JP5320681B2 - High strength cold rolled steel sheet and method for producing high strength cold rolled steel sheet - Google Patents

High strength cold rolled steel sheet and method for producing high strength cold rolled steel sheet Download PDF

Info

Publication number
JP5320681B2
JP5320681B2 JP2007070677A JP2007070677A JP5320681B2 JP 5320681 B2 JP5320681 B2 JP 5320681B2 JP 2007070677 A JP2007070677 A JP 2007070677A JP 2007070677 A JP2007070677 A JP 2007070677A JP 5320681 B2 JP5320681 B2 JP 5320681B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
mass
rolled steel
transformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007070677A
Other languages
Japanese (ja)
Other versions
JP2008231480A (en
Inventor
達也 中垣内
才二 松岡
広志 松田
周作 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007070677A priority Critical patent/JP5320681B2/en
Publication of JP2008231480A publication Critical patent/JP2008231480A/en
Application granted granted Critical
Publication of JP5320681B2 publication Critical patent/JP5320681B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、自動車用鋼板としての用途に好適な耐衝撃特性に優れる高強度冷延鋼板に関するものである。   The present invention relates to a high-strength cold-rolled steel sheet having excellent impact resistance suitable for use as a steel sheet for automobiles.

近年、地球環境の保全の見地から、自動車の燃費向上が重要な課題となっている。このため、車体材料の高強度化により薄肉化を図り、車体そのものを軽量化しようとする動きが活発となってきている。自動車の衝突時に各部位が受ける歪速度は103/s程度に達するため、このような高速度域での耐衝撃特性が特に重要となる。
耐衝撃吸収特性に優れる高強度鋼板としては特許文献1に開示されているようなフェライトとマルテンサイトの複合組織からなる二相組織鋼板(DP鋼板)が代表的である。また、特許文献2では残留γの塑性誘起変態を利用したTRIP鋼において、耐衝撃特性を向上させる技術が開示されている。
特開平9−111396号公報 特開2001−11565号公報
In recent years, improving the fuel efficiency of automobiles has become an important issue from the viewpoint of conservation of the global environment. For this reason, a movement to reduce the thickness of the vehicle body by increasing the strength of the vehicle body material and to reduce the weight of the vehicle body has become active. Since the strain rate which each part receives at the time of a car collision reaches about 10 3 / s, the impact resistance characteristic in such a high speed region is particularly important.
A typical example of a high-strength steel plate having excellent shock absorption characteristics is a dual-phase steel plate (DP steel plate) composed of a composite structure of ferrite and martensite as disclosed in Patent Document 1. Further, Patent Document 2 discloses a technique for improving impact resistance characteristics in TRIP steel using a plasticity-induced transformation of residual γ.
JP-A-9-111396 JP 2001-11565 A

しかしながら、本来降伏強度が低いDP鋼板が高い衝撃吸収能を示すのは、プレス加工による加工硬化が大きいこと、および加工歪が入るとそれに続く塗装焼付け工程で歪時効を生じて降伏強度が大きく上昇することがその理由であり、曲げ加工など加工量の小さな部品では必ずしも十分な衝撃吸収能を発揮しないという問題があった。さらに、DP鋼では10〜30%程度の高い歪域での衝撃吸収エネルギーが高いという特徴があり、前面衝突部位など衝突時にある程度変形して衝突エネルギーを吸収する部位には適しているが、側面衝突部位のように乗員空間確保の観点から小さい歪域で高い吸収エネルギーが必要となる部位に対しては要求特性を十分満足しているとは言えなかった。また、特許文献2に示すTRIP鋼も、上記DP鋼と同様の問題を有している。
本発明は、自動車用、家電用及び機械構造用等に用いられる冷延鋼板について、プレス加工による歪の導入がなくても、低歪域での吸収エネルギーが大きく、耐衝突特性に優れる高強度冷延鋼板およびその製造方法を提供することを目的とする。
However, the DP steel sheet, which originally has a low yield strength, shows a high impact absorption capacity because of its high work hardening by press working, and when processing strain enters, strain aging occurs in the subsequent paint baking process, resulting in a significant increase in yield strength. This is the reason for this, and there is a problem that a part with a small amount of processing such as bending does not necessarily exhibit a sufficient shock absorbing ability. Furthermore, DP steel is characterized by high shock absorption energy in a high strain range of about 10 to 30%, and is suitable for a part that deforms to some extent during a collision, such as a frontal collision part, and absorbs the collision energy. It could not be said that the required characteristics were sufficiently satisfied for parts that require high absorbed energy in a small strain region from the viewpoint of securing passenger space, such as a collision part. The TRIP steel shown in Patent Document 2 also has the same problem as the DP steel.
The present invention relates to cold rolled steel sheets used for automobiles, home appliances, machine structures, etc., even if no strain is introduced by press working, the absorbed energy is large in the low strain region and the high strength is excellent in the impact resistance characteristics. It aims at providing a cold-rolled steel plate and its manufacturing method.

本発明者らは、上記した課題を達成し、耐衝撃特性に優れる冷延鋼板を製造するため、鋼板の組成およびミクロ組織の観点から鋭意研究を重ねた。その結果、合金元素を適正に調整して、焼鈍時に再結晶温度域である500℃〜Ac1変態点の温度範囲を10℃/s以上の平均昇温速度(平均加熱速度)で加熱することにより昇温時の再結晶を抑制し、その後A1変態点〜(A3変態点+30℃)の温度域で10秒以上保持して逆変態により微細なγを生成させた後、冷却することにより、フェライト相を主相として、低温変態相(マルテンサイト、ベイナイトおよび残留γのうち、1種または2種以上)が微細に分散し、耐衝撃特性が著しく向上する知見を得た。 In order to achieve the above-described problems and to produce a cold-rolled steel sheet having excellent impact resistance, the present inventors have made extensive studies from the viewpoints of the composition and microstructure of the steel sheet. As a result, the alloy elements are appropriately adjusted, and the temperature range from 500 ° C. to the Ac 1 transformation point, which is the recrystallization temperature range, is heated at an average heating rate (average heating rate) of 10 ° C./s or more during annealing. To suppress recrystallization at the time of temperature rise, and then hold for 10 seconds or more in the temperature range from A 1 transformation point to (A 3 transformation point + 30 ° C.) to produce fine γ by reverse transformation and then cool. As a result, it was found that the ferrite phase is the main phase and the low-temperature transformation phase (one or more of martensite, bainite and residual γ) is finely dispersed, and the impact resistance is remarkably improved.

このとき、逆変態により生成するγが微細になる理由については必ずしも明確ではないが、以下のように考えられる。すなわち、Ti、Nb及びVの少なくとも1種が添加されそれらの微細炭窒化物のピン止め力により加熱時の再結晶が抑制される。特に加熱速度が10℃/s以上ではほとんど再結晶が起こらず未再結晶αのままA1変態点以上のα十γ2相域温度(フェライトとオーステナイトの2相域)となり、高転位密度部、不均一変形部などの優先核生成サイトにおいて、加工αからの再結晶α核生成とα→γ変態核生成の競合が生じる。このとき、α→γ変態の駆動力の方が再結晶の駆動力よりも大きいため、再結晶α核生成より優先してγ核が次々と生成し、優先核生成サイトを占有する。その結果、逆変態により生成するγは非常に微細となると考えられる。 At this time, the reason why γ generated by the reverse transformation becomes fine is not necessarily clear, but is considered as follows. That is, at least one of Ti, Nb, and V is added, and recrystallization during heating is suppressed by the pinning force of these fine carbonitrides. In particular, when the heating rate is 10 ° C./s or more, almost no recrystallization occurs and the non-recrystallized α remains in the α + γ2 phase region temperature (the two-phase region of ferrite and austenite) above the A 1 transformation point, and the high dislocation density part, At the preferential nucleation site such as a non-uniformly deformed portion, a competition occurs between recrystallization α nucleation from the processed α and α → γ transformation nucleation. At this time, since the driving force of the α → γ transformation is larger than the driving force of recrystallization, γ nuclei are generated one after another in preference to the recrystallization α nucleation and occupy the preferential nucleation site. As a result, it is considered that γ generated by reverse transformation becomes very fine.

本発明は、上記した知見に基づいて構成されたものであり、本発明の請求項1による高強度冷延鋼板は、
C:0.05〜0.25質量%以下、Si:1.0〜2.0質量%、Mn:1.0〜3.0質量%、P:0.10質量%以下、S:0.02質量%以下、Al:0.01〜2質量%含み、かつNbおよびVのうち1種または2種を合計で0.01〜0.2質量%含み、残部が鉄および不可避的不純物からなる鋼組成を有し、
鋼組織として、フェライトと、マルテンサイト、ベイナイトおよび残留γのうち1種または2種以上からなる低温変態相と、を有し、
該低温変態相の体積率が10〜50vol.%、かつ該低温変態相の平均結晶粒径が2μm以下であり、近接する該低温変態相間の平均距離が2μm以下であることを特徴とする。
The present invention is configured based on the above knowledge, and the high-strength cold-rolled steel sheet according to claim 1 of the present invention is
C: 0.05-0.25 mass% or less, Si: 1.0-2.0 mass% , Mn: 1.0-3.0 mass%, P: 0.10 mass% or less, S: 0.0. 02% by mass or less, Al: 0.01 to 2% by mass, and one or two of Nb and V in total, 0.01 to 0.2% by mass, with the balance being iron and inevitable impurities Having a steel composition,
As a steel structure, it has ferrite and a low temperature transformation phase composed of one or more of martensite, bainite and residual γ,
The volume ratio of the low temperature transformation phase is 10 to 50 vol. %, The average crystal grain size of the low temperature transformation phase is 2 μm or less, and the average distance between the adjacent low temperature transformation phases is 2 μm or less.

さらに、本発明の請求項2による高強度冷延鋼板は、請求項1において、
鋼組成として、さらに、下記A群、B群およびC群のうち1群又は2群以上に規定される成分を当該規定範囲内で含有することを特徴とする。
(A群)CrおよびMo:1種または2種合計で0.05〜2.0質量%
(B群)B:0.005質量%以下
(C群)Caおよび希土類元素:1種または2種以上の合計で0.01質量%以下
Furthermore, the high-strength cold-rolled steel sheet according to claim 2 of the present invention is as follows.
The steel composition is further characterized by containing a component defined in one group or two or more of the following groups A, B and C within the specified range.
(Group A) Cr and Mo: 0.05 to 2.0 mass% in total of 1 type or 2 types
(Group B) B: 0.005 mass% or less (Group C) Ca and rare earth elements: 0.01 mass% or less in total of 1 type or 2 types or more

さらに、本発明の請求項3による高強度冷延鋼板は、請求項1または2において、
溶融亜鉛めっき層または合金化溶融亜鉛めっき層を表面に有することを特徴とする。
さらに、本発明の請求項4による高強度冷延鋼板の製造方法は、
請求項1または2に記載の前記鋼組成を有する鋼素材に熱間圧延及び冷間圧延を施した後、連続焼鈍を施し、
前記連続焼鈍では、前記冷間圧延により製造した鋼板を、500℃〜A1変態点における平均加熱速度を10℃/s以上としてA1変態点まで昇温し、次いでAl変態点〜(A3変態点+30℃)の温度域に10秒以上保持した後、550℃以上における平均冷却速度を5℃/s以上として550℃以下まで冷却することを特徴とする。
Furthermore, the high-strength cold-rolled steel sheet according to claim 3 of the present invention is as described in claim 1 or 2,
It has a hot dip galvanized layer or an alloyed hot dip galvanized layer on its surface.
Furthermore, the manufacturing method of the high-strength cold-rolled steel sheet according to claim 4 of the present invention includes
After subjecting the steel material having the steel composition according to claim 1 or 2 to hot rolling and cold rolling, continuous annealing is performed,
And in the continuous annealing, the steel sheet produced by rolling the cold, 500 ° C. to A the average heating rate was raised to A 1 transformation point as 10 ° C. / s or more at 1 transformation point, then A l transformation point ~ (A (3 transformation point + 30 ° C.) is maintained for 10 seconds or more, and the average cooling rate at 550 ° C. or more is set to 5 ° C./s or more and cooled to 550 ° C. or less.

さらに、本発明の請求項5による高強度冷延鋼板の製造方法は、
前記冷却中又は前記冷却後に、鋼板表面に溶融亜鉛めっき処理を施すことを特徴とする。
さらに、本発明の請求項6による高強度冷延鋼板の製造方法は、
前記溶融亜鉛めっき処理を施した後、480〜550℃で5〜60秒間保持して、前記溶融亜鉛めっき処理により形成した亜鉛めっき層を合金化することを特徴とする。
なお、本明細書及び請求項の記載について「A〜B」の表記は、境界値となるA及びBを範囲に含める意味である(A,Bは、任意の数字又は文字である)。
Furthermore, the manufacturing method of the high-strength cold-rolled steel sheet according to claim 5 of the present invention,
A hot dip galvanizing process is performed on the steel sheet surface during or after the cooling.
Furthermore, the manufacturing method of the high-strength cold-rolled steel sheet according to claim 6 of the present invention is
After the hot dip galvanizing treatment, the galvanized layer formed by the hot dip galvanizing treatment is alloyed by holding at 480 to 550 ° C. for 5 to 60 seconds.
In addition, about description of this specification and a claim, the description of "A-B" is the meaning which includes A and B used as a boundary value in a range (A and B are arbitrary numbers or a character).

本発明の鋼板は、低歪域での吸収エネルギーが大きく、耐衝突特性に優れる。   The steel sheet of the present invention has a large absorbed energy in a low strain region and is excellent in impact resistance.

以下、本発明の実施の形態について具体的に説明する。なお、以下の記載において、成分に関する「%」表示は特に断らない限り質量%を意味するものとする。
[高強度冷延鋼板について]
本実施形態にかかる高強度冷延鋼板は、C:0.05〜0.25%以下、Si:2.0%以下、Mn:1.0〜3.0%、P:0.10%以下、S:0.02%以下、Al:0.01〜2%含み、かつTi、NbおよびVのうち1種または2種以上を合計で0.01〜0.2%含み、残部が鉄および不可避的不純物からなる組成を有する。さらに、鋼組織として、フェライトと、マルテンサイト、ベイナイトおよび残留γのうち1種または2種以上からなる低温変態相(以下、単に「低温変態相」と記述することもある。)と、を有し、該低温変態相の体積率が10〜50vol.%、かつ該低温変態相の平均結晶粒径が2μm以下であり、近接する該低温変態相間の平均距離が2μm以下である。
Hereinafter, embodiments of the present invention will be specifically described. In addition, in the following description, the "%" display regarding a component shall mean the mass% unless there is particular notice.
[About high-strength cold-rolled steel sheets]
The high-strength cold-rolled steel sheet according to the present embodiment includes C: 0.05 to 0.25% or less, Si: 2.0% or less, Mn: 1.0 to 3.0%, P: 0.10% or less. , S: 0.02% or less, Al: 0.01-2% included, and one or more of Ti, Nb and V are included in a total of 0.01-0.2%, the balance being iron and It has a composition consisting of inevitable impurities. Furthermore, the steel structure has ferrite and a low-temperature transformation phase composed of one or more of martensite, bainite and residual γ (hereinafter sometimes simply referred to as “low-temperature transformation phase”). The volume fraction of the low temperature transformation phase is 10 to 50 vol. %, And the average crystal grain size of the low temperature transformation phase is 2 μm or less, and the average distance between the adjacent low temperature transformation phases is 2 μm or less.

次に、各成分組成について具体的に説明する。
(C:0.05〜0.25%)
Cは鋼の強化に有用な元素であり、マルテンサイト等の低温変態相を生成させる上でも重要な元素である。しかし、含有量が0.05%に満たないとその添加効果に乏しく、一方、0.25%を超えて含有させると延性や溶接性が劣化するため、Cは0.05〜0.25%の範囲に限定した。
(Si:2.0%以下)
Siは固溶強化成分として、強度−伸びバランスを改善しつつ強度を向上させるのに有効に寄与するが、過剰な添加は、延性や表面性状、溶接性を劣化させるので、Siは、2.0%以下で含有させるものとした。なお、溶融亜鉛めっきを施す場合にはめっき性の観点からSi量を1.0%以下とするのが好ましい。
Next, each component composition will be specifically described.
(C: 0.05-0.25%)
C is an element useful for strengthening steel, and is also an important element in generating a low-temperature transformation phase such as martensite. However, if the content is less than 0.05%, the effect of addition is poor. On the other hand, if the content exceeds 0.25%, ductility and weldability deteriorate, so C is 0.05 to 0.25%. It was limited to the range.
(Si: 2.0% or less)
Si, as a solid solution strengthening component, effectively contributes to improving strength while improving the strength-elongation balance, but excessive addition deteriorates ductility, surface properties, and weldability. The content was 0% or less. In addition, when performing hot dip galvanization, it is preferable to make Si amount into 1.0% or less from a viewpoint of plating property.

(Mn:1.0〜3.0%)
Mnは鋼の強化に有効な元素であり、マルテンサイト等の低温変態相の生成を促進する。このような作用は、Mn含有量が1.0%以上で認められる。ただし、Mnを3.0%を超えて過剰に添加すると、過度の第2相分率(マルテンサイト、ベイナイト、残留オーステナイトの体積率)の増加や固溶強化量の増加により強度上昇が著しくなり、延性の低下を招く。従って、Mn量を1.0〜3.0%とする。
(P:0.10%以下)
Pは鋼の強化に有効な元素であるが、0.10%を超えて過剰に添加すると、粒界偏析により脆化を引き起こし、衝撃特性を劣化させる。従って、P量を0.10%以下とする。
(Mn: 1.0-3.0%)
Mn is an element effective for strengthening steel and promotes the generation of low-temperature transformation phases such as martensite. Such an effect is recognized when the Mn content is 1.0% or more. However, if Mn is added excessively exceeding 3.0%, the strength rises significantly due to an excessive increase in the second phase fraction (volume ratio of martensite, bainite, residual austenite) and an increase in the amount of solid solution strengthening. , Leading to a decrease in ductility. Therefore, the amount of Mn is set to 1.0 to 3.0%.
(P: 0.10% or less)
P is an element effective for strengthening steel, but if added in excess of 0.10%, it causes embrittlement due to grain boundary segregation and deteriorates impact properties. Therefore, the P content is 0.10% or less.

(S:0.02%以下)
SはMnSなどの介在物となって、耐衝撃特性の劣化や溶接部のメタルフローに沿った割れの原因になるので極力低い方が良いが、製造コストの面から0.02%以下とする。
(Al:0.01〜2.0%)
Alは脱酸剤として作用し、鋼の清浄度に有効な元素であり、脱酸工程で添加することが好ましい。ここに、Al量が0.01%に満たないとその添加効果に乏しくなるので、下限を0.01%とした。また、AlはSiと同様に固溶強化成分として、強度−伸びバランスを改善しつつ強度を向上させるのにも有効に寄与するが、2%を超えて含有するとその効果が飽和するだけでなく、鋼中の介在物の量が増加し延性を低下させる。したがってAlの添加量は2.0%以下に限定する。
(S: 0.02% or less)
S is an inclusion such as MnS, which causes deterioration of impact resistance and cracks along the metal flow of the weld. Therefore, it is better to be as low as possible, but 0.02% or less from the viewpoint of manufacturing cost. .
(Al: 0.01-2.0%)
Al acts as a deoxidizer and is an element effective for the cleanliness of steel, and is preferably added in the deoxidation step. If the amount of Al is less than 0.01%, the effect of addition becomes poor, so the lower limit was made 0.01%. Moreover, Al contributes effectively to improve the strength while improving the strength-elongation balance as a solid solution strengthening component like Si, but if it exceeds 2%, the effect is not only saturated. The amount of inclusions in the steel increases and the ductility decreases. Therefore, the addition amount of Al is limited to 2.0% or less.

(Ti、NbおよびVのうち1種または2種以上を合計で0.01%〜0.2%)
Ti、Nb、Vは本発明において重要な元素である。これらの元素を添加することによってTiC、NbCおよびVC等が析出し、鋼板の再結晶を抑制することにより組織の微細化に有効に働く。Ti、Nb、Vの添加量の合計が0.01%未満では上記の効果に乏しく、0.2%を超えて添加しても効果が飽和するだけでなく、析出物が過剰になりフェライトの延性の低下を招く。従ってTi、Nb、Vの添加量の合計を0.01〜0.2%の範囲とした。なお、好ましい範囲としては0.02〜0.1%である。
(Totally 0.01% to 0.2% of one or more of Ti, Nb and V)
Ti, Nb, and V are important elements in the present invention. By adding these elements, TiC, NbC, VC, and the like are precipitated, and effectively work to refine the structure by suppressing recrystallization of the steel sheet. When the total amount of Ti, Nb, and V is less than 0.01%, the above effect is poor, and adding more than 0.2% not only saturates the effect, but also causes excessive precipitates and The ductility is reduced. Therefore, the total addition amount of Ti, Nb, and V is set to a range of 0.01 to 0.2%. A preferable range is 0.02 to 0.1%.

以上、基本成分について説明したが、本発明ではその他にも以下に述べる元素を適宜含有させることができる。
(CrおよびMo:1種または2種の合計で0.05〜2.0%)
Cr、Moは、いずれも強化成分として必要に応じて含有させることができるが、多量の添加はかえって強度−延性バランスを劣化させる。このため、Cr及びMoの1種または2種を合計で2.0%以下とすることが望ましい。また、上記の作用を発揮させるためには、Cr、Moの1種または2種を合計で0.05%以上含有させることが好ましい。
The basic components have been described above. However, in the present invention, other elements described below can be appropriately contained.
(Cr and Mo: 0.05 to 2.0% in total of 1 type or 2 types)
Both Cr and Mo can be contained as a reinforcing component as required, but a large amount of addition deteriorates the strength-ductility balance. For this reason, it is desirable that one or two of Cr and Mo be 2.0% or less in total. Moreover, in order to exhibit said effect | action, it is preferable to contain 0.05% or more of 1 type or 2 types of Cr and Mo in total.

(B:0.005%以下)
Bは粒界強度の上昇を通じて加工性を改善する効果を有しており、必要に応じて含有させることができる。しかしながら過剰な含有は加工性を劣化させるため、上限を0.005%とする。
(Caおよび希土類元素(REM):1種または2種以上の合計で0.01%以下)
Ca、REMはいずれも硫化物の形態制御により加工性を改善する効果を有しており、必要に応じて1種または2種以上を含有させることができる。しかしながら過剰な添加は清浄度に悪影響を及ぼす恐れがあるため、CaおよびREMの含有量は合計で0.01%以下とする。
(B: 0.005% or less)
B has an effect of improving workability through an increase in grain boundary strength, and can be contained as required. However, excessive content deteriorates workability, so the upper limit is made 0.005%.
(Ca and rare earth elements (REM): 0.01% or less in total of 1 type or 2 types or more)
Both Ca and REM have the effect of improving workability by controlling the form of sulfides, and can contain one or more as required. However, excessive addition may adversely affect cleanliness, so the Ca and REM contents are made 0.01% or less in total.

次に鋼組織について説明する。
低温変態相は、強度の上昇および耐衝撃特性の向上に有効に働く。低温変態相の体積率が10%未満ではその効果に乏しく、50%を超えると加工性が劣化するため、低温変態相の体積率は10〜50%とする。また、低温変態相を微細に分散させることにより耐衝撃特性が向上し、低温変態相の平均結晶粒径が2μm以下および近接する低温変態相間の平均距離が2μm以下でその効果が顕著となる。従って、低温変態相の平均結晶粒径を2μm以下、近接する低温変態相間の平均距離を2μm以下とする。さらに高い耐衝撃特性を得るためには低温変態相の平均結晶粒径を1.5μm以下とすることが好ましい。フェライト粒径は本発明において特に限定しないが、本発明の構成をとると通常3μm以下となる。また、フェライト、マルテンサイト、ベイナイト、残留γ以外の相としてはパーライトを含む可能性があるが、上記相構成を満たしていればパーライトを含むことは問題ない。
Next, the steel structure will be described.
The low temperature transformation phase works effectively to increase strength and improve impact resistance. If the volume ratio of the low temperature transformation phase is less than 10%, the effect is poor, and if it exceeds 50%, the workability deteriorates, so the volume ratio of the low temperature transformation phase is 10 to 50%. Further, the impact resistance is improved by finely dispersing the low temperature transformation phase, and the effect becomes remarkable when the average crystal grain size of the low temperature transformation phase is 2 μm or less and the average distance between adjacent low temperature transformation phases is 2 μm or less. Therefore, the average crystal grain size of the low temperature transformation phase is 2 μm or less, and the average distance between adjacent low temperature transformation phases is 2 μm or less. In order to obtain even higher impact resistance, it is preferable that the average crystal grain size of the low temperature transformation phase is 1.5 μm or less. The ferrite particle size is not particularly limited in the present invention, but usually 3 μm or less when the configuration of the present invention is adopted. Further, the phase other than ferrite, martensite, bainite, and residual γ may contain pearlite, but if it satisfies the above phase configuration, it does not matter if pearlite is contained.

[高強度冷延鋼板の製造方法について]
次に上記構成の高強度冷延鋼板の製造方法について説明する。
上記高強度冷延鋼板は、上記の好適成分組成に調整した鋼を転炉などで溶製し、連続鋳造法等でスラブとし、このスラブに熱間圧延、冷間圧延を施した後、連続焼鈍を行うことで製造される。連続焼鈍では、鋼板を、500℃〜A1変態点における平均加熱速度を10℃/s以上としてA1変態点まで昇温し、次いでAl変態点〜(A3変態点+30℃)の温度域に10秒以上保持した後、550℃以上における平均冷却速度を5℃/s以上として550℃以下まで冷却することで、上記のような鋼組織が形成される。
[About manufacturing method of high strength cold-rolled steel sheet]
Next, a method for producing a high-strength cold-rolled steel sheet having the above configuration will be described.
The high-strength cold-rolled steel sheet is obtained by melting the steel adjusted to the above-mentioned suitable component composition in a converter or the like, forming a slab by a continuous casting method or the like, and subjecting the slab to hot rolling and cold rolling, Manufactured by annealing. The continuous annealing, steel sheet, an average heating rate at 500 ° C. to A 1 transformation point temperature was raised to A 1 transformation point as 10 ° C. / s or higher, then A l temperature of transformation point ~ (A 3 transformation point + 30 ° C.) After holding in the region for 10 seconds or more, the steel structure as described above is formed by cooling to 550 ° C. or less by setting the average cooling rate at 550 ° C. or more to 5 ° C./s or more.

以下、各工程について具体的に説明する。なお、鋳造、熱間圧延、冷間圧延については、本発明において特に限定されるものではなく、以下に記述する条件は好適な条件である。
[鋳造条件]
使用するスラブは、成分のマクロ偏析を防止するために連続鋳造法で製造するのが好ましいが、造塊法、薄スラブ鋳造法で製造してもよい。また、鋼スラブを製造したのち、いったん室温まで冷却し、その後再度加熱する従来法に加え、室温まで冷却しないで、温片のままで加熱炉に挿入する、あるいはわずかの保熱をおこなった後に直ちに圧延する直送圧延・直接圧延などの省エネルギープロセスも問題なく適用できる。
Hereinafter, each step will be specifically described. In addition, about casting, hot rolling, and cold rolling, it does not specifically limit in this invention, The conditions described below are suitable conditions.
[Casting conditions]
The slab to be used is preferably produced by a continuous casting method in order to prevent macro segregation of components, but may be produced by an ingot-making method or a thin slab casting method. After manufacturing the steel slab, in addition to the conventional method of cooling to room temperature and then heating again, without cooling to room temperature, insert it into a heating furnace as it is, or carry out slight heat retention Energy saving processes such as direct feed rolling and direct rolling, which are rolled immediately, can be applied without any problem.

[熱間圧延条件]
(スラブ加熱温度:1100℃以上)
スラブ加熱温度は、低温加熱がエネルギー的には好ましいが、加熱温度が1100℃未満では、炭化物が十分に固溶できなかったり、圧延荷重の増大による熱間圧延時のトラブル発生の危険が増大するなどの問題が生じる。なお、酸化重量の増加にともなうスケールロスの増大などから、スラブ加熱温度は1300℃以下とすることが望ましい。
なお、スラブ加熱温度を低くしても熱間圧延時のトラブルを防止するといった観点から、シートバーを加熱する、いわゆるシートバーヒーターを活用してもよい。
[Hot rolling conditions]
(Slab heating temperature: 1100 ° C or higher)
As for the slab heating temperature, low-temperature heating is preferable in terms of energy, but if the heating temperature is less than 1100 ° C., the carbide cannot be sufficiently dissolved, or the risk of trouble during hot rolling due to an increase in rolling load increases. Problems arise. Note that the slab heating temperature is desirably 1300 ° C. or less because of an increase in scale loss accompanying an increase in oxidized weight.
From the viewpoint of preventing troubles during hot rolling even if the slab heating temperature is lowered, a so-called sheet bar heater that heats the sheet bar may be used.

(仕上げ圧延終了温度:A3変態点以上)
仕上げ圧延終了温度がA3変態点未満では、圧延中にαとγが生成して、鋼板にバンド状組織が生成し易くなり、かかるバンド状組織は冷間圧延後や焼鈍後にも残留し、材料特性に異方性を生じさせたり、加工性を低下させる原因となる場合がある。このため、仕上げ圧延温度はA3変態点以上とすることが望ましい。
(巻取り温度:450℃〜700℃)
巻取り温度が450℃未満あるいは700℃を超えると炭窒化物の生成が不十分となったり、巻取り温度の制御が困難となるなどの問題が生じる。このため、巻取り温度は450〜700℃の範囲とするのが望ましい。
(Finish rolling end temperature: A 3 transformation point or higher)
The finish rolling completion temperature is A less than 3 transformation point, and generates the α and γ during rolling, the band-like structure is liable to generate in the steel sheet, such band-like tissue also remain after or annealing after cold rolling, It may cause anisotropy in the material properties or cause a decrease in workability. Therefore, the finish rolling temperature is preferably set to A 3 transformation point or more.
(Winding temperature: 450 ° C to 700 ° C)
When the coiling temperature is less than 450 ° C. or exceeds 700 ° C., there are problems such as insufficient carbonitride generation and difficulty in controlling the coiling temperature. For this reason, it is desirable that the coiling temperature be in the range of 450 to 700 ° C.

なお、本発明における熱延工程では、熱間圧延時の圧延荷重を低減するために仕上圧延の一部または全部を潤滑圧延としてもよい。潤滑圧延を行うことは、鋼板形状の均一化、材質の均一化の観点からも有効である。なお、潤滑圧延の際の摩擦係数は0.25〜0.10の範囲とすることが好ましい。また、前後のシートバー同士を接合し、連続的に仕上圧延する連続圧延プロセスとすることが好ましい。連続圧延プロセスを適用することは、熱間圧延の操業安定性の観点からも望ましい。   In the hot rolling process of the present invention, part or all of finish rolling may be lubricated rolling in order to reduce the rolling load during hot rolling. Performing lubrication rolling is also effective from the viewpoint of uniform steel plate shape and uniform material. In addition, it is preferable to make the friction coefficient in the case of lubrication rolling into the range of 0.25-0.10. Moreover, it is preferable to set it as the continuous rolling process which joins the front and back sheet | seat bars and finish-rolls continuously. The application of the continuous rolling process is also desirable from the viewpoint of the operational stability of hot rolling.

ついで、好ましくは熱延鋼板の表面の酸化スケールを酸洗により除去した後、冷間圧延に供して所定の板厚の冷延鋼板とする。ここに酸洗条件や冷間圧延条件は特に制限されるものではなく、常法に従えば良い。
なお、冷間圧延時の圧下率は焼鈍時、逆変態により生成するγの核生成サイトを増やし、結晶粒の微細化を促すという観点から40%以上とすることが好ましい。
Next, preferably after removing the oxidized scale on the surface of the hot-rolled steel sheet by pickling, it is subjected to cold rolling to obtain a cold-rolled steel sheet having a predetermined thickness. Here, pickling conditions and cold rolling conditions are not particularly limited, and may be in accordance with conventional methods.
The rolling reduction during cold rolling is preferably 40% or more from the viewpoint of increasing the number of γ nucleation sites generated by reverse transformation during annealing and promoting the refinement of crystal grains.

[連続焼鈍条件]
(500℃〜A1変態点における平均加熱速度:10℃/s以上)
加熱速度は本発明における製造方法の中で最も重要な条件となる。本発明の鋼における再結晶温度域である500℃からA1変態点における平均加熱速度を10℃/s以上とすることで、加熱昇温時の再結晶が抑制され、A1変態点以上で生成するγの微細化、ひいては焼鈍冷却後の組織の微細化に有効に働く。平均加熱速度が10℃/s未満では、加熱昇温時にαの再結晶が起こり、α中に導入された歪が開放され十分な微細化が達成できなくなる。
従って、500℃〜A1変態点における平均加熱速度を10℃/s以上とした。該平均加熱速度の好ましい範囲は20℃/s以上である。
[Continuous annealing conditions]
(Average heating rate at 500 ° C. to A 1 transformation point: 10 ° C./s or more)
The heating rate is the most important condition in the production method of the present invention. By adjusting the average heating rate at the A 1 transformation point from 500 ° C., which is the recrystallization temperature range in the steel of the present invention, to 10 ° C./s or more, recrystallization at the heating temperature rise is suppressed, and at the A 1 transformation point or more. It works effectively for the refinement of the γ produced, and hence the refinement of the structure after annealing and cooling. If the average heating rate is less than 10 ° C./s, recrystallization of α occurs at the time of heating and heating, the strain introduced in α is released, and sufficient miniaturization cannot be achieved.
Accordingly, the average heating rate at the 500 ° C. to A 1 transformation point is set to 10 ° C./s or more. A preferable range of the average heating rate is 20 ° C./s or more.

(A1変態点〜(A3変態点+30℃)で10秒以上保持)
加熱温度がA1変態点未満あるいは、A1変態点〜(A3変態点+30℃)の加熱温度域における保持時間が10秒未満では、焼鈍時のγの生成が不十分となり、焼鈍冷却後に十分な量の第2相が確保できなくなる。また、加熱温度が(A3変態点+30℃)を超えると、焼鈍中のγ粒の成長が激しく、十分な微細化が達成できなくなる。この加熱温度域における保持時間の上限は、エネルギー的な観点およびγの粗大化抑制から300秒以下とすることが好ましい。
(A 1 transformation point to (A 3 transformation point + 30 ° C) held for 10 seconds or more)
When the heating temperature is less than the A 1 transformation point or the holding time in the heating temperature range from the A 1 transformation point to (A 3 transformation point + 30 ° C.) is less than 10 seconds, the generation of γ during annealing becomes insufficient, and after annealing cooling A sufficient amount of the second phase cannot be secured. On the other hand, if the heating temperature exceeds (A 3 transformation point + 30 ° C.), the growth of γ grains during annealing is intense and sufficient miniaturization cannot be achieved. The upper limit of the holding time in this heating temperature region is preferably set to 300 seconds or less from the viewpoint of energy and suppression of γ coarsening.

(加熱温度から550℃までの平均冷却速度:5℃/s以上)
平均冷却速度が5℃/s未満では冷却中のγ→α変態の過冷度が小さくなり、結晶粒が粗大化する。また冷却時にパーライトが生成し、十分な量の低温変態相が得られなくなる。
また、550℃以下まで冷却した後に過時効処理を施してもよい。その際、過時効処理の条件は特に限定しないが、保持温度250〜550℃、保持時間10〜1000秒の範囲とすることが好ましい。
以上のような製造方法とすることにより、前記の微細組織(低温変態相)を有し、低歪域での耐衝撃特性に優れる高強度冷延鋼板を得ることができる。
(Average cooling rate from heating temperature to 550 ° C: 5 ° C / s or more)
When the average cooling rate is less than 5 ° C./s, the degree of supercooling of the γ → α transformation during cooling becomes small, and the crystal grains become coarse. Further, pearlite is generated during cooling, and a sufficient amount of low-temperature transformation phase cannot be obtained.
Moreover, you may perform an overaging process after cooling to 550 degrees C or less. At that time, the conditions for the overaging treatment are not particularly limited, but it is preferable that the holding temperature is 250 to 550 ° C. and the holding time is 10 to 1000 seconds.
By setting it as the above manufacturing methods, the high intensity | strength cold-rolled steel plate which has the said microstructure (low temperature transformation phase) and is excellent in the impact-resistant characteristic in a low strain region can be obtained.

上記の焼鈍を連続溶融亜鉛めっきラインで行い、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板を製造することも可能である。合金化溶融亜鉛めっき鋼板の製造においては、めっき処理後、480〜550℃で5〜60秒保持して、溶融亜鉛めっき皮膜の合金化を行う。
なお、前記の焼鈍後の鋼板または溶融亜鉛めっき処理後の鋼板(合金化溶融亜鉛めっき鋼板を含む)には、形状矯正、表面粗度等の調整のため調質圧延を加えてもよい。また、樹脂あるいは油脂コーティング、各種塗装等の処理を施しても何ら不都合はない。
It is also possible to produce the hot dip galvanized steel sheet and the alloyed hot dip galvanized steel sheet by performing the above annealing in a continuous hot dip galvanizing line. In the production of the alloyed hot-dip galvanized steel sheet, after the plating treatment, the hot-dip galvanized film is alloyed by holding at 480 to 550 ° C. for 5 to 60 seconds.
In addition, you may add temper rolling for adjustment of shape correction, surface roughness, etc. to the steel plate after said annealing or the steel plate after a hot dip galvanization process (a galvannealed steel plate is included). In addition, there is no inconvenience even if treatments such as resin or oil coating and various paintings are applied.

次に、本発明の効果を確認する試験を行ったので、説明する。
まず、表1に示す組成を有し、残部がFeおよび不可避的不純物よりなる鋼を転炉にて溶製し、連続鋳造法にて鋳片とした。得られた鋳片を板厚3.0mmまで熱間圧延した。熱間圧延の条件は、仕上げ温度900℃、冷却速度10℃/s、巻取り温度600℃とした。
Next, since the test which confirms the effect of this invention was done, it demonstrates.
First, steel having the composition shown in Table 1 with the balance being Fe and inevitable impurities was melted in a converter and made into a slab by a continuous casting method. The obtained slab was hot-rolled to a plate thickness of 3.0 mm. The hot rolling conditions were a finishing temperature of 900 ° C., a cooling rate of 10 ° C./s, and a winding temperature of 600 ° C.

Figure 0005320681
Figure 0005320681

次いで、熱延鋼板を酸洗した後、冷間圧延を行い、板厚1.2mmとした。
次いで、これら冷延鋼板に、連続焼鈍ラインまたは連続溶融亜鉛めっきラインにて、表2に示す処理を施した。
Next, after pickling the hot-rolled steel sheet, cold rolling was performed to obtain a sheet thickness of 1.2 mm.
Next, the processes shown in Table 2 were performed on these cold-rolled steel sheets in a continuous annealing line or a continuous hot dip galvanizing line.

Figure 0005320681
Figure 0005320681

なお、表2中、連続焼鈍条件の「加熱温度」及び「保持時間」は、Al変態点〜(A3変態点+30℃)の温度域での加熱温度及び保持時間である。
表2に示す処理後、得られた鋼板のミクロ組織、引張特性および耐衝撃特性について調査を行い、その結果を表3に示した。
In Table 2, “heating temperature” and “holding time” under the continuous annealing conditions are the heating temperature and holding time in the temperature range from the Al transformation point to (A 3 transformation point + 30 ° C.).
After the treatment shown in Table 2, the microstructure, tensile properties and impact resistance properties of the obtained steel sheet were investigated, and the results are shown in Table 3.

Figure 0005320681
Figure 0005320681

なお、組織は鋼板の板厚1/4部の圧延方向断面について、走査型電子顕微鏡を用いて5000倍の視野で観察し、フェライトと低温変態相の面積率を求めてこれを体積率とした。低温変態相の平均粒径については、走査型電子顕微鏡を用いて5000倍で観察し、視野の低温変態相の面積の合計を当該低温変態相の個数で割って平均面積を求め、その1/2乗を平均粒径とした。また、近接する低温変態相間の平均距離は、次のようにして決定した。まず、任意に選んだ低温変態相について、当該低温変態相内の任意に選んだ1点から周囲に存在する別の各低温変態相の最近接粒界までの距離を求め、その中で最も距離の短い3個の測定値の平均をその低温変態相の近接距離とした。同様に合計15個の低温変態相について近接距離を求め、これら15個の平均値をその鋼の近接する低温変態相間の平均距離とした。   In addition, the structure was observed with a scanning electron microscope in a rolling direction cross section of ¼ part of the plate thickness of the steel sheet with a field of view of 5000 times, and the area ratio of ferrite and the low-temperature transformation phase was obtained to be the volume ratio. . The average particle size of the low-temperature transformation phase was observed at a magnification of 5000 using a scanning electron microscope, and the total area of the low-temperature transformation phases in the visual field was divided by the number of the low-temperature transformation phases to obtain the average area. The square was taken as the average particle size. Moreover, the average distance between adjacent low temperature transformation phases was determined as follows. First, for the arbitrarily selected low-temperature transformation phase, the distance from one arbitrarily selected point in the low-temperature transformation phase to the nearest grain boundary of each other low-temperature transformation phase is obtained, and the distance is the most The average of three short measured values was taken as the proximity distance of the low temperature transformation phase. Similarly, the proximity distance was obtained for a total of 15 low-temperature transformation phases, and the average value of these 15 was taken as the average distance between the low-temperature transformation phases adjacent to the steel.

引張特性は無加工の鋼板の圧延方向と直角方向から採取したJIS5号試験片を用いて、歪速度10-3/sで引張試験を行い測定した。なお、表3中、「YS」は降伏強度、「TS」は引張強度、「YR」は降伏比、「El」は全伸び(破断伸び)である。
衝撃吸収特性は、同じく無加工の鋼板の圧延方向と直角方向から採取した平行部の幅5mm、長さ7mmの試験片を用い、歪速度2000/sで引張試験を行ったときの歪量5%までの吸収エネルギーで評価した(鉄と鋼、83(1997)、p.748)。吸収エネルギーは応力−真歪曲線を歪量0〜5%の範囲で積分することにより求めた。
Tensile properties were measured by performing a tensile test at a strain rate of 10 −3 / s using a JIS No. 5 test piece taken from a direction perpendicular to the rolling direction of the unprocessed steel sheet. In Table 3, “YS” is the yield strength, “TS” is the tensile strength, “YR” is the yield ratio, and “El” is the total elongation (breaking elongation).
Similarly, the shock absorption characteristic is that when a tensile test is performed at a strain rate of 2000 / s using a test piece having a width of 5 mm and a length of 7 mm of a parallel portion taken from a direction perpendicular to the rolling direction of a non-processed steel plate, the strain amount is 5 % (Iron and steel, 83 (1997), p.748). Absorbed energy was determined by integrating the stress-true strain curve within a strain range of 0-5%.

結果、表3に示すように、本発明例では歪速度が2000/sで歪量が5%までの吸収エネルギーと静的なTSとの比(AE/TS)が0.05以上となり、高い耐衝撃特性を有することが確認された。
従って、本発明例によれば、耐衝撃特性に優れた冷延鋼板および溶融亜鉛めっき鋼板が得られ、自動車の軽量化と衝突安全性向上との両立を可能とし、自動車車体の高性能化に大きく寄与するという優れた効果を奏する。
As a result, as shown in Table 3, in the example of the present invention, the ratio (AE / TS) between the absorbed energy and the static TS with a strain rate of 2000 / s and a strain amount of up to 5% is higher than 0.05, which is high. It was confirmed to have impact resistance characteristics.
Therefore, according to the example of the present invention, a cold-rolled steel sheet and a hot-dip galvanized steel sheet having excellent impact resistance characteristics can be obtained. There is an excellent effect of greatly contributing.

Claims (6)

C:0.05〜0.25質量%以下、Si:1.0〜2.0質量%、Mn:1.0〜3.0質量%、P:0.10質量%以下、S:0.02質量%以下、Al:0.01〜2質量%含み、かつNbおよびVのうち1種または2種を合計で0.01〜0.2質量%含み、残部が鉄および不可避的不純物からなる鋼組成を有し、
鋼組織として、フェライトと、マルテンサイト、ベイナイトおよび残留γのうち1種または2種以上からなる低温変態相と、を有し、
該低温変態相の体積率が10〜50vol.%、かつ該低温変態相の平均結晶粒径が2μm以下であり、近接する該低温変態相間の平均距離が2μm以下であることを特徴とする高強度冷延鋼板。
C: 0.05-0.25 mass% or less, Si: 1.0-2.0 mass% , Mn: 1.0-3.0 mass%, P: 0.10 mass% or less, S: 0.0. 02% by mass or less, Al: 0.01 to 2% by mass, and one or two of Nb and V in total, 0.01 to 0.2% by mass, with the balance being iron and inevitable impurities Having a steel composition,
As a steel structure, it has ferrite and a low temperature transformation phase composed of one or more of martensite, bainite and residual γ,
The volume ratio of the low temperature transformation phase is 10 to 50 vol. %, And the average crystal grain size of the low-temperature transformation phase is 2 μm or less, and the average distance between the adjacent low-temperature transformation phases is 2 μm or less.
鋼組成として、さらに、下記A群、B群およびC群のうち1群又は2群以上に規定される成分を当該規定範囲内で含有することを特徴とする請求項1に記載の高強度冷延鋼板。(A群)CrおよびMo:1種または2種合計で0.05〜2.0質量%
(B群)B:0.005質量%以下
(C群)Caおよび希土類元素:1種または2種以上の合計で0.01質量%以下
2. The high-strength cold according to claim 1, wherein the steel composition further contains a component defined in one or more of the following groups A, B and C within the specified range. Rolled steel sheet. (Group A) Cr and Mo: 0.05 to 2.0 mass% in total of 1 type or 2 types
(Group B) B: 0.005 mass% or less (Group C) Ca and rare earth elements: 0.01 mass% or less in total of 1 type or 2 types or more
溶融亜鉛めっき層または合金化溶融亜鉛めっき層を表面に有することを特徴とする請求項1または2に記載の高強度冷延鋼板。   The high-strength cold-rolled steel sheet according to claim 1 or 2, which has a hot-dip galvanized layer or an alloyed hot-dip galvanized layer on the surface. 請求項1または2に記載の前記鋼組成を有する鋼素材に熱間圧延及び冷間圧延を施した後、連続焼鈍を施し、
前記連続焼鈍では、前記冷間圧延により製造した鋼板を、500℃〜A1 変態点における平均加熱速度を10℃/s以上としてA1 変態点まで昇温し、次いでA1 変態点〜(A3 変態点+30℃)の温度域に10秒以上保持した後、550℃以上における平均冷却速度を5℃/s以上として550℃以下まで冷却することを特徴とする高強度冷延鋼板の製造方法。
After subjecting the steel material having the steel composition according to claim 1 or 2 to hot rolling and cold rolling, continuous annealing is performed,
And in the continuous annealing, the steel sheet produced by rolling the cold, 500 ° C. to A 1 the average heating rate in the transformation temperature was elevated to the A 1 transformation point as 10 ° C. / s or higher, followed by the A 1 transformation point ~ (A (3 transformation point + 30 ° C.) After maintaining for 10 seconds or more in the temperature range, the average cooling rate at 550 ° C. or more is set to 5 ° C./s or more and cooled to 550 ° C. or less. .
前記冷却中又は前記冷却後に、鋼板表面に溶融亜鉛めっき処理を施すことを特徴とする請求項4に記載の高強度冷延鋼板の製造方法。   The method for producing a high-strength cold-rolled steel sheet according to claim 4, wherein hot-dip galvanizing treatment is performed on the steel sheet surface during or after the cooling. 前記溶融亜鉛めっき処理を施した後、480〜550℃で5〜60秒間保持して、前記溶融亜鉛めっき処理により形成した亜鉛めっき層を合金化することを特徴とする請求項5に記載の高強度冷延鋼板の製造方法。   The high galvanizing layer according to claim 5, wherein after the hot dip galvanizing treatment is performed, the galvanized layer formed by the hot dip galvanizing treatment is alloyed by holding at 480 to 550 ° C for 5 to 60 seconds. A method for producing a high strength cold-rolled steel sheet.
JP2007070677A 2007-03-19 2007-03-19 High strength cold rolled steel sheet and method for producing high strength cold rolled steel sheet Expired - Fee Related JP5320681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007070677A JP5320681B2 (en) 2007-03-19 2007-03-19 High strength cold rolled steel sheet and method for producing high strength cold rolled steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007070677A JP5320681B2 (en) 2007-03-19 2007-03-19 High strength cold rolled steel sheet and method for producing high strength cold rolled steel sheet

Publications (2)

Publication Number Publication Date
JP2008231480A JP2008231480A (en) 2008-10-02
JP5320681B2 true JP5320681B2 (en) 2013-10-23

Family

ID=39904645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007070677A Expired - Fee Related JP5320681B2 (en) 2007-03-19 2007-03-19 High strength cold rolled steel sheet and method for producing high strength cold rolled steel sheet

Country Status (1)

Country Link
JP (1) JP5320681B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021504576A (en) * 2017-12-22 2021-02-15 ポスコPosco High-strength steel sheet with excellent collision characteristics and formability and its manufacturing method

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4737319B2 (en) 2009-06-17 2011-07-27 Jfeスチール株式会社 High-strength galvannealed steel sheet with excellent workability and fatigue resistance and method for producing the same
JP4883216B2 (en) * 2010-01-22 2012-02-22 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in workability and spot weldability and method for producing the same
WO2011093490A1 (en) * 2010-01-29 2011-08-04 新日本製鐵株式会社 Steel sheet and process for producing steel sheet
CN103038381B (en) * 2010-05-27 2015-11-25 新日铁住金株式会社 Steel plate and manufacture method thereof
JP5136609B2 (en) 2010-07-29 2013-02-06 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in formability and impact resistance and method for producing the same
EA022435B1 (en) 2010-08-23 2015-12-30 Ниппон Стил Энд Сумитомо Метал Корпорейшн Cold-rolled steel sheet and process for production thereof
JP5741412B2 (en) * 2011-12-02 2015-07-01 新日鐵住金株式会社 Alloyed hot-dip galvanized steel strip and method for producing the same
JP5741413B2 (en) * 2011-12-02 2015-07-01 新日鐵住金株式会社 Alloyed hot-dip galvanized steel strip and method for producing the same
ES2673111T3 (en) 2012-02-22 2018-06-19 Nippon Steel & Sumitomo Metal Corporation Cold rolled steel sheet and process to manufacture it
JP6052078B2 (en) * 2012-07-04 2016-12-27 Jfeスチール株式会社 Manufacturing method of cold rolled steel sheet with high strength and low yield ratio
JP5910396B2 (en) * 2012-07-30 2016-04-27 新日鐵住金株式会社 Hot-dip galvanized steel sheet and manufacturing method thereof
JP5807624B2 (en) * 2012-07-30 2015-11-10 新日鐵住金株式会社 Cold rolled steel sheet and method for producing the same
JP6264176B2 (en) * 2013-04-23 2018-01-24 新日鐵住金株式会社 Cold rolled steel sheet and method for producing the same
WO2020245626A1 (en) 2019-06-03 2020-12-10 Arcelormittal Cold rolled and coated steel sheet and a method of manufacturing thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3020617B2 (en) * 1990-12-28 2000-03-15 川崎製鉄株式会社 Ultra-strength cold-rolled steel sheet with good bending workability and impact properties and method for producing the same
JP4193315B2 (en) * 2000-02-02 2008-12-10 Jfeスチール株式会社 High strength steel sheet and high strength galvanized steel sheet with excellent ductility and low yield ratio, and methods for producing them
JP2003247043A (en) * 2001-07-06 2003-09-05 Jfe Steel Kk High tensile strength galvanized, cold rolled steel sheet having excellent balance in strength-ductility and production method thereof
JP3887235B2 (en) * 2002-01-11 2007-02-28 新日本製鐵株式会社 High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength galvannealed steel sheet excellent in stretch flangeability and impact resistance, and manufacturing method thereof
JP3858146B2 (en) * 2002-01-29 2006-12-13 Jfeスチール株式会社 Manufacturing method of high-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet
JP4370795B2 (en) * 2003-03-26 2009-11-25 Jfeスチール株式会社 Method for producing hot-dip galvanized steel sheet
JP4843981B2 (en) * 2004-03-31 2011-12-21 Jfeスチール株式会社 High-rigidity and high-strength steel sheet and manufacturing method thereof
JP4815974B2 (en) * 2005-09-29 2011-11-16 Jfeスチール株式会社 Manufacturing method of high strength cold-rolled steel sheet with excellent rigidity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021504576A (en) * 2017-12-22 2021-02-15 ポスコPosco High-strength steel sheet with excellent collision characteristics and formability and its manufacturing method
US11345984B2 (en) 2017-12-22 2022-05-31 Posco High-strength steel sheet with excellent crashworthiness characteristics and formability and method of manufacturing the same
US11345985B2 (en) 2017-12-22 2022-05-31 Posco High-strength steel sheet with excellent crashworthiness characteristics and formability and method of manufacturing the same

Also Published As

Publication number Publication date
JP2008231480A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
JP5320681B2 (en) High strength cold rolled steel sheet and method for producing high strength cold rolled steel sheet
JP5463685B2 (en) High-strength cold-rolled steel sheet excellent in workability and impact resistance and method for producing the same
JP5493986B2 (en) High-strength steel sheet and high-strength hot-dip galvanized steel sheet excellent in workability and methods for producing them
CN109642288B (en) High-strength steel sheet and method for producing same
JP5315956B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP6179461B2 (en) Manufacturing method of high-strength steel sheet
KR101399741B1 (en) High-strength hot-dip zinc plated steel sheet excellent in workability and process for manufacturing the same
JP5834717B2 (en) Hot-dip galvanized steel sheet having a high yield ratio and method for producing the same
JP5786316B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and impact resistance and method for producing the same
JP5924332B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
WO2010103936A1 (en) High-strength hot-dip galvanized steel sheet having excellent formability and method for producing same
JP4484070B2 (en) High-tensile hot-rolled steel sheet and manufacturing method thereof
WO2012020511A1 (en) High-strength cold-rolled steel sheet having excellent workability and impact resistance, and method for manufacturing same
JP5825082B2 (en) High yield ratio high strength cold-rolled steel sheet with excellent elongation and stretch flangeability and its manufacturing method
WO2010146796A1 (en) High-strength hot-dip galvannealed steel shhet with excellent workability and fatigue characteristics and process for production thereof
JP2010248565A (en) Ultrahigh-strength cold-rolled steel sheet superior in formability for extension flange, and method for manufacturing the same
WO2012105126A1 (en) High-strength cold-rolled steel sheet having excellent processability and high yield ratio, and method for producing same
WO2011090184A1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and spot weldability and process for producing same
JP5256690B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and impact resistance and method for producing the same
JP4539484B2 (en) High strength hot-rolled steel sheet and manufacturing method thereof
JP4924052B2 (en) High yield ratio high tensile cold-rolled steel sheet and method for producing the same
JP4085809B2 (en) Hot-dip galvanized cold-rolled steel sheet having an ultrafine grain structure and excellent stretch flangeability and method for producing the same
JP5141232B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and manufacturing method thereof
JP2007254887A (en) High strength steel sheet having excellent formability
JP4168750B2 (en) Method for producing hot-dip galvanized cold-rolled steel sheet with an ultrafine grain structure and excellent fatigue properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130701

R150 Certificate of patent or registration of utility model

Ref document number: 5320681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees