JP4370795B2 - Method for producing hot-dip galvanized steel sheet - Google Patents

Method for producing hot-dip galvanized steel sheet Download PDF

Info

Publication number
JP4370795B2
JP4370795B2 JP2003085922A JP2003085922A JP4370795B2 JP 4370795 B2 JP4370795 B2 JP 4370795B2 JP 2003085922 A JP2003085922 A JP 2003085922A JP 2003085922 A JP2003085922 A JP 2003085922A JP 4370795 B2 JP4370795 B2 JP 4370795B2
Authority
JP
Japan
Prior art keywords
hot
temperature
steel sheet
ferrite
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003085922A
Other languages
Japanese (ja)
Other versions
JP2004292881A (en
Inventor
総人 北野
広志 松田
康伸 長滝
俊明 占部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003085922A priority Critical patent/JP4370795B2/en
Publication of JP2004292881A publication Critical patent/JP2004292881A/en
Application granted granted Critical
Publication of JP4370795B2 publication Critical patent/JP4370795B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、自動車部品などに用いられる溶融亜鉛めっき鋼板およびその製造方法に関し、特に、高強度で且つプレス成形後の耐二次加工脆性に優れたものに関する。
【0002】
【従来の技術】
地球環境保護を目的に、自動車、化学メーカを始めとする各種産業界で、CO2ガス低減への取組みが進められている。自動車会社においては、電気自動車の開発とともに、自動車から排出されるCO2ガスを減らすため、ガソリン車の燃費を車体の軽量化により向上させることが検討されている。
【0003】
車体軽量化においては、使用鋼板の薄肉化が有効であるものの、車体剛性劣化を防止するため、鋼板強度の向上が必要で、高強度鋼板の自動車への適用拡大が検討されている。
【0004】
しかしながら、鋼板強度を向上させた場合、プレス成形時に結晶粒界への応力集中が大きくなり、プレス成形性は劣化し、例えば、張出し成形、伸びフランジ成形などの引張応力が付与される部位に用いられる場合には、伸び、伸びフランジ性を向上させ、絞り成形で圧縮応力が付与される部位に用いられる場合には、耐縦割れ性を向上させることが必要となっている。
【0005】
深絞り性に優れた高強度鋼板として自動車の各種部品に適用されている極低炭素IF鋼板の場合、結晶粒界が弱く、Mn,Pなどで高強度化された場合、プレス成形後の耐二次加工脆性が劣化し、B添加によりフェライト粒界の強度を向上させ、Pを低減し粒界脆化を軽減させることが行われている。
【0006】
特開平6−57373号公報は、高強度鋼板の耐縦割れ性を向上させる技術に関するもので、耐二次加工脆性に優れる高r値高張力冷延鋼板の製造技術として、P添加の極低炭素Ti−Nb−B系成分組成において、B量をSi,Mn,Pの重み付き合計量で定まる所定範囲内に調整し、耐二次加工脆性に優れた鋼板製造技術が開示されている。
【0007】
【発明が解決しようとする課題】
しかしながら、特開平6−57373号公報に記載されている鋼板の強度は、367.5〜501.8MPa(37.5〜51.2kgf/mm2)で、今後必要とされる780MPa級自動車用高強度鋼板の製造技術が開示されているわけではない。
【0008】
そこで、本発明では、780MPa以上の引張強度を有し、プレス成形後の耐二次加工脆性に優れた溶融亜鉛めっき鋼板およびその製造技術の提供を目的とする。
【0009】
【課題を解決するための手段】
本発明者等は、引張強さ780MPa以上の高強度鋼板を対象に、プレス成形性に及ぼすミクロ組織の影響をカップ成形材の縦割れ試験を用いて詳細に検討し、硬質のマルテンサイト、ベイナイト等オーステナイトからの低温変態相を含む鋼板の場合は、プレス成形時のフェライトと硬質相との界面近傍における応力集中が大きく、フェライト単相組織の極低炭素IF鋼で有効とされたフェライト相の強化や、粒界強度の向上では、耐二次加工脆性は向上しないこと、及びその対策として結晶粒径の微細化が有効で、平均結晶粒径が5μm以下の場合、プレス成形時の、結晶粒界に対する応力集中が緩和され、耐二次加工脆性が向上するという知見を得た。
【0010】
本発明はこれらの知見を基に更に検討を加えてなされたものであり、すなわち、本発明は、
1.mass(%)で、C:0.03〜0.15%、Si≦0.7%、Mn:2.0〜3.0%、P≦0.05%、S≦0.01%、sol.Al:0.01〜0.1%、N≦0.005%、Nb:0.005〜0.1%、残部Feおよび不可避的不純物からなる成分組成のスラブを熱間圧延後、平均冷却速度5〜500℃/sで冷却し、680℃以下の温度で巻取り、酸洗後あるいは酸洗・冷間圧延後に750〜950℃の温度で焼鈍し、次いで連続溶融亜鉛めっき処理することを特徴とする耐二次加工脆性に優れた溶融亜鉛めっき鋼板の製造方法
【0011】
2.前記スラブは、更に、Ti:0.005〜0.1%、V:0.01〜0.5%、B:0.0002〜0.002%の一種又は二種以上を含有することを特徴とする1記載の耐二次加工脆性に優れた溶融亜鉛めっき鋼板の製造方法。
【0014】
【発明の実施の形態】
本発明における、成分組成、ミクロ組織等について以下に詳細に説明する。
1.成分組成

Cは、鋼の強化に有効で0.03%以上添加する。一方、0.15%を超えると、伸びフランジ性や深絞り性が劣化するため、0.03〜0.15%とする。
【0015】
Si
Siは、鋼を強化するために0.7%以下の範囲内で添加してもよい。0.7%を超えると、溶融亜鉛めっきの密着性が低下し、不均一なめっき皮膜が形成される。めっき表面が不均一な場合、深絞り成形時、鋼板表面への応力集中が生じ、成形後の耐二次加工脆性に好ましくないため、Siを添加する場合には0.7%以下とする。
【0016】
Mn
Mnは、鋼の焼入れ強化に有効で、780MPa以上の引張強度を得るため、2.0%以上添加する。一方、3.0%を超えると、スラブに表面欠陥が生じ易くなり、圧延、溶融亜鉛めっき処理後の表面外観が著しく劣化するため、2.0〜3.0%とする。
【0017】

Pは、鋼の強化に有効なため、本発明では0.05%以下含有させることができる。0.05%を超えると、鋳造時のPの偏析に起因した不均一組織が板厚中央部に発達し、延性が劣化する。そのため、Pは0.05%以下とする。
【0018】

Sは、不純物であり、鋼中に過剰に存在すると、スラブ加熱時にオーステナイトの結晶粒界に偏析し、熱間圧延の際、鋼板表層部から赤熱脆性が起こり易くなるため、0.01%以下とする。
【0019】
sol.Al
Alは、鋼の脱酸のため、0.01%以上添加する。一方、0.1%を超えると溶融亜鉛めっき後の表面外観が著しく劣化するため、0.01〜0.1%とする。
【0020】

Nは、鋼中に過剰に存在すると、溶鋼鋳造時、スラブ表面に割れが発生し易くなるため0.005%以下とする。
【0021】
Nb
Nbは、微細炭化物を形成し、また、固溶状態で存在し、フェライトおよび低温変態相を細粒化するため、0.005%以上添加する。一方、0.1%を超えると、焼鈍時のフェライト、オーステナイトの再結晶化が抑制され、加工組織が残留し、延性が劣化するため、0.005〜0.1%とする。
【0022】
本発明は以上が基本成分組成で、所望する特性に応じてTi,V,Bの一種または二種以上を添加することが出来る。
【0023】
Ti
Tiは、微細炭化物を形成し、組織を微細組織とするため0.005%以上添加する。一方、0.1%を超えるとその効果は飽和し、めっき表面外観が劣化するため、0.005〜0.1%とする。
【0024】

Vは、鋼の焼入れ性を向上させ、強度を向上させるため、0.01%以上添加する。一方、0.5%を超えるとその効果が飽和するため、0.01〜0.5%とする。
【0026】

