JP5092507B2 - High tensile alloyed hot dip galvanized steel sheet and its manufacturing method - Google Patents
High tensile alloyed hot dip galvanized steel sheet and its manufacturing method Download PDFInfo
- Publication number
- JP5092507B2 JP5092507B2 JP2007100734A JP2007100734A JP5092507B2 JP 5092507 B2 JP5092507 B2 JP 5092507B2 JP 2007100734 A JP2007100734 A JP 2007100734A JP 2007100734 A JP2007100734 A JP 2007100734A JP 5092507 B2 JP5092507 B2 JP 5092507B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel sheet
- strength
- hot
- tensile
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Coating With Molten Metal (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、高張力合金化溶融亜鉛めっき鋼板およびその製造方法に関する。特に、本発明は主として自動車の車体等のようにプレス成形、曲げ加工等を施す用途に好適なめっき密着性に優れた高張力合金化溶融亜鉛めっき鋼板およびその製造する方法に関する。 The present invention relates to a high-strength galvannealed steel sheet and a method for producing the same. In particular, the present invention relates to a high-tensile alloyed hot-dip galvanized steel sheet having excellent plating adhesion suitable for applications such as press forming and bending, such as automobile bodies, and a method for producing the same.
近年、地球環境保護のため、自動車の燃費向上が求められており、自動車用鋼板においては、車体の軽量化および安全性確保のため、引張強度(以下、「TS」ともいう。)が780MPa以上である高強度鋼板へのニーズが高まっている。 In recent years, in order to protect the global environment, there has been a demand for improvement in fuel efficiency of automobiles. In steel sheets for automobiles, tensile strength (hereinafter also referred to as “TS”) is 780 MPa or more in order to reduce the weight of the vehicle body and ensure safety. There is a growing need for high-strength steel sheets.
しかしながら、ただ単に高強度であればよいわけではない。例えば、成形性の観点からは高い延性、良好な曲げ性が求められており、衝突性能の観点からは高降伏比が、部品精度の観点からは低降伏比が、それぞれ求められている。また、部品精度に関しては、更にTS及び降伏強度(以下、「YS」ともいう。)の変動を少なくすることが求められている。一方、防錆性の観点からは、溶融亜鉛めっきを施した鋼板が求められている。とりわけ、経済性、防錆機能、塗装後の性能の点で優れる合金化溶融亜鉛めっき鋼板が広く用いられている。 However, it does not have to be just high strength. For example, high ductility and good bendability are required from the viewpoint of formability, and a high yield ratio is required from the viewpoint of impact performance, and a low yield ratio is required from the viewpoint of component accuracy. Further, regarding the component accuracy, it is required to further reduce fluctuations in TS and yield strength (hereinafter also referred to as “YS”). On the other hand, from the viewpoint of rust prevention, a steel sheet that has been subjected to hot dip galvanization is required. In particular, alloyed hot-dip galvanized steel sheets that are excellent in terms of economy, rust prevention function, and performance after coating are widely used.
この合金化溶融亜鉛めっき鋼板は、通常、次のようにして製造される。鋼板を溶融めっき前に予熱炉において加熱し、不めっきが生じないように露点を−20℃以下に調整したH2+N2の還元雰囲気中で焼鈍し、次いでめっき浴温前後に冷却し、その後に溶融Znめっきを施す。そして、この溶融亜鉛めっきを施した鋼板を、熱処理炉において480〜600℃の材料温度で3〜30秒加熱してFe−Zn合金めっき相を形成することによって、合金化溶融亜鉛めっき鋼板を製造する。 This alloyed hot-dip galvanized steel sheet is usually produced as follows. The steel sheet is heated in a preheating furnace before hot dipping, annealed in a reducing atmosphere of H 2 + N 2 with a dew point adjusted to −20 ° C. or lower so as not to cause non-plating, then cooled to around the plating bath temperature, and then Is subjected to hot dip Zn plating. Then, an alloyed hot-dip galvanized steel sheet is manufactured by heating the hot-dip galvanized steel sheet at a material temperature of 480 to 600 ° C. for 3 to 30 seconds to form a Fe—Zn alloy plating phase in a heat treatment furnace. To do.
しかしながら、合金化溶融Znめっき鋼板をプレス加工する場合、めっき表層においてFe含有量が比較的低い軟質な合金相(ζ相)を有するときは、めっき表層と金型表面の凝着現象などにより金型表面と鋼板との間の摺動性に劣るため、めっき剥離(フレーキング)や鋼板のプレス割れが生じることがある。一方、めっき層中のFe含有量が高い場合には、鋼板とめっき層の界面近傍に硬質なΓ、Γ1、δ1c相が形成されるため、合金化溶融Znめっき鋼板をプレス加工する場合にめっき層の粉化(パウダリング)が発生しやすくなる。この現象が発生すると、金型に剥離片が付着して押込み疵が生じることになる。 However, when press-working an alloyed hot-dip Zn-plated steel sheet, if there is a soft alloy phase (ζ phase) with a relatively low Fe content in the plating surface layer, the adhesion may occur between the plating surface layer and the mold surface. Since the slidability between the mold surface and the steel plate is inferior, plating peeling (flaking) or press cracking of the steel plate may occur. On the other hand, when the Fe content in the plating layer is high, a hard Γ, Γ 1 , or δ 1c phase is formed in the vicinity of the interface between the steel plate and the plating layer. Therefore, powdering (powdering) of the plating layer is likely to occur. When this phenomenon occurs, a peeling piece adheres to the mold, and a pressing flaw occurs.
このような問題点を解決するために、軟鋼板を母材とする合金化溶融亜鉛めっき鋼板について、被膜のめっき層を比較的硬度のバランスが取れたδ1相主体の合金相とすることが提案されている。 In order to solve such problems, for alloyed hot-dip galvanized steel sheets based on mild steel sheets, the coating layer of the coating may be made of a δ 1 phase-based alloy phase with a relatively balanced hardness. Proposed.
例えば、特許文献1には、目付量:45〜90g/m2/片面を有する耐パウダリング性及び耐フレーキング性に優れた合金化溶融亜鉛めっき鋼板が提案されている。ここでは、めっき層中のFe含有量を8〜12%に、そしてAl含有量を0.05〜0.25%に管理して、被膜のめっき層にη、ζ相を存在させず、母材とめっき層の界面の合金層のΓ相を1.0μm以下にするものである。 For example, Patent Document 1 proposes an alloyed hot-dip galvanized steel sheet having a weight per unit area of 45 to 90 g / m 2 / one side and excellent in powdering resistance and flaking resistance. Here, the Fe content in the plating layer is controlled to 8 to 12%, and the Al content is controlled to 0.05 to 0.25%. The Γ phase of the alloy layer at the interface between the material and the plating layer is 1.0 μm or less.
特許文献2には、被膜のめっき層中のFe含有量が8〜12%となるように合金化処理を行う合金化溶融亜鉛めっき鋼板の製造方法に関して、めっき浴中のAl濃度を0.13%以上に管理するとともに、母材となる鋼板の侵入板温を浴中Al濃度の増加に伴って上昇させたり、高周波誘導加熱炉出側の板温を適正範囲に管理することによって、耐パウダリング性及び耐フレーキング性に優れた合金化溶融亜鉛めっき鋼板を製造することが提案されている。 In Patent Document 2, regarding the method for producing an galvannealed steel sheet that is alloyed so that the Fe content in the plating layer of the coating is 8 to 12%, the Al concentration in the plating bath is set to 0.13. In addition, the intrusion plate temperature of the base steel plate is increased as the Al concentration in the bath increases, and the plate temperature on the high-frequency induction heating furnace exit side is controlled within an appropriate range, thereby preventing It has been proposed to produce alloyed hot-dip galvanized steel sheets with excellent ring and flaking resistance.
一方、高張力鋼板については、合金化溶融亜鉛めっき鋼板の耐パウダリング性の改善方法として、次のようにいくつか提案がなされている。
特許文献3で提案された合金化溶融亜鉛めっき鋼板は、母材となる鋼板の化学組成を質量%でC:0.05〜0.20%、Si:0.02〜0.70%、Mn:0.50〜3.0%、P:0.005〜0.10%、S:0.1%以下、sol.Al:0.10〜2.0%、N:0.01%以下、およびSi+Al:0.5%以上に規定するとともに、750〜870℃で還元焼鈍を行い、次いで350〜550℃の低温に20秒以上滞留させ、その後、溶融亜鉛めっきを行ってから、特定の合金化温度と滞留時間で合金化処理を行うことによって得られるものであり、母材となる鋼板中にオーステナイト(γ)相の含有量が1体積%以上残存することによって、母材となる鋼板に優れた局部延性とともに高強度を付与している。そして、被膜のめっき層中のFe含有量を8〜15質量%に規定するとともに、めっき層におけるΓ相平均厚みを2μm以下、厚み方向の最大Γ1相長さを1.5μm以下、そして、最大Γ1相長さとΓ相厚み比を1以下に規定することによって、耐パウダリング性を改善している。
On the other hand, regarding high-tensile steel sheets, several proposals have been made as follows for improving the powdering resistance of galvannealed steel sheets.
The alloyed hot-dip galvanized steel sheet proposed in Patent Document 3 has a chemical composition of a steel sheet as a base material in mass% of C: 0.05 to 0.20%, Si: 0.02 to 0.70%, Mn : 0.50 to 3.0%, P: 0.005 to 0.10%, S: 0.1% or less, sol.Al: 0.10 to 2.0%, N: 0.01% or less, And Si + Al: specified at 0.5% or more, reduction annealing at 750 to 870 ° C., and then retention at a low temperature of 350 to 550 ° C. for 20 seconds or more, followed by hot dip galvanization, and then a specific alloy It is obtained by performing an alloying treatment at an alloying temperature and a residence time. When the austenite (γ) phase content remains in the base steel sheet by 1% by volume or more, it becomes a base steel sheet. It has high strength as well as excellent local ductility. And while defining Fe content in the plating layer of a film to 8-15 mass%, the Γ phase average thickness in a plating layer is 2 micrometers or less, the maximum Γ 1 phase length of the thickness direction is 1.5 micrometers or less, and By defining the maximum Γ 1 phase length and Γ phase thickness ratio to 1 or less, the powdering resistance is improved.
特許文献4で提案された合金化溶融亜鉛めっき鋼板は、母材となる鋼板の化学組成を質量%でC:0.05〜0.20%、Si:0.01〜1.50%、Mn:0.5〜3.0%、P:0.05%以下、S:0.01%以下、Al:0.01〜2.0%、N:0.01%以下、Si+Al:0.5%以上に規定するとともに、780〜870℃で還元焼鈍した後、700℃から550℃までの温度範囲を平均30℃/秒以上の冷却速度で冷却し、次いで350〜550℃の低温に20sec以上滞留させ、そして、常温まで冷却し、得られた母材に、Ni、Cu及びCoのうち1種又は2種以上付着させ、再び、780〜870℃で5〜500秒滞留させて還元焼鈍を行い、そのときの到達温度からめっき浴温度近傍まで冷却してから、めっきを行い、520℃以下で合金化処理を行うことによって得られるものであり、母材となる鋼板中にオーステナイト(γ)相の含有量が1体積%以上残存することによって、母材となる鋼板に引張強度TS(MPa)×伸びEl(%)≧20000を満足する高強度と高延性を付与している。そして、被膜のめっき層中のAl含有量を0.2〜0.4質量%に、Fe含有量を8〜15質量%に規定し、1回目焼鈍後の、Ni、Cu及びCoなどの付着量を増加させ、合金化を促進させることで、耐パウダリング性と耐フレーキング性を改善している。 The alloyed hot-dip galvanized steel sheet proposed in Patent Document 4 has a chemical composition of a steel sheet as a base material in mass% of C: 0.05 to 0.20%, Si: 0.01 to 1.50%, Mn : 0.5-3.0%, P: 0.05% or less, S: 0.01% or less, Al: 0.01-2.0%, N: 0.01% or less, Si + Al: 0.5 %, And after reduction annealing at 780 to 870 ° C., the temperature range from 700 ° C. to 550 ° C. is cooled at an average cooling rate of 30 ° C./second or more, and then at a low temperature of 350 to 550 ° C. for 20 seconds or more. It is allowed to stay, and then cooled to room temperature. One or more of Ni, Cu and Co are attached to the obtained base material, and again, it is allowed to stay at 780 to 870 ° C. for 5 to 500 seconds to perform reduction annealing. And after cooling from the reached temperature to the vicinity of the plating bath temperature, plating is performed. It is obtained by performing an alloying treatment below. When the content of the austenite (γ) phase is 1% by volume or more in the steel plate as the base material, the tensile strength TS ( MPa) × elongation El (%) ≧ 20000 which satisfies the high strength and high ductility. Then, the Al content in the plating layer of the coating is regulated to 0.2 to 0.4 mass%, the Fe content is regulated to 8 to 15 mass%, and adhesion such as Ni, Cu and Co after the first annealing is performed. By increasing the amount and promoting alloying, the powdering resistance and flaking resistance are improved.
特許文献5では、鋼板粒界に酸化物を有することによって、特許文献6には粒界および粒内に酸化物を有することにより、めっき密着性の改善を図った技術が提案されている。
特許文献7には鋼板表層の合金成分を中央部よりも低下させることによりめっき密着性の向上を図った技術が提案されている。
Patent Document 7 proposes a technique for improving plating adhesion by lowering the alloy component of the steel sheet surface layer than the central portion.
近年、軽量化のため母材を高強度化した合金化溶融亜鉛めっき鋼板が強く要望され、開発されてきている。しかしながら、高強度鋼板を母材に用いた合金化溶融亜鉛めっき鋼板は、プレス成形時に、その被膜のめっき層にかかる面圧が急激に増加するので、軟鋼板を母材に用いた合金化溶融亜鉛めっき鋼板よりも、プレス因子が被膜剥離挙動に大きく作用することになる。したがって、高強度鋼板を母材に用いた合金化溶融亜鉛めっき鋼板は、プレス成形時の被膜損傷が大きくなる問題が生じる。 In recent years, an alloyed hot-dip galvanized steel sheet having a high strength base material has been strongly demanded and developed for weight reduction. However, alloyed hot-dip galvanized steel sheets that use high-strength steel sheets as the base material rapidly increase the surface pressure applied to the coating layer of the coating during press forming. The press factor has a greater effect on the film peeling behavior than the galvanized steel sheet. Therefore, an alloyed hot-dip galvanized steel sheet using a high-strength steel sheet as a base material has a problem that film damage during press forming becomes large.
上述の特許文献1に記載の合金化溶融亜鉛めっき鋼板や特許文献2に記載の製造方法によって得られる合金化溶融亜鉛めっき鋼板は、軟鋼板を母材に用いた合金化溶融亜鉛めっき鋼板に関して、被膜のめっき層の合金相を規定するものであるが、高強度鋼板を母材に用いた合金化溶融亜鉛めっき鋼板に適用しても、プレス成形時の耐パウダリング性の改善効果は殆ど認められないことが判明した。 The alloyed hot dip galvanized steel sheet obtained by the alloyed hot dip galvanized steel sheet described in Patent Document 1 and the manufacturing method described in Patent Document 2 relates to the alloyed hot dip galvanized steel sheet using a mild steel plate as a base material. Although it defines the alloy phase of the coating layer of the coating, even when applied to an alloyed hot-dip galvanized steel sheet using a high-strength steel sheet as the base material, almost no effect of improving the powdering resistance during press forming is recognized. It turned out not to be.
次に、母材とめっき層の界面の密着力を高めるためには、極低炭素鋼板の場合、めっき浴中のAl濃度を高めることにより、母材となる鋼板の粒内と粒界における合金化速度の差を拡大させ、鋼板と合金化溶融亜鉛めっき層との界面の凹凸増加を図るという手法を採用できた。また、極低炭素鋼をベースとした高張力鋼板でも、同様な手法を採用すればよかった。ところが、本発明鋼のように引張強度が780MPa以上となるようなC含有量の高い鋼板の場合、同様な手法でめっき浴中のAl濃度を高めても、鋼板と合金化溶融亜鉛めっき層との密着強度が低強度鋼板よりも低下するという現象が判明した。 Next, in order to increase the adhesive strength at the interface between the base material and the plating layer, in the case of an ultra-low carbon steel plate, by increasing the Al concentration in the plating bath, the alloy in the grain and the grain boundary of the base steel plate The method of increasing the difference in the forming rate and increasing the unevenness at the interface between the steel sheet and the galvannealed layer could be adopted. In addition, a similar technique should be adopted for a high-tensile steel plate based on ultra-low carbon steel. However, in the case of a steel plate with a high C content such that the tensile strength is 780 MPa or more like the steel of the present invention, even if the Al concentration in the plating bath is increased by the same method, the steel plate and the alloyed hot dip galvanized layer It has been found that the adhesion strength is lower than that of the low-strength steel plate.
また、上述の高強度鋼板のパウダリング改善方法として特許文献3及び特許文献4で提案された合金化溶融亜鉛めっき鋼板は、鋼中のSiおよびPの含有量が比較的高い鋼種である上に、その製造のために複雑な還元焼鈍ヒートパターンで熱処理を行う必要がある。さらに、これらの文献で提案された合金化溶融亜鉛めっき鋼板を得るためには、従来のものよりも合金化に長い熱処理時間がかかるため、炉長の長い熱処理炉を必要とし、新たな設備投資が必要となるという問題がある。 In addition, the alloyed hot-dip galvanized steel sheet proposed in Patent Document 3 and Patent Document 4 as a method for improving powdering of the above-described high-strength steel sheet is a steel type in which the contents of Si and P in the steel are relatively high. Therefore, it is necessary to perform heat treatment with a complex reduction annealing heat pattern for the production. Furthermore, in order to obtain the alloyed hot-dip galvanized steel sheet proposed in these documents, a longer heat treatment time is required for alloying than conventional ones, so a heat treatment furnace having a long furnace length is required, and a new capital investment is required. There is a problem that is necessary.
高強度鋼板の溶融亜鉛めっきの密着性の改善として、特許文献5、6で提案された酸化物を活用した手法が提案されている。これらの文献には強度の記載がされてないが、実施例の成分から類推するとTSはせいぜい590MPa級であり、780MPa以上ではない。本発明者らの検討によると、TSが780MPa超の鋼板については、特許文献5、6で提案された方法では、十分なめっき密着性が得られないことが判明した。 As an improvement in the adhesion of hot-dip galvanized high-strength steel sheets, methods utilizing oxides proposed in Patent Documents 5 and 6 have been proposed. These documents do not describe strength, but by analogy with the components of the examples, TS is at most 590 MPa class and not 780 MPa or more. According to the study by the present inventors, it has been found that with respect to a steel sheet having a TS of over 780 MPa, sufficient plating adhesion cannot be obtained by the methods proposed in Patent Documents 5 and 6.
本発明は、このような問題点を解決することを目的としてなされたものであり、特にTSが780MPa以上の高張力鋼板特有のめっき密着性を改善したプレス性に優れた合金化溶融亜鉛めっき鋼板とその製造方法を提供するものである。 The present invention has been made for the purpose of solving such problems, and in particular, an alloyed hot-dip galvanized steel sheet excellent in pressability and improved in plating adhesion peculiar to a high-tensile steel sheet having a TS of 780 MPa or more. And a manufacturing method thereof.
本発明者らは、加工性に優れた高張力鋼板に関する検討を行った。
その結果、C、Mn、N、Ti、Nbを所定の範囲に制御することにより、フェライトおよび硬質第2相の平均粒径を5.0μm以下とすることができ、780MPa以上の高強度と優れた延性および曲げ性を兼備させることができることを見出した。
The present inventors have studied a high-tensile steel plate excellent in workability.
As a result, by controlling C, Mn, N, Ti, Nb within a predetermined range, the average particle diameter of ferrite and hard second phase can be made 5.0 μm or less, and high strength of 780 MPa or more and excellent It has been found that it is possible to combine ductility and bendability.
しかしながら、前述のような微細粒鋼板の場合、鋼板表面の粒界面積が極度に増加してしまう。このため、従来、粒界と粒内の合金化速度の差を拡大させることにより確保するというめっき密着性向上の手法が、粒径が5μm以下の高強度鋼板については適用できないことが判明した。 However, in the case of the fine grain steel plate as described above, the grain interface area on the steel plate surface is extremely increased. For this reason, it has been found that the technique for improving the plating adhesion, which is ensured by enlarging the difference between the grain boundary and the intragranular alloying rate, cannot be applied to a high-strength steel sheet having a grain size of 5 μm or less.
この問題に対して、本発明者らは粒内の合金化速度を遅延させる手法を検討した結果、0.02〜0.60%のSiを含有させることが極めて有効であることを見出した。従来のような粒径が5.0μm超の組織の場合、Siを添加すると合金化速度の遅い粒内面積が増えすぎるため、合金化に長時間必要であり、かつ不めっきも発生するため、連続式溶融亜鉛めっきラインでの製造は困難であった。しかし、本発明のように、粒径が5.0μm以下の微細粒な高強度鋼板に対してSiを0.02〜0.60%含有させると、合金化速度が大きくかつ濡れ性も良好な粒界部と、合金化速度を適度に抑制した粒内部とを適正にバランスさせることができ、鋼板と合金化溶融亜鉛めっきの密着性を向上させることができることを見出した。 As a result of studying a method for delaying the intragranular alloying rate, the present inventors have found that it is extremely effective to contain 0.02 to 0.60% Si. In the case of a conventional structure having a grain size of more than 5.0 μm, if Si is added, the intragranular area where the alloying speed is slow increases too much, so it takes a long time for alloying and non-plating also occurs. Production on a continuous hot dip galvanizing line was difficult. However, when 0.02 to 0.60% Si is contained in a fine high-strength steel sheet having a grain size of 5.0 μm or less as in the present invention, the alloying speed is high and the wettability is also good. It has been found that the grain boundary part and the inside of the grain with a moderately controlled alloying rate can be properly balanced, and the adhesion between the steel sheet and the galvannealed alloy can be improved.
また、延性をさらに向上させるためにはSi、Cu、Niを、強度を向上させるためにはCr、Mo、V、Bを、曲げ性を向上させるためにはCa、REMを含有させればよいことを見出し、本発明を完成させた。 In order to further improve ductility, Si, Cu, and Ni may be included; in order to improve strength, Cr, Mo, V, and B may be included; in order to improve bendability, Ca and REM may be included. As a result, the present invention has been completed.
本発明は、このような新たな知見に基づいて完成したものであって、その要旨は以下のとおりである。
(1)鋼板の表面に合金化溶融亜鉛めっき層を備える鋼板において、前記鋼板が、質量%で、C:0.03〜0.25%、Si:0.12〜0.60%、Mn:2.0〜4.0%、P:0.05%以下、S:0.01%以下、sol.Al:0.8%以下、N:0.0020〜0.015%を含有し、さらにTi:0.500%以下およびNb:0.500%以下の群から選ばれる1種または2種を合計で0.050%以上含有し、残部がFeおよび不純物からなる化学組成を有するとともに、フェライトの平均結晶粒径が5.0μm以下で硬質第2相の平均粒径が5.0μm以下である金属組織を有し、540℃以下の温度域での合金化処理を施されてなることを特徴とする引張強度が780MPa以上の高張力合金化溶融亜鉛めっき鋼板。
The present invention has been completed based on such new findings, and the gist thereof is as follows.
(1) In the steel plate provided with the alloyed hot-dip galvanized layer on the surface of the steel plate, the steel plate is in mass%, C: 0.03 to 0.25%, Si: 0.12 to 0.60%, Mn: 2.0 to 4.0%, P: 0.05% or less, S: 0.01% or less, sol. Al: 0.8% or less, N: 0.0020 to 0.015%, Ti: 0.500% or less and Nb: 0.500% or less A metal having a chemical composition consisting of Fe and impurities with the balance being Fe and impurities, and having an average crystal grain size of ferrite of 5.0 μm or less and an average grain size of hard second phase of 5.0 μm or less have a tissue, 540 ° C. or less of the high tensile galvannealed steel sheet tensile strength, characterized by comprising subjected the alloying treatment is not less than 780MPa in a temperature range.
(2)鋼板の表面に合金化溶融亜鉛めっき層を備える鋼板において、前記鋼板が、質量%で、C:0.03〜0.25%、Si:0.12〜0.60%、Mn:2.0〜4.0%、P:0.05%以下、S:0.01%以下、sol.Al:0.8%以下、N:0.0020〜0.015%を含有し、さらにTi:0.500%以下およびNb:0.500%以下の群から選ばれる1種または2種を合計で0.050%以上含有し、残部がFeおよび不純物からなる化学組成を有するとともに、フェライトの平均結晶粒径が5.0μm以下で硬質第2相の平均粒径が5.0μm以下である金属組織を有し、下記引張試験により測定される前記鋼板及び前記合金化余裕亜鉛めっき層間の界面密着強度が20MPa以上であることを特徴とする引張強度が780MPa以上の高張力合金化溶融亜鉛めっき鋼板。
引張試験:試料である合金化処理溶融亜鉛めっき鋼板を長手方向が圧延方向となるように20mm×100mmに裁断し、サンスター(株)製の一液型エポキシ系構造用接着材(商品名:E−6973)を接着材として用い、重ね代:12.5mm、接着剤膜厚:200μm、焼付条件:180℃×20分、引張速度:5mm/分、及び室温下の条件で長手方向について行う。
(2) In the steel plate provided with the alloyed hot dip galvanized layer on the surface of the steel plate, the steel plate is in mass%, C: 0.03 to 0.25%, Si: 0.12 to 0.60 %, Mn: 2.0 to 4.0%, P: 0.05% or less, S: 0.01% or less, sol. Al: 0.8% or less, N: 0.0020 to 0.015%, Ti: 0.500% or less and Nb: 0.500% or less in a 0.050% or more on the free, and has a chemical composition the balance being Fe and impurities, the average crystal grain size of the ferrite is not more than 5.0μm average particle diameter of the hard second phase is less than or equal to 5.0μm It has a certain metal structure, the steel sheet and high tensile galvannealed tensile strength, wherein at least 780MPa that interfacial adhesion strength of the alloy allowance galvanized layers is not less than 20MPa is measured by the following tensile test Plated steel sheet.
Tensile test: An alloyed hot-dip galvanized steel sheet as a sample is cut into 20 mm × 100 mm so that the longitudinal direction is the rolling direction, and is a one-pack type epoxy structural adhesive made by Sunstar (trade name: E-6773) is used as an adhesive, and the stacking margin is 12.5 mm, the adhesive film thickness is 200 μm, the baking condition is 180 ° C. × 20 minutes, the tensile speed is 5 mm / minute, and the longitudinal direction is performed at room temperature. .
(3)前記化学組成が、Feの一部に代えて、質量%で、Cr:1.0%以下、Mo:1.0%以下、V:1.0%以下およびB:0.01%以下の群から選ばれる1種又は2種以上を含有することを特徴とする上記(1)または(2)に記載の引張強度が780MPa以上の高張力合金化溶融亜鉛めっき鋼板。 (3) The chemical composition is mass% instead of part of Fe, Cr: 1.0% or less, Mo: 1.0% or less, V: 1.0% or less, and B: 0.01% The high-tensile galvannealed steel sheet having a tensile strength of 780 MPa or more as described in (1) or (2) above, comprising one or more selected from the following group.
(4)前記化学組成が、Feの一部に代えて、質量%で、Ca:0.050%以下、REM:0.050%以下の群から選ばれる1種又は2種を含有することを特徴とする上記(1)〜(3)のいずれかに記載の引張強度が780MPa以上の高張力合金化溶融亜鉛めっき鋼板。 (4) The chemical composition may contain one or two selected from the group consisting of Ca: 0.050% or less and REM: 0.050% or less in mass% instead of part of Fe. A high-tensile galvannealed steel sheet having a tensile strength of 780 MPa or more according to any one of the above (1) to (3).
(5)前記合金化溶融亜鉛めっき層が、質量%で、Fe:8〜15%およびAl:0.15〜0.50%を含有し、残部がZnおよび不純物からなる化学組成を有することを特徴とする上記(1)〜(4)のいずれかに記載の引張強度が780MPa以上の高張力合金化溶融亜鉛めっき鋼板。 (5) The alloyed hot-dip galvanized layer contains, by mass%, Fe: 8 to 15% and Al: 0.15 to 0.50%, and the balance having a chemical composition composed of Zn and impurities. A high-tensile galvannealed steel sheet having a tensile strength of 780 MPa or more according to any one of the above (1) to (4).
(6)上記(1)〜(4)のいずれかに記載の化学組成を有するスラブに熱間圧延を施し、熱間圧延完了後4秒間以内に冷却を開始し、熱間圧延後10秒間以内に700℃以下の温度域まで冷却し、400℃〜700℃の温度域で巻き取って熱間圧延鋼板となし、得られた熱間圧延鋼板を酸洗後35〜80%の圧下率の冷間圧延を施して冷間圧延鋼板となし、得られた冷間圧延鋼板をAc3点〜950℃の温度域に5〜200秒間滞在させ、その後400〜600℃の温度域まで冷却して、400〜600℃の温度域に5〜200秒間滞在させ、次いで溶融亜鉛めっき処理および540℃以下の温度域での合金化処理を施すことを特徴とする上記(1)〜(5)のいずれかに記載の引張強度が780MPa以上の高張力合金化溶融亜鉛めっき鋼板の製造方法。 (6) Hot rolling is performed on the slab having the chemical composition according to any one of (1) to (4) above, cooling is started within 4 seconds after completion of hot rolling, and within 10 seconds after hot rolling. The steel sheet is cooled to a temperature range of 700 ° C. or lower, wound up in a temperature range of 400 ° C. to 700 ° C. to form a hot rolled steel sheet, and the obtained hot rolled steel sheet is pickled and cooled at a reduction rate of 35 to 80%. Cold-rolled steel sheet is obtained by performing cold rolling, and the obtained cold-rolled steel sheet is allowed to stay in a temperature range of Ac 3 to 950 ° C for 5 to 200 seconds, and then cooled to a temperature range of 400 to 600 ° C. Any one of the above (1) to (5) , wherein the substrate is allowed to stay in a temperature range of 400 to 600 ° C. for 5 to 200 seconds and then subjected to a hot dip galvanizing treatment and an alloying treatment in a temperature range of 540 ° C. or less . High tensile alloying hot dip galvanizing with a tensile strength of 780 MPa or more Manufacturing method of steel sheet.
本発明によれば、優れた耐パウダリング性と優れためっき密着性とを有する曲げ性に優れた高張力合金化溶融亜鉛めっき鋼板とその製造方法が提供される。本発明により、780MPa以上の強度を有し、降伏比が60〜80%の高張力溶融亜鉛めっき鋼板を得ることができる。この高張力合金化溶融亜鉛めっき鋼板は、プレス性に優れており、家電、建材および自動車等の分野の構造部材として適している。 ADVANTAGE OF THE INVENTION According to this invention, the high-tensile-alloyed hot-dip galvanized steel plate excellent in the bendability which has the outstanding powdering-proof property and the outstanding plating adhesiveness, and its manufacturing method are provided. According to the present invention, a high-tensile hot-dip galvanized steel sheet having a strength of 780 MPa or more and a yield ratio of 60 to 80% can be obtained. This high-tensile alloyed hot-dip galvanized steel sheet has excellent pressability and is suitable as a structural member in fields such as home appliances, building materials and automobiles.
本発明に係る鋼板の化学組成を上述のように規定した理由について説明する。本明細書において化学組成を規定する「%」は「質量%」である。
(1)母材となる鋼板の化学組成
C:0.03〜0.25%
Cは低コストで強度向上に有効な元素である。C含有量が0.03%未満では強度向上の効果が十分ではなく、目的とする強度を確保することが困難となるのでC含有量を0.03%以上とする。好ましくは0.06%以上である。一方、C含有量が0.25%超えると溶接性が劣化する。このため、C含有量を0.25%以下とする。好ましくは0.16%以下である。
The reason why the chemical composition of the steel sheet according to the present invention is defined as described above will be described. In the present specification, “%” defining the chemical composition is “mass%”.
(1) Chemical composition of steel plate used as base material C: 0.03 to 0.25%
C is an element effective for improving strength at low cost. If the C content is less than 0.03%, the effect of improving the strength is not sufficient, and it becomes difficult to ensure the target strength, so the C content is set to 0.03% or more. Preferably it is 0.06% or more. On the other hand, if the C content exceeds 0.25%, the weldability deteriorates. For this reason, C content is made into 0.25% or less. Preferably it is 0.16% or less.
Si:0.02〜0.60%(0.02〜1.00%)
Siは、合金化処理過程において、鋼板粒界から被膜のめっき層中へFeが拡散するのを助長する反面、粒内からめっき層中へFeが拡散するのを抑制し、母材とめっき層との界面の凹凸を増加させることにより、母材の鋼板とめっき層との界面密着強度を増加させる重要な元素である。
Si: 0.02 to 0.60% (0.02 to 1.00%)
Si promotes the diffusion of Fe from the steel plate grain boundary into the coating layer of the coating during the alloying process, but suppresses the diffusion of Fe from within the grain into the plating layer. It is an important element that increases the interfacial adhesion strength between the base steel sheet and the plating layer by increasing the unevenness of the interface.
Si含有量が0.02%未満ではこの界面密着強度の向上効果が十分ではないので、Si含有量を0.02%以上とする。好ましくは0.04%以上である。一方、Si含有量が0.60%を超えると合金化速度が著しく低下するため、合金化処理時間を長時間化する必要が生じて生産性の低下や設備の長大化を招く。合金化処理時間を短縮するために合金化処理温度を上昇させると、操業性の低下もしくは上記界面密着強度の低下を招く。このためSi含有量は0.60%以下とする。好ましくは0.30%以下である。 If the Si content is less than 0.02%, the effect of improving the interfacial adhesion strength is not sufficient. Preferably it is 0.04% or more. On the other hand, when the Si content exceeds 0.60%, the alloying speed is remarkably reduced, so that it is necessary to lengthen the alloying treatment time, resulting in a decrease in productivity and an increase in equipment length. Increasing the alloying treatment temperature in order to shorten the alloying treatment time results in a decrease in operability or a decrease in the interfacial adhesion strength. For this reason, Si content shall be 0.60% or less. Preferably it is 0.30% or less.
ただし、CuおよびNiの1種または2種を合計で0.050%以上、望ましくは0.10%以上含有させるとめっき処理性が改善されるので、Si含有量の上限を1.00%まで緩和させることができる。 However, if one or two of Cu and Ni are added in a total of 0.050% or more, preferably 0.10% or more, the plating processability is improved, so the upper limit of the Si content is 1.00%. Can be relaxed.
Mn:2.0〜4.0%
Mnは鋼の高強度化に有効な元素である。また、鋼のAc3点を下げ、好適な焼鈍温度範囲を広げる効果も有する。そのため、Mn含有量を2.0%以上とする。一方、過剰な含有は強度・延性バランスを劣化させるので、Mn含有量を4.0%以下とする。望ましくは3.0%以下である。
Mn: 2.0-4.0%
Mn is an element effective for increasing the strength of steel. It also has the effect of lowering the Ac 3 point of steel and expanding the preferred annealing temperature range. Therefore, the Mn content is set to 2.0% or more. On the other hand, excessive content degrades the balance between strength and ductility, so the Mn content is 4.0% or less. Desirably, it is 3.0% or less.
P:0.05%以下
Pは、不純物として含有される元素であるが、高強度化に有効な元素でもあるので、必要に応じて含有させることができる。しかし、過剰に含有させると合金化速度の低下を招き、合金化処理時間を長時間化する必要が生じて、生産性の低下や設備の長大化を招く。合金化処理時間を短縮するために合金化処理温度を上昇させる場合には操業性の低下もしくは上記界面密着強度の低下を招く。このため、Pの含有量を0.05%以下とする。好ましい含有量は0.025%以下である。Pによる高強度化の効果をより確実に得るには、P含有量を0.02%以上とすることが好ましい。
P: 0.05% or less P is an element contained as an impurity, but is also an element effective for increasing the strength, and can be contained as necessary. However, if it is contained excessively, the alloying speed is lowered, and it is necessary to lengthen the alloying treatment time, resulting in a reduction in productivity and an increase in equipment length. When the alloying treatment temperature is increased in order to shorten the alloying treatment time, the operability is lowered or the interfacial adhesion strength is lowered. For this reason, the content of P is set to 0.05% or less. The preferred content is 0.025% or less. In order to more reliably obtain the effect of increasing the strength due to P, the P content is preferably set to 0.02% or more.
なお、Pを含有させなくても、他の合金成分により、十分に高強度化が図られるときは、Pを積極的に含有させる必要はない。この場合、Pの下限は限定されない。
S:0.01%以下
Sは、不純物として含有される元素であり、その含有量は低い方が好ましい。S含有量が0.01%超ではMnSの析出が顕著になり鋼板の伸びフランジ性や靭性を劣化させる。このため、S含有量を0.01%以下とする。特に、低温靭性が必要な用途に対しては、S含有量を0.002%以下とすることが好ましい。ただし、CaおよびREMの1種または2種を合計で0.0005%以上、望ましくは0.0010%以上含有させると、硫化物の析出形態が変化し、伸びフランジ性や靭性が改善されるので、そのような用途に対してもS含有量の上限を0.005%まで緩和させることができる。
In addition, even if it does not contain P, it is not necessary to contain P positively, when sufficiently high intensity | strength is achieved by another alloy component. In this case, the lower limit of P is not limited.
S: 0.01% or less S is an element contained as an impurity, and the content thereof is preferably low. If the S content exceeds 0.01%, the precipitation of MnS becomes prominent and the stretch flangeability and toughness of the steel sheet deteriorate. For this reason, S content shall be 0.01% or less. In particular, for applications that require low-temperature toughness, the S content is preferably 0.002% or less. However, if one or two of Ca and REM are added in a total of 0.0005% or more, preferably 0.0010% or more, the precipitation form of sulfide is changed, and stretch flangeability and toughness are improved. Even for such applications, the upper limit of the S content can be relaxed to 0.005%.
sol.Al:0.8%以下
Alは鋼の脱酸のために含有させることができる。しかし、過剰に含有させても効果が飽和してコスト増を招くのでsol.Al含有量を0.8%以下とする。上記脱酸の効果をより確実に得るには、sol.Al含有量を0.01%以上とすることが好ましい。
sol.Al: 0.8% or less Al can be contained for deoxidation of steel. However, even if it is contained excessively, the effect is saturated and the cost is increased, so the sol.Al content is set to 0.8% or less. In order to obtain the deoxidation effect more reliably, the sol.Al content is preferably set to 0.01% or more.
N:0.0020〜0.015%
Nは、一般には不可避的に含有される不純物元素であるが、本発明においては、鋼板中に、Ti系、Nb系、またはTi−Nb複合系の窒化物や炭窒化物を形成させて、鋼板の強度を上昇させるのに有効であるから、N含有量を0.0020%以上とする。好ましくは0.0035%以上である。一方、過剰の含有は粗大なTiNを形成させ、靭性の劣化を招くので、N含有量を0.015%以下とする。好ましくは0.0060%以下である。
N: 0.0019 to 0.015%
N is an impurity element that is inevitably contained in general, but in the present invention, a Ti-based, Nb-based, or Ti-Nb composite-based nitride or carbonitride is formed in the steel sheet, Since it is effective for increasing the strength of the steel sheet, the N content is set to 0.0010% or more. Preferably it is 0.0033% or more. On the other hand, excessive content forms coarse TiN and causes toughness deterioration, so the N content is set to 0.015% or less. Preferably it is 0.0006% or less.
Ti:0.500%以下、Nb:0.500%以下、Ti+Nb≧0.050%
Ti、Nbは1種または2種含有され、炭化物、窒化物、または炭窒化物を形成させ、鋼板の高強度化に有効な元素である。また、焼鈍中のフェライトの再結晶を抑制する効果を有し、かつオーステナイトへの変態を促進し、焼鈍後の冷却時のフェライト変態を著しく促進させる効果を有する。また、結晶粒径を極度に微細化する効果を有する。このような効果を発現させるためには、TiとNbの少なくとも1種を合計で0.050%以上含有させる。また、過剰に含有させても、効果が飽和してコスト増加を招くため、それぞれの含有量を0.500%以下とする。好ましくはそれぞれ0.300%以下である。
Ti: 0.50% or less, Nb: 0.50% or less, Ti + Nb ≧ 0.050%
Ti and Nb are contained in one or two kinds, and are elements effective in increasing the strength of the steel sheet by forming carbides, nitrides, or carbonitrides. Further, it has an effect of suppressing recrystallization of ferrite during annealing, promotes transformation to austenite, and significantly promotes ferrite transformation during cooling after annealing. In addition, the crystal grain size is extremely refined. In order to exhibit such an effect, the total content of at least one of Ti and Nb is 0.050% or more. Moreover, even if it contains excessively, since an effect will be saturated and a cost increase will be caused, each content shall be 0.500% or less. Preferably each is 0.300% or less.
Cu、Ni:1.5%以下
本発明の鋼板は溶融亜鉛めっきを施すことにより耐食性を具備させるものである。鋼組成に必要に応じて含有させるCuおよび/またはNiは、表面に濃化してSiの表面濃化を抑制するため、めっき性の観点から0.60%に制限されるSi含有量の上限を1.00%まで広げる効果を有する。そのためには、Cuおよび/またはNiの合計含有量を0.05%以上とすることが好ましい。望ましくは合計含有量で0.10%以上である。それぞれの含有量が1.5%を超えると効果が飽和してコスト増加を招くので、それぞれの含有量は1.5%以下とする。
Cu, Ni: 1.5% or less The steel sheet of the present invention is provided with corrosion resistance by hot dip galvanizing. Cu and / or Ni to be included as necessary in the steel composition is concentrated on the surface to suppress the surface concentration of Si, so the upper limit of Si content is limited to 0.60% from the viewpoint of plating properties. It has the effect of extending to 1.00%. For this purpose, the total content of Cu and / or Ni is preferably 0.05% or more. Desirably, the total content is 0.10% or more. If each content exceeds 1.5%, the effect is saturated and the cost is increased. Therefore, each content is 1.5% or less.
また、Cuには溶融めっきが施されてない端部での耐食性を向上させる作用を有する。そのためにはCu含有量を0.03%以上とすることが好ましい、0.5%を超えるとその効果は飽和する。 Moreover, Cu has the effect | action which improves the corrosion resistance in the edge part which is not hot-plated. For this purpose, the Cu content is preferably set to 0.03% or more, and if it exceeds 0.5%, the effect is saturated.
Cr:1.0%以下、Mo:1.0%以下、V:1.0%以下、B:0.01%以下
本発明の鋼板では、Ti、Nbによる析出強化と、Mnによる変態強化により780MPa以上の高強度化を達成することができる。しかし、Mnは鋼板の組織をバンド状にするため、曲げ性が必要となる場合には、Cr、Mo、V、Bの1種又は2種以上添加してMnの一部を代替することが好ましい。また、さらに高強度化して980MPa以上とする場合にも、Cr、Mo、V、Bの1種又は2種以上添加することが有効である。
Cr: 1.0% or less, Mo: 1.0% or less, V: 1.0% or less, B: 0.01% or less In the steel sheet of the present invention, precipitation strengthening by Ti and Nb and transformation strengthening by Mn are performed. An increase in strength of 780 MPa or more can be achieved. However, since Mn makes the structure of a steel plate into a band shape, if bendability is required, one or more of Cr, Mo, V, B may be added to replace part of Mn. preferable. Further, even when the strength is further increased to 980 MPa or more, it is effective to add one or more of Cr, Mo, V, and B.
しかし、Cr、MoおよびVについては、過剰に含有させると溶融めっきの濡れ性を劣化させるので、それぞれの含有量を1.0%以下とする。また、Bについては過度に添加すると靭性が劣化するのでB含有量を0.01%以下とする。高強度化の効果をより確実に得るには、Cr、MoおよびVについてはそれぞれ0.03%以上、Bについては0.0003%以上とすることが好ましい。 However, if Cr, Mo and V are excessively contained, the wettability of hot dipping is deteriorated, so the respective contents are set to 1.0% or less. Further, if B is added excessively, the toughness deteriorates, so the B content is set to 0.01% or less. In order to obtain the effect of increasing the strength more surely, Cr, Mo and V are each preferably 0.03% or more, and B is preferably 0.0003% or more.
なお、Bはフェライト変態を抑制して硬質第2相の生成を助長して鋼板を強化する作用を有するが、特にMoと共に含有させると曲げ性を著しく改善させながら高強度化を達成する効果を有するので、MoとBとを複合して含有させることが好ましい。 In addition, B has the effect | action which suppresses a ferrite transformation and promotes the production | generation of a hard 2nd phase and strengthens a steel plate, but when it is made to contain especially with Mo, the effect which achieves high strengthening, improving bendability remarkably. Therefore, it is preferable to contain Mo and B in combination.
Ca:0.050%以下、REM:0.050%以下
これらの元素は、硫化物の析出形態を変化させ、伸びフランジ性や靭性を改善する作用を有するので、必要に応じて1種または2種含有させることができる。過剰に含有させても効果が飽和してコスト増加を招くので、それぞれの含有量を0.050%以下とする。上記作用による効果をより確実を得るには、合計で0.0005%以上含有させることが好ましく、0.0010%以上含有させることがさらに好ましい。
Ca: 0.050% or less, REM: 0.050% or less These elements have an action of changing the precipitation form of sulfides and improving stretch flangeability and toughness. Species can be included. Even if contained excessively, the effect is saturated and the cost is increased, so the respective contents are set to 0.050% or less. In order to obtain the effect of the above action more reliably, the total content is preferably 0.0005% or more, and more preferably 0.0010% or more.
(2)母材となる鋼板の組織
本発明にかかる鋼板の組織は次のように規定される。
引張強度が780MPa以上となる領域で、良好な曲げ性を実現するためには、フェライトの平均結晶粒径および硬質第2相の平均粒径をそれぞれ5.0μm以下とする。さらにそれぞれ3.0μm以下とするのが望ましい。
(2) The structure of the steel sheet used as a base material The structure of the steel sheet according to the present invention is defined as follows.
In order to achieve good bendability in a region where the tensile strength is 780 MPa or more, the average crystal grain size of ferrite and the average grain size of the hard second phase are each set to 5.0 μm or less. Further, it is desirable that the thickness is 3.0 μm or less.
ここで、上記硬質第2相は、SEMレベルで観察される1〜5μmのマルテンサイト、ベイナイト、残留オーステナイトまたはそれらの混合物である。
本発明の場合、焼鈍中にオーステナイト粒が微細化(粒径1〜5μm)し、その後の冷却中に微細オーステナイト粒の一部が微細フェライトに変態する。残った微細オーステナイト粒のうち、あるものはベイナイトに、あるものはマルテンサイトに、あるものはマルテンサイト・オーステナイト混合物に変態する。後述する図1のSEM観察組織写真に示すように、それらを「硬質第2相」と総称する。それらの粒径はSEM観察写真から、切断法によって求めることができる。
Here, the hard second phase is 1 to 5 μm of martensite, bainite, retained austenite, or a mixture thereof observed at the SEM level.
In the case of the present invention, austenite grains are refined during annealing (particle size 1 to 5 μm), and a part of the fine austenite grains are transformed into fine ferrite during subsequent cooling. Of the remaining fine austenite grains, some are transformed into bainite, some are transformed into martensite, and some are transformed into a martensite / austenite mixture. As shown in the SEM observation structure photograph of FIG. 1 described later, they are collectively referred to as “hard second phase”. Their particle size can be determined from the SEM observation photograph by a cutting method.
(3)被膜となるめっき層の化学組成
Fe:8〜15%
被膜となる亜鉛めっき層中のFe含有量が8%未満の場合は、合金化処理後のめっき層の表層部に軟質部位が形成されやすくなり、摺動性が低下して被膜のめっき層が母材の鋼板との界面から剥離することによるフレーク状の剥離が増加する。したがって、Fe含有量は8%以上とする。好ましくは9.5%以上である。一方、Fe含有量が15%を超えると、鋼板に曲げ加工が施された場合に、曲げ部の内側で合金化溶融亜鉛めっき層が圧縮変形を受けることによるパウダリング剥離量が増加する。このため、Fe含有量は15%以下とする。好ましくは14%以下である。
(3) Chemical composition of plating layer to be coated Fe: 8-15%
When the Fe content in the galvanized layer to be the coating is less than 8%, a soft part is likely to be formed on the surface layer portion of the plated layer after the alloying treatment, and the slidability is lowered, and the coating layer of the coating is reduced. Flaking-like peeling due to peeling from the interface with the base steel sheet increases. Therefore, the Fe content is 8% or more. Preferably it is 9.5% or more. On the other hand, if the Fe content exceeds 15%, when the steel sheet is subjected to bending, the amount of powdering peeling increases due to compression deformation of the galvannealed layer inside the bent portion. For this reason, Fe content shall be 15% or less. Preferably it is 14% or less.
Al:0.15〜0.50%
被膜となる亜鉛めっき層中のAl含有量が0.20%未満の場合は、めっき浴中における合金層の発達の抑制効果が不十分となり、めっき付着量の制御が困難となる。したがって、Al含有量は0.15%以上とする。好ましくは0.20%以上、さらに好ましくは0.25%以上である。一方、Al含有量が0.50%を超えると、合金化速度が低下することから通常のライン速度では上記Fe含有量を実現するために合金化処理温度を530℃超とせざるを得なくなる場合があり、後述するように鋼板と合金化溶融亜鉛めっき層との界面密着強度を20MPa以上とすることが困難になる。したがって、Al含有量は0.50%以下とする。好ましくは0.45%以下、さらに好ましくは0.40%以下である。
Al: 0.15 to 0.50%
When the Al content in the galvanized layer to be a coating is less than 0.20%, the effect of suppressing the development of the alloy layer in the plating bath becomes insufficient, and it becomes difficult to control the amount of coating. Therefore, the Al content is 0.15% or more. Preferably it is 0.20% or more, more preferably 0.25% or more. On the other hand, when the Al content exceeds 0.50%, the alloying speed decreases, and therefore, the normal alloying temperature must be higher than 530 ° C. in order to realize the Fe content at a normal line speed. As will be described later, it becomes difficult to set the interfacial adhesion strength between the steel sheet and the galvannealed layer to 20 MPa or more. Therefore, the Al content is 0.50% or less. Preferably it is 0.45% or less, more preferably 0.40% or less.
その他:
被膜となる亜鉛めっき層中へは、合金化処理過程において、母材からSi、Mn、P、S、Ti、Nb、Cr、Mo、V、B、Ca、REM等がとりこまれるが、通常の条件で溶融めっきおよび合金化処理した際にめっき層中にとりこまれる範囲内であれば、めっき品質に悪影響を及ぼさないので、問題ない。ここでいう通常のめっき条件とは、後述するように、めっき浴温度が400℃〜500℃で、鋼板の侵入温度が400℃〜500℃、合金化温度が460〜600℃である。
Other:
In the alloying process, Si, Mn, P, S, Ti, Nb, Cr, Mo, V, B, Ca, REM, etc. are usually taken into the galvanized layer as the coating, If it is within the range that is incorporated in the plating layer when the hot dipping and alloying treatment is performed under the above conditions, there is no problem because the plating quality is not adversely affected. The normal plating conditions here are, as will be described later, a plating bath temperature of 400 ° C. to 500 ° C., a steel plate penetration temperature of 400 ° C. to 500 ° C., and an alloying temperature of 460 to 600 ° C.
このようにめっき被膜の化学組成の残部は実質上Znである。
(4)母材となる鋼板の製造条件
本発明に係る鋼板は、その製造に際しては、熱間圧延、冷間圧延、そして溶融亜鉛めっきを経て製造される。好適な製造条件を以下に示す。
Thus, the balance of the chemical composition of the plating film is substantially Zn.
(4) Manufacturing conditions of steel plate used as base material The steel plate according to the present invention is manufactured through hot rolling, cold rolling, and hot dip galvanizing. Suitable manufacturing conditions are shown below.
例えば、上記化学組成に調整された溶鋼を、連続鋳造または鋳造および分塊圧延によりスラブとした後、熱間圧延を施す。熱間圧延は、通常、スラブを粗バーとする粗熱間圧延工程と粗バーを熱間圧延鋼板とする仕上熱間圧延工程とからなるが、このとき、粗熱間圧延後で仕上熱間圧延前の粗バーに対して、誘導加熱等により粗バー全長の温度均一化を図ると、コイル内の特性変動を抑制することができるので好ましい。また、仕上熱間圧延はAr3点以上で行うのが望ましい。 For example, the molten steel adjusted to the above chemical composition is made into a slab by continuous casting or casting and ingot rolling, and then hot rolled. Hot rolling usually consists of a rough hot rolling process in which a slab is a rough bar and a finishing hot rolling process in which the rough bar is a hot rolled steel sheet. It is preferable to equalize the temperature of the entire length of the rough bar by induction heating or the like with respect to the rough bar before rolling, because fluctuations in characteristics in the coil can be suppressed. Moreover, it is desirable to perform finish hot rolling at 3 or more Ar points.
熱間圧延完了後4秒間以内に冷却を開始し、熱間圧延完了後10秒間以内に700℃以下の温度域まで冷却し、400〜700℃で巻き取る。冷却開始時間が熱間圧延完了後4秒間超であったり、熱間圧延完了後10秒間以内に700℃以下の温度域まで冷却しない場合には、組織が粗大化して曲げ性が劣化する。 Cooling is started within 4 seconds after completion of hot rolling, cooling is performed to a temperature range of 700 ° C. or lower within 10 seconds after completion of hot rolling, and winding is performed at 400 to 700 ° C. When the cooling start time exceeds 4 seconds after completion of hot rolling, or when cooling is not performed to a temperature range of 700 ° C. or lower within 10 seconds after completion of hot rolling, the structure becomes coarse and bendability deteriorates.
巻取り温度については、400℃未満となると、著しく硬化し、冷間圧延が困難になるので、400℃以上とする。好ましくは500℃以上である。一方、700℃を超えるとスケールロスにより歩留が悪化する。このため巻取り温度は700℃以下とする。 As for the coiling temperature, if it is less than 400 ° C., it is extremely hardened and cold rolling becomes difficult. Preferably it is 500 degreeC or more. On the other hand, when it exceeds 700 ° C., the yield deteriorates due to scale loss. Therefore, the winding temperature is set to 700 ° C. or less.
熱間圧延後に行う酸洗、冷間圧延については常法でもよい。酸洗の前もしくは後に、0〜5%程度の軽度の圧延を行い、形状を修正すると平坦確保の点で有利となる。また、この軽度の圧延により、酸洗性が向上し、表面濃化元素の除去が促進され、溶融めっきの密着性の観点から制限されているSi、Pの好適範囲を広げる効果がある。 Conventional methods may be used for pickling and cold rolling performed after hot rolling. Before or after pickling, it is advantageous in terms of ensuring flatness if mild rolling of about 0 to 5% is performed and the shape is corrected. In addition, the mild rolling improves pickling properties, promotes removal of surface-enriched elements, and has the effect of expanding the preferred range of Si and P that are restricted from the viewpoint of hot-plated adhesion.
冷間圧延の圧下率は、35〜80%の範囲で特に問題はない。圧下率を高くすると、焼鈍時のオーステナイトへの変態を促進するので、焼鈍の好適範囲を広げる効果を有する。
このようにして得られた冷間圧延鋼板を、Ac3点〜950℃の温度域に5〜200秒間滞在させた後に溶融亜鉛めっきを施す。Ac3点〜950℃の温度域に5〜200秒間滞在させる均熱処理と溶融亜鉛めっき処理とは連続溶融亜鉛めっきラインで行うことが生産性および製造コストの観点から好ましい。
There is no particular problem with the rolling reduction of cold rolling in the range of 35 to 80%. If the rolling reduction is increased, the transformation to austenite during annealing is promoted, so that the effect of expanding the preferred range of annealing is obtained.
The cold rolled steel sheet thus obtained is allowed to stay in a temperature range of Ac 3 points to 950 ° C. for 5 to 200 seconds, and then hot dip galvanized. It is preferable from the viewpoint of productivity and manufacturing cost that the soaking process and the hot dip galvanizing treatment for staying in a temperature range of Ac 3 to 950 ° C. for 5 to 200 seconds are performed in a continuous hot dip galvanizing line.
均熱温度がAc3点未満ではオーステナイト変態が不十分であるため目的とする曲げ性を確保することが困難となり、950℃超ではオーステナイトの粒成長が過剰に促進されて組織が粗大化するため目的とする強度や曲げ性の確保が困難となる。 If the soaking temperature is less than 3 Ac, the austenite transformation is insufficient and it is difficult to secure the desired bendability, and if it exceeds 950 ° C., the austenite grain growth is excessively promoted and the structure becomes coarse. It becomes difficult to ensure the intended strength and bendability.
本発明においては、Ti+Nbを多量に含有しているため、冷間圧延により加工されたフェライトの再結晶は著しく抑制される。そのため、加熱時にオーステナイト域まで加工歪が残存し、オーステナイトへの相変態が著しく促進される。その結果、わずか5秒間以上の均熱により、加工フェライトからオーステナイトへ変態が完了し、加工歪みが取り除かれる。均熱時間が5秒間未満では、オーステナイトへの変態が十分でないため、加工歪みが残存し、最終製品の延性が劣化する。 In the present invention, since a large amount of Ti + Nb is contained, recrystallization of ferrite processed by cold rolling is remarkably suppressed. Therefore, processing strain remains up to the austenite region during heating, and the phase transformation to austenite is significantly promoted. As a result, the transformation from the processed ferrite to austenite is completed by soaking for only 5 seconds or more, and the processing strain is removed. If the soaking time is less than 5 seconds, the transformation to austenite is not sufficient, so that processing strain remains and the ductility of the final product deteriorates.
一方、均熱時間は200秒間以下とする。本発明の場合、Ti+Nbを多量に含有しているため、均熱時のオーステナイトの粒成長を効果的に抑制することができる。そのため、上限としては200秒間までなら問題ない。ただし、生産性の観点からは、120秒間以内とするのが望ましい。均熱時間が200秒間超となると、均熱中のオーステナイトが過剰に粒成長し、微細粒、ひいては良好な曲げ性が得られなくなる場合があるので、均熱時間を200秒間以下とする。 On the other hand, the soaking time is 200 seconds or less. In the present invention, since a large amount of Ti + Nb is contained, austenite grain growth during soaking can be effectively suppressed. Therefore, there is no problem if the upper limit is up to 200 seconds. However, from the viewpoint of productivity, it is desirable to be within 120 seconds. When the soaking time exceeds 200 seconds, austenite during soaking grows excessively and fine grains, and thus good bendability may not be obtained, so the soaking time is set to 200 seconds or less.
均熱後の冷却については、特に制限を設けないが、700℃までは40℃/秒以下とするのが望ましい。40℃/秒以下の冷却速度とTi+Nbの多量添加の複合効果によりフェライト変態が著しく促進され、かつ、フェライト粒径を5.0μm以下とすることができる。700℃から、400〜600℃の温度範囲の冷却停止温度までの冷却については、特に制限を設けないが、例えば、70℃/s以下であれば問題ない。また、上記冷却停止温度を500〜600℃の温度範囲にすることにより、効果的に高強度化をはかる事ができる。一方、400〜500℃の温度範囲とすることにより、高強度化を抑制する代わりに、曲げ性の更なる改善をはかることができる。 There is no particular restriction on the cooling after soaking, but it is desirable that the temperature is 40 ° C./second or less up to 700 ° C. Due to the combined effect of a cooling rate of 40 ° C./second or less and a large amount of Ti + Nb, the ferrite transformation is remarkably promoted, and the ferrite particle size can be reduced to 5.0 μm or less. There is no particular limitation on the cooling from 700 ° C. to the cooling stop temperature in the temperature range of 400 to 600 ° C. However, for example, there is no problem if it is 70 ° C./s or less. Further, by setting the cooling stop temperature in the temperature range of 500 to 600 ° C., it is possible to effectively increase the strength. On the other hand, by setting the temperature range to 400 to 500 ° C., the bendability can be further improved instead of suppressing the increase in strength.
(5)めっき条件
めっき浴中のAl濃度:0.08〜0.20%
めっき浴中のAl濃度が0.08%未満の場合、合金化処理前のめっき浴中において既に過剰のFe−Zn界面合金層が形成されてしまうため、付着量の制御が困難となる。したがって、めっき浴中のAl濃度は0.08%以上とすることが好ましい。さらに好ましくは0.09%以上である。
(5) Plating conditions Al concentration in the plating bath: 0.08 to 0.20%
When the Al concentration in the plating bath is less than 0.08%, an excessive Fe—Zn interface alloy layer is already formed in the plating bath before the alloying treatment, making it difficult to control the amount of adhesion. Therefore, the Al concentration in the plating bath is preferably 0.08% or more. More preferably, it is 0.09% or more.
一方、めっき浴中のAl濃度が0.20%を超えると、めっき被膜中へのAl濃化が過剰に進行して合金化速度の低下をもたらし、通常のライン速度では上記Fe含有量を実現するために合金化処理温度を540℃超とせざるを得なくなる場合があり、後述するように鋼板と合金化溶融亜鉛めっき層との界面密着強度が20MPa以上とすることが困難になる。したがって、めっき浴中のAl濃度は0.20%以下とすることが好ましい。さらに好ましくは0.15%以下である。 On the other hand, if the Al concentration in the plating bath exceeds 0.20%, the concentration of Al in the plating film proceeds excessively, resulting in a decrease in the alloying speed, and the above-mentioned Fe content is realized at a normal line speed. Therefore, the alloying treatment temperature may be forced to exceed 540 ° C., and it becomes difficult to make the interfacial adhesion strength between the steel sheet and the galvannealed layer 20 MPa or more as will be described later. Therefore, the Al concentration in the plating bath is preferably 0.20% or less. More preferably, it is 0.15% or less.
浸漬時間については、5秒間以内であれば性能、操業性を特に阻害することはない。その他のめっき条件については、一般的に採用されている範囲で良く、めっき浴温は400〜500℃、侵入板温は400〜500℃の範囲で有れば特に問題はない。めっき浴中のAl以外の成分として、不可避元素であるFeとPb、Cd、Cr、Ni、W、Ti、Mg、Siのそれぞれが0.1%以下含有されていても本性能に影響を及ぼさない。付着量は一般に製品として用いられている片面当り25〜70g/m2の範囲とすればよい。 About immersion time, if it is less than 5 second, a performance and operativity will not be inhibited especially. About other plating conditions, the range generally employ | adopted may be sufficient, and if a plating bath temperature is 400-500 degreeC and an intrusion board temperature is the range of 400-500 degreeC, there will be no problem in particular. Even if 0.1% or less of Fe and Pb, Cd, Cr, Ni, W, Ti, Mg, and Si, which are inevitable elements, are contained as components other than Al in the plating bath, this performance is affected. Absent. The adhesion amount may be in the range of 25 to 70 g / m 2 per side generally used as a product.
(6)合金化処理
合金化処理温度:460〜540℃
合金化処理温度が460℃未満であると、ζ相の粗大結晶が合金化溶融亜鉛めっき層の表層部に形成されやすく、亜鉛めっき層中のFeの含有量が8%未満となってしまう場合がある。したがって、合金化処理温度を460℃以上とすることが好ましい。さらに好ましくは470℃以上であり、最も好ましくは480℃以上である。
(6) Alloying treatment Alloying treatment temperature: 460-540 ° C
When the alloying treatment temperature is less than 460 ° C., coarse crystals of ζ phase are easily formed on the surface layer portion of the alloyed hot-dip galvanized layer, and the Fe content in the galvanized layer is less than 8%. There is. Therefore, the alloying treatment temperature is preferably set to 460 ° C. or higher. More preferably, it is 470 degreeC or more, Most preferably, it is 480 degreeC or more.
一方、合金化処理温度が540℃を超えると、上述した鋼板中へのSi含有によるめっき被膜中のZnがめっき母材である鋼板の粒界へ拡散するのを助長する効果が弱まり、鋼板の粒内への拡散が支配的となるため、鋼板と合金化溶融亜鉛めっき層との界面密着強度が低下する。したがって、合金化処理温度を540℃以下とする。好ましくは520℃以下である。合金化処理における加熱手段については、輻射加熱、高周波誘導加熱、通電加熱等何れの手段によっても良い。 On the other hand, when the alloying treatment temperature exceeds 540 ° C., the effect of promoting the diffusion of Zn in the plating film due to the inclusion of Si into the steel plate described above to the grain boundary of the steel plate that is the plating base material is weakened. Since the diffusion into the grains becomes dominant, the interfacial adhesion strength between the steel sheet and the galvannealed layer is lowered. Therefore, the alloying temperature is set to 540 ° C. or lower. Preferably it is 520 degrees C or less. As a heating means in the alloying treatment, any means such as radiant heating, high frequency induction heating, energization heating and the like may be used.
(7)調質圧延
調質圧延に関しては特に制限を設けない。圧延荷重の観点から、伸び率を0.5%以下とするのが望ましい。
(7) Temper rolling There are no particular restrictions on temper rolling. From the viewpoint of rolling load, the elongation is preferably 0.5% or less.
(8)後処理
めっき後の製品表面は、無処理でも構わないが、公知のクロム酸処理、リン酸塩処理、樹脂被膜塗布などの後処理を施しても構わない。また、防錆油を塗付してもよく、その塗付に用いる防錆油については、市販の一般的なもので良いが、極圧添加剤であるSやCaを含有した高潤滑性防錆油を塗布しても良い。
(8) Post-treatment The product surface after plating may be untreated, but it may be subjected to post-treatment such as known chromic acid treatment, phosphate treatment, and resin coating. In addition, rust preventive oil may be applied, and the rust preventive oil used for the application may be a commercially available general one, but it is highly lubricious and contains an extreme pressure additive such as S or Ca. Rust oil may be applied.
表1に示す化学成分を有する鋼を転炉で溶製し、連続鋳造により245mm厚のスラブとした。得られたスラブを表2に示す条件にて熱間圧延した。得られた熱延鋼板を酸洗し、表2に示す冷圧率で冷間圧延を行った。得られた冷延鋼板に対し、表2に示す条件で、焼鈍および溶融亜鉛めっきを行い、得られた溶融亜鉛めっき鋼板に対して、引張試験、限界曲げ、組織、めっき特性を調査した。その結果を表3に示す。 Steels having chemical components shown in Table 1 were melted in a converter and slabs having a thickness of 245 mm were obtained by continuous casting. The obtained slab was hot-rolled under the conditions shown in Table 2. The obtained hot-rolled steel sheet was pickled and cold-rolled at the cold pressure rate shown in Table 2. The obtained cold-rolled steel sheet was annealed and hot-dip galvanized under the conditions shown in Table 2, and the obtained hot-dip galvanized steel sheet was examined for tensile tests, limit bending, structure, and plating characteristics. The results are shown in Table 3.
機械的性質は、圧延直角方向に採取したJIS Z 2201に規定されている5号試験片を用い、JIS Z 2241に規定の方法でYS、TS、Elを測定した。
曲げ試験は、JIS Z 2204に規定されている3号試験片を用い、JIS Z2248に規定されている押し曲げ法により、180°曲げを行い、割れが発生しない限界曲げrにて評価した。
For mechanical properties, YS, TS, and El were measured by the method specified in JIS Z 2241 using No. 5 test piece specified in JIS Z 2201 collected in the direction perpendicular to the rolling.
In the bending test, No. 3 test piece defined in JIS Z 2204 was used, and 180 ° bending was performed by the push bending method defined in JIS Z2248, and evaluation was performed with a limit bend r that does not cause cracking.
図1は実験No.1で得られた供試材のSEM観察による組織写真である。フェライト相の粒界に硬質第2相としてのマルテンサイト・オーステナイトの混合物が析出しているのがわかる。 1 is a structure photograph of the specimen obtained in Experiment No. 1 by SEM observation. It can be seen that a mixture of martensite and austenite as the hard second phase is precipitated at the grain boundaries of the ferrite phase.
めっき特性は下記のように調査した。
1)試料片の採取
合金化処理後の試料から25mmφの試料片を採取し、0.5vol%インヒビター(商品名:朝日化学製「イビット710N」)を含有した10%HCl水溶液でめっき層を溶解し、これをICP法でめっき層の組成分析に供した。
The plating characteristics were investigated as follows.
1) Collection of sample piece A sample piece of 25 mmφ was collected from the alloyed sample, and the plating layer was dissolved with a 10% HCl aqueous solution containing 0.5 vol% inhibitor (trade name: “Ibit 710N” manufactured by Asahi Chemical). This was subjected to composition analysis of the plating layer by the ICP method.
2)鋼板と合金化溶融亜鉛めっき層との界面密着強度の測定
合金化処理を施したサンプルを長手方向が圧延方向となるように20mm×100mmに裁断し、サンスター(株)製の一液型エポキシ系構造用接着剤(商品名:E−6973)を接着剤として用い、重ね代:12.5mm、接着剤膜厚:200μm、焼付条件:180×20分、引張速度:5mm/分、室温下の条件で長手方向に引張試験を実施した。本試験の界面密着強度は、母材変形も加わるため基板強度の影響を受けるが、今回のようにYPが350MPa以上の母材では、殆ど無視できる。試験の結果、強度が20MPa以上のものを密着強度が良好とし、20MPa未満のものを不良とした。
2) Measurement of interfacial adhesion strength between steel plate and alloyed hot-dip galvanized layer The sample subjected to the alloying treatment was cut into 20 mm × 100 mm so that the longitudinal direction was the rolling direction, and one liquid manufactured by Sunstar Co., Ltd. Type epoxy-based structural adhesive (trade name: E-6773) as an adhesive, stacking margin: 12.5 mm, adhesive film thickness: 200 μm, baking conditions: 180 × 20 minutes, tensile speed: 5 mm / minute, A tensile test was carried out in the longitudinal direction under conditions at room temperature. The interfacial adhesion strength in this test is affected by the substrate strength due to the deformation of the base material, but is almost negligible for the base material having a YP of 350 MPa or more as in this case. As a result of the test, those having a strength of 20 MPa or more were considered to have good adhesion strength, and those having a strength of less than 20 MPa were judged to be defective.
表3に示すように、本発明範囲を満たす場合、良好な強度・延性バランスと良好な曲げ性およびめっき特性を兼ね備えている。一方、成分が本発明を外れる実験No.20、23は強度が低めであり、No.21、22はめっき密着強度が不良であり、No.24は強度延性バランスおよび曲げ性が不良であり、No.25〜27は組織が不良であるため曲げ性が不良であった。 As shown in Table 3, when satisfying the scope of the present invention, it has a good balance between strength and ductility, good bendability and plating characteristics. On the other hand, the experiment Nos. 20 and 23 in which the components depart from the present invention have lower strength, Nos. 21 and 22 have poor plating adhesion strength, No. 24 has poor strength ductility balance and bendability, Nos. 25 to 27 had poor bendability due to their poor structure.
表1のNo.1、3、14、16に対し、表4に示す条件で熱延、酸洗、冷延、および、連続溶融亜鉛めっきラインにて溶融亜鉛めっきを施した後、引張試験、限界曲げ、組織、めっき特性を調査した。その結果を表5に示す。 For No. 1, 3, 14, and 16 in Table 1, hot rolling, pickling, cold rolling, and hot dip galvanizing in a continuous hot dip galvanizing line under the conditions shown in Table 4, followed by a tensile test, The limit bending, structure and plating characteristics were investigated. The results are shown in Table 5.
製造条件が本発明範囲内であるNo.1、32、3、38、14、44、16、50は良好な強度・延性バランスと良好な曲げ性およびめっき特性を兼ね備えている。一方、製造条件が本発明を外れるNo.29、30、35、36、41、42、47、48は組織不良であり、曲げ性が不良となっている。No.31、37、43、49は未再結晶が含まれ、強度延性バランスおよび曲げ性が不良となっている。No.33、34、39、40、45、46、51、52はめっき密着強度が不良となっている。 Nos. 1, 32, 3, 38, 14, 44, 16, and 50 whose production conditions are within the scope of the present invention have a good balance between strength and ductility and good bendability and plating characteristics. On the other hand, No. 29, 30, 35, 36, 41, 42, 47, and 48, whose manufacturing conditions deviate from the present invention, have a defective structure and have poor bendability. Nos. 31, 37, 43, and 49 include unrecrystallized, and the strength ductility balance and bendability are poor. No. 33, 34, 39, 40, 45, 46, 51 and 52 have poor plating adhesion strength.
Claims (6)
引張試験:試料である合金化溶融亜鉛めっき鋼板を長手方向が圧延方向となるように20mm×100mmに裁断し、サンスター(株)製の一液型エポキシ系構造用接着剤(商品名:E−6973)を接着剤として用い、重ね代:12.5mm、接着剤膜厚:200μm、焼付条件:180℃×20分、引張速度:5mm/分、及び室温下の条件で長手方向について行う。 In the steel plate provided with the alloyed hot-dip galvanized layer on the surface of the steel plate, the steel plate is mass%, C: 0.03 to 0.25%, Si: 0.12 to 0.60 %, Mn: 2.0. -4.0%, P: 0.05% or less, S: 0.01% or less, sol. Al: 0.8% or less, N: 0.0020 to 0.015%, Ti: 0.500% or less and Nb: 0.500% or less in a 0.050% or more on the free, and has a chemical composition the balance being Fe and impurities, the average crystal grain size of the ferrite is not more than 5.0μm average particle diameter of the hard second phase is less than or equal to 5.0μm have a certain metal structure, the steel sheet and high tensile galvannealed tensile strength of more than 780MPa, wherein the interfacial adhesion strength of the galvannealed layers is not less than 20MPa is measured by the following tensile test Plated steel sheet.
Tensile test: An alloyed hot-dip galvanized steel sheet as a sample is cut into 20 mm × 100 mm so that the longitudinal direction is the rolling direction, and is a one-component epoxy structural adhesive (trade name: E, manufactured by Sunstar Co., Ltd.). -6973) is used as an adhesive, and the stacking margin is 12.5 mm, the adhesive film thickness is 200 μm, the baking condition is 180 ° C. × 20 minutes, the tensile speed is 5 mm / minute, and the longitudinal direction is performed at room temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007100734A JP5092507B2 (en) | 2007-04-06 | 2007-04-06 | High tensile alloyed hot dip galvanized steel sheet and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007100734A JP5092507B2 (en) | 2007-04-06 | 2007-04-06 | High tensile alloyed hot dip galvanized steel sheet and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008255442A JP2008255442A (en) | 2008-10-23 |
JP5092507B2 true JP5092507B2 (en) | 2012-12-05 |
Family
ID=39979317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007100734A Expired - Fee Related JP5092507B2 (en) | 2007-04-06 | 2007-04-06 | High tensile alloyed hot dip galvanized steel sheet and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5092507B2 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5483916B2 (en) * | 2009-03-27 | 2014-05-07 | 日新製鋼株式会社 | High-strength galvannealed steel sheet with excellent bendability |
JP5436009B2 (en) * | 2009-04-07 | 2014-03-05 | 株式会社神戸製鋼所 | High strength galvannealed steel sheet with excellent plating adhesion and method for producing the same |
US9109275B2 (en) * | 2009-08-31 | 2015-08-18 | Nippon Steel & Sumitomo Metal Corporation | High-strength galvanized steel sheet and method of manufacturing the same |
KR101456772B1 (en) | 2010-05-27 | 2014-10-31 | 신닛테츠스미킨 카부시키카이샤 | Steel sheet, and process for production thereof |
JP5682356B2 (en) * | 2011-02-03 | 2015-03-11 | 新日鐵住金株式会社 | Hot-dip galvanized steel sheet and manufacturing method thereof |
JP5982905B2 (en) | 2012-03-19 | 2016-08-31 | Jfeスチール株式会社 | Method for producing high-strength hot-dip galvanized steel sheet |
JP2014043628A (en) * | 2012-08-28 | 2014-03-13 | Nippon Steel & Sumitomo Metal | Galvanized steel sheet, and manufacturing method |
CN103805840B (en) | 2012-11-15 | 2016-12-21 | 宝山钢铁股份有限公司 | A kind of high formability galvanizing ultrahigh-strength steel plates and manufacture method thereof |
EP2940176B1 (en) * | 2013-03-04 | 2019-03-27 | JFE Steel Corporation | High-strength steel sheet, method for manufacturing same, high-strength molten-zinc-plated steel sheet, and method for manufacturing same |
JP5884196B2 (en) | 2014-02-18 | 2016-03-15 | Jfeスチール株式会社 | Method for producing high-strength hot-dip galvanized steel sheet |
JP2016199777A (en) | 2015-04-07 | 2016-12-01 | 株式会社神戸製鋼所 | Steel material for coating with excellent anticorrosion |
CN106811678B (en) * | 2015-12-02 | 2018-11-06 | 鞍钢股份有限公司 | Quenched alloyed galvanized steel sheet and manufacturing method thereof |
KR20240097069A (en) * | 2022-12-19 | 2024-06-27 | 주식회사 포스코 | Steel sheet having excellent dent-resistance, and method for manufacturing the same |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4370795B2 (en) * | 2003-03-26 | 2009-11-25 | Jfeスチール株式会社 | Method for producing hot-dip galvanized steel sheet |
JP4158593B2 (en) * | 2003-04-28 | 2008-10-01 | Jfeスチール株式会社 | High-tensile hot-dip galvanized steel sheet with excellent secondary work brittleness resistance and method for producing the same |
JP4211520B2 (en) * | 2003-07-10 | 2009-01-21 | Jfeスチール株式会社 | High strength and high ductility galvanized steel sheet with excellent aging resistance and method for producing the same |
JP4325508B2 (en) * | 2004-08-16 | 2009-09-02 | 住友金属工業株式会社 | High tensile hot dip galvanized steel sheet and manufacturing method |
JP4889212B2 (en) * | 2004-09-30 | 2012-03-07 | 住友金属工業株式会社 | High-strength galvannealed steel sheet and method for producing the same |
JP4577100B2 (en) * | 2005-06-07 | 2010-11-10 | 住友金属工業株式会社 | High tensile hot dip galvanized steel sheet and manufacturing method |
-
2007
- 2007-04-06 JP JP2007100734A patent/JP5092507B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008255442A (en) | 2008-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5092507B2 (en) | High tensile alloyed hot dip galvanized steel sheet and its manufacturing method | |
CN109072380B (en) | Steel sheet, plated steel sheet, and method for producing same | |
KR101615463B1 (en) | Hot-dip galvanized steel sheet and method for producing same | |
JP5403185B2 (en) | High-strength hot-dip galvanized steel sheet, high-strength galvannealed steel sheet excellent in plating adhesion, formability and hole expansibility having a tensile strength of 980 MPa or more, and a method for producing the same | |
JP6354075B1 (en) | High strength thin steel sheet and method for producing the same | |
RU2470087C2 (en) | Method of making cold-rolled sheets from two-phase steel with very high hardness, and sheets thus produced | |
KR101622063B1 (en) | High-strength cold-rolled steel sheet and process for manufacturing same | |
KR101587968B1 (en) | Alloyed hot-dip zinc coat layer, steel sheet having same, and method for producing same | |
JP4901617B2 (en) | Alloyed hot-dip galvanized high-strength steel sheet having a tensile strength of 700 MPa or more and excellent in corrosion resistance, hole expansibility and ductility, and method for producing the same | |
JP4737319B2 (en) | High-strength galvannealed steel sheet with excellent workability and fatigue resistance and method for producing the same | |
KR101609331B1 (en) | Alloyed hot-dip galvanized steel sheet | |
JP6304455B2 (en) | Thin steel plate and plated steel plate, hot rolled steel plate manufacturing method, cold rolled full hard steel plate manufacturing method, heat treatment plate manufacturing method, thin steel plate manufacturing method and plated steel plate manufacturing method | |
JP6304456B2 (en) | Thin steel plate and plated steel plate, hot rolled steel plate manufacturing method, cold rolled full hard steel plate manufacturing method, heat treatment plate manufacturing method, thin steel plate manufacturing method and plated steel plate manufacturing method | |
CN107075643A (en) | High-strength steel sheet, high-strength hot-dip zinc-coated steel sheet, high-strength hot aludip and high intensity plated steel sheet and their manufacture method | |
JP5953693B2 (en) | High-strength hot-dip galvanized steel sheet with excellent plating adhesion and formability and its manufacturing method | |
JP6384623B2 (en) | High strength steel plate and manufacturing method thereof | |
WO2016157258A1 (en) | High-strength steel sheet and production method therefor | |
JP4000943B2 (en) | High-strength hot-dip galvanized steel sheet and manufacturing method thereof | |
JP4888200B2 (en) | High tensile hot dip galvanized steel sheet and manufacturing method | |
WO2016157257A1 (en) | High-strength steel sheet and production method therefor | |
JP5251207B2 (en) | High strength steel plate with excellent deep drawability and method for producing the same | |
JP2012082499A (en) | Hot-dipped steel sheet and method for producing the same | |
JP4320913B2 (en) | High-tensile hot-dip galvanized steel sheet with excellent formability and method for producing the same | |
JP4140962B2 (en) | Manufacturing method of low yield ratio type high strength galvannealed steel sheet | |
JP3912181B2 (en) | Composite structure type high-tensile hot-dip galvanized cold-rolled steel sheet excellent in deep drawability and stretch flangeability and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090527 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110623 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110920 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111118 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120821 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120903 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5092507 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150928 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150928 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150928 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |