resistance of the steel material itself by adjusting the chemical composition of the steel material and improving the manufacturing method, and contributes to the corrosion inhibition of the buttock of the anticorrosion coating film is disclosed in Patent Document 1, Many have been proposed by 2 etc. Although the corrosion resistance of steel for coating is certainly improved by adopting these techniques, the current situation is that further improvement in corrosion resistance is required.

特に、船舶のバラストタンクでは、塗膜が剥離した箇所では1年間の腐食摩耗量が1mmにも及ぶこともあり、非常に腐食の厳しい環境となっており、防食塗膜の疵部の腐食抑制が強く望まれている。また、近年、船舶の耐用年数延長の要望が高まっており、船舶で塗装劣化が最も激しいバラストタンクにおける塗装寿命は現行の15年を超える長寿命化のニーズが高揚している。   In particular, in ship ballast tanks, the amount of corrosive wear per year can reach as much as 1 mm at the point where the paint film is peeled off. Is strongly desired. In recent years, there is an increasing demand for extending the service life of ships, and there is an increasing need for extending the service life of the ballast tank, which is most severely deteriorated in ships, exceeding the current 15 years.

また特に、近年、地球環境の保全という観点から、温室効果ガスである二酸化炭素を排出しないクリーンエネルギーが注目されており、海洋上での風力発電、波浪発電、潮流・海流発電、温度差発電、太陽光発電などの発電技術開発が進められている。   In particular, in recent years, clean energy that does not emit carbon dioxide, a greenhouse gas, has been attracting attention from the viewpoint of conservation of the global environment. Wind power generation, ocean wave power generation, tidal current / sea current power generation, temperature difference power generation, Development of power generation technology such as solar power generation is underway.

これらの使用環境条件は、従来構造物の海浜・海水環境よりも更に厳しい腐食性を有する可能性も想定され、より厳しい環境条件に適用できる耐食・防食技術が必要となっている。また、これらの実現に際しては、鋼材の塗装状態の検査や再塗装等のメンテナンス作業が困難であるため、ライフサイクルコストの観点から、更なる防食寿命延長のニーズが高揚しており、従来以上の塗装用鋼材の耐食性向上技術が開発されることが望まれている。   These use environment conditions are assumed to be more severely corrosive than the conventional beach and seawater environment, and a corrosion resistance / corrosion prevention technique applicable to more severe environment conditions is required. In addition, in order to realize these, maintenance work such as inspection and repainting of steel materials is difficult, and from the viewpoint of life cycle cost, the need for further extension of corrosion protection life has been raised. It is desired to develop a technique for improving the corrosion resistance of steel for painting.

特開2010−229526号公報JP 2010-229526 A 特開2012−92404号公報JP 2012-92404 A

本発明は、上記従来の実情を鑑みてなされたもので、海水や飛来海塩粒子などの腐食作用の影響を受けて腐食することを抑制することができる耐食性に優れる塗装用鋼材を提供することを課題とする。   The present invention has been made in view of the above-described conventional situation, and provides a steel material for coating excellent in corrosion resistance capable of suppressing corrosion due to the influence of corrosive action such as seawater and flying sea salt particles. Is an issue.

特に、板厚が3mm以上のスチールプレート、厚鋼板、形鋼において、海水腐食環境下、或いは飛来海塩粒子が主因となる腐食環境下における構造物の構造用部材として用いても、耐食性の問題が発生しない、耐食性に優れる塗装用鋼材を提供することを課題とする。   In particular, in steel plates, steel plates, and shaped steels with a thickness of 3 mm or more, even if they are used as structural members for structures under seawater corrosive environments or corrosive environments mainly caused by flying sea salt particles, there are problems with corrosion resistance. An object of the present invention is to provide a steel material for coating which does not generate corrosion and has excellent corrosion resistance.

本発明の耐食性に優れる塗装用鋼材は、素地鋼材と、前記素地鋼材の表面上に形成される表面層を含む塗装用鋼材であって、前記素地鋼材が、質量%で、C:0.04〜0.30%、Si:0.05〜1.0%、Mn:0.1〜2.5%、P:0%超0.04%以下、S:0%超0.04%以下、Al:0.005〜0.20%、Cu:0.05〜1.0%、Cr:0.05〜1.0%、N:0.001〜0.015%を含有すると共に、Ti:0.005〜0.1%、Nb:0.005〜0.1%のいずれか1種または2種を含有し、残部がFeおよび不可避的不純物からなる鋼材であり、また、前記表面層が、Zn:20〜200g/m、Cu:0.3〜20.0g/mを含有すると共に、Cr:0.3〜20.0g/m、Ni:0.3〜20.0g/mのいずれか1種または2種を含有することを特徴とする。 The steel material for coating having excellent corrosion resistance according to the present invention is a steel material for coating including a base steel material and a surface layer formed on the surface of the base steel material, and the base steel material is in mass%, and C: 0.04. -0.30%, Si: 0.05-1.0%, Mn: 0.1-2.5%, P: more than 0% and 0.04% or less, S: more than 0% and 0.04% or less, Al: 0.005-0.20%, Cu: 0.05-1.0%, Cr: 0.05-1.0%, N: 0.001-0.015%, and Ti: 0.005 to 0.1%, Nb: Any one or two of 0.005 to 0.1%, the balance being a steel material composed of Fe and inevitable impurities, and the surface layer is , Zn: 20~200g / m 2, Cu: with containing 0.3~20.0g / m 2, Cr: 0.3~20.0g / m 2, N : Characterized in that it contains either one or two 0.3~20.0g / m 2.

また、前記素地鋼材が、更に、質量%で、Ni:0.01〜6.0%、Co:0.01〜5.0%、Mo:0.01〜2.0%、W:0.01〜2.0%のいずれか1種または2種以上を含有することが好ましい。   Moreover, the said base steel material is further mass%, Ni: 0.01-6.0%, Co: 0.01-5.0%, Mo: 0.01-2.0%, W: 0.0. It is preferable to contain any 1 type or 2 types or more of 01-2.0%.

また、前記素地鋼材が、更に、質量%で、Mg:0.0005〜0.01%、Ca:0.0005〜0.01%、REM:0.0005〜0.01%のいずれか1種または2種以上を含有することが好ましい。   Further, the base steel material is further in any one of mass%, Mg: 0.0005-0.01%, Ca: 0.0005-0.01%, REM: 0.0005-0.01%. Or it is preferable to contain 2 or more types.

また、前記素地鋼材が、更に、質量%で、Sn:0.001〜0.2%、Sb:0.001〜0.2%、Se:0.001〜0.2%のいずれか1種または2種以上を含有することが好ましい。   In addition, the base steel material may be any one of Sn: 0.001 to 0.2%, Sb: 0.001 to 0.2%, and Se: 0.001 to 0.2% in mass%. Or it is preferable to contain 2 or more types.

また、前記素地鋼材が、更に、質量%で、B:0%超0.01%以下、V:0%超0.1%以下、Zr:0%超0.1%以下、Zn:0%超0.1%以下のいずれか1種または2種以上を含有することが好ましい。   Further, the base steel material is further mass%, B: more than 0% and 0.01% or less, V: more than 0% and 0.1% or less, Zr: more than 0% and 0.1% or less, Zn: 0% It is preferable to contain any 1 type or 2 types or more of super 0.1% or less.

本発明の耐食性に優れる塗装用鋼材によると、海水や飛来海塩粒子などの腐食作用の影響を受けて腐食する可能性が高い船舶、海洋構造物、橋梁などの腐食が厳しい環境の鋼構造物に用いても、良好な耐食性を発揮することができる。   According to the steel material for coating having excellent corrosion resistance according to the present invention, a steel structure in a severely corrosive environment such as a ship, an offshore structure, a bridge, etc., which is highly likely to corrode due to the influence of corrosive action such as seawater and flying sea salt particles. Even if it is used, it can exhibit good corrosion resistance.

表面に塗装を施した鋼材においては、その表面に形成される塗膜が健全であれば鋼材の腐食抑制効果が大きく、更に、適切な塗装系を選定することにより高い防食効果が得られることが知られている。しかしながら、塗膜に何らかの欠陥が発生した場合や塗膜に素地鋼材が露出する疵が発生した場合には、その塗膜疵部を起点として素地鋼材の腐食が発生することとなり、更には進展してしまう。   In steel materials with a coating on the surface, if the coating film formed on the surface is healthy, the corrosion inhibition effect of the steel material is large, and furthermore, a high anticorrosion effect can be obtained by selecting an appropriate coating system Are known. However, if any defects occur in the coating film or if wrinkles that expose the base steel material to the coating film occur, corrosion of the base steel material occurs starting from the coating film saddle, and further progresses. End up.

本発明者は、このような塗膜疵部を起点とした素地鋼材の腐食の発生、更には進展を抑制する方法について研究を行った。その結果、塗膜疵部においては、素地鋼材の露出部で腐食反応が発生することに加えて、前記疵部から塗膜と素地鋼材との界面に水や塩化物イオンなどの腐食因子が侵入することで塗膜の内部で塗膜下腐食が発生することを確認し、これらが塗膜疵部における素地鋼材の腐食進展および拡大に大きく関与していることを知見した。   The present inventor conducted research on a method of suppressing the occurrence of corrosion and further progress of the base steel material starting from such a coating ridge. As a result, in the paint film part, in addition to the corrosion reaction occurring at the exposed part of the base steel material, water and chloride ions and other corrosive factors enter the interface between the paint film and the base steel material. As a result, it was confirmed that corrosion under the coating film occurred inside the coating film, and it was found that these were greatly involved in the corrosion progress and expansion of the base steel material in the coating ridge.

また、表面に塗装を施した鋼材においては、塗膜と素地鋼材との界面にZnを含有する層を形成させることにより、Znの犠牲防食効果によって塗膜疵部の腐食進展および塗膜劣化が抑制され、塗装耐食性が向上することは公知である。このような見地から、塗装用鋼材では無機ジンクプライマの塗布などによりZnを含有する表面層を素地鋼材に形成させて耐食性向上を図ることがある。   In addition, in steel materials with a coated surface, by forming a Zn-containing layer at the interface between the coating film and the base steel material, corrosion progression and coating film deterioration of the coating film heel may be caused by the sacrificial anticorrosive effect of Zn. It is well known that the corrosion resistance of coating is improved. From this point of view, in coating steel materials, a surface layer containing Zn may be formed on the base steel material by applying an inorganic zinc primer to improve corrosion resistance.

本発明者は、素地鋼材と塗膜との界面に形成する層の効果として、犠牲防食効果による腐食進展抑制および塗膜劣化抑制があるが、腐食生成物の保護性を更に制御することを検討した。その結果、CuおよびCrに加えて、TiかNbのいずれか1種または2種を適量添加した素地鋼材において、その表面にZnに加えて更に適量のCuを含有させ、更にCrとNiのいずれか1種または2種を含有する表面層を形成することで、塗膜疵部におけるZnの犠牲防食効果に加えて、腐食生成物の保護性向上効果が相乗的に得られるため、塗膜疵部からの腐食進展を顕著に抑制することができ、塗装用鋼材の耐食性を大きく向上させることができることを見出し、本発明を完成させた。   The present inventor considered that the effect of the layer formed at the interface between the base steel material and the coating film is to suppress the corrosion progress and the coating film deterioration due to the sacrificial anticorrosive effect, but to further control the protection of the corrosion products. did. As a result, in the base steel material to which either one or two of Ti and Nb is added in addition to Cu and Cr, an appropriate amount of Cu is added to the surface in addition to Zn. In addition to the sacrificial anti-corrosion effect of Zn in the coating film ridge, the effect of improving the protection of the corrosion product can be obtained synergistically by forming the surface layer containing 1 type or 2 types. It has been found that the corrosion progress from the part can be remarkably suppressed and the corrosion resistance of the steel for coating can be greatly improved, and the present invention has been completed.

尚、素地鋼材にCuやCrなどを添加することにより腐食生成物である鉄錆の保護性が向上して耐食性が向上することは既知であるが、本発明では、上述の素地鋼材の化学成分の適正化に加えて、更に塗膜と素地鋼材との界面に設ける層、すなわち、素地鋼材の表面に形成される表面層の適正化を行うことにより、塗膜疵部の腐食生成物の保護性が顕著に向上して、耐食効果を得ることができる。   Although it is known that the corrosion resistance is improved by adding Cu or Cr or the like to the base steel material, the corrosion resistance is improved in the present invention. In addition to the optimization of the coating layer, the layer provided at the interface between the coating film and the base steel material, that is, the surface layer formed on the surface of the base steel material is optimized to protect the corrosion products in the coating wall. The property is remarkably improved, and a corrosion resistance effect can be obtained.

以下、本発明を実施形態に基づき詳細に説明する。尚、本発明の塗装用鋼材を構成する素地鋼材、表面層のほか、更にはその表面の塗装についても順を追って説明する。   Hereinafter, the present invention will be described in detail based on embodiments. In addition to the base steel material and the surface layer constituting the steel material for painting of the present invention, the coating of the surface will be described in order.

<素地鋼材の成分組成>
素地鋼材は、優れた耐食性に加えて、構造用部材として必要な機械的特性、そして溶接性を満足する必要がある。これらの観点から、前記したCu、Cr、Ti、Nbに加えて、Si、Mn、Al、P、Sの含有量も適切に調整することが必要である。以下、これら各種添加元素の成分範囲の限定理由について説明する。尚、単位は全て%と記載するが、質量%のことを示す。
<Component composition of base steel>
In addition to excellent corrosion resistance, the base steel material needs to satisfy mechanical properties and weldability required for a structural member. From these viewpoints, it is necessary to appropriately adjust the contents of Si, Mn, Al, P, and S in addition to the above-described Cu, Cr, Ti, and Nb. Hereinafter, the reasons for limiting the component ranges of these various additive elements will be described. All units are described as%, but indicate mass%.

・C:0.04〜0.30%
Cは、素地鋼材の強度確保のために必要な基本的添加元素である。素地鋼材として通常要求される強度特性を得るためには、少なくとも0.04%以上含有させる必要がある。しかし、Cを過剰に含有させると、酸溶液中でのカソードサイトとして作用するセメンタイトの生成量が多くなって、腐食反応を促進して耐食性が劣化する。また、靭性も併せて劣化する。このようなCの過剰添加による悪影響を発生させないためには、Cの含有量は多くても0.30%に抑える必要がある。よって、Cの含有量の範囲は0.04〜0.30%とした。尚、Cの含有量の好ましい下限は0.045%であり、より好ましくは0.05%以上とするのが良い。また、Cの含有量の好ましい上限は0.29%であり、より好ましくは0.28%以下とするのが良い。
・ C: 0.04 to 0.30%
C is a basic additive element necessary for securing the strength of the base steel material. In order to obtain the strength characteristics normally required as a base steel material, it is necessary to contain at least 0.04% or more. However, if C is excessively contained, the amount of cementite that acts as a cathode site in the acid solution increases, which accelerates the corrosion reaction and deteriorates the corrosion resistance. In addition, the toughness is also deteriorated. In order not to cause such an adverse effect due to excessive addition of C, the C content needs to be suppressed to 0.30% at most. Therefore, the content range of C is set to 0.04 to 0.30%. In addition, the minimum with preferable content of C is 0.045%, It is good to set it as 0.05% or more more preferably. Moreover, the upper limit with preferable content of C is 0.29%, It is good to set it as 0.28% or less more preferably.

・Si:0.05〜1.0%
Siは、脱酸と強度確保のために必要な元素でもあり、少なくとも0.05%以上含有させないとこれらの作用は得られない。しかし、1.0%を超えて過剰に含有させると溶接性が劣化する。よって、Siの含有量の範囲は0.05〜1.0%とした。尚、Siの含有量の好ましい下限は0.08%であり、より好ましくは0.10%以上とするのが良い。また、Siの含有量の好ましい上限は0.95%であり、より好ましくは0.90%以下とするのが良い。
・ Si: 0.05-1.0%
Si is also an element necessary for deoxidation and ensuring strength, and these effects cannot be obtained unless it is contained at least 0.05% or more. However, if the content exceeds 1.0%, weldability deteriorates. Therefore, the range of the Si content is set to 0.05 to 1.0%. In addition, the minimum with preferable content of Si is 0.08%, More preferably, it is good to set it as 0.10% or more. Moreover, the upper limit with preferable content of Si is 0.95%, More preferably, it is good to set it as 0.90% or less.

・Mn:0.1〜2.5%
MnもSiと同様に、脱酸および強度確保のために必要な元素であり、その含有量が0.1%に満たないと構造用部材として用いる鋼材しての最低強度を確保できない。しかし、2.5%を超えて過剰に含有させると靱性が劣化する。よって、Mnの含有量の範囲は0.1〜2.5%とした。尚、Mnの含有量の好ましい下限は0.15%であり、より好ましくは0.2%以上とするのが良い。また、Mnの含有量の好ましい上限は2.4%であり、より好ましくは2.3%以下とするのが良い。
・ Mn: 0.1 to 2.5%
Like Si, Mn is an element necessary for deoxidation and securing strength, and if its content is less than 0.1%, the minimum strength as a steel material used as a structural member cannot be secured. However, if the content exceeds 2.5%, the toughness deteriorates. Therefore, the range of the Mn content is set to 0.1 to 2.5%. In addition, the minimum with preferable content of Mn is 0.15%, More preferably, it is good to set it as 0.2% or more. Moreover, the upper limit with preferable content of Mn is 2.4%, More preferably, it is good to set it as 2.3% or less.

・P:0%超0.04%以下
Pは、過剰に含有させると靭性や溶接性を劣化させる元素であり、Pの許容される含有量の上限は0.04%である。Pの含有量はできる限り少ない方が好ましく、Pの含有量のより好ましい上限は0.038%であり、更に好ましくは0.035%以下とするのが良い。しかし、工業的に素地鋼材中のPを0%にすることは困難である。
-P: more than 0% and 0.04% or less P is an element that deteriorates toughness and weldability when excessively contained, and the upper limit of the allowable content of P is 0.04%. The content of P is preferably as small as possible, and the more preferable upper limit of the content of P is 0.038%, and more preferably 0.035% or less. However, it is difficult industrially to make P in the base steel material 0%.

・S:0%超0.04%以下
Sも含有量が多くなると靭性や溶接性を劣化させる元素であり、許容される含有量の上限は0.04%である。Sの含有量のより好ましい上限は0.038%であり、更に好ましくは0.035%以下とするのが良い。しかし、工業的に素地鋼材中のSを0%にすることは困難である。
S: more than 0% and 0.04% or less S is an element that deteriorates toughness and weldability when the content increases, and the upper limit of the allowable content is 0.04%. The upper limit with more preferable content of S is 0.038%, More preferably, it is good to set it as 0.035% or less. However, it is difficult to industrially make S in the base steel material 0%.

・Al:0.005〜0.20%
Alも前記したSi、Mnと同様に脱酸および強度確保のために必要な元素である。こうした作用を有効に発揮させるためには、0.005%以上含有させることが必要である。しかし、0.20%を超えて含有させると溶接性を害するため、Alの含有量の範囲は0.005〜0.20%とした。尚、Alの含有量の好ましい下限は0.008%であり、より好ましくは0.010%以上とするのが良い。また、Alの含有量の好ましい上限は0.19%であり、より好ましくは0.18%以下とするのが良い。
-Al: 0.005-0.20%
Al is also an element necessary for deoxidation and securing strength, like Si and Mn described above. In order to exhibit such an action effectively, it is necessary to contain 0.005% or more. However, if the content exceeds 0.20%, weldability is impaired, so the range of Al content is set to 0.005 to 0.20%. In addition, the minimum with preferable content of Al is 0.008%, More preferably, it is good to set it as 0.010% or more. Moreover, the upper limit with preferable content of Al is 0.19%, More preferably, it is good to set it as 0.18% or less.

・Cu:0.05〜1.0%
Cuは、フェライトに固溶して、塗膜疵部における素地鋼材露出部のアノードの活性度を低下させることに加えて、素地鋼材表面に緻密な錆皮膜を形成する作用も有しており、塗膜疵部の耐食性向上に必要な元素である。このような効果を発揮させるためには、少なくとも0.05%以上含有させることが必要である。しかし、過剰に含有させると溶接性や熱間加工性を劣化させるので、Cuの含有量は1.0%以下とする必要がある。よって、Cuの含有量の範囲は0.05〜1.0%とした。尚、Cuの含有量の好ましい下限は0.06%であり、より好ましい下限は0.07%である。また、Cuの含有量の好ましい上限は0.95%であり、より好ましい上限は0.90%である。
Cu: 0.05 to 1.0%
Cu has a function of forming a dense rust film on the surface of the base steel material in addition to lowering the activity of the anode of the base steel material exposed portion in the coating film heel portion by dissolving in the ferrite solids. It is an element necessary for improving the corrosion resistance of the coat buttock. In order to exert such effects, it is necessary to contain at least 0.05% or more. However, if contained excessively, weldability and hot workability deteriorate, so the Cu content needs to be 1.0% or less. Therefore, the range of the Cu content is set to 0.05 to 1.0%. In addition, the minimum with preferable content of Cu is 0.06%, and a more preferable minimum is 0.07%. Moreover, the upper limit with preferable Cu content is 0.95%, and a more preferable upper limit is 0.90%.

・Cr:0.05〜1.0%
Crは、Cuと同様にフェライトに固溶して、塗膜疵部における素地鋼材露出部のアノードの活性度を低下させることに加えて、素地鋼材表面に緻密な錆皮膜を形成する作用も有しており、塗膜疵部の耐食性向上に必要な元素である。このような効果を発揮させるためには、少なくとも0.05%以上含有させることが必要である。しかし、過剰に含有させると溶接性や熱間加工性を劣化させるので、Crの含有量は1.0%以下とする必要がある。よって、Crの含有量の範囲は0.05〜1.0%とした。尚、Crの含有量の好ましい下限は0.06%であり、より好ましい下限は0.07%である。また、Crの含有量の好ましい上限は0.95%であり、より好ましい上限は0.90%である。
・ Cr: 0.05-1.0%
Cr, as well as Cu, dissolves in ferrite and lowers the activity of the anode in the exposed portion of the base steel material in the coating ridge, and also has the effect of forming a dense rust film on the surface of the base steel material. It is an element necessary for improving the corrosion resistance of the buttock of the coating film. In order to exert such effects, it is necessary to contain at least 0.05% or more. However, since it will degrade weldability and hot workability if contained excessively, the Cr content needs to be 1.0% or less. Therefore, the Cr content range is set to 0.05 to 1.0%. In addition, the minimum with preferable Cr content is 0.06%, and a more preferable minimum is 0.07%. Moreover, the upper limit with preferable Cr content is 0.95%, and a more preferable upper limit is 0.90%.

・N:0.001〜0.015%
Nは鋼中において窒化物の微細分散粒子を形成して、素地鋼材の耐食性向上および強度確保に有効な元素である。このような効果を得るためには、Nの含有量は0.001%以上とすること必要である。しかし、含有量が過剰であると、素地鋼材の靭性に悪影響を及ぼすことに加えて、溶接性も害するため、Nの含有量の上限を0.015%とする。よって、Nの含有量の範囲は0.001〜0.015%とした。尚、Nの含有量の好ましい下限は0.0015%であり、0.002%以上がより好ましい。また、Nの含有量の好ましい上限は0.014%であり、0.013%以下がより好ましい。
・ N: 0.001 to 0.015%
N is an element that is effective in improving the corrosion resistance and securing the strength of the base steel material by forming finely dispersed particles of nitride in the steel. In order to obtain such an effect, the N content needs to be 0.001% or more. However, if the content is excessive, in addition to adversely affecting the toughness of the base steel material, the weldability is also impaired, so the upper limit of the N content is set to 0.015%. Therefore, the content range of N is set to 0.001 to 0.015%. In addition, the minimum with preferable content of N is 0.0015%, and 0.002% or more is more preferable. Moreover, the upper limit with preferable content of N is 0.014%, and 0.013% or less is more preferable.

・Ti:0.005〜0.1%、Nb:0.005〜0.1%のいずれか1種または2種
TiおよびNbは、CuおよびCrとの共存下において、素地鋼材表面に緻密な錆皮膜を形成する作用を有しており、耐食性向上に必要な元素である。このような効果を発揮させるには、少なくとも夫々0.005%以上含有させることが必要である。しかし、過剰に含有させると溶接性や熱間加工性を劣化させるので、TiおよびNbの含有量は、夫々0.1%以下とする必要がある。TiおよびNbの含有量の好ましい下限は夫々0.006%であり、より好ましい下限は0.007%である。また、TiおよびNbの含有量の好ましい上限は夫々0.095%であり、より好ましい上限は0.09%である。
-Ti: 0.005-0.1%, Nb: Any one or two of 0.005-0.1% Ti and Nb are dense on the surface of the base steel material in the presence of Cu and Cr. It has an action of forming a rust film and is an element necessary for improving corrosion resistance. In order to exhibit such an effect, it is necessary to contain at least 0.005% or more. However, since excessive weldability deteriorates weldability and hot workability, the contents of Ti and Nb must be 0.1% or less, respectively. The minimum with preferable content of Ti and Nb is 0.006%, respectively, and a more preferable minimum is 0.007%. Moreover, the upper limit with preferable content of Ti and Nb is 0.095%, respectively, and a more preferable upper limit is 0.09%.

以上が、本発明の塗装用鋼材を構成する素地鋼材の必須添加元素の成分範囲の限定理由であり、残部はFeおよび不可避的不純物である。不可避的不純物としては、O、H等を挙げることができ、これらの元素は素地鋼材の諸特性を害さない程度で含有していても構わない。但し、これら不可避的不純物の合計含有量は、0.1%以下、好ましくは0.09%以下に抑えることによって、本発明による耐食性発現効果を極大化することができる。   The above is the reason for limiting the component range of the essential additive elements of the base steel material constituting the steel material for painting of the present invention, and the balance is Fe and inevitable impurities. Inevitable impurities include O, H, and the like, and these elements may be contained to the extent that they do not impair the properties of the base steel material. However, by suppressing the total content of these inevitable impurities to 0.1% or less, preferably 0.09% or less, the corrosion resistance effect according to the present invention can be maximized.

また、本発明の塗装用鋼材を構成する素地鋼材に、以下に示す元素を含有すれば更に有効である。これら元素を含有させる場合の成分範囲の限定理由について次に説明する。   Further, it is more effective if the base steel constituting the steel for painting of the present invention contains the following elements. The reason for limiting the component range when these elements are contained will be described below.

・Ni:0.01〜6.0%、Co:0.01〜5.0%、Mo:0.01〜2.0%、W:0.01〜2.0%のいずれか1種または2種以上
Ni、Co、Mo、Wは、フェライトに固溶して、溶解反応の活性度を低下させる作用を有しており、耐食性の向上に有効な元素である。また、適量のNi、Co、Mo、Wは、素地鋼材の強度特性を向上させるにも有効であり、必要に応じて添加させる元素である。こうした効果を発揮させるためには、夫々0.01%以上含有させることが好ましい。しかしながら、これら元素の含有量が過剰になると溶接性や熱間加工性を劣化させるので、含有させる場合は、Niで6.0%以下、Coで5.0%以下、MoとWで2.0%以下とする。Ni、Co、Mo、Wを含有させるときのより好ましい下限は夫々0.02%であり、0.03%以上とすることが更に好ましい。また、Niを含有させるときのより好ましい上限は5.9%であり、5.8%以下とすることが更に好ましい。Coを含有させるときのより好ましい上限は4.9%であり、4.8%以下とすることが更に好ましい。MoとWを含有させるときのより好ましい上限は夫々1.9%であり、1.8%以下とすることが更に好ましい。
Ni: 0.01-6.0%, Co: 0.01-5.0%, Mo: 0.01-2.0%, W: 0.01-2.0% 2 or more types Ni, Co, Mo, and W are effective elements for improving the corrosion resistance because they have a function of reducing the activity of the dissolution reaction by dissolving in ferrite. Appropriate amounts of Ni, Co, Mo, and W are effective for improving the strength characteristics of the base steel material, and are elements that are added as necessary. In order to exhibit such an effect, it is preferable to contain each 0.01% or more. However, if the content of these elements is excessive, weldability and hot workability are deteriorated. Therefore, when contained, Ni is 6.0% or less, Co is 5.0% or less, and Mo and W are 2. 0% or less. The more preferable lower limit when Ni, Co, Mo, and W are contained is 0.02%, more preferably 0.03% or more. Moreover, the upper limit with more preferable when Ni is contained is 5.9%, and it is still more preferable to set it as 5.8% or less. A more preferable upper limit when Co is contained is 4.9%, and more preferably 4.8% or less. The more preferable upper limit when Mo and W are contained is 1.9%, more preferably 1.8% or less.

・Mg:0.0005〜0.01%、Ca:0.0005〜0.01%、REM:0.0005〜0.01%のいずれか1種または2種以上
Mg、Ca、REMは、使用環境において、鋼材の表面近傍のpH低下を抑制する作用を有しており、耐食性を更に向上させるのに有効な元素である。この作用はこれら元素が腐食溶解して水素イオンと反応することで発揮される。こうした作用を有効に発揮させるためには、夫々0.0005%以上含有させることが好ましい。しかしながら、これら元素の含有量が過剰になると溶接性や熱間加工性を劣化させるので、これら元素を含有させる場合は、いずれも0.0005〜0.01%とする。Mg、Ca、REMを含有させるときのより好ましい下限は夫々0.0006%であり、更に好ましい下限は夫々0.0007%である。一方、Mg、Ca、REMを含有させるときのより好ましい上限は夫々0.0095%であり、更に好ましい上限は夫々0.009%である。
-Mg: 0.0005-0.01%, Ca: 0.0005-0.01%, REM: Any one or more of 0.0005-0.01% Mg, Ca, REM is used In the environment, it has an effect of suppressing the pH drop near the surface of the steel material, and is an effective element for further improving the corrosion resistance. This effect is exhibited when these elements are dissolved by corrosion and react with hydrogen ions. In order to exhibit such an action effectively, it is preferable to contain 0.0005% or more of each. However, when the content of these elements is excessive, weldability and hot workability are deteriorated. Therefore, when these elements are contained, the content is set to 0.0005 to 0.01%. More preferable lower limits when Mg, Ca, and REM are contained are each 0.0006%, and further preferable lower limits are 0.0007%. On the other hand, a more preferable upper limit when containing Mg, Ca, and REM is 0.0095%, respectively, and a more preferable upper limit is 0.009%.

・Sn:0.001〜0.2%、Sb:0.001〜0.2%、Se:0.001〜0.2%のいずれか1種または2種以上
Sn、Sb、Seは、耐食性の向上に有効な添加元素である。耐食性向上作用は、これらの元素を夫々0.001%以上含有させることによって有効に発揮される。しかしながら、これら元素の含有量が過剰になると溶接性や熱間加工性を劣化させるので、これら元素を含有させる場合は、いずれも0.001〜0.2%とする。Sn、Sb、Seを含有させるときのより好ましい下限は夫々0.002%であり、更に好ましい下限は夫々0.003%である。一方、Sn、Sb、Seを含有させるときのより好ましい上限は夫々0.19%であり、更に好ましい上限は夫々0.18%である。
-Sn: 0.001-0.2%, Sb: 0.001-0.2%, Se: Any one or more of 0.001-0.2% Sn, Sb, Se is corrosion resistance Is an additive element effective in improving the resistance. The effect of improving the corrosion resistance is effectively exhibited by containing each of these elements in an amount of 0.001% or more. However, when the content of these elements is excessive, weldability and hot workability are deteriorated. Therefore, when these elements are contained, the content is 0.001 to 0.2%. The more preferable lower limit when Sn, Sb, and Se are contained is 0.002%, respectively, and the more preferable lower limit is 0.003%. On the other hand, a more preferable upper limit when Sn, Sb, and Se are contained is 0.19%, respectively, and a more preferable upper limit is 0.18%.

・B:0%超0.01%以下、V:0%超0.1%以下、Zr:0%超0.1%以下、Zn:0%超0.1%以下のいずれか1種または2種以上
B、V、ZrおよびZnなどの強度向上に有効な元素も必要に応じて含有させることができる。これら添加元素は極僅かにでも含有すれば強度向上効果を発現するが、例えば、Bは0.0001%以上、V、Zr、Znは0.001%以上含有させることにより強度向上効果がより確実に発現される。しかし、これら元素を過剰に含有させると母材靭性や溶接性が劣化するため、これら元素を含有させる場合の含有量には制限がある。Bを含有させるときは0.01%以下、V、Zr、Znを含有させるときは夫々0.1%以下とする。またBを含有させるときのより好ましい上限は0.0095%であり、更に好ましい上限は0.009%である。また、V、Zr、Znを含有させるときのより好ましい上限は0.095%であり、更に好ましい上限は0.09%である。
B: more than 0% and 0.01% or less, V: more than 0% and 0.1% or less, Zr: more than 0% and 0.1% or less, Zn: more than 0% and 0.1% or less, or Two or more elements, such as B, V, Zr and Zn, which are effective for improving the strength can be contained as required. Even if these additive elements are contained even in a very small amount, the effect of improving the strength is exhibited. Expressed in However, if these elements are contained excessively, the base material toughness and weldability deteriorate, so the content when these elements are contained is limited. When B is contained, the content is 0.01% or less, and when V, Zr, or Zn is contained, the content is 0.1% or less. A more preferable upper limit when B is contained is 0.0095%, and a further preferable upper limit is 0.009%. Moreover, a more preferable upper limit when V, Zr, and Zn are contained is 0.095%, and a more preferable upper limit is 0.09%.

<素地鋼材の組織>
本発明の塗装用鋼材を構成する素地鋼材の組織については特に限定する必要がないが、十分な機械特性を得るために、フェライトとパーライトからなる組織、或いは、フェライトとベーナイトからなる組織とすることが推奨される。
<Structure of base steel>
The structure of the base steel material constituting the steel material for painting of the present invention is not particularly limited, but in order to obtain sufficient mechanical properties, it should be a structure composed of ferrite and pearlite, or a structure composed of ferrite and bainite. Is recommended.

<素地鋼材の製造方法>
本発明の塗装用鋼材を構成する素地鋼材を確実に製造するには、例えば、以下に説明する方法により製造することが好ましい。まず、転炉または電気炉から取鍋に出鋼した溶鋼に対して、RH真空脱ガス装置を用いて、本発明で規定する成分組成に調整すると共に、温度調整をすることで二次精錬を行う。その後、連続鋳造法、造塊法等の通常の鋳造方法で鋼塊とすれば良い。尚、構造用部材として鋼材に必要な機械的特性や溶接性などの基本特性を確保するために、脱酸形式としてはキルド鋼を用いることが好ましく、より好ましくはAlキルド鋼を用いることが推奨される。
<Manufacturing method of base steel>
In order to reliably manufacture the base steel material constituting the steel material for painting of the present invention, for example, it is preferable to manufacture the steel material by the method described below. First, for the molten steel that is discharged from the converter or electric furnace to the ladle, the RH vacuum degassing device is used to adjust the component composition specified in the present invention, and the temperature is adjusted for secondary refining. Do. Thereafter, the steel ingot may be formed by a normal casting method such as a continuous casting method or an ingot-making method. In order to ensure the basic properties such as mechanical properties and weldability required for steel materials as structural members, it is preferable to use killed steel as the deoxidation type, more preferably Al killed steel. Is done.

<表面層>
本発明の塗装用鋼材は、素地鋼材の表面に、Zn:20〜200g/m、Cu:0.3〜20.0g/mを含有すると共に、更にCr:0.3〜20.0g/m、Ni:0.3〜20.0g/mのいずれか1種または2種を含有する表面層を施したものである。
<Surface layer>
The steel material for coating of the present invention contains Zn: 20 to 200 g / m 2 and Cu: 0.3 to 20.0 g / m 2 on the surface of the base steel material, and further Cr: 0.3 to 20.0 g. / M 2 , Ni: A surface layer containing any one or two of 0.3 to 20.0 g / m 2 is applied.

表面層のZnは、犠牲防食効果により素地鋼材の腐食進行を抑制させる作用があり、このような効果は表面層のZn付着量が20g/m以上で発揮される。Zn付着量のより好ましい下限は25g/mであり、30g/m以上が更に好ましい。また、Zn付着量はある程度多くなると犠牲防食効果は飽和するばかりでなく、素地鋼材から剥離しやすくなるため、犠牲防食作用が有効な期間が短くなる場合がある。このような観点からZn付着量は200g/m以下とすることが推奨される。Zn付着量のより好ましい上限は190g/mであり、180g/m以下が更に好ましい。 Zn in the surface layer has an action of suppressing the progress of corrosion of the base steel material due to the sacrificial anticorrosive effect, and such an effect is exhibited when the Zn adhesion amount of the surface layer is 20 g / m 2 or more. The minimum with more preferable Zn adhesion amount is 25 g / m < 2 >, and 30 g / m < 2 > or more is still more preferable. Further, when the Zn adhesion amount is increased to some extent, the sacrificial anticorrosive effect is not only saturated but also easily peeled off from the base steel material, so that the period during which the sacrificial anticorrosive action is effective may be shortened. From such a viewpoint, it is recommended that the Zn adhesion amount be 200 g / m 2 or less. A more preferred upper limit of the Zn deposition amount is 190 g / m 2, more preferably 180 g / m 2 or less.

また、前記した含有量の範囲の化学成分を含有する表面層中の、CuとCr、CuとNi、CuとNiとCrを共存させた場合に、塗膜疵部における鋼の腐食生成物である錆をより一層緻密化・微細化させて、水や塩化物イオンなどの腐食因子の錆層への侵入を抑制する効果を発揮するため、素地鋼材の腐食反応が抑制され、耐食性向上に大きく寄与する。   Moreover, when Cu and Cr, Cu and Ni, and Cu and Ni and Cr coexist in the surface layer containing the chemical component in the above-described content range, Since the rust is further refined and refined and the effect of inhibiting the entry of corrosion factors such as water and chloride ions into the rust layer is exerted, the corrosion reaction of the base steel material is suppressed, greatly improving the corrosion resistance. Contribute.

このような効果は表面層のCuの付着量を0.3g/m以上とし、更にCrとNiのいずれか1種または2種を0.3g/m以上含有させることで発現される。表面層のCu、CrおよびNiのより好ましい付着量は夫々0.4g/m以上であり、0.5g/m以上が更に好ましい。しかしながら、Cu、CrおよびNiの付着量が多くなりすぎると表面層と素地鋼材との付着力が低下し、表面層が素地鋼材から剥離しやすくなる。このような悪影響を避けるため、Cu、CrおよびNiの付着量はそれぞれ20.0g/m以下とすることが推奨される。Cu、CrおよびNiの付着量のより好ましい上限はそれぞれ19.5g/m以下であり、19.0g/m以下が更に好ましい。 Such effects the deposition amount of Cu in the surface layer and 0.3 g / m 2 or more, expressed by the inclusion further one or two of Cr and Ni 0.3 g / m 2 or more. More preferable adhesion amounts of Cu, Cr and Ni on the surface layer are each 0.4 g / m 2 or more, and more preferably 0.5 g / m 2 or more. However, if the adhesion amount of Cu, Cr, and Ni is too large, the adhesion between the surface layer and the base steel material is reduced, and the surface layer is easily peeled off from the base steel material. In order to avoid such adverse effects, it is recommended that the adhesion amount of Cu, Cr and Ni be 20.0 g / m 2 or less. More preferable upper limits of the adhesion amount of Cu, Cr and Ni are each 19.5 g / m 2 or less, and more preferably 19.0 g / m 2 or less.

この表面層を形成する方法としては、Zn粉末、Cu粉末、Cr粉末およびNi粉末を、アルキルシリケートなどの適当な溶剤と混合し、スプレー塗布やはけ塗りすることが例示できる。また、適切な組成のZn−Cu−Cr合金、Zn−Cu−Ni合金或いはZn−Cu−Cr−Ni合金などの粉末を作製して、この合金粉末を通常のプライマー塗布工程に用いても良い。このとき、必要に応じて適切な顔料を加えても良い。或いは溶線式フレーム溶射やアーク溶射などの溶射法を用いて、Zn、Cu、Cr、Niを所望の付着量として表面層を形成することも可能である。尚、表面層を形成する前処理として、素地鋼材表面はショットブラストなどでスケールなどを除去しておくことが好ましい。   Examples of the method for forming this surface layer include mixing Zn powder, Cu powder, Cr powder and Ni powder with an appropriate solvent such as alkyl silicate, and spraying or brushing. Alternatively, a powder such as a Zn—Cu—Cr alloy, Zn—Cu—Ni alloy or Zn—Cu—Cr—Ni alloy having an appropriate composition may be prepared, and this alloy powder may be used in a normal primer coating process. . At this time, an appropriate pigment may be added as necessary. Alternatively, it is also possible to form the surface layer with Zn, Cu, Cr, and Ni as a desired deposition amount by using a thermal spraying method such as hot wire flame spraying or arc spraying. In addition, as a pretreatment for forming the surface layer, it is preferable to remove the scale and the like on the surface of the base steel material by shot blasting or the like.

また、表面層と素地鋼材との付着強度を確保するため素地鋼材表面の粗さを、ある程度の粗さ以上とすることが好ましいが、表面粗さが粗過ぎると、凹部に気泡が入って表面層と素地鋼材とが密着しない部分が生じてしまい、逆に付着強度が低下することが懸念される。このような観点から、素地鋼材の表面は適度な表面粗さにしておくことが推奨される。   Moreover, in order to ensure the adhesion strength between the surface layer and the base steel material, it is preferable that the base steel surface has a surface roughness of a certain level or more. There is a concern that a portion where the layer and the base steel material do not adhere to each other is generated, and conversely the adhesion strength is lowered. From such a viewpoint, it is recommended that the surface of the base steel material has an appropriate surface roughness.

素地鋼材の具体的な表面粗さとしては、例えば、JIS B 0601:2001に規定される十点平均粗さRzjisが、10μmから80μmとなるようにすることが推奨される。尚、素地鋼材の表面粗さの調整は、例えば、通常のショットブラスト処理やグリッドブラスト処理などを採用すれば実施することができる。   As a specific surface roughness of the base steel material, for example, it is recommended that the 10-point average roughness Rzjis specified in JIS B 0601: 2001 be 10 μm to 80 μm. In addition, the adjustment of the surface roughness of the base steel material can be performed by adopting, for example, a normal shot blasting process or a grid blasting process.

<塗装>
本発明の塗装用鋼材は、前記表面層の上に更に塗装を施して実用するものである。塗装に用いる塗料としては、エポキシ樹脂系、塩化ゴム系、アクリル樹脂系、フッ素樹脂系およびウレタン樹脂系などの塗料が適用することが可能であり、これら複数の塗料を用いて塗膜を多層化することも可能である。
<Paint>
The steel material for coating of the present invention is practically used by further coating the surface layer. As the paint used for painting, epoxy resin, chlorinated rubber, acrylic resin, fluororesin and urethane resin can be applied. It is also possible to do.

例えば、エポキシ樹脂系塗膜を形成するための塗料としては、防食塗料として用いられる塗料であって、ビヒクルとしてエポキシ樹脂を含むものであればどのような塗料を用いても良く、特に限定されない。具体的な塗料としては、エポキシ樹脂塗料、変性エポキシ樹脂塗料、タールエポキシ樹脂塗料などを例示することができる。   For example, the paint for forming the epoxy resin coating film is not particularly limited as long as it is a paint used as an anticorrosion paint and contains an epoxy resin as a vehicle. Specific examples of the paint include an epoxy resin paint, a modified epoxy resin paint, and a tar epoxy resin paint.

また、塩化ゴム系塗膜を形成するための塗料としては、塩素化樹脂を主原料としてなる塗料であればどのような塗料を用いても良く、特に限定されない。具体的な塗料としては、塩化ゴムや塩素化ポロオレフィンなどの塩素化樹脂を主原料としてなる塗料を例示することができる。   Moreover, as a coating material for forming the chlorinated rubber-based coating film, any coating material may be used as long as it is a coating material mainly composed of chlorinated resin, and is not particularly limited. Specific examples of the coating material include a coating material mainly composed of a chlorinated resin such as chlorinated rubber or chlorinated poroolefin.

また、アクリル樹脂塗膜を形成するための塗料としては、通常のアクリル樹脂塗料、アクリルエマルジョン樹脂塗料、アクリルウレタン系エマルジョン塗料、アクリルシリコン系エマルジョン塗料、アクリルラッカーなどの塗料を例示することができる。   Examples of the paint for forming the acrylic resin coating film include ordinary acrylic resin paints, acrylic emulsion resin paints, acrylic urethane emulsion paints, acrylic silicon emulsion paints, and acrylic lacquers.

また、フッ素樹脂塗膜を形成するための塗料としては、テトラフルオロエチレン樹脂塗料、パールフオロアルコキシ樹脂塗料、フッ化エチレンプロピレン樹脂塗料などの塗料を例示することができる。   Examples of the paint for forming the fluororesin coating film include paints such as tetrafluoroethylene resin paint, pearl fluoroalkoxy resin paint, and fluorinated ethylene propylene resin paint.

また、ウレタン樹脂塗膜を形成するための塗料としては、ポリウレタン樹脂塗料、ポリエステルウレタン樹脂塗料、湿気硬化ポリウレタン樹脂塗料、エポキシウレタン塗料、変性エポキシウレタン樹脂塗料などの塗料を例示することができる。   Examples of the paint for forming the urethane resin coating film include paints such as polyurethane resin paint, polyester urethane resin paint, moisture-curing polyurethane resin paint, epoxy urethane paint, and modified epoxy urethane resin paint.

これらの塗膜の膜厚は、薄過ぎる場合は防食効果が不十分となるが、逆に厚過ぎると塗膜剥離を生じやすくなるため、実用に応じて最適な厚さとすることが推奨される。このような観点から、塗装の膜厚は、乾燥膜厚で、例えば100〜1000μmの厚さとすることが推奨される。   If the film thickness is too thin, the anticorrosion effect will be insufficient, but conversely, if it is too thick, it tends to cause film peeling. . From such a viewpoint, it is recommended that the coating film thickness be a dry film thickness, for example, a thickness of 100 to 1000 μm.

また、塗膜を形成するための塗装工程は特に制約されるものではなく、スプレー塗布やはけ塗りなど通常の塗装方法を適用することが可能である。但し、塗装前には被塗装材となる素地鋼材表面を適度に洗浄する必要があり、例えば、洗浄することで鋼材表面の付着塩分濃度を、NaCl換算で50mg/m以下、好ましくは10mg/m以下とすることが推奨される。 Moreover, the coating process for forming the coating film is not particularly limited, and a normal coating method such as spray coating or brush coating can be applied. However, it is necessary to appropriately wash the surface of the base steel material to be coated before painting. For example, the adhesion salt concentration on the steel material surface by washing is 50 mg / m 2 or less, preferably 10 mg / m 2 in terms of NaCl. it is recommended to m 2 or less.

本発明の塗装用鋼材の形態としては、例えば、鋼板、鋼管、棒鋼、線材、形鋼等のものが挙げられる。また、用途としては、例えば、タンカー、コンテナ船、バルカーなどの貨物船、貨客船、客船、軍艦等の船舶におけるバラストタンクの構造部材として用いることが挙げられ、その他、上甲板、船橋、ハッチカバー、クレーン、各種配管、階段、手摺りなど様々な船舶用の鋼構造物に用いることも挙げられる。   Examples of the form of the steel material for painting of the present invention include steel plates, steel pipes, steel bars, wire rods, and shaped steels. In addition, as an application, for example, it can be used as a structural member of a ballast tank in a ship such as a cargo ship such as a tanker, a container ship, a bulker, a cargo passenger ship, a passenger ship, a warship, etc. In addition, an upper deck, a bridge, a hatch cover, It can be used for various steel structures for ships such as cranes, various pipes, stairs and handrails.

また、海洋構造物であれば、海洋上で石油や天然ガスを掘削する構造物、海洋で石油・ガスの生産・貯蔵・積出などを行う浮体式設備などを初めとして、海洋での風力発電、波浪発電、潮流・海流発電、温度差発電、太陽光発電などの発電関連設備が挙げられる。また、橋梁分野では、飛来塩分量が概ね0.1mdd:mg/dm/dayを超える高飛来塩分環境における橋梁用鋼材が例示できる。 In the case of offshore structures, wind power generation in the ocean, including structures that drill oil and gas on the ocean, floating facilities that produce, store, and ship oil and gas in the ocean, etc. , Power generation facilities such as wave power generation, tidal current / ocean current power generation, temperature difference power generation, and solar power generation. Moreover, in the bridge field, steel materials for bridges in a high flying salinity environment in which the flying salt amount exceeds approximately 0.1 mdd: mg / dm 2 / day can be exemplified.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらは何れも本発明の技術的範囲に包含されるものである。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

[供試材の作製]
表1に示す種々の成分組成の鋼材を真空溶解炉により溶製し、50kgの鋼塊とした。得られた鋼塊を1150℃に加熱した後、熱間圧延を行って、板厚10mmの鋼素材とした。鋼素材より大きさ150mm×70mm×5mmのテストピースを切り出した。切り出した全てのテストピースの試験面となる150mm×70mmの広さの片面には、JIS B 0601:2001に規定される十点平均粗さRzjisが30±10μmとなるようにショットブラスト処理を施し、水洗およびアセトン洗浄をしてから塗装を行った。
[Production of test materials]
Steel materials having various component compositions shown in Table 1 were melted in a vacuum melting furnace to obtain a 50 kg steel ingot. The obtained steel ingot was heated to 1150 ° C. and then hot-rolled to obtain a steel material having a plate thickness of 10 mm. A test piece having a size of 150 mm × 70 mm × 5 mm was cut out from the steel material. Shot blasting is performed on one side of 150 mm x 70 mm, which is the test surface of all cut out test pieces, so that the 10-point average roughness Rzjis specified in JIS B 0601: 2001 is 30 ± 10 μm. The coating was performed after washing with water and acetone.

前記のショットブラスト処理を施したテストピースの150mm×70mmの広さの片面に、Zn、Cu、Cr、Niを適宜含有する表面層を形成させた。その表面層は、アルキルシリケートを溶媒として金属Zn、金属Cu、金属Crおよび金属Niの粉末を適宜混合したものを塗布液として、その試験液をスプレー塗布することにより形成した。尚、表面層のZn、Cu、CrおよびNiの付着量は、塗布液へのZn、Cu、CrおよびNiの添加量と塗布量とを適宜調整して変化させた。   A surface layer containing Zn, Cu, Cr, and Ni as appropriate was formed on one side having a size of 150 mm × 70 mm of the test piece subjected to the shot blast treatment. The surface layer was formed by spray-coating the test solution using a mixture of metal Zn, metal Cu, metal Cr and metal Ni appropriately mixed with alkyl silicate as a solvent. The adhesion amount of Zn, Cu, Cr and Ni on the surface layer was changed by appropriately adjusting the addition amount and application amount of Zn, Cu, Cr and Ni to the coating solution.

前記したZn、Cuなどを含有する表面層を形成させた150mm×70mmの広さの面に、変性エポキシ樹脂系塗料をスプレー塗布して塗装を施した。その塗装の膜厚は乾燥膜厚で200±20μmである。更に、変性エポキシ樹脂系塗料の塗布面を乾燥させた後、その塗装面には長さ80mm、幅3mmの鋼材素地まで達する塗膜疵を形成した。   The surface of 150 mm × 70 mm having the surface layer containing Zn, Cu or the like described above was applied by spraying a modified epoxy resin paint. The coating thickness is 200 ± 20 μm in terms of dry thickness. Furthermore, after the application surface of the modified epoxy resin coating was dried, a coating film was formed on the coated surface to reach a steel material base having a length of 80 mm and a width of 3 mm.

全てのテストピースは疵を形成した前記塗装面を試験面として、試験面以外の面はシリコンシーラントで被覆して下記の腐食試験に供試した。   All of the test pieces were subjected to the following corrosion test with the painted surface on which the wrinkles were formed as a test surface and the surfaces other than the test surface covered with a silicone sealant.

[腐食試験方法]
海水による腐食環境下を模擬する腐食試験として、人工海水を用いた複合サイクル試験:CCTを実施した。サイクル条件は、1)35℃の人工海水噴霧、1.5時間、2)温度60℃、相対湿度20%RH、2.5時間、3)温度50℃、相対湿度95%RH、2.5時間、の繰り返しとした。
[Corrosion test method]
As a corrosion test simulating a corrosive environment by seawater, a combined cycle test using artificial seawater: CCT was performed. Cycle conditions are: 1) artificial seawater spray at 35 ° C., 1.5 hours, 2) temperature 60 ° C., relative humidity 20% RH, 2.5 hours, 3) temperature 50 ° C., relative humidity 95% RH, 2.5 Time was repeated.

尚、各過程間の温度および湿度を変化させて安定するまでの移行時間は0.5時間である。試験期間は3ヶ月間とした。サンプルは表2に示したNo.1からNo.49を各3枚ずつ供試した。   The transition time until the temperature and humidity during each process are changed and stabilized is 0.5 hours. The test period was 3 months. The sample is No. 1 shown in Table 2. 1 to No. Forty-nine 49 pieces were tested.

塗膜疵部からの塗膜劣化および腐食の進展度合いの評価として、CCT終了後にテストピースの塗膜疵部からの腐食面積および腐食深さを求めた。腐食面積については、塗膜疵部から塗膜下腐食により塗膜が膨れている部分の面積および塗膜疵部の面積の合計の面積とし、各3枚のテストピースの平均値とした。   As an evaluation of the degree of coating film deterioration and corrosion from the coating film buttock, the corrosion area and the corrosion depth from the coating film buttock of the test piece were determined after the CCT was completed. About the corrosion area, it was set as the total area of the area of the part which the coating film swells from the coating-film part by corrosion under a coating film, and the area of a coating-film part, and was taken as the average value of each three test pieces.

腐食深さについては、塗膜疵部およびその周辺の腐食深さを測定し、各3枚のテストピースの最大値を求めた。尚、腐食深さの測定は、CCT終了後にテストピースの塗膜を剥がして、10%クエン酸水素二アンモニウム水溶液中での陰極電解による脱錆処理を行った後、デプスゲージにて測定を実施した。   About the corrosion depth, the corrosion depth of the coating film buttocks and its periphery was measured, and the maximum value of each three test pieces was calculated | required. The corrosion depth was measured after removing the coating film of the test piece after the end of CCT, performing derusting treatment by cathodic electrolysis in a 10% diammonium hydrogen citrate aqueous solution, and then measuring with a depth gauge. .

[複合サイクル試験結果]
複合サイクル試験:CCTの後に求めた腐食面積および腐食深さは、表2に示す通りである。尚、各サンプルの腐食面積および腐食深さは、通常の鋼材に通常のZnプライマーを形成させたNo.1のサンプルの腐食面積および腐食深さを夫々100としたときの相対値で示している。
[Composite cycle test results]
Combined cycle test: Corrosion area and depth determined after CCT are as shown in Table 2. In addition, the corrosion area and the corrosion depth of each sample are No. 1 in which an ordinary Zn primer is formed on an ordinary steel material. The relative values when the corrosion area and the corrosion depth of one sample are 100 are shown.

腐食面積および腐食深さの評価基準は、夫々以下の通りである。腐食面積、腐食深さ共に、相対値が相対値が80以上90未満のものをA、相対値が70以上80未満のものをAA、相対値が70未満のものをAAAで示し、腐食面積、腐食深さ共に、A〜AAAのものを総合評価で合格とし、耐食性に優れる塗装用鋼材であると評価した。   The evaluation criteria for the corrosion area and the corrosion depth are as follows. Corrosion area and corrosion depth are indicated by A when the relative value is 80 or more and less than 90, AA when the relative value is 70 or more and less than 80, and AAA when the relative value is less than 70. The corrosion depths of A to AAA were accepted in the overall evaluation, and the steel material for coating having excellent corrosion resistance was evaluated.

No.1〜No.12は、腐食面積および腐食深さの相対値が90から100であり、塗膜疵部の耐食性が十分ではない。No.2、No.6およびNo.7は、本発明規定のZn、Cu、Crを表面層に含有するものであるが、いずれも鋼材のCu含有量が少なすぎるため、塗膜疵部の耐食性向上が十分に得られない。   No. 1-No. In No. 12, the relative value of the corrosion area and the corrosion depth is 90 to 100, and the corrosion resistance of the coating ridge is not sufficient. No. 2, no. 6 and no. No. 7 contains Zn, Cu, and Cr as defined in the present invention in the surface layer, but since the Cu content of the steel material is too small, the corrosion resistance of the coating film cannot be sufficiently improved.

No.3およびNo.8は、本発明規定のZn、Cu、Crを表面層に含有するものであるが、いずれも素地鋼材のCr含有量が少なすぎるため、塗膜疵部の耐食性向上が十分に得られない。   No. 3 and no. No. 8 contains Zn, Cu, and Cr as defined in the present invention in the surface layer. However, since the Cr content of the base steel material is too small, the corrosion resistance of the coating film ridge cannot be sufficiently improved.

No.4およびNo.5は、本発明規定のZn、Cu、Crを表面層に含有するものであるが、素地鋼材のTi含有量或いはNb含有量が少なすぎるため、塗膜疵部の耐食性向上が十分に得られない。   No. 4 and no. No. 5 contains Zn, Cu, Cr as defined in the present invention in the surface layer, but since the Ti content or Nb content of the base steel material is too small, sufficient improvement in the corrosion resistance of the coating ridge is obtained. Absent.

また、No.9およびNo.10はいずれも素地鋼材の成分組成は本発明の規定を満たすが、表面層のZn或いはCuが少なすぎるため、塗膜疵部の耐食性向上が十分に得られない。   No. 9 and no. In all cases, the component composition of the base steel material satisfies the provisions of the present invention, but since the surface layer contains too little Zn or Cu, the corrosion resistance of the coating film ridge cannot be sufficiently improved.

No.11およびNo.12はいずれも素地鋼材の成分組成および表面層のZnおよびCuは本発明の規定を満たすが、両者とも表面層のCr或いはNiが少なすぎるため塗膜疵部の耐食性向上が十分に得られない。   No. 11 and no. No. 12 is a component composition of the base steel material and Zn and Cu of the surface layer satisfy the provisions of the present invention, but since both of them have too little Cr or Ni in the surface layer, the corrosion resistance of the coating film ridge cannot be sufficiently improved. .

これらの比較例に対して、本発明の規定を全て満足するNo.13〜No.49のサンプルは、いずれも腐食面積および腐食深さの相対値の双方が90未満に抑制されており、優れた塗膜疵部の耐食性を発揮する。   For these comparative examples, No. 1 satisfying all the rules of the present invention. 13-No. In each of the 49 samples, both of the relative values of the corrosion area and the corrosion depth are suppressed to less than 90, and the excellent corrosion resistance of the paint film buttock is exhibited.

特に、Ni、Co、MoおよびWのいずれか1種または2種以上を適量含有させたS12〜S18の素地鋼材に、本発明規定の表面層を形成させたNo.18〜No.27のサンプルは、腐食面積の抑制効果が顕著である。   In particular, No. 1 in which a surface layer defined in the present invention was formed on a base steel material of S12 to S18 containing an appropriate amount of any one or more of Ni, Co, Mo and W. 18-No. The sample No. 27 has a remarkable effect of suppressing the corrosion area.

これらに、更にSn、SbおよびSeのいずれか1種または2種以上を適量含有させたS28,S29の素地鋼材に、本発明規定の表面層を付与したNo.40〜No.42のサンプルは、腐食面積の抑制効果が更に顕著である。   No. 1 in which the surface layer defined by the present invention was added to the base steel materials of S28 and S29, in which any one or more of Sn, Sb and Se were further contained. 40-No. In the sample of 42, the effect of suppressing the corrosion area is further remarkable.

また、Mg、CaおよびREMのいずれか1種または2種以上を適量含有させたS19〜S21の素地鋼材に、本発明規定の表面層を付与したNo.28〜No.31のサンプルは、腐食深さの抑制効果が顕著である。   Moreover, No. 1 which provided the surface layer prescribed | regulated to this invention to the base steel material of S19-S21 which contained any 1 type or 2 types or more of Mg, Ca, and REM appropriately. 28-No. The sample 31 has a remarkable effect of suppressing the corrosion depth.

これらに、更にSn、SbおよびSeのいずれか1種または2種以上を適量含有させたS30〜S32の素地鋼材に、本発明規定の表面層を付与したNo.43〜No.46のサンプルは、腐食深さの抑制効果が更に顕著である。   No. 1 in which a surface layer defined by the present invention was added to a base steel material of S30 to S32 in which an appropriate amount of any one or more of Sn, Sb and Se was further added. 43-No. In the 46 samples, the effect of suppressing the corrosion depth is more remarkable.

以上のように、本発明の塗装用鋼材は、いずれも海水環境下において優れた塗膜疵部の耐食性を発揮するものであり、海水や飛来海塩粒子に曝される構造部材として好適である。   As described above, all of the coating steel materials of the present invention exhibit excellent corrosion resistance of the coating ridge in a seawater environment, and are suitable as a structural member that is exposed to seawater and flying sea salt particles. .

Claims (5)

素地鋼材と、前記素地鋼材の表面上に形成される表面層を含む塗装用鋼材であって、
前記素地鋼材が、質量%で、C:0.04〜0.30%、Si:0.05〜1.0%、Mn:0.1〜2.5%、P:0%超0.04%以下、S:0%超0.04%以下、Al:0.005〜0.20%、Cu:0.05〜1.0%、Cr:0.05〜1.0%、N:0.001〜0.015%を含有すると共に、Ti:0.005〜0.1%、Nb:0.005〜0.1%のいずれか1種または2種を含有し、残部がFeおよび不可避的不純物からなる鋼材であり、
また、前記表面層が、Zn:20〜200g/m、Cu:0.3〜20.0g/mを含有すると共に、Cr:0.3〜20.0g/m、Ni:0.3〜20.0g/mのいずれか1種または2種を含有することを特徴とする耐食性に優れる塗装用鋼材。
A steel material for coating including a base steel material and a surface layer formed on the surface of the base steel material,
The base steel material is mass%, C: 0.04 to 0.30%, Si: 0.05 to 1.0%, Mn: 0.1 to 2.5%, P: more than 0% 0.04 %: S: more than 0% and 0.04% or less, Al: 0.005 to 0.20%, Cu: 0.05 to 1.0%, Cr: 0.05 to 1.0%, N: 0 0.001 to 0.015%, Ti: 0.005 to 0.1%, Nb: 0.005 to 0.1%, one or two of them, the balance being Fe and inevitable Steel made of mechanical impurities,
Moreover, while the said surface layer contains Zn: 20-200g / m < 2 >, Cu: 0.3-20.0g / m < 2 >, Cr: 0.3-20.0g / m < 2 >, Ni: 0. A steel material for coating excellent in corrosion resistance, comprising any one or two of 3 to 20.0 g / m 2 .
前記素地鋼材が、更に、質量%で、Ni:0.01〜6.0%、Co:0.01〜5.0%、Mo:0.01〜2.0%、W:0.01〜2.0%のいずれか1種または2種以上を含有する請求項1に記載の耐食性に優れる塗装用鋼材。   The base steel material is further, in mass%, Ni: 0.01 to 6.0%, Co: 0.01 to 5.0%, Mo: 0.01 to 2.0%, W: 0.01 to The steel material for coating excellent in corrosion resistance according to claim 1, which contains any one or more of 2.0%. 前記素地鋼材が、更に、質量%で、Mg:0.0005〜0.01%、Ca:0.0005〜0.01%、REM:0.0005〜0.01%のいずれか1種または2種以上を含有する請求項1または2に記載の耐食性に優れる塗装用鋼材。   Further, the base steel material may be any one of Mg: 0.0005 to 0.01%, Ca: 0.0005 to 0.01%, REM: 0.0005 to 0.01%, or 2% by mass. The steel material for coating excellent in corrosion resistance according to claim 1 or 2 containing a seed or more. 前記素地鋼材が、更に、質量%で、Sn:0.001〜0.2%、Sb:0.001〜0.2%、Se:0.001〜0.2%のいずれか1種または2種以上を含有する請求項1乃至3のいずれかに記載の耐食性に優れる塗装用鋼材。   Further, the base steel material may be any one of Sn: 0.001 to 0.2%, Sb: 0.001 to 0.2%, Se: 0.001 to 0.2%, or 2% by mass. The steel material for coating excellent in corrosion resistance according to any one of claims 1 to 3, comprising at least a seed. 前記素地鋼材が、更に、質量%で、B:0%超0.01%以下、V:0%超0.1%以下、Zr:0%超0.1%以下、Zn:0%超0.1%以下のいずれか1種または2種以上を含有する請求項1乃至4のいずれかに記載の耐食性に優れる塗装用鋼材。   The base steel material is further in mass%, B: more than 0% to 0.01% or less, V: more than 0% to 0.1% or less, Zr: more than 0% to 0.1% or less, Zn: more than 0% to 0% The steel material for coating excellent in corrosion resistance according to any one of claims 1 to 4, which contains any one or more of 1% or less.
JP2015078624A 2015-04-07 2015-04-07 Steel material for coating with excellent anticorrosion Pending JP2016199777A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015078624A JP2016199777A (en) 2015-04-07 2015-04-07 Steel material for coating with excellent anticorrosion
CN201610203844.5A CN106048449A (en) 2015-04-07 2016-04-01 Coating steel material with excellent corrosion resistance
KR1020160042113A KR101792406B1 (en) 2015-04-07 2016-04-06 Steel material for painting excellent in corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015078624A JP2016199777A (en) 2015-04-07 2015-04-07 Steel material for coating with excellent anticorrosion

Publications (1)

Publication Number Publication Date
JP2016199777A true JP2016199777A (en) 2016-12-01

Family

ID=57250338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015078624A Pending JP2016199777A (en) 2015-04-07 2015-04-07 Steel material for coating with excellent anticorrosion

Country Status (3)

Country Link
JP (1) JP2016199777A (en)
KR (1) KR101792406B1 (en)
CN (1) CN106048449A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019127636A (en) * 2018-01-26 2019-08-01 日本製鉄株式会社 Mooring chain steel and mooring chain

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109590193A (en) * 2018-11-20 2019-04-09 广州市光铭金属制品有限责任公司 A kind of technique of powder metallurgy product antirust Dacroment
CN110160944A (en) * 2019-05-15 2019-08-23 南京钢铁股份有限公司 A kind of evaluation method of hot rolled steel plate surface oxidation skin corrosion resisting property
CN110284056B (en) * 2019-06-17 2021-02-09 南阳汉冶特钢有限公司 Corrosion-resistant steel plate for ocean platform and production method thereof
CN111101071B (en) * 2020-02-25 2021-04-13 湖南华菱涟源钢铁有限公司 High-strength weathering steel and production method thereof
CN111471933A (en) * 2020-06-11 2020-07-31 攀钢集团西昌钢钒有限公司 High-strength weather-resistant color-coated sheet and preparation method thereof
CN112295880B (en) * 2020-11-06 2022-02-01 常州市盛诺管业有限公司 Machining process of precision seamless steel tube for gas spring
CN113549819B (en) * 2021-06-29 2022-05-17 鞍钢股份有限公司 High-performance steel plate for resisting corrosion in ocean splash zone and production method thereof
CN113549818B (en) * 2021-06-29 2022-06-14 鞍钢股份有限公司 High-performance steel plate for resisting corrosion of ocean total immersion area and production method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224344A (en) * 2006-02-22 2007-09-06 Jfe Steel Kk Corrosion resistant marine steel material
JP2012092404A (en) * 2010-10-28 2012-05-17 Jfe Steel Corp Steel for ship having excellent coating corrosion resistance
JP2012153933A (en) * 2011-01-25 2012-08-16 Kobe Steel Ltd Steel product for ship, excellent in corrosion resistance

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3598087B2 (en) * 2001-10-01 2004-12-08 新日本製鐵株式会社 High-strength galvannealed steel sheet with excellent workability and method for producing the same
JP5092507B2 (en) 2007-04-06 2012-12-05 住友金属工業株式会社 High tensile alloyed hot dip galvanized steel sheet and its manufacturing method
JP5023871B2 (en) 2007-08-03 2012-09-12 住友金属工業株式会社 Manufacturing method of hot pressed steel plate member
JP5663833B2 (en) * 2008-11-27 2015-02-04 Jfeスチール株式会社 Method for producing high-strength hot-dip galvanized steel sheet
JP2010229526A (en) 2009-03-30 2010-10-14 Jfe Steel Corp Highly-corrosion-resistant painted steel material
WO2011025042A1 (en) 2009-08-31 2011-03-03 新日本製鐵株式会社 High-strength hot-dip galvanized steel sheet and process for producing same
JP5682485B2 (en) * 2011-07-07 2015-03-11 新日鐵住金株式会社 Steel for cold forging and nitriding
CN104520464B (en) 2012-08-07 2016-08-24 新日铁住金株式会社 Hot forming electrogalvanized steel plate
WO2014124749A1 (en) * 2013-02-12 2014-08-21 Tata Steel Ijmuiden Bv Coated steel suitable for hot-dip galvanising

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224344A (en) * 2006-02-22 2007-09-06 Jfe Steel Kk Corrosion resistant marine steel material
JP2012092404A (en) * 2010-10-28 2012-05-17 Jfe Steel Corp Steel for ship having excellent coating corrosion resistance
JP2012153933A (en) * 2011-01-25 2012-08-16 Kobe Steel Ltd Steel product for ship, excellent in corrosion resistance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019127636A (en) * 2018-01-26 2019-08-01 日本製鉄株式会社 Mooring chain steel and mooring chain
JP7062973B2 (en) 2018-01-26 2022-05-09 日本製鉄株式会社 Steel for mooring chains and mooring chains

Also Published As

Publication number Publication date
KR101792406B1 (en) 2017-11-01
CN106048449A (en) 2016-10-26
KR20160120236A (en) 2016-10-17

Similar Documents

Publication Publication Date Title
JP2016199777A (en) Steel material for coating with excellent anticorrosion
JP6180956B2 (en) Painted steel with excellent corrosion resistance
TWI404807B (en) Corrosion resistant steel product for crude oil tanker
JP5774859B2 (en) Corrosion resistant steel for ship superstructure
KR101772812B1 (en) Steel material and method for producing the same
JP5092932B2 (en) Marine steel structures, steel pipe piles, steel sheet piles and steel pipe sheet piles
JP5662894B2 (en) Steel material for the upper deck of crude oil tankers with excellent corrosion resistance or cargo for bulk carriers
JP2014019908A (en) Anticorrosion coated steel material
KR101715581B1 (en) Steel material, ship ballast tank and hold formed using said steel material, and ship equipped with said ballast tank or hold
JP2006009129A (en) Steel for vessel having excellent corrosion resistance
JP2018009218A (en) Coated steel and method of manufacturing the same
KR101800550B1 (en) Coated steel material and method for producing the same
JP5641000B2 (en) Surface-treated steel with excellent corrosion resistance
JP2006037201A (en) Marine steel material superior in corrosion resistance
JP4577238B2 (en) Resin-coated steel with excellent long-term durability in concentrated chloride environments and its manufacturing method
JP2010144207A (en) Steel pipe sheet pile and steel pipe sheet pile wall
JP2010138454A (en) Coated steel for ballast tank having excellent coating film blister resistance, ballast tank using the same, and vessel
JP2008007860A (en) Steel member for vessel having excellent crevice corrosion resistance in humid air atmosphere
JP5185712B2 (en) Steel for ballast tanks, ballast tanks and ships
JP5284769B2 (en) Steel tank for crude oil tank with excellent corrosion resistance, upper deck of crude oil tank and crude oil tanker
JP2006118002A (en) Steel material for oil tank
JP2012214907A (en) Steel products coated with heavy corrosion resistant protected cover

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190205