Bは、鋼の焼入れ性を向上させ、強度を向上させるとともに、オーステナイト粒界に偏析し、粒成長の抑制により、低温変態相を微細化するため、0.0002%以上添加する。一方、0.002%を超えるとその効果が飽和するため、0.0002〜0.002%とする。
【0027】
本発明で、「残部が実質的にFe」とは、本発明の成分組成として記載がない元素であっても本発明の作用効果を損なわないことを限度に、その含有を許容することを意味する。
【0028】
2.ミクロ組織
フェライト及び低温変態相両者の平均結晶粒径:5μm以下
本発明鋼板は、フェライトとマルテンサイト及び/又はベイナイトを有する複合組織で、特に軟質相のフェライトとオーステナイトからの低温変態相である硬質相のマルテンサイト及び/又はベイナイトの平均結晶粒径を共に5μm以下の微細組織とすることを特徴とする。
【0029】
図2に、鋼板の耐二次加工脆性に及ぼすフェライト(母相)とマルテンサイト及び/又はベイナイト(第二相)の平均結晶粒径の影響を縦割れ試験で調査した結果を示す。
【0030】
縦割れ試験では、供試鋼として成分組成がC:0.050〜0.075%、Si:0.02〜0.26%、Mn:2.1〜2.5%、P:0.01〜0.03%、S:0.001〜0.010%、sol.Al:0.02〜0.06%、N:0.0015〜0.0045%、Nb:0.02〜0.06%、Cr:0.07〜0.15%、V:0.07〜0.14%、残部が実質的にFeで、引張強度(TS):810〜840MPa,フェライト(母相)の平均粒径(dF):1〜11μm、低温変態相(第二相)の平均結晶粒径(dS):1〜9μmの溶融亜鉛めっき鋼板(板厚1.2mm)を用いた。
【0031】
これらの鋼板から、図1に示すように、試験用サンプルとして、120mmφのブランクを採取し、絞り比1.6で75mmφのカップを成形後、カップ高さ30mmにトリムした後、冷媒中で、カップの開口試験を実施し、カップ側壁部に縦割れが発生しない縦割れ臨界温度(Tc)を求めた。
【0032】
図2より明らかなように、フェライト(母相)の平均粒径(dF)が5μm以下、低温変態相(第二相)の平均結晶粒径(dS)が1〜3μmで共に微細な場合、縦割れ臨界温度Tcは−100〜−40℃と低く良好な縦割れ臨界温度(Tc)が得られている。
【0033】
引き続いて、上記と同様のカップ成形材の縦割れ試験により、耐二次加工脆性に及ぼす引張強度、フェライト、オーステナイトの低温変態相の粒径の影響を調査し、良好な耐二次加工脆性の得られる温度を求めた。用いた鋼板は、mass%でC:0.06〜0.14、Si:0.01〜0.25、Mn:2.2〜2.7、P:0.01〜0.03、S:0.001〜0.007、sol.Al:0.03〜0.05、N:0.0020〜0.0040、Nb:0.02〜0.05、Cr:0.07〜0.20の化学成分を有し、TSが800〜1100MPa、フェライトの平均粒径が1〜9μm、オーステナイトから低温変態した第二相の平均粒径が1〜9μmである溶融亜鉛めっき鋼板(板厚:1.2mm)である。
【0034】
縦割れ試験結果を、引張強度TS、フェライトの平均粒径dF、第二相の平均粒径dsで整理して、図3に示す。TSの増大に伴い、Tcは高くなり、耐二次加工脆性は劣化する。特に、TSに対し、Tcが図中の直線より上、即ち0.1×TS−108を超える場合には、Tcは安定して0℃以下の特性が得られない。つまり、フェライトの平均粒径dFが7〜9μmと大きい場合(図中の黒丸)、830MPa以上のTSでは、Tcは安定して0℃以下とならず、良好な耐二次加工脆性が得られない。また、フェライトの平均粒径dFが2〜5μmと小さくても、第二相の平均粒径が6〜9μmと大きい場合(図中の×)、970MPa以上のTSでは、Tcは安定して0℃以下とならず、良好な性能が得られない。これらは、いずれもプレス成形時のフェライト/第二相の界面への応力集中が大きいための特性劣化と考えられる。一方、Tcが0.1×TS−108以下の場合には、良好な特性が得られている。つまり、フェライトの平均粒径dFが3〜5μm、第二相の平均粒径が1〜5μmと小さい場合(図中の△)、800〜1070MPaのTSの範囲で、Tcは0℃以下と低温の特性が得られている。さらに、フェライトの平均粒径dFが1〜3μm(但し、上限の3μmは含まず)、第二相の平均粒径が1〜4μmと小さい場合(図中の○)、800〜1100MPaのTSの範囲で、Tcは−90〜−40℃以下と低く、非常に良好な特性が得られている。
【0035】
このように、フェライトとマルテンサイト、ベイナイトなどの硬質相を有する780MPa以上の引張強度の溶融亜鉛めっき鋼板において、耐二次加工脆性を向上させるには、フェライト相オーステナイトの低温変態相のいずれも平均粒径で5μm以下に細粒化する必要があり、またこの鋼板では、絞り比1.6の円筒深絞り成形材の縦割れ遷移温度TcがTSとの関係式で表される0.1×TS−108以下の低温の特性を有していることから、加工度の大きい部品にプレス成形された後でも使用環境の厳しい寒冷地で使用できることが明らかとなった。
【0036】
3.熱延条件
本発明では、平均結晶粒径5μm以下の微細組織とするため、熱間圧延後の冷却速度とコイル巻取温度及び焼鈍温度を規定する。
【0037】
熱間圧延後の平均冷却速度が、5℃/s未満の場合、巻取り後の結晶粒径が粗大化し、焼鈍によってもフェライトとオーステナイトからの変態組織は細粒化されず、平均結晶粒径が5μm以下とならない。
【0038】
一方、500℃/sを超えると、冷却による微細化効果は飽和し、冷却に特殊な設備が必要となり設備負荷が大きくなるため、平均冷却速度は5〜500℃/sとする。
【0039】
コイル巻取り温度は、680℃を超えると、板厚表層の組織が粗大化し、焼鈍後に板厚方向で不均一な組織となり、平均結晶粒径5μm以下の微細組織が得られないため、巻取り温度は680℃以下とする。
【0040】
本発明鋼の製造において、鋼の溶製、鋳造は成分偏析、組織の均一性がえられるものならば良く特にその方法は規定しない。熱間圧延は鋳造後、直ちに、或いは冷却し再加熱後、粗圧延、仕上圧延後、コイル巻き取りを行う。
【0041】
板厚方向の組織の均一化を測るため、仕上圧延終了温度はAr3点以上とするのが好ましい。
【0042】
熱延後、酸洗し、必要に応じて冷間圧延し、連続溶融亜鉛めっき処理を行なう。焼鈍条件は、粗大組織とならないように焼鈍温度を750〜950℃とする。より好ましくは750〜900℃とする。溶融亜鉛めっき条件は特に規定せず、亜鉛めっき後、めっき層に合金化処理を行なうことができる。
【0043】
【実施例】
(例1)
種々の成分組成の鋼を用いて本発明の効果を確認した。表1に供試鋼の化学成分を示す
【0044】
それぞれの鋼を実験室にて溶製後、鋳造し、板厚50mmのスラブを製造した。但し、鋼7は、電気炉にて溶製した。該スラブを板厚30mmに分塊圧延し、大気炉で1250℃×1hrの加熱処理し、熱間圧延に供した。
【0045】
仕上圧延を870℃で終了し、平均冷却速度30℃/sで冷却後、550℃×1hrの巻取り相当の熱処理を施し、板厚4mmの熱延板とした。酸洗後、板厚1.2mmまで冷間圧延し、830℃で180sec均熱し、平均冷却速度5℃/secで冷却し、460℃の溶融亜鉛めっき浴中に浸漬した後、550℃で亜鉛めっき層の合金化処理を施した。その後、伸長率1.0%で調質圧延を施した。得られた亜鉛めっき鋼板について、引張特性、耐二次加工脆性、めっき表面外観の評価および組織観察を行った。
【0046】
引張試験はJISZ2241に準拠した方法により、引張強度(TS)が780MPa以上を特性良好(表中○で表示)、780MPa未満の場合を強度不足(表中×で表示)とした。
【0047】
耐二次加工脆性は、カップ成形材の縦割れ試験で、縦割れ遷移温度(Tc)が0.1×TS−108以下の場合、特性良好(表中○で表示)、0.1×TS−108超えの場合、特性不良(表中×で表示)とした。
【0048】
めっき表面外観は、幅100mm×長さ1500mmの範囲を目視で観察し、不めっき、点状およびすじ状欠陥が観察された場合、表面性状不良(×)と判定した。
【0049】
フェライトと低温変態相の平均結晶粒径は、鋼板断面組織を1500倍の走査型電子顕微鏡で観察し、各々200個について求めた。
【0050】
表2に、これらの結果を示す。鋼板No.1〜7は鋼番1〜7を用い、引張強度(TS)が795〜1010MPa,フェライトの平均結晶粒径が1〜3μm、低温変態相の平均結晶粒径が2〜4μmで、いずれの縦割れ遷移温度(Tc)も0.1×TS−108以下で、−90〜−35℃と低温であり、良好な耐二次加工脆性が得られている。また、良好なめっき表面性状であった。
【0051】
一方、比較例No.8〜14は成分組成が本発明範囲外の比較鋼No.8〜14を用いた例であり、本発明例と比較して特性に劣っている。
【0052】
比較例No.8,9は、TSが680MPa,645MPaと低い。比較例No.10はTSが810MPa,フェライト、低温変態相の平均結晶粒径はそれぞれ3μm、5μmであるが、不めっき状欠陥が観察された。また、深絞り成形後の縦割れ遷移温度は−10℃と高い。
【0053】
比較例No.11は、TSが840MPa,フェライト、低温変態相の平均結晶粒径はいずれも5μm以下で,深絞り成形後の縦割れ遷移温度も−50℃と良好であったが、めっき表面に不めっき部が観察された。
【0054】
比較例No.12は、TSとして830MPaが得られているが、フェライト、低温変態相の平均結晶粒径がいずれも6μmであり、縦割れ遷移温度が30℃と高く、耐二次加工脆性に劣っている。
【0055】
比較例No.13は、TSとして930MPaが得られているが、多量のNbを含有しているためフェライトに加工組織が存在し、深絞り成形後の縦割れ遷移温度が60℃で、耐二次加工脆性に劣っている。
【0056】
比較例No.14は,多量のCを含有しているため、TSは1060MPaであるが、深絞り性に劣っている。
【0057】
(例2)
次に、鋼番7を用いて、製造条件の影響について調査した。鋼番7を電気炉で出鋼し、板厚220mmのスラブとし、1270℃で1.5hr加熱後粗圧延し、880℃で仕上圧延を行った。
【0058】
この内、1本の熱延材を用いて、仕上圧延後、コイル巻取温度までの冷却速度を圧延方向で平均2〜500℃/sに変化させた後、600℃でコイルに巻取り、板厚4mmの熱延材を製造した。また、他の3本の熱延材は仕上圧延後、コイル巻取温度まで平均20℃/sの速度で冷却した後、それぞれ550、650、700℃でコイルに巻取り、板厚4mmの熱延コイルとした。この熱延コイルを酸洗した後、板厚1.4mmまで冷間圧延した、この冷延板を860℃に加熱し、−5〜−10℃/sの平均速度で冷却した後、460℃で溶融亜鉛めっき浴中に浸漬し、その後550℃で合金化処理を施し、室温まで冷却した。また、めっき後、各々の焼鈍板に、伸長率1.0%の調質圧延を施した。各々の焼鈍コイルで、熱間圧延時にコイルに巻取るまでの冷却速度と巻取温度を変化させた場所に対応する位置から、引張試験、カップ成形材の縦割れ試験、めっき表面および断面組織の観察に使用するサンプルを採取し、例1と同様の方法にて、特性を評価した。この評価結果を表3に示す。
【0059】
鋼板No.21は仕上圧延後、巻取温度までの平均冷却速度が2℃/sと本発明範囲外で遅く、フェライトおよび低温変態相の平均粒径5μm超えと大きく、縦割れ遷移温度が50℃と高く耐二次加工脆性に劣っている。
【0060】
鋼板No.22〜28は、仕上圧延後、巻取温度までの平均冷却速度および巻取温度が本発明範囲内で、引張強度、耐二次加工脆性およびめっき表面外観に優れている。
【0061】
鋼板No.29は、巻取温度が700℃と高く本発明範囲外で、フェライトの平均粒径7μmが大きいため、縦割れ遷移温度が30℃と高く耐二次加工脆性に劣っている。
【0062】
【表1】

Figure 0004370795
【0063】
【表2】
Figure 0004370795
【0064】
【表3】
Figure 0004370795
【0065】
【0066】
【発明の効果】
本発明によれば、自動車用鋼板として最適な耐二次加工脆性およびめっき表面外観に優れた780MPa以上の高強度溶融亜鉛めっき鋼板が得られ産業上極めて有用である。
【図面の簡単な説明】
【図1】耐二次加工脆性評価試験方法(カップ成形材による縦割れ試験)を模式的に示す図。
【図2】縦割れ遷移温度に及ぼすフェライトの平均結晶粒径(dF)、マルテンサイト、ベイナイトの平均結晶粒径(ds)の影響を示す図。
【図3】縦割れ遷移温度に及ぼすフェライトの平均結晶粒径(dF)、マルテンサイト、ベイナイトの平均結晶粒径(ds)及び鋼板強度の影響を示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hot-dip galvanized steel sheet used for automobile parts and the like, and a method for producing the same, and particularly relates to a sheet having high strength and excellent secondary work brittleness resistance after press forming.
[0002]
[Prior art]
In order to protect the global environment, efforts are being made to reduce CO2 gas in various industries including automobiles and chemical manufacturers. In an automobile company, with the development of an electric vehicle, in order to reduce CO2 gas emitted from the vehicle, it is considered to improve the fuel efficiency of a gasoline vehicle by reducing the weight of the vehicle body.
[0003]
In reducing the weight of the vehicle body, it is effective to reduce the thickness of the steel plate used, but in order to prevent the deterioration of the vehicle body rigidity, it is necessary to improve the strength of the steel plate, and the application of high-strength steel plates to automobiles is being studied.
[0004]
However, when the steel sheet strength is improved, the stress concentration at the grain boundaries increases during press forming, and the press formability deteriorates.For example, it is used for sites where tensile stress is applied, such as stretch forming and stretch flange forming. When it is used, it is necessary to improve the elongation and stretch flangeability, and to improve the resistance to vertical cracking when used for a portion to which compressive stress is applied by drawing.
[0005]
In the case of an ultra-low carbon IF steel plate applied to various parts of automobiles as a high-strength steel plate with excellent deep drawability, the grain boundary is weak, and when the strength is increased with Mn, P, etc., Secondary work brittleness deteriorates, and the addition of B improves the strength of ferrite grain boundaries, reduces P and reduces grain boundary embrittlement.
[0006]
JP-A-6-57373 relates to a technique for improving the longitudinal crack resistance of a high-strength steel sheet. As a technique for producing a high r-value high-tensile cold-rolled steel sheet having excellent secondary work brittleness resistance, P addition is extremely low. In the carbon Ti—Nb—B-based component composition, a steel sheet manufacturing technique is disclosed in which the B content is adjusted within a predetermined range determined by the weighted total amount of Si, Mn, and P, and the secondary work brittleness resistance is excellent.
[0007]
[Problems to be solved by the invention]
However, the strength of the steel sheet described in JP-A-6-57373 is 367.5 to 501.8 MPa (37.5 to 51.2 kgf / mm @ 2), which will be required in the future for high strength for 780 MPa class automobiles. Steel plate manufacturing technology is not disclosed.
[0008]
Therefore, an object of the present invention is to provide a hot-dip galvanized steel sheet having a tensile strength of 780 MPa or more and excellent in secondary work brittleness resistance after press forming, and a manufacturing technique thereof.
[0009]
[Means for Solving the Problems]
The inventors of the present invention have studied in detail the influence of the microstructure on the press formability using a longitudinal crack test of a cup-formed material for a high-strength steel sheet having a tensile strength of 780 MPa or more. Hard martensite, bainite In the case of a steel sheet containing a low-temperature transformation phase from isoaustenite, the stress concentration in the vicinity of the interface between the ferrite and hard phase during press forming is large, and the ferrite phase that is effective in ultra-low-carbon IF steel with a ferrite single-phase structure is effective. Strengthening and improving grain boundary strength do not improve secondary work embrittlement resistance, and as a countermeasure against this, refinement of crystal grain size is effective. If the average crystal grain size is 5 μm or less, It was found that the stress concentration on the grain boundary was relaxed and the secondary work brittleness resistance was improved.
[0010]
The present invention has been made by further study based on these findings, that is, the present invention,
1. In mass (%), C: 0.03 to 0.15%, Si ≦ 0.7%, Mn: 2.0 to 3.0%, P ≦ 0.05%, S ≦ 0.01%, sol . Al: 0.01-0.1%, N ≦ 0.005%, Nb: 0.005-0.1%, the average cooling rate after hot-rolling a slab having a component composition consisting of the balance Fe and inevitable impurities It is cooled at 5 to 500 ° C./s, wound at a temperature of 680 ° C. or lower, annealed at a temperature of 750 to 950 ° C. after pickling or pickling / cold rolling, and then continuously hot dip galvanized. A method for producing a hot-dip galvanized steel sheet having excellent secondary work brittleness resistance .
[0011]
2. The slab further contains one or more of Ti: 0.005 to 0.1%, V: 0.01 to 0.5%, and B: 0.0002 to 0.002%. 2. A method for producing a hot-dip galvanized steel sheet having excellent secondary work brittleness resistance according to 1.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The component composition, microstructure, etc. in the present invention will be described in detail below.
1. Ingredient composition C
C is effective for strengthening steel and is added by 0.03% or more. On the other hand, if it exceeds 0.15%, stretch flangeability and deep drawability deteriorate, so 0.03 to 0.15%.
[0015]
Si
Si may be added within a range of 0.7% or less in order to strengthen the steel. If it exceeds 0.7%, the adhesiveness of hot dip galvanizing is lowered, and a non-uniform plating film is formed. When the plating surface is uneven, stress concentration occurs on the steel plate surface during deep drawing, which is not preferable for secondary work embrittlement resistance after forming. Therefore, when Si is added, the content is made 0.7% or less.
[0016]
Mn
Mn is effective for strengthening the quenching of steel and is added in an amount of 2.0% or more in order to obtain a tensile strength of 780 MPa or more. On the other hand, if it exceeds 3.0%, surface defects are likely to occur in the slab, and the surface appearance after the rolling and hot dip galvanizing treatment is significantly deteriorated.
[0017]
P
Since P is effective for strengthening steel, 0.05% or less can be contained in the present invention. If it exceeds 0.05%, a non-uniform structure resulting from segregation of P during casting develops in the central portion of the plate thickness, and ductility deteriorates. Therefore, P is set to 0.05% or less.
[0018]
S
S is an impurity and, if present excessively in the steel, segregates at the grain boundaries of austenite during slab heating, and red hot brittleness is likely to occur from the surface portion of the steel sheet during hot rolling. And
[0019]
sol. Al
Al is added in an amount of 0.01% or more for deoxidation of steel. On the other hand, if it exceeds 0.1%, the surface appearance after hot dip galvanization is remarkably deteriorated, so 0.01 to 0.1%.
[0020]
N
If N is excessively present in the steel, cracking is likely to occur on the slab surface during casting of molten steel, so 0.005% or less.
[0021]
Nb
Nb is added in an amount of 0.005% or more in order to form fine carbides and to exist in a solid solution state and to refine the ferrite and the low-temperature transformation phase. On the other hand, if it exceeds 0.1%, recrystallization of ferrite and austenite during annealing is suppressed, the processed structure remains, and the ductility deteriorates, so the content is made 0.005 to 0.1%.
[0022]
In the present invention, the basic component composition is as described above , and one or more of Ti, V and B can be added according to the desired properties.
[0023]
Ti
Ti is added in an amount of 0.005% or more in order to form fine carbides and make the structure fine. On the other hand, if it exceeds 0.1%, the effect is saturated and the appearance of the plating surface deteriorates, so 0.005 to 0.1%.
[0024]
V
V is added in an amount of 0.01% or more in order to improve the hardenability of the steel and improve the strength. On the other hand, if it exceeds 0.5%, the effect is saturated, so the content is made 0.01 to 0.5%.
[0026]
B
B improves the hardenability of the steel, improves the strength, segregates at the austenite grain boundaries, and refines the low-temperature transformation phase by suppressing grain growth, so 0.0002% or more is added. On the other hand, if it exceeds 0.002%, the effect is saturated, so the content is made 0.0002 to 0.002%.
[0027]
In the present invention, “the balance is substantially Fe” means that the inclusion of an element not described as a component composition of the present invention is allowed as long as the effects of the present invention are not impaired. To do.
[0028]
2. Average grain size of both microstructured ferrite and low-temperature transformation phase: 5 μm or less The steel sheet of the present invention is a composite structure having ferrite and martensite and / or bainite, and in particular, a hard low-temperature transformation phase from ferrite and austenite in the soft phase It is characterized in that both the martensite and / or bainite average crystal grain sizes of the phases have a fine structure of 5 μm or less.
[0029]
FIG. 2 shows the results of investigating the influence of the average grain size of ferrite (parent phase) and martensite and / or bainite (second phase) on the secondary work brittleness resistance of the steel sheet in a longitudinal crack test.
[0030]
In the longitudinal crack test, the component composition of the test steel is C: 0.050 to 0.075%, Si: 0.02 to 0.26%, Mn: 2.1 to 2.5%, P: 0.01 -0.03%, S: 0.001-0.010%, sol. Al: 0.02-0.06%, N: 0.0015-0.0045%, Nb: 0.02-0.06%, Cr: 0.07-0.15%, V: 0.07- 0.14%, balance is substantially Fe, tensile strength (TS): 810 to 840 MPa, average particle diameter (dF) of ferrite (matrix): 1 to 11 μm, average of low temperature transformation phase (second phase) Crystal grain size (dS): A hot-dip galvanized steel sheet having a thickness of 1 to 9 μm (plate thickness: 1.2 mm) was used.
[0031]
From these steel plates, as shown in FIG. 1, as a test sample, a 120 mmφ blank was collected, a 75 mmφ cup was formed at a drawing ratio of 1.6, trimmed to a cup height of 30 mm, and then in a refrigerant. A cup opening test was conducted, and the critical crack critical temperature (Tc) at which vertical cracks did not occur in the side wall of the cup was determined.
[0032]
As is clear from FIG. 2, when the average grain size (dF) of the ferrite (parent phase) is 5 μm or less and the average crystal grain size (dS) of the low temperature transformation phase (second phase) is 1 to 3 μm, both are fine, Longitudinal crack critical temperature Tc is as low as −100 to −40 ° C., and good longitudinal crack critical temperature (Tc) is obtained.
[0033]
Subsequently, the effects of tensile strength, ferrite and austenite low-temperature transformation phase on the secondary work brittleness resistance were investigated by the same longitudinal crack test of the cup molding material as described above. The resulting temperature was determined. The steel plates used are mass% C: 0.06-0.14, Si: 0.01-0.25, Mn: 2.2-2.7, P: 0.01-0.03, S: 0.001-0.007, sol. It has chemical components of Al: 0.03-0.05, N: 0.0020-0.0040, Nb: 0.02-0.05, Cr: 0.07-0.20, and TS is 800- It is a hot-dip galvanized steel sheet (plate thickness: 1.2 mm) having an average particle diameter of 1100 MPa, an average particle diameter of ferrite of 1 to 9 μm, and an average particle diameter of a second phase transformed from austenite at a low temperature of 1 to 9 μm.
[0034]
The longitudinal crack test results are shown in FIG. 3, organized by tensile strength TS, ferrite average particle diameter d F , and second phase average particle diameter d s . As TS increases, Tc increases and secondary work brittleness resistance deteriorates. In particular, when Tc is higher than the straight line in the figure, that is, exceeds 0.1 × TS-108 with respect to TS, Tc cannot stably obtain characteristics of 0 ° C. or lower. In other words, when the average particle diameter d F of ferrite is as large as 7 to 9 μm (black circle in the figure), Tc does not stably become 0 ° C. or less with TS of 830 MPa or more, and good secondary work brittleness resistance is obtained. I can't. Further, even when the average particle diameter d F of the ferrite is as small as 2 to 5 μm, when the average particle diameter of the second phase is as large as 6 to 9 μm (× in the figure), Tc is stable at TS of 970 MPa or more. The temperature is not lower than 0 ° C., and good performance cannot be obtained. These are considered to be characteristic deteriorations due to large stress concentration at the ferrite / second phase interface during press molding. On the other hand, when Tc is 0.1 × TS-108 or less, good characteristics are obtained. That is, when the average particle diameter d F of the ferrite is 3 to 5 μm and the average particle diameter of the second phase is as small as 1 to 5 μm (Δ in the figure), Tc is 0 ° C. or less in the range of 800 to 1070 MPa. Low temperature characteristics are obtained. Furthermore, when the average particle diameter d F of ferrite is 1 to 3 μm (excluding the upper limit of 3 μm), and the average particle diameter of the second phase is as small as 1 to 4 μm (◯ in the figure), a TS of 800 to 1100 MPa In this range, Tc is as low as −90 to −40 ° C., and very good characteristics are obtained.
[0035]
Thus, in the hot-dip galvanized steel sheet having a tensile strength of 780 MPa or more having a hard phase such as ferrite, martensite, and bainite, in order to improve the secondary work brittleness resistance, all of the low-temperature transformation phases of the ferrite phase austenite are averaged. In this steel plate, the longitudinal crack transition temperature Tc of the cylindrical deep drawing material having a drawing ratio of 1.6 is 0.1 × expressed by a relational expression with TS. Since it has a low temperature characteristic of TS-108 or lower, it has been clarified that it can be used in a cold region where the use environment is severe even after being press-molded into a part having a high degree of processing.
[0036]
3. Hot Rolling Conditions In the present invention, in order to obtain a fine structure having an average crystal grain size of 5 μm or less, a cooling rate after hot rolling, a coil winding temperature, and an annealing temperature are defined.
[0037]
When the average cooling rate after hot rolling is less than 5 ° C / s, the crystal grain size after winding is coarsened, and the transformation structure from ferrite and austenite is not refined even by annealing, and the average crystal grain size Is not less than 5 μm.
[0038]
On the other hand, if it exceeds 500 ° C./s, the effect of miniaturization by cooling is saturated, special equipment is required for cooling, and the equipment load increases, so the average cooling rate is 5 to 500 ° C./s.
[0039]
If the coil winding temperature exceeds 680 ° C., the structure of the plate thickness surface layer becomes coarse, and after annealing, the structure becomes non-uniform in the plate thickness direction, and a fine structure with an average crystal grain size of 5 μm or less cannot be obtained. The temperature is 680 ° C. or lower.
[0040]
In the production of the steel of the present invention, the method for melting and casting the steel is not particularly limited as long as component segregation and structural uniformity can be obtained. Hot rolling is performed immediately after casting, or after cooling and reheating, rough rolling and finish rolling, and then coiling.
[0041]
In order to measure the homogeneity of the structure in the plate thickness direction, the finish rolling finish temperature is preferably set to Ar3 point or higher.
[0042]
After hot rolling, pickling, cold rolling as necessary, and continuous hot dip galvanizing treatment. As for the annealing conditions, the annealing temperature is set to 750 to 950 ° C. so as not to become a coarse structure. More preferably, the temperature is 750 to 900 ° C. The hot dip galvanizing conditions are not particularly defined, and after the galvanization, the plating layer can be alloyed.
[0043]
【Example】
(Example 1)
The effects of the present invention were confirmed using steels having various component compositions. Table 1 shows the chemical composition of the test steel .
[0044]
Each steel was melted in a laboratory and then cast to produce a slab having a thickness of 50 mm. However, the steel 7 was melted in an electric furnace. The slab was batch-rolled to a plate thickness of 30 mm, subjected to heat treatment at 1250 ° C. × 1 hr in an atmospheric furnace, and subjected to hot rolling.
[0045]
Finish rolling was finished at 870 ° C., cooled at an average cooling rate of 30 ° C./s, and then subjected to a heat treatment equivalent to winding at 550 ° C. × 1 hr to obtain a hot rolled sheet having a thickness of 4 mm. After pickling, it is cold-rolled to a thickness of 1.2 mm, soaked at 830 ° C. for 180 seconds, cooled at an average cooling rate of 5 ° C./sec, immersed in a 460 ° C. hot dip galvanizing bath, and then zinc plated at 550 ° C. The plating layer was alloyed. Thereafter, temper rolling was performed at an elongation rate of 1.0%. The obtained galvanized steel sheet was evaluated for tensile properties, secondary work brittleness resistance, plated surface appearance and microstructure observation.
[0046]
In the tensile test, the tensile strength (TS) was 780 MPa or more with good properties (indicated by a circle in the table) and the strength was insufficient (indicated by x in the table) by a method based on JISZ2241.
[0047]
The secondary work brittleness resistance is good when the longitudinal crack transition temperature (Tc) is 0.1 × TS-108 or less in the longitudinal cracking test of the cup molding material (indicated by ○ in the table), 0.1 × TS. When it exceeded -108, it was regarded as a characteristic defect (indicated by x in the table).
[0048]
The plating surface appearance was visually observed in a range of width 100 mm × length 1500 mm, and when non-plating, dot-like and streak-like defects were observed, it was determined that the surface property was poor (x).
[0049]
The average crystal grain size of the ferrite and the low-temperature transformation phase was determined for each of 200 pieces by observing the cross-sectional structure of the steel sheet with a scanning electron microscope of 1500 times.
[0050]
Table 2 shows these results. Steel plate No. Nos. 1 to 7 use steel numbers 1 to 7, the tensile strength (TS) is 795 to 1010 MPa, the average crystal grain size of ferrite is 1 to 3 μm, and the average crystal grain size of the low temperature transformation phase is 2 to 4 μm. The crack transition temperature (Tc) is also 0.1 × TS-108 or lower, a low temperature of −90 to −35 ° C., and good secondary work brittleness resistance is obtained. Moreover, it was favorable plating surface property.
[0051]
On the other hand, Comparative Example No. Nos. 8 to 14 are comparative steel Nos. Whose component compositions are outside the scope of the present invention. It is an example using 8-14, and it is inferior to a characteristic compared with the example of the present invention.
[0052]
Comparative Example No. As for 8 and 9, TS is as low as 680 MPa and 645 MPa. Comparative Example No. In No. 10, TS was 810 MPa, ferrite, and the average crystal grain size of the low-temperature transformation phase was 3 μm and 5 μm, respectively, but unplated defects were observed. Moreover, the longitudinal crack transition temperature after deep drawing is as high as −10 ° C.
[0053]
Comparative Example No. No. 11, TS was 840 MPa, ferrite, and the average crystal grain size of the low temperature transformation phase was 5 μm or less, and the longitudinal crack transition temperature after deep drawing was as good as −50 ° C. Was observed.
[0054]
Comparative Example No. No. 12 has a TS of 830 MPa, but the average crystal grain size of the ferrite and the low-temperature transformation phase is both 6 μm, the longitudinal crack transition temperature is as high as 30 ° C., and the secondary work brittleness resistance is poor.
[0055]
Comparative Example No. No. 13 has a TS of 930 MPa, but since it contains a large amount of Nb, there is a processed structure in the ferrite, and the longitudinal crack transition temperature after deep drawing is 60 ° C. Inferior.
[0056]
Comparative Example No. Since 14 contains a large amount of C, TS is 1060 MPa, but it is inferior in deep drawability.
[0057]
(Example 2)
Next , using steel No. 7, the influence of manufacturing conditions was investigated. Steel No. 7 was rolled out in an electric furnace to form a slab having a plate thickness of 220 mm, heated for 1 hour at 1270 ° C., roughly rolled, and finish-rolled at 880 ° C.
[0058]
Among these, using one hot-rolled material, after finishing rolling, after changing the cooling rate to the coil winding temperature to an average of 2 to 500 ° C./s in the rolling direction, winding the coil at 600 ° C., A hot rolled material having a plate thickness of 4 mm was produced. The other three hot-rolled materials were finished-rolled, cooled to the coil winding temperature at an average rate of 20 ° C./s, and then wound into coils at 550, 650, and 700 ° C. A rolled coil was used. The hot-rolled coil was pickled and then cold-rolled to a thickness of 1.4 mm. The cold-rolled plate was heated to 860 ° C. and cooled at an average rate of −5 to −10 ° C./s, and then 460 ° C. Then, it was immersed in a hot dip galvanizing bath, then alloyed at 550 ° C., and cooled to room temperature. Further, after the plating, each annealed plate was subjected to temper rolling with an elongation rate of 1.0%. In each annealing coil, from the position corresponding to the location where the cooling rate and coiling temperature until coiling during hot rolling were changed, the tensile test, the longitudinal crack test of the cup molding material, the plating surface and the cross-sectional structure Samples used for observation were collected, and characteristics were evaluated in the same manner as in Example 1. The evaluation results are shown in Table 3.
[0059]
Steel plate No. No. 21 after finish rolling, the average cooling rate to the coiling temperature is 2 ° C./s, which is slow outside the scope of the present invention, the average particle size of ferrite and the low-temperature transformation phase is large, exceeding 5 μm, and the longitudinal crack transition temperature is as high as 50 ° C. Ru Tei inferior in resistance to secondary work brittleness.
[0060]
Steel plate No. Nos. 22 to 28 are excellent in tensile strength, secondary work brittleness resistance and plating surface appearance within the scope of the present invention, after the finish rolling, the average cooling rate up to the coiling temperature and the coiling temperature.
[0061]
Steel plate No. 29 is a high present invention range coiling temperature is 700 ° C., since the average particle size 7μm ferrite is large, the vertical cracks transition temperature Ru Tei poor high resistance to secondary work embrittlement and 30 ° C..
[0062]
[Table 1]
Figure 0004370795
[0063]
[Table 2]
Figure 0004370795
[0064]
[Table 3]
Figure 0004370795
[0065]
[0066]
【The invention's effect】
According to the present invention, a high-strength hot-dip galvanized steel sheet having a strength of 780 MPa or more, which is excellent in secondary work brittleness resistance and plated surface appearance, which is optimal as a steel sheet for automobiles, is obtained and is extremely useful industrially.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing a secondary work brittleness resistance evaluation test method (longitudinal crack test using a cup molding material).
FIG. 2 is a graph showing the influence of the average crystal grain size (dF) of ferrite and the average crystal grain size (ds) of martensite and bainite on the longitudinal crack transition temperature.
FIG. 3 is a graph showing the influence of the average crystal grain size (dF) of ferrite, the average crystal grain size (ds) of martensite and bainite, and the steel sheet strength on the longitudinal crack transition temperature.

Claims (2)

mass(%)で、C:0.03〜0.15%、Si≦0.7%、Mn:2.0〜3.0%、P≦0.05%、S≦0.01%、sol.Al:0.01〜0.1%、N≦0.005%、Nb:0.005〜0.1%、残部Feおよび不可避的不純物からなる成分組成のスラブを熱間圧延後、平均冷却速度5〜500℃/sで冷却し、680℃以下の温度で巻取り、酸洗後あるいは酸洗・冷間圧延後に750〜950℃の温度で焼鈍し、次いで連続溶融亜鉛めっき処理することを特徴とする耐二次加工脆性に優れた溶融亜鉛めっき鋼板の製造方法。 In mass (%), C: 0.03 to 0.15%, Si ≦ 0.7%, Mn: 2.0 to 3.0%, P ≦ 0.05%, S ≦ 0.01%, sol . Al: 0.01-0.1%, N ≦ 0.005%, Nb: 0.005-0.1%, the average cooling rate after hot-rolling a slab having a component composition consisting of the balance Fe and inevitable impurities It is cooled at 5 to 500 ° C./s, wound at a temperature of 680 ° C. or lower, annealed at a temperature of 750 to 950 ° C. after pickling or pickling / cold rolling, and then continuously hot dip galvanized. A method for producing a hot-dip galvanized steel sheet having excellent secondary work brittleness resistance. 前記スラブは、更に、Ti:0.005〜0.1%、V:0.01〜0.5%、B:0.0002〜0.002%の一種又は二種以上を含有することを特徴とする請求項1記載の耐二次加工脆性に優れた溶融亜鉛めっき鋼板の製造方法。The slab further contains one or more of Ti: 0.005 to 0.1%, V: 0.01 to 0.5%, and B: 0.0002 to 0.002%. The method for producing a hot-dip galvanized steel sheet having excellent secondary work brittleness resistance according to claim 1.
JP2003085922A 2003-03-26 2003-03-26 Method for producing hot-dip galvanized steel sheet Expired - Fee Related JP4370795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003085922A JP4370795B2 (en) 2003-03-26 2003-03-26 Method for producing hot-dip galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003085922A JP4370795B2 (en) 2003-03-26 2003-03-26 Method for producing hot-dip galvanized steel sheet

Publications (2)

Publication Number Publication Date
JP2004292881A JP2004292881A (en) 2004-10-21
JP4370795B2 true JP4370795B2 (en) 2009-11-25

Family

ID=33400708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003085922A Expired - Fee Related JP4370795B2 (en) 2003-03-26 2003-03-26 Method for producing hot-dip galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP4370795B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4555694B2 (en) * 2005-01-18 2010-10-06 新日本製鐵株式会社 Bake-hardening hot-rolled steel sheet excellent in workability and method for producing the same
JP4730056B2 (en) * 2005-05-31 2011-07-20 Jfeスチール株式会社 Manufacturing method of high-strength cold-rolled steel sheet with excellent stretch flange formability
JP4577100B2 (en) * 2005-06-07 2010-11-10 住友金属工業株式会社 High tensile hot dip galvanized steel sheet and manufacturing method
JP4925611B2 (en) * 2005-06-21 2012-05-09 住友金属工業株式会社 High strength steel plate and manufacturing method thereof
JP5320681B2 (en) * 2007-03-19 2013-10-23 Jfeスチール株式会社 High strength cold rolled steel sheet and method for producing high strength cold rolled steel sheet
JP5092507B2 (en) * 2007-04-06 2012-12-05 住友金属工業株式会社 High tensile alloyed hot dip galvanized steel sheet and its manufacturing method
JP5194878B2 (en) * 2007-04-13 2013-05-08 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in workability and weldability and method for producing the same
JP4924730B2 (en) 2009-04-28 2012-04-25 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in workability, weldability and fatigue characteristics and method for producing the same

Also Published As

Publication number Publication date
JP2004292881A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
EP3647447B1 (en) Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing and method for manufacturing same
JP4730056B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent stretch flange formability
JP4635525B2 (en) High-strength steel sheet excellent in deep drawability and manufacturing method thereof
JP5709151B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
KR101485236B1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and process for producing same
WO2019189842A1 (en) High-strength galvanized steel sheet, high-strength member, and manufacturing methods therefor
JP5257981B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent press formability
JPWO2019106895A1 (en) High strength galvanized steel sheet and manufacturing method thereof
US11453926B2 (en) Steel sheet, plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing steel sheet, and method for producing plated steel sheet
JP4501699B2 (en) High-strength steel sheet excellent in deep drawability and stretch flangeability and method for producing the same
EP3647444A1 (en) Hot-press member and method for manufacturing same, and cold-rolled steel sheet for hot pressing and method for manufacturing same
JP4696870B2 (en) High strength steel plate and manufacturing method thereof
CN108779536B (en) Steel sheet, plated steel sheet, and method for producing same
WO2018088421A1 (en) High-strength cold-rolled thin steel sheet and method for producing high-strength cold-rolled thin steel sheet
JP4407449B2 (en) High strength steel plate and manufacturing method thereof
JP4752522B2 (en) Manufacturing method of high strength cold-rolled steel sheet for deep drawing
KR102153194B1 (en) Ultra high strength and high ductility cold rolled steel sheet with superior resistance to liquid metal embrittlment(lme) cracking, plated steel sheet and method for manufacturing the same
JP5853884B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP5034364B2 (en) Manufacturing method of high-strength cold-rolled steel sheet
JP4370795B2 (en) Method for producing hot-dip galvanized steel sheet
JP4258215B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP3969350B2 (en) High-tensile cold-rolled steel sheet and its manufacturing method
JP3912181B2 (en) Composite structure type high-tensile hot-dip galvanized cold-rolled steel sheet excellent in deep drawability and stretch flangeability and manufacturing method thereof
JP4367205B2 (en) Strain aging treatment method for steel sheet and method for producing high-strength structural member
JP3873638B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090824

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4370795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees