JP5141232B2 - High-strength hot-dip galvanized steel sheet with excellent formability and manufacturing method thereof - Google Patents

High-strength hot-dip galvanized steel sheet with excellent formability and manufacturing method thereof Download PDF

Info

Publication number
JP5141232B2
JP5141232B2 JP2007325334A JP2007325334A JP5141232B2 JP 5141232 B2 JP5141232 B2 JP 5141232B2 JP 2007325334 A JP2007325334 A JP 2007325334A JP 2007325334 A JP2007325334 A JP 2007325334A JP 5141232 B2 JP5141232 B2 JP 5141232B2
Authority
JP
Japan
Prior art keywords
steel sheet
phase
galvanized steel
less
dip galvanized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007325334A
Other languages
Japanese (ja)
Other versions
JP2009144225A (en
Inventor
真次郎 金子
周作 ▲高▼木
才二 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007325334A priority Critical patent/JP5141232B2/en
Publication of JP2009144225A publication Critical patent/JP2009144225A/en
Application granted granted Critical
Publication of JP5141232B2 publication Critical patent/JP5141232B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、主に自動車の構造部材に好適な成形性に優れた高強度溶融亜鉛めっき鋼板、特に、780MPa以上の引張強度TSを有し、かつ穴拡げ性や曲げ性などの延性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法に関する。   The present invention is a high-strength hot-dip galvanized steel sheet excellent in formability suitable mainly for structural members of automobiles, in particular, having a tensile strength TS of 780 MPa or more and excellent ductility such as hole expansibility and bendability. The present invention relates to a high-strength hot-dip galvanized steel sheet and a method for producing the same.

近年、衝突時における乗員の安全性確保や車体軽量化による燃費改善を目的として、TSが780MPa以上で、板厚の薄い高強度鋼板の自動車構造部材への適用が積極的に進められている。特に、最近では、980MPa級、1180MPa級のTSを有する極めて強度の高い高強度鋼板の適用も検討されている。   In recent years, for the purpose of ensuring the safety of passengers in the event of a collision and improving fuel efficiency by reducing the weight of the vehicle body, the application of high-strength steel sheets with a TS of 780 MPa or more and a thin plate thickness has been actively promoted. In particular, recently, the application of high strength steel sheets with extremely high strength having TS of 980 MPa class and 1180 MPa class has been studied.

しかしながら、一般的には、鋼板の高強度化は鋼板の穴拡げ性や曲げ性などの延性の低下を招き、成形性の低下につながることから、高強度と優れた成形性を併せ持ち、さらに耐食性にも優れる溶融亜鉛めっき鋼板が望まれている。   However, in general, increasing the strength of a steel sheet leads to a decrease in ductility such as hole expandability and bendability of the steel sheet, leading to a decrease in formability. Therefore, it has both high strength and excellent formability, as well as corrosion resistance. In addition, a hot dip galvanized steel sheet is also desired.

このような要望に対して、例えば、特許文献1には、質量%で、C:0.04〜0.1%、Si:0.4〜2.0%、Mn:1.5〜3.0%、B:0.0005〜0.005%、P≦0.1%、4N<Ti≦0.05%、Nb≦0.1%を含有し、残部がFeおよび不可避的不純物からなる鋼板表層に合金化亜鉛めっき層を有し、合金化溶融亜鉛めっき層中のFe%が5〜25%であり、かつ鋼板の組織がフェライト相とマルテンサイト相の混合組織であるTS800MPa以上の成形性およびめっき密着性に優れた高強度合金化溶融亜鉛めっき鋼板が提案されている。特許文献2には、質量%で、C:0.05〜0.15%、Si:0.3〜1.5%、Mn:1.5〜2.8%、P:0.03%以下、S:0.02%以下、Al:0.005〜0.5%、N:0.0060%以下、残部がFeおよび不可避的不純物からなり、さらに(Mn%)/(C%)≧15かつ(Si%)/(C%)≧4を満たし、フェライト相中に体積率で3〜20%のマルテンサイト相と残留オーステナイト相を含む成形性の良い高強度合金化溶融亜鉛めっき鋼板が提案されている。特許文献3には、質量%で、C:0.04〜0.14%、Si:0.4〜2.2%、Mn:1.2〜2.4%、P:0.02%以下、S:0.01%以下、Al:0.002〜0.5%、Ti:0.005〜0.1%、N:0.006%以下を含有し、さらに(Ti%)/(S%)≧5を満足し、残部Feおよび不可避的不純物からなり、マルテンサイト相と残留オーステナイト相の体積率が合計で6%以上で、かつマルテンサイト相、残留オーステナイト相およびベイナイト相の硬質相組織の体積率α%としたとき、α≦50000×{(Ti%)/48+(Nb%)/93+(Mo%)/96+(V%)/51}である穴拡げ性に優れた低降伏比高強度めっき鋼板が提案されている。特許文献4には、質量%で、C:0.001〜0.3%、Si:0.01〜2.5%、Mn:0.01〜3%、Al:0.001〜4%を含有し、残部Feおよび不可避的不純物からなる鋼板の表面に、質量%で、Al:0.001〜0.5%、Mn:0.001〜2%を含有し、残部Znおよび不可避的不純物からなるめっき層を有する溶融亜鉛めっき鋼板であって、鋼のSi含有率:X質量%、鋼のMn含有率:Y質量%、鋼のAl含有率:Z質量%、めっき層のAl含有率:A質量%、めっき層のMn含有率:B質量%が、0≦3-(X+Y/10+Z/3)-12.5×(A-B)を満たし、鋼板のミクロ組織が、体積率で70〜97%のフェライト主相とその平均粒径が20μm以下であり、第2相として体積率で3〜30%のオーステナイト相および/またはマルテンサイト相からなり、第2相の平均粒径が10μm以下である成形時のめっき密着性および延性に優れた高強度溶融亜鉛めっき鋼板が提案されている。
特開平9-13147号公報 特開平11-279691号公報 特開2002-69574号公報 特開2003-55751号公報
In response to such a request, for example, in Patent Document 1, in mass%, C: 0.04 to 0.1%, Si: 0.4 to 2.0%, Mn: 1.5 to 3.0%, B: 0.0005 to 0.005%, P ≦ Contains 0.1%, 4N <Ti ≦ 0.05%, Nb ≦ 0.1%, the balance is Fe and inevitable impurities steel plate surface layer with alloyed galvanized layer, Fe% in alloyed hot dip galvanized layer is A high-strength galvannealed steel sheet having an excellent formability and plating adhesion of TS800 MPa or higher, which is 5 to 25% and the steel sheet structure is a mixed structure of a ferrite phase and a martensite phase, has been proposed. Patent Document 2 includes mass%, C: 0.05 to 0.15%, Si: 0.3 to 1.5%, Mn: 1.5 to 2.8%, P: 0.03% or less, S: 0.02% or less, Al: 0.005 to 0.5%, N: 0.0060% or less, the balance being Fe and inevitable impurities, further satisfying (Mn%) / (C%) ≧ 15 and (Si%) / (C%) ≧ 4, and in volume ratio in the ferrite phase A high-strength galvannealed steel sheet with good formability containing 3-20% martensite phase and retained austenite phase has been proposed. Patent Document 3 includes mass%, C: 0.04 to 0.14%, Si: 0.4 to 2.2%, Mn: 1.2 to 2.4%, P: 0.02% or less, S: 0.01% or less, Al: 0.002 to 0.5%, Contains Ti: 0.005 to 0.1%, N: 0.006% or less, further satisfies (Ti%) / (S%) ≧ 5, consists of the balance Fe and inevitable impurities, the volume of martensite phase and residual austenite phase When the total ratio is 6% or more and the volume fraction α% of the hard phase structure of the martensite phase, residual austenite phase and bainite phase is α ≦ 50000 × {(Ti%) / 48+ (Nb%) / A low-yield-ratio high-strength plated steel sheet excellent in hole expansibility of 93+ (Mo%) / 96+ (V%) / 51} has been proposed. Patent Document 4 contains, in mass%, C: 0.001 to 0.3%, Si: 0.01 to 2.5%, Mn: 0.01 to 3%, Al: 0.001 to 4%, and the balance Fe and inevitable impurities. Is a hot dip galvanized steel sheet having a plating layer consisting of Al: 0.001 to 0.5%, Mn: 0.001 to 2%, and the balance Zn and unavoidable impurities in mass%, and the Si content of the steel : X mass%, Mn content of steel: Y mass%, Al content of steel: Z mass%, Al content of plating layer: A mass%, Mn content of plating layer: B mass% is 0 ≦ 3- (X + Y / 10 + Z / 3) -12.5 × (AB) is satisfied, the microstructure of the steel sheet is 70-97% ferrite main phase by volume ratio and its average grain size is 20 μm or less, High-strength molten zinc with excellent plating adhesion and ductility during molding, consisting of an austenite phase and / or martensite phase with a volume ratio of 3-30% as the second phase, and the average particle size of the second phase being 10 μm or less Plated steel sheets have been proposed.
JP 9-13147 A JP 11-279691 A JP 2002-69574 A JP 2003-55751 A

しかしながら、特許文献1〜4に記載された高強度溶融亜鉛めっき鋼板では、必ずしも優れた穴拡げ性や曲げ性が得られない。   However, in the high-strength hot-dip galvanized steel sheets described in Patent Documents 1 to 4, excellent hole expandability and bendability cannot always be obtained.

本発明は、780MPa以上のTSを有し、かつ穴拡げ性や曲げ性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法を提供することを目的とする。   An object of the present invention is to provide a high-strength hot-dip galvanized steel sheet having a TS of 780 MPa or more and excellent in hole expansibility and bendability and a method for producing the same.

本発明者らは、780MPa以上のTSを有し、かつ穴拡げ性や曲げ性に優れた高強度溶融亜鉛めっき鋼板について鋭意検討を重ねたところ、以下のことを見出した。   The present inventors have conducted extensive studies on a high-strength hot-dip galvanized steel sheet having a TS of 780 MPa or more and excellent hole expansibility and bendability, and found the following.

i) フェライト相とマルテンサイト相が均一、微細に分散した複合組織とし、かつフェライト相とマルテンサイト相の硬度差を著しく大きくしないことが、穴拡げ性や曲げ性などの延性を向上させる上で効果的である。   i) In order to improve ductility such as hole expandability and bendability, it is necessary to have a composite structure in which the ferrite phase and martensite phase are uniformly and finely dispersed and the hardness difference between the ferrite phase and martensite phase is not significantly increased. It is effective.

ii) 成分組成を適正化した上で、面積率で、50%以上のフェライト相と10%以上のマルテンサイト相を含み、フェライト相に占める粒径が15μm以下で、かつアスペクト比が2.0以下のフェライト粒の面積率が70%以上であり、マルテンサイト相の平均粒径が10μm以下であるミクロ組織とすることにより、780MPa以上のTSおよび優れた穴拡げ性や曲げ性を達成できる。   ii) After optimizing the component composition, the area ratio includes a ferrite phase of 50% or more and a martensite phase of 10% or more, the particle size in the ferrite phase is 15 μm or less, and the aspect ratio is 2.0 or less. By using a microstructure in which the area ratio of the ferrite grains is 70% or more and the average grain size of the martensite phase is 10 μm or less, a TS of 780 MPa or more and excellent hole expansibility and bendability can be achieved.

iii) こうしたミクロ組織は、焼鈍時に、5℃/s以上の平均加熱速度でAc1変態点以上の温度域に加熱し、(Ac1変態点+50)〜(Ac3変態点+25)℃の温度域で10〜500s均熱し、3〜30℃/sの平均冷却速度で550℃以下の温度域まで冷却し、その後、溶融亜鉛めっきを施すことによって得られる。 iii) During annealing, these microstructures are heated to a temperature range above the Ac 1 transformation point at an average heating rate of 5 ° C./s or more, and (Ac 1 transformation point + 50) to (Ac 3 transformation point + 25) ° C. In the temperature range of 10 to 500 s, cooled to a temperature range of 550 ° C. or less at an average cooling rate of 3 to 30 ° C./s, and then hot dip galvanized.

本発明は、このような知見に基づきなされたもので、質量%で、C:0.03〜0.15%、Si:0.8〜2.5%、Mn:1.0〜3.0%、P:0.001〜0.05%、S:0.0001〜0.01%、Al:0.001〜0.1%、N:0.0005〜0.01%、Nb:0.005〜0.05%、Cr:0.1〜2.0%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、面積率で、50%以上のフェライト相と10%以上のマルテンサイト相を含み、前記フェライト相に占める粒径が15μm以下で、かつアスペクト比が2.0以下のフェライト粒の面積率が70%以上であり、前記マルテンサイト相の平均粒径が10μm以下であるミクロ組織を有する成形性に優れた高強度溶融亜鉛めっき鋼板を提供する。   The present invention has been made based on such findings, and in mass%, C: 0.03 to 0.15%, Si: 0.8 to 2.5%, Mn: 1.0 to 3.0%, P: 0.001 to 0.05%, S: 0.0001 -0.01%, Al: 0.001-0.1%, N: 0.0005-0.01%, Nb: 0.005-0.05%, Cr: 0.1-2.0%, with the balance being composed of Fe and inevitable impurities, In the area ratio, the ferrite phase containing 50% or more ferrite phase and 10% or more martensite phase, the grain size in the ferrite phase is 15μm or less, and the area ratio of ferrite grains having an aspect ratio of 2.0 or less is 70% or more. And providing a high-strength hot-dip galvanized steel sheet excellent in formability having a microstructure in which the average particle size of the martensite phase is 10 μm or less.

本発明の高強度溶融亜鉛めっき鋼板には、さらに、質量%で、Mo:0.01〜1.0%、Ni:0.01〜2.0%から選ばれる少なくとも1種の元素や、Ti:0.005〜0.1%、V:0.005〜0.1%から選ばれる少なくとも1種の元素や、B:0.0003〜0.003%が含有されることが好ましい。   In the high-strength hot-dip galvanized steel sheet of the present invention, in mass%, Mo: 0.01 to 1.0%, Ni: 0.01 to 2.0%, at least one element selected from Ti: 0.005 to 0.1%, V: It is preferable that at least one element selected from 0.005 to 0.1% and B: 0.0003 to 0.003% are contained.

本発明の高強度溶融亜鉛めっき鋼板では、亜鉛めっきを合金化亜鉛めっきとすることもできる。   In the high-strength hot-dip galvanized steel sheet of the present invention, galvanization can be alloyed galvanization.

本発明の高強度溶融亜鉛めっき鋼板は、例えば、上記の成分組成を有する鋼板を、5℃/s以上の平均加熱速度でAc1変態点以上の温度域に加熱し、(Ac1変態点+50)〜(Ac3変態点+25)℃の温度域で10〜500s均熱し、3〜30℃/sの平均冷却速度で550℃以下の温度域まで冷却する条件で焼鈍後、溶融亜鉛めっきを施す方法によって製造できる。 The high-strength hot-dip galvanized steel sheet of the present invention, for example, heats a steel sheet having the above component composition to a temperature range equal to or higher than the Ac 1 transformation point at an average heating rate of 5 ° C./s or more (Ac 1 transformation point + 50) ~ (10~500s soaking in a temperature range of Ac 3 transformation point +25) ° C., after annealing under conditions of cooling to a temperature range of 550 ° C. or less at an average cooling rate of 3 to 30 ° C. / s, hot dip galvanized It can manufacture by the method of giving.

本発明の高強度溶融亜鉛めっき鋼板の製造方法では、焼鈍時の冷却後、350〜550℃の温度域で20〜150sの熱処理を施した後に溶融亜鉛めっきを施すことが好ましい。さらに、溶融亜鉛めっきした後に、450〜550℃の温度域で亜鉛めっきを合金化処理することもできる。   In the method for producing a high-strength hot-dip galvanized steel sheet according to the present invention, it is preferable to perform hot-dip galvanization after heat treatment in a temperature range of 350 to 550 ° C. for 20 to 150 seconds after cooling during annealing. Furthermore, after hot dip galvanization, galvanization can also be alloyed in the temperature range of 450-550 degreeC.

本発明により、780MPa以上のTSを有し、かつ穴拡げ性や曲げ性に優れた高強度溶融亜鉛めっき鋼板を製造できるようになった。本発明の高強度溶融亜鉛めっき鋼板を自動車構造部材に適用することにより、より一層の乗員の安全性確保や大幅な車体軽量化による燃費改善を図ることができる。   According to the present invention, a high-strength hot-dip galvanized steel sheet having a TS of 780 MPa or more and excellent in hole expansibility and bendability can be produced. By applying the high-strength hot-dip galvanized steel sheet of the present invention to automobile structural members, it is possible to further improve occupant safety and improve fuel efficiency by significantly reducing the weight of the vehicle body.

以下に、本発明の詳細を説明する。なお、成分元素の含有量を表す「%」は、特に断らない限り「質量%」を意味する。   Details of the present invention will be described below. “%” Representing the content of component elements means “% by mass” unless otherwise specified.

1)成分組成
C:0.03〜0.15%
Cは、鋼を強化するにあたり重要な元素であり、高い固溶強化能を有するとともに、マルテンサイト相による組織強化を利用する際に、その面積率や硬度を調整するために不可欠な元素である。C量が0.03%未満では、必要な面積率のマルテンサイト相を得るのが困難になるとともに、マルテンサイト相が硬質化しないため、十分な強度が得られない。一方、C量が0.15%を超えると、溶接性が劣化するともに、偏析層の形成により成形性の低下を招く。したがって、C量は0.03〜0.15%とする。
1) Component composition
C: 0.03-0.15%
C is an important element for strengthening steel, has high solid solution strengthening ability, and is an indispensable element for adjusting the area ratio and hardness when utilizing structure strengthening by martensite phase. . When the amount of C is less than 0.03%, it becomes difficult to obtain a martensite phase having a required area ratio, and the martensite phase does not harden, so that sufficient strength cannot be obtained. On the other hand, if the amount of C exceeds 0.15%, weldability deteriorates, and formation of a segregation layer causes a decrease in formability. Therefore, the C content is 0.03 to 0.15%.

Si:0.8〜2.5%
Siは、本発明において極めて重要な元素であり、焼鈍時に、フェライト変態を促進するとともに、フェライト相からオーステナイト相へ固溶Cを排出してフェライト相を清浄化し、延性を向上させると同時に、オーステナイト相を安定化するため急冷が困難な溶融亜鉛めっきラインでもマルテンサイト相を生成し、複合組織化を容易にする。また、フェライト相に固溶したSiは、加工硬化を促進して延性を高めるとともに、歪が集中する部位での歪伝搬性を改善して曲げ性を向上させる。さらに、Siは、フェライト相を固溶強化してフェライト相とマルテンサイト相の硬度差を低減し、その界面での亀裂の発生を抑制して局部変形能を改善して穴拡げ性の向上に寄与する。こうした効果を得るには、Si量を0.8%以上にする必要がある。一方、Si量が2.5%を超えると、変態点の上昇が著しく、生産安定性が阻害されるのみならず、異常組織が発達し、成形性が低下する。したがって、Si量は0.8〜2.5%とする。
Si: 0.8-2.5%
Si is an extremely important element in the present invention, and promotes ferrite transformation during annealing and discharges solute C from the ferrite phase to the austenite phase to clean the ferrite phase and improve the ductility. A martensite phase is generated even in a hot dip galvanizing line, where rapid cooling is difficult to stabilize the phase, facilitating complex organization. In addition, Si dissolved in the ferrite phase promotes work hardening and increases ductility, and also improves the bendability by improving the strain propagation at the site where the strain is concentrated. In addition, Si solidifies and strengthens the ferrite phase to reduce the hardness difference between the ferrite phase and the martensite phase, suppresses the occurrence of cracks at the interface, improves local deformability, and improves hole expansibility. Contribute. In order to obtain such an effect, the Si amount needs to be 0.8% or more. On the other hand, when the Si content exceeds 2.5%, the transformation point is remarkably increased, not only the production stability is inhibited, but also an abnormal structure develops and the moldability is lowered. Therefore, the Si content is 0.8 to 2.5%.

Mn:1.0〜3.0%
Mnは、鋼の熱間脆化の防止ならびに強度確保のために有効であるとともに、焼入れ性を向上させて複合組織化を容易にする。こうした効果を得るには、Mn量を1.0%以上にする必要がある。一方、Mn量が3.0%を超えると、成形性の劣化を招く。したがって、Mn量は1.0〜3.0%とする。
Mn: 1.0-3.0%
Mn is effective for preventing hot embrittlement of steel and ensuring strength, and improves hardenability and facilitates the formation of a composite structure. In order to obtain such an effect, the Mn content needs to be 1.0% or more. On the other hand, when the amount of Mn exceeds 3.0%, the moldability is deteriorated. Therefore, the Mn content is 1.0 to 3.0%.

P:0.001〜0.05%
Pは、所望の強度に応じて添加できる元素であり、また、フェライト変態を促進するために複合組織化にも有効な元素である。こうした効果を得るには、P量を0.001%以上にする必要がある。一方、P量が0.05%を超えると、溶接性の劣化を招くとともに、亜鉛めっきを合金化処理する場合には、合金化速度を低下させ、亜鉛めっきの品質を損なう。したがって、P量は0.001〜0.05%とする。
P: 0.001 ~ 0.05%
P is an element that can be added according to the desired strength, and is also an element effective for complex organization in order to promote ferrite transformation. In order to obtain such effects, the P amount needs to be 0.001% or more. On the other hand, if the amount of P exceeds 0.05%, weldability is deteriorated and, when galvanizing is alloyed, the alloying speed is lowered and the quality of galvanizing is impaired. Therefore, the P content is 0.001 to 0.05%.

S:0.0001〜0.01%
Sは、粒界に偏析して熱間加工時に鋼を脆化させるとともに、硫化物として存在して局部変形能を低下させるため、その量は0.01%以下、好ましくは0.003%以下、より好ましくは0.001%以下とする必要がある。しかし、生産技術上の制約から、S量は0.0001%以上にする必要がある。したがって、S量は0.0001〜0.01%、好ましくは0.0001〜0.003%、より好ましくは0.0001〜0.001%とする。
S: 0.0001 ~ 0.01%
S segregates at the grain boundary and embrittles the steel during hot working, and also exists as a sulfide and reduces local deformability, so the amount is 0.01% or less, preferably 0.003% or less, more preferably It is necessary to make it 0.001% or less. However, due to production technology constraints, the S content needs to be 0.0001% or more. Therefore, the S content is 0.0001 to 0.01%, preferably 0.0001 to 0.003%, more preferably 0.0001 to 0.001%.

Al:0.001〜0.1%
Alは、フェライトを生成させ、強度-延性バランスを向上させるのに有効な元素である。こうした効果を得るには、Al量を0.001%以上にする必要がある。一方、Al量が0.1%を超えると、表面性状の劣化を招く。したがって、Al量は0.001〜0.1%とする。
Al: 0.001 to 0.1%
Al is an element effective in generating ferrite and improving the strength-ductility balance. In order to obtain such an effect, the Al content needs to be 0.001% or more. On the other hand, when the Al content exceeds 0.1%, the surface properties are deteriorated. Therefore, the Al amount is 0.001 to 0.1%.

N:0.0005〜0.01%
Nは、室温時効により材質を劣化させる元素である。特に、N量が0.01%を超えると、その程度が顕著となる。その量は少ないほど好ましいが、生産技術上の制約から、N量は0.0005%以上にする必要がある。したがって、N量は0.0005〜0.01%とする。
N: 0.0005-0.01%
N is an element that degrades the material due to room temperature aging. In particular, when the N content exceeds 0.01%, the degree becomes remarkable. The smaller the amount, the better. However, the amount of N needs to be 0.0005% or more due to restrictions on production technology. Therefore, the N content is 0.0005 to 0.01%.

Nb:0.005〜0.05%
Nbは、Si同様、本発明において極めて重要な元素であり、焼鈍の加熱時に再結晶を抑制するため、未再結晶状態でのオーステナト変態が促進され、続く均熱時にオーステナイト相が極めて微細に分散し、その後の冷却時にフェライト相とマルテンサイト相が均一、微細に分散した複合組織が形成される。この均一、微細な複合組織は、塑性変形時に生じた亀裂の伝播を抑制して局部変形能を高め、穴拡げ性を向上させると同時に、歪の伝播性を高めて曲げ性を向上させる。こうした効果を得るには、Nb量を0.005%以上にする必要がある。一方、Nb量が0.05%を超えると、フェライト相を析出強化する作用が大きくなり、延性の低下を招く。したがって、Nb量は0.005〜0.05%とする。
Nb: 0.005-0.05%
Nb, like Si, is an extremely important element in the present invention, and suppresses recrystallization during annealing, so that the austenite transformation in an unrecrystallized state is promoted, and the austenite phase is extremely finely dispersed during subsequent soaking. In the subsequent cooling, a composite structure in which the ferrite phase and the martensite phase are uniformly and finely dispersed is formed. This uniform and fine composite structure suppresses the propagation of cracks generated during plastic deformation to enhance local deformability and improve hole expansibility, and at the same time enhances strain propagation and improves bendability. In order to obtain such effects, the Nb amount needs to be 0.005% or more. On the other hand, if the Nb content exceeds 0.05%, the effect of strengthening the precipitation of the ferrite phase becomes large, resulting in a decrease in ductility. Therefore, the Nb content is 0.005 to 0.05%.

Cr:0.1〜2.0%
Crは、SiやNb同様、本発明において極めて重要な元素であり、焼鈍の均熱時にフェライト相からオーステナイト相へのCの分配を促進し、オーステナイト相の安定化を図り、フェライト相とマルテンサイト相からなる複合組織化を容易にするとともに、その後の冷却時にパーライト相やベイナイト相の生成を著しく遅延させる。また、Crは、冷却後のめっき処理やその合金化処理でマルテンサイト相を軟質化させ、フェライト相とマルテンサイト相の硬度差を低減し、その界面での亀裂の発生を抑制して局部変形能を改善し、穴拡げ性の向上に寄与する。特に、上記したNb添加によって形成された均一、微細な複合組織による亀裂伝播の抑制効果と重畳させることにより、穴拡げ性の著しい改善を図れる。こうした効果を得るには、Cr量を0.1%以上にする必要がある。一方、Cr量が2.0%を超えると、Cr炭化物が過剰に生成し、延性の低下を招く。したがって、Cr量は0.1〜2.0%とする。
Cr: 0.1-2.0%
Cr, like Si and Nb, is an extremely important element in the present invention, and promotes the distribution of C from the ferrite phase to the austenite phase during annealing so that the austenite phase is stabilized, and the ferrite phase and martensite. It facilitates complex organization of phases and significantly delays the formation of pearlite and bainite phases during subsequent cooling. In addition, Cr softens the martensite phase by cooling and alloying after cooling, reduces the hardness difference between the ferrite phase and the martensite phase, and suppresses the occurrence of cracks at the interface, thereby local deformation. Performance and contribute to the improvement of hole expansion. In particular, by overlapping with the effect of suppressing crack propagation by the uniform and fine composite structure formed by adding Nb as described above, the hole expandability can be remarkably improved. In order to obtain such an effect, the Cr amount needs to be 0.1% or more. On the other hand, if the amount of Cr exceeds 2.0%, Cr carbides are excessively generated and ductility is reduced. Therefore, the Cr content is 0.1 to 2.0%.

残部はFeおよび不可避的不純物であるが、以下の理由で、Mo:0.01〜1.0%、Ni:0.01〜2.0%から選ばれる少なくとも1種の元素や、Ti:0.005〜0.1%、V:0.005〜0.1%から選ばれる少なくとも1種の元素や、B:0.0003〜0.003%が含有されることが好ましい。   The balance is Fe and inevitable impurities, but for the following reasons, Mo: 0.01 to 1.0%, Ni: 0.01 to 2.0%, at least one element selected from Ti, 0.005 to 0.1%, V: 0.005 to It is preferable that at least one element selected from 0.1% or B: 0.0003 to 0.003% is contained.

Mo:0.01〜1.0%、Ni:0.01〜2.0%
Mo、Niは、固溶強化元素としての役割のみならず、焼鈍時の冷却過程において、オーステナイト相を安定化し、複合組織化を容易にする。こうした効果を得るには、Mo量、Ni量は、それぞれ0.01%以上にする必要がある。一方、Mo量が1.0%、Ni量が2.0%を超えると、めっき性、成形性、スポット溶接性が劣化する。したがって、Mo量は0.01〜1.0%、Ni量は0.01〜2.0%とする。
Mo: 0.01-1.0%, Ni: 0.01-2.0%
Mo and Ni not only play a role as solid solution strengthening elements, but also stabilize the austenite phase in the cooling process during annealing, facilitating complex organization. In order to obtain such an effect, the Mo content and the Ni content must each be 0.01% or more. On the other hand, when the Mo content exceeds 1.0% and the Ni content exceeds 2.0%, the plating property, formability, and spot weldability deteriorate. Therefore, the Mo amount is 0.01 to 1.0%, and the Ni amount is 0.01 to 2.0%.

Ti:0.005〜0.1%、V:0.005〜0.1%
TiとVは、C、S、Nと析出物を形成して強度および靭性の向上に有効に寄与する。こうした効果を得るには、Ti量、V量をそれぞれ0.005%以上にする必要がある。一方、Ti量、V量がそれぞれ0.1%を超えると、析出強化が過度に働き、延性の低下を招く。したがって、Ti量とV量はそれぞれ0.005〜0.1%とする。
Ti: 0.005-0.1%, V: 0.005-0.1%
Ti and V contribute to the improvement of strength and toughness by forming precipitates with C, S, and N. In order to obtain such effects, the Ti content and the V content must each be 0.005% or more. On the other hand, when the Ti content and V content exceed 0.1%, precipitation strengthening works excessively, leading to a decrease in ductility. Therefore, the Ti amount and the V amount are each 0.005 to 0.1%.

B:0.0003〜0.003%
Bは、オーステナイト粒界からフェライトの生成を抑制して焼入れ性を向上させる元素であり、複合組織化を促進にする。こうした効果を得るには、B量を0.0003%以上にする必要がある。一方、B量が0.003%を超えると、延性の低下を招く。したがって、B量は0.0003〜0.003%とする。
B: 0.0003-0.003%
B is an element that suppresses the formation of ferrite from the austenite grain boundaries and improves the hardenability, and promotes the composite organization. In order to obtain such an effect, the B content needs to be 0.0003% or more. On the other hand, if the amount of B exceeds 0.003%, ductility is reduced. Therefore, the B amount is set to 0.0003 to 0.003%.

2)ミクロ組織
フェライト相の面積率:50%以上
本発明の高強度溶融亜鉛めっき鋼板は、延性に富む軟質なフェライト相中に、主として硬質なマルテンサイト相を均一、微細に分散させた複合組織からなるが、十分な延性を確保するには、面積率で50%以上のフェライト相が必要である。
2) Microstructure Area ratio of ferrite phase: 50% or more The high-strength hot-dip galvanized steel sheet according to the present invention is a composite structure in which a hard martensite phase is uniformly and finely dispersed in a soft ferrite phase rich in ductility. However, to ensure sufficient ductility, a ferrite phase with an area ratio of 50% or more is required.

フェライト相に占める粒径が15μm以下、アスペクト比が2.0以下のフェライト粒の面積率:70%以上
上記のフェライト相の面積率を確保しても、上記したように、フェライト相とマルテンサイト相が均一、微細に分散していないと、亀裂の伝播を抑制したり、歪の伝播性を高めてその局所集中を抑制することにより穴拡げ性や曲げ性を向上させる効果が低減される。そのため、フェライト相の結晶粒を微細にする必要がある。また、結晶粒が展伸すると、亀裂の伝播が助長され、穴拡げ性が低下するため、そのアスペクト比を小さくする必要がある。優れた穴拡げ性や曲げ性を得るには、フェライト相に占める粒径が15μm以下、アスペクト比が2.0以下のフェライト粒の面積率を70%以上にする必要がある。
Area ratio of ferrite grains with a particle size of 15 μm or less and an aspect ratio of 2.0 or less in the ferrite phase: 70% or more Even if the area ratio of the ferrite phase is secured, as described above, the ferrite phase and the martensite phase are If it is not uniformly and finely dispersed, the effect of improving the hole expansibility and bendability is reduced by suppressing the propagation of cracks or increasing the propagation of strain and suppressing its local concentration. Therefore, it is necessary to make the crystal grains of the ferrite phase fine. Further, when the crystal grains are expanded, the propagation of cracks is promoted and the hole expandability is lowered, so that the aspect ratio needs to be reduced. In order to obtain excellent hole expansibility and bendability, it is necessary to make the area ratio of ferrite grains having a grain size in the ferrite phase of 15 μm or less and an aspect ratio of 2.0 or less 70% or more.

マルテンサイト相の面積率:10%以上、マルテンサイト相の平均粒径:10μm以下
780MPa以上のTSを確保するには、マルテンサイト相の面積率を10%以上にする必要がある。また、上記したように、マルテンサイト相がフェライト相中に均一、微細に分散すると、マルテンサイト相とフェライト相の界面で発生する亀裂のサイズが微小になり、その発生頻度も抑制されるとともに、マルテンサイト相自体が亀裂の伝播に対する障害となり、穴拡げ性などの延性が向上する。さらに、均一、微細に分散したマルテンサイト相は、転位の発生源となり、歪の伝播性を高めて曲げ性の向上にも寄与する。このような効果を得るには、マルテンサイト相の平均粒径を10μm以下にする必要がある。
Martensite phase area ratio: 10% or more, Martensite phase average particle size: 10 μm or less
In order to secure TS of 780 MPa or more, the area ratio of the martensite phase needs to be 10% or more. In addition, as described above, when the martensite phase is uniformly and finely dispersed in the ferrite phase, the size of cracks generated at the interface between the martensite phase and the ferrite phase becomes minute, and the occurrence frequency is suppressed, The martensite phase itself becomes an obstacle to the propagation of cracks, and the ductility such as hole expandability is improved. Furthermore, the uniformly and finely dispersed martensite phase becomes a source of dislocations and contributes to the improvement of bendability by increasing the propagation of strain. In order to obtain such effects, the average particle size of the martensite phase needs to be 10 μm or less.

なお、フェライト相とマルテンサイト相以外に、残留オーステナイト相、パーライト相、ベイナイト相を合計の面積率で20%以下の範囲で含んでも、本発明の効果が損なわれることはない。   In addition to the ferrite phase and martensite phase, even if the retained austenite phase, pearlite phase, and bainite phase are included within a total area ratio of 20% or less, the effects of the present invention are not impaired.

ここで、フェライト相およびマルテンサイト相の面積率とは、観察面積に占める各相の面積の割合のことであり、粒径が15μm以下で、かつアスペクト比が2.0以下のフェライト粒の面積率とは、フェライト相の面積に占める粒径が15μm以下で、かつアスペクト比が2.0以下であるフェライト粒の面積の割合のことである。こうした各相の面積率、粒径、アスペクト比は、鋼板の圧延方向に平行な板厚断面を研磨後、3%ナイタールで腐食し、SEM(走査電子顕微鏡)で2000倍の倍率で10視野観察し、市販の画像処理ソフトを用いて求めた。   Here, the area ratio of the ferrite phase and the martensite phase is the ratio of the area of each phase in the observation area, and the area ratio of the ferrite grains having a grain size of 15 μm or less and an aspect ratio of 2.0 or less. Is the ratio of the area of ferrite grains in which the particle size occupies 15 μm or less and the aspect ratio is 2.0 or less in the area of the ferrite phase. The area ratio, grain size, and aspect ratio of each of these phases were determined by polishing 10 mm of cross section parallel to the rolling direction of the steel sheet, corroding with 3% nital, and observing 10 fields at a magnification of 2000 times with a scanning electron microscope (SEM). And obtained using commercially available image processing software.

3)製造条件
本発明の高強度溶融亜鉛めっき鋼板は、例えば、上記の成分組成を有する鋼板を、5℃/s以上の平均加熱速度でAc1変態点以上の温度域に加熱し、(Ac1変態点+50)〜(Ac3変態点+25)℃の温度域で10〜500s均熱し、3〜30℃/sの平均冷却速度で550℃以下の温度域まで冷却する条件で焼鈍後、溶融亜鉛めっきを施す方法によって製造できる。
3) Manufacturing conditions The high-strength hot-dip galvanized steel sheet of the present invention, for example, heats a steel sheet having the above component composition to a temperature range equal to or higher than the Ac 1 transformation point at an average heating rate of 5 ° C./s or higher. After annealing under conditions that soak for 10 to 500 s in the temperature range of 1 transformation point +50) to (Ac 3 transformation point +25) ° C and cool to a temperature range of 550 ° C or less at an average cooling rate of 3 to 30 ° C / s It can be manufactured by a method of applying hot dip galvanizing.

焼鈍の加熱条件:5℃/s以上の平均加熱速度でAc1変態点以上の温度域に加熱
5℃/s以上の平均加熱速度でAc1変態点以上の温度域に加熱することにより、未再結晶のフェライト相をオーステナイト相に変態させ、その後の均熱、冷却過程において、均一、微細なフェライト相とマルテンサイト相の複合組織が得られるため、穴拡げ性や曲げ性が向上する。平均加熱速度が5℃/s未満、加熱温度がAc1変態点未満では、再結晶時に粗大な圧延方向に層状に伸展したアスペクト比の低いフェライト相が生成し、その後の均熱、冷却過程において、均一、微細な複合組織が得られない。
Heating conditions for annealing: Heating to a temperature range above the Ac 1 transformation point at an average heating rate of 5 ° C / s or higher
By heating to the temperature range above the Ac 1 transformation point at an average heating rate of 5 ° C / s or more, the non-recrystallized ferrite phase is transformed into the austenite phase, and in the subsequent soaking and cooling processes, uniform and fine Since a composite structure of ferrite phase and martensite phase is obtained, hole expandability and bendability are improved. If the average heating rate is less than 5 ° C / s and the heating temperature is less than the Ac 1 transformation point, a ferrite phase with a low aspect ratio that has been layered in the coarse rolling direction during recrystallization will form, and in the subsequent soaking and cooling processes A uniform and fine composite structure cannot be obtained.

焼鈍の均熱条件:(Ac1変態点+50)〜(Ac3変態点+25)℃の温度域で10〜500s均熱
上記のような均一、微細な複合組織を得るには、焼鈍時に、再結晶フェライト相を十分に生成させるとともに、Cをオーステナイト相に濃化させて、オーステナイト相を安定化させる必要がある。均熱温度が(Ac1変態点+50)℃未満の場合や、均熱時間が10s未満の場合は、フェライト相に加工組織が残存して回復することによりアスペクト比が低下するとともに、固溶Cの分配が遅延するため、延性に富む軟質なフェライト相が得られず、穴拡げ性や曲げ性が低下する。さらに、オーステナイト相の安定化が不十分となり、マルテンサイト変態が抑制されて高強度化を図れない。一方、均熱温度が(Ac3変態点+25)℃を超えたり、均熱時間が500sを超えると、オーステナイト相が粗大化し、その後の冷却過程において、均一、微細な複合組織が得られず、穴拡げ性や曲げ性が低下する。
Soaking conditions for annealing: (Ac 1 transformation point +50) to (Ac 3 transformation point +25) 10 to 500 s soaking in a temperature range of ° C To obtain a uniform and fine composite structure as described above, during annealing It is necessary to sufficiently generate the recrystallized ferrite phase and to stabilize the austenite phase by concentrating C into the austenite phase. If the soaking temperature is less than (Ac 1 transformation point +50) ° C or if the soaking time is less than 10 s, the processed structure remains in the ferrite phase and recovers, so that the aspect ratio decreases and the solid solution dissolves. Since the distribution of C is delayed, a soft ferrite phase rich in ductility cannot be obtained, and hole expansibility and bendability deteriorate. Furthermore, stabilization of the austenite phase becomes insufficient, martensitic transformation is suppressed, and high strength cannot be achieved. On the other hand, if the soaking temperature exceeds (Ac 3 transformation point +25) ° C or the soaking time exceeds 500 s, the austenite phase becomes coarse, and a uniform and fine composite structure cannot be obtained in the subsequent cooling process. Hole expandability and bendability are reduced.

焼鈍の冷却条件:均熱温度から3〜30℃/sの平均冷却速度で550℃以下の温度域まで冷却
均熱後は、均熱温度から3〜30℃/sの平均冷却速度で550℃以下の温度域(冷却停止温度)まで冷却する必要があるが、これは、平均冷却速度が3℃/s未満だと、パーライト相やベイナイト相が多量に生成してマルテンサイト相の生成を抑制するため、十分な強度や穴拡げ性が得られず、平均冷却速度が30℃/sを超えると、十分な量のフェライト相の生成が抑制されたり、フェライト相とマルテンサイト相の硬度差が著しく大きくなり、穴拡げ性の低下を招くためである。なお、パーライト相やベイナイト相の生成領域を回避して必要なマルテンサイト相の量を確保するため、こうした平均冷却速度で550℃以下の停止温度まで冷却する必要がある。
Cooling conditions for annealing: After cooling soaking from the soaking temperature to a temperature range of 550 ° C or less at an average cooling rate of 3 to 30 ° C / s, 550 ° C at an average cooling rate of 3 to 30 ° C / s from the soaking temperature It is necessary to cool to the following temperature range (cooling stop temperature), but if the average cooling rate is less than 3 ° C / s, a large amount of pearlite phase or bainite phase is generated to suppress the formation of martensite phase. Therefore, sufficient strength and hole expansibility cannot be obtained, and if the average cooling rate exceeds 30 ° C / s, the generation of a sufficient amount of ferrite phase is suppressed, or the hardness difference between the ferrite phase and the martensite phase is reduced. This is because the size is remarkably increased and the hole expandability is lowered. In order to avoid the formation region of the pearlite phase and the bainite phase and to secure the necessary amount of martensite phase, it is necessary to cool to a stop temperature of 550 ° C. or lower at such an average cooling rate.

焼鈍後は、通常の条件で溶融亜鉛めっきが施されるが、その前に次のような熱処理を施すことが好ましい。   After annealing, hot dip galvanization is performed under normal conditions, but it is preferable to perform the following heat treatment before that.

焼鈍後の熱処理条件:350〜550℃の温度域で20〜150s
焼鈍後に、350〜550℃の温度域で20〜150sの熱処理を行うと、マルテンサイト相が軟質化するため、フェライト相との硬度差がより小さくなり、穴拡げ性や曲げ性をより向上できる。熱処理温度が350℃未満の場合や、熱処理時間が20s未満の場合は、こうした効果が小さい。一方、熱処理温度が550℃を超える場合や、熱処理時間が150sを超える場合は、マルテンサイト相の硬度低下が著しく、780MPa以上のTSが得られない。
Heat treatment conditions after annealing: 20 to 150 s in the temperature range of 350 to 550 ° C
After annealing, heat treatment for 20 to 150 s in a temperature range of 350 to 550 ° C softens the martensite phase, so the hardness difference from the ferrite phase becomes smaller, and the hole expandability and bendability can be further improved. . These effects are small when the heat treatment temperature is less than 350 ° C. or when the heat treatment time is less than 20 s. On the other hand, when the heat treatment temperature exceeds 550 ° C. or the heat treatment time exceeds 150 s, the hardness of the martensite phase is remarkably reduced, and a TS of 780 MPa or more cannot be obtained.

また、焼鈍後は、上記熱処理を行うかどうかにかかわらず、450〜550℃の温度域で亜鉛めっきを合金化処理することができる。450〜550℃の温度域で合金化処理することにより、めっき中のFe濃度は8〜12%とになり、めっきの密着性や塗装後の耐食性が向上する。450℃未満では、合金化が十分に進行せず、犠牲防食作用の低下や摺動性の低下を招き、550℃を超えると、合金化が進行し過ぎてパウダリング性が低下したり、パーライト相やベイナイト相などが多量に生成して高強度化や穴拡げ性の向上が図れない。   Moreover, after annealing, galvanization can be alloyed in a temperature range of 450 to 550 ° C. regardless of whether or not the heat treatment is performed. By alloying in the temperature range of 450 to 550 ° C., the Fe concentration during plating becomes 8 to 12%, and the adhesion of plating and the corrosion resistance after coating are improved. If the temperature is lower than 450 ° C, alloying does not proceed sufficiently, leading to a decrease in sacrificial anticorrosive action and sliding property. If the temperature exceeds 550 ° C, alloying proceeds too much and powdering properties are reduced. A large amount of phases and bainite phases are formed, and it is not possible to increase the strength and improve the hole expansibility.

その他の製造方法の条件は、特に限定しないが、以下の条件で行うのが好ましい。   The conditions for other production methods are not particularly limited, but the following conditions are preferable.

本発明の高強度溶融亜鉛めっき鋼板に用いられる亜鉛めっき前の鋼板は、上記成分組成を有するスラブを、熱間圧延後、所望の板厚まで冷間圧延して製造される。また、生産性の観点から、上記の焼鈍、溶融亜鉛めっき前熱処理、溶融亜鉛めっき、亜鉛めっきを合金化処理などの一連の処理は、連続溶融亜鉛めっきラインで行うのが好ましい。   The steel sheet before galvanization used for the high-strength hot-dip galvanized steel sheet of the present invention is manufactured by hot-rolling a slab having the above component composition to a desired sheet thickness. From the viewpoint of productivity, the series of treatments such as annealing, pre-galvanizing heat treatment, hot dip galvanizing, and alloying treatment of galvanizing are preferably performed in a continuous hot dip galvanizing line.

スラブは、マクロ偏析を防止するため、連続鋳造法で製造するのが好ましいが、造塊法、薄スラブ鋳造法により製造することもできる。スラブを熱間圧延する時、スラブは再加熱されるが、圧延荷重の増大を防止するため、加熱温度は1150℃以上にすることが好ましい。また、スケールロスの増大や燃料原単位の増加を防止するため、加熱温度の上限は1300℃とすることが好ましい。   The slab is preferably produced by a continuous casting method in order to prevent macro segregation, but can also be produced by an ingot-making method or a thin slab casting method. When the slab is hot-rolled, the slab is reheated, but in order to prevent an increase in rolling load, the heating temperature is preferably 1150 ° C. or higher. Further, in order to prevent an increase in scale loss and an increase in fuel consumption, the upper limit of the heating temperature is preferably 1300 ° C.

熱間圧延は、粗圧延と仕上圧延により行われるが、仕上圧延は、冷間圧延・焼鈍後の成形性の低下を防ぐために、Ar3変態点以上の仕上温度で行うことが好ましい。また、結晶粒の粗大化による組織の不均一やスケール欠陥の発生を防止するため、仕上温度は950℃以下とすることが好ましい。 The hot rolling is performed by rough rolling and finish rolling, but the finish rolling is preferably performed at a finishing temperature equal to or higher than the Ar 3 transformation point in order to prevent deterioration of formability after cold rolling / annealing. Further, in order to prevent the occurrence of non-uniform structure and scale defects due to the coarsening of crystal grains, the finishing temperature is preferably 950 ° C. or lower.

熱間圧延後の鋼板は、焼鈍時に再結晶を抑制させる微細なNb炭窒化物を析出させるために、500〜650℃の巻取温度で巻取ることが好ましい。   The steel sheet after hot rolling is preferably wound at a winding temperature of 500 to 650 ° C. in order to precipitate fine Nb carbonitride that suppresses recrystallization during annealing.

巻取り後の鋼板は、スケールを酸洗などにより除去した後、未再結晶フェライト相からのオーステナイト変態を促進するため、圧下率40%以上で冷間圧延されることが好ましい。   The steel sheet after winding is preferably cold-rolled at a reduction rate of 40% or more in order to promote austenite transformation from the non-recrystallized ferrite phase after removing the scale by pickling.

溶融亜鉛めっきには、Al量を0.10〜0.20%含む亜鉛めっき浴を用いることが好ましい。また、めっき後は、めっきの目付け量を調整するために、ワイピングを行うことができる。   For hot dip galvanizing, it is preferable to use a galvanizing bath containing 0.10 to 0.20% of Al. Moreover, after plating, wiping can be performed to adjust the basis weight of plating.

表1に示す成分組成の鋼No.a〜lを転炉により溶製し、連続鋳造法でスラブとした。これらのスラブを、1200℃に加熱後、850〜920℃の仕上温度で熱間圧延を行い、600℃の巻取温度で巻取った。次いで、酸洗後、表2に示す板厚に圧下率50%で冷間圧延し、連続溶融亜鉛めっきラインにより、表2に示す焼鈍条件で焼鈍後、350〜550℃で表2に示す時間めっき前熱処理を施した後、0.13%のAlを含む475℃の亜鉛めっき浴中に3s浸漬し、付着量45g/m2の亜鉛めっきを形成し、表2に示す温度で合金化処理を行い、亜鉛めっき鋼板No.1〜20を作製した。なお、表2に示すように、一部の亜鉛めっき鋼板では、めっき前熱処理や合金化処理を行わなかった。そして、得られた亜鉛めっき鋼板について、上記の方法でフェライト相、マルテンサイト相の面積率、フェライト相の粒径、マルテンサイト相の平均粒径、フェライト粒径のアスペクト比を測定した。また、圧延方向と直角方向にJIS 5号引張試験片を採取し、JIS Z 2241に準拠して、20mm/minのクロスヘッド速度で引張試験を行って、TSおよび全伸びElを測定した。さらに、100mm×100mmの試験片を採取し、JFST 1001(鉄連規格)に準拠して穴拡げ試験を3回行って平均の穴拡げ率λ(%)を求め、穴拡げ性を評価した。さらにまた、圧延方向と直角方向に幅30mm×長さ120mmの短冊状の試験片を採取し、端部を表面粗さRyが1.6〜6.3Sとなるように平滑にした後、押し曲げ法により180°の曲げ角度で曲げ試験を行い、亀裂やネッキングの生じない最小の曲げ半径を限界曲げ半径として求めた。 Steel Nos. A to l having the composition shown in Table 1 were melted by a converter and made into a slab by a continuous casting method. These slabs were heated to 1200 ° C., hot-rolled at a finishing temperature of 850 to 920 ° C., and wound at a winding temperature of 600 ° C. Next, after pickling, cold rolled to a plate thickness shown in Table 2 at a reduction rate of 50%, and after annealing under the annealing conditions shown in Table 2 by a continuous hot dip galvanizing line, the time shown in Table 2 at 350 to 550 ° C After pre-plating heat treatment, dipped in a 475 ° C zinc plating bath containing 0.13% Al for 3 s to form a galvanized coating with an adhesion amount of 45 g / m 2 and alloyed at the temperatures shown in Table 2 The galvanized steel sheets No. 1 to 20 were produced. As shown in Table 2, some galvanized steel sheets were not subjected to pre-plating heat treatment or alloying treatment. And about the obtained galvanized steel plate, the area ratio of the ferrite phase and the martensite phase, the particle size of the ferrite phase, the average particle size of the martensite phase, and the aspect ratio of the ferrite particle size were measured by the above method. Further, a JIS No. 5 tensile test piece was taken in a direction perpendicular to the rolling direction, and a tensile test was performed at a crosshead speed of 20 mm / min in accordance with JIS Z 2241 to measure TS and total elongation El. Further, a 100 mm × 100 mm test piece was collected and subjected to a hole expansion test three times in accordance with JFST 1001 (iron standard) to obtain an average hole expansion ratio λ (%), and the hole expansion property was evaluated. Furthermore, a strip-shaped test piece having a width of 30 mm and a length of 120 mm in the direction perpendicular to the rolling direction was collected, and after smoothing the end so that the surface roughness Ry was 1.6 to 6.3 S, by a push bending method. A bending test was performed at a bending angle of 180 °, and the minimum bending radius at which no cracks or necking occurred was obtained as the limit bending radius.

結果を表3に示す。本発明例の亜鉛めっき鋼板は、いずれもTSが780MPa以上であり、穴拡げ率λが25%以上、限界曲げ半径が1.0mm以下で優れた穴拡げ性と曲げ性を有しており、また、TS×El≧18000MPa・%で強度-延性バランスも高く、成形性に優れた高強度溶融亜鉛めっき鋼板であることがわかる。   The results are shown in Table 3. Each of the galvanized steel sheets of the present invention has excellent hole expansibility and bendability with TS of 780 MPa or more, a hole expansion ratio λ of 25% or more, and a limit bending radius of 1.0 mm or less. It can be seen that TS × El ≧ 18000 MPa ·%, a high strength-ductility balance, and a high-strength hot-dip galvanized steel sheet with excellent formability.

Figure 0005141232
Figure 0005141232

Figure 0005141232
Figure 0005141232

Figure 0005141232
Figure 0005141232

Claims (8)

質量%で、C:0.03〜0.15%、Si:0.8〜2.5%、Mn:1.0〜3.0%、P:0.001〜0.05%、S:0.0001〜0.01%、Al:0.001〜0.1%、N:0.0005〜0.01%、Nb:0.005〜0.05%、Cr:0.1〜2.0%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、面積率で、50%以上のフェライト相と10%以上のマルテンサイト相を含み、前記フェライト相に占める粒径が15μm以下で、かつアスペクト比が2.0以下のフェライト粒の面積率が70%以上であり、前記マルテンサイト相の平均粒径が10μm以下であるミクロ組織を有する成形性に優れた高強度溶融亜鉛めっき鋼板。   In mass%, C: 0.03-0.15%, Si: 0.8-2.5%, Mn: 1.0-3.0%, P: 0.001-0.05%, S: 0.0001-0.01%, Al: 0.001-0.1%, N: 0.0005-0.01%, Nb: 0.005-0.05%, Cr: 0.1-2. 0% is contained, the balance is composed of Fe and inevitable impurities, the area ratio includes 50% or more ferrite phase and 10% or more martensite phase, and the particle size occupied in the ferrite phase is High-strength melt excellent in formability having a microstructure in which the area ratio of ferrite grains having an aspect ratio of 2.0 or less and an aspect ratio of 2.0 or less is 70% or more, and the average particle size of the martensite phase is 10 μm or less Galvanized steel sheet. さらに、質量%で、Mo:0.01〜1.0%、Ni:0.01〜2.0%から選ばれる少なくとも1種の元素を含有する請求項1に記載の成形性に優れた高強度溶融亜鉛めっき鋼板。   Furthermore, the high excellent in the moldability of Claim 1 containing at least 1 sort (s) of element chosen from Mo: 0.01-1.0% and Ni: 0.01-2.0% by the mass%. Strength hot dip galvanized steel sheet. さらに、質量%で、Ti:0.005〜0.1%、V:0.005〜0.1%から選ばれる少なくとも1種の元素を含有する請求項1または2に記載の成形性に優れた高強度溶融亜鉛めっき鋼板。   Furthermore, it is excellent in the moldability according to claim 1 or 2 containing at least one element selected from Ti: 0.005 to 0.1% and V: 0.005 to 0.1% by mass%. High strength hot dip galvanized steel sheet. さらに、質量%で、B:0.0003〜0.003%を含有する請求項1から3のいずれかに記載の成形性に優れた高強度溶融亜鉛めっき鋼板。   Furthermore, the high intensity | strength hot-dip galvanized steel plate excellent in the moldability in any one of Claim 1 to 3 which contains B: 0.0003-0.003% by mass%. 亜鉛めっきが合金化亜鉛めっきである請求項1から4のいずれかに記載の成形性に優れた高強度溶融亜鉛めっき鋼板。   The high-strength hot-dip galvanized steel sheet excellent in formability according to any one of claims 1 to 4, wherein the galvanizing is alloyed galvanizing. 請求項1から4のいずれかに記載の成分組成を有する鋼板を、5℃/s以上の平均加熱速度でAc変態点以上の温度域に加熱し、(Ac変態点+50)〜(Ac変態点+25)℃の温度域で10〜500s均熱し、3〜30℃/sの平均冷却速度で550℃以下の温度域まで冷却する条件で焼鈍後、溶融亜鉛めっきを施すことにより、面積率で、50%以上のフェライト相と10%以上のマルテンサイト相を含み、前記フェライト相に占める粒径が15μm以下で、かつアスペクト比が2.0以下のフェライト粒の面積率が70%以上であり、前記マルテンサイト相の平均粒径が10μm以下であるミクロ組織を有する成形性に優れた高強度溶融亜鉛めっき鋼板の製造方法。 A steel sheet having the component composition according to any one of claims 1 to 4 is heated to a temperature range equal to or higher than the Ac 1 transformation point at an average heating rate of 5 ° C / s or more, and (Ac 1 transformation point +50) to (Ac 3 transformation point +25) By soaking in a temperature range of 10 to 500 s in a temperature range of 10 ° C. and cooling to a temperature range of 550 ° C. or less at an average cooling rate of 3 to 30 ° C./s, by applying hot dip galvanization , The area ratio of ferrite grains containing a ferrite phase of 50% or more and a martensite phase of 10% or more, having a grain size in the ferrite phase of 15 μm or less and an aspect ratio of 2.0 or less is 70% or more. A method for producing a high-strength hot-dip galvanized steel sheet having excellent formability having a microstructure in which the average particle size of the martensite phase is 10 μm or less . 焼鈍時の冷却後、350〜550℃の温度域で20〜150sの熱処理を施した後に溶融亜鉛めっきを施す請求項6に記載の成形性に優れた高強度溶融亜鉛めっき鋼板の製造方法。   The manufacturing method of the high intensity | strength hot-dip galvanized steel plate excellent in the formability of Claim 6 which performs hot-dip galvanization after performing 20-150 second heat processing in the temperature range of 350-550 degreeC after cooling at the time of annealing. 溶融亜鉛めっきを施した後、450〜550℃の温度域で亜鉛めっきの合金化処理を施す請求項6または7に記載の成形性に優れた高強度溶融亜鉛めっき鋼板の製造方法。   The method for producing a high-strength hot-dip galvanized steel sheet having excellent formability according to claim 6 or 7, wherein after hot-dip galvanizing, galvanizing alloying treatment is performed in a temperature range of 450 to 550 ° C.
JP2007325334A 2007-12-18 2007-12-18 High-strength hot-dip galvanized steel sheet with excellent formability and manufacturing method thereof Expired - Fee Related JP5141232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007325334A JP5141232B2 (en) 2007-12-18 2007-12-18 High-strength hot-dip galvanized steel sheet with excellent formability and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007325334A JP5141232B2 (en) 2007-12-18 2007-12-18 High-strength hot-dip galvanized steel sheet with excellent formability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009144225A JP2009144225A (en) 2009-07-02
JP5141232B2 true JP5141232B2 (en) 2013-02-13

Family

ID=40915169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007325334A Expired - Fee Related JP5141232B2 (en) 2007-12-18 2007-12-18 High-strength hot-dip galvanized steel sheet with excellent formability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5141232B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112012024275A2 (en) 2010-03-31 2023-12-05 Nippon Steel Corp HOT DIP GALVANIZED STEEL SHEET WITH HIGH RESISTANCE AND EXCELLENT MOLDABILITY AND PRODUCTION METHOD OF THE SAME
JP4893844B2 (en) 2010-04-16 2012-03-07 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in formability and impact resistance and method for producing the same
US10385431B2 (en) 2013-08-02 2019-08-20 Jfe Steel Corporation High strength steel sheet having high young's modulus and method for manufacturing the same
MX2019001147A (en) 2016-08-10 2019-06-10 Jfe Steel Corp High-strength thin steel sheet and method for manufacturing same.
CN115369321A (en) * 2022-08-16 2022-11-22 包头钢铁(集团)有限责任公司 Economical high-strength hot-galvanized dual-phase steel and manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4193315B2 (en) * 2000-02-02 2008-12-10 Jfeスチール株式会社 High strength steel sheet and high strength galvanized steel sheet with excellent ductility and low yield ratio, and methods for producing them
JP4010132B2 (en) * 2000-11-28 2007-11-21 Jfeスチール株式会社 Composite structure type high-tensile hot-dip galvanized steel sheet excellent in deep drawability and method for producing the same
JP3898923B2 (en) * 2001-06-06 2007-03-28 新日本製鐵株式会社 High-strength hot-dip Zn-plated steel sheet excellent in plating adhesion and ductility during high processing and method for producing the same
JP2003247043A (en) * 2001-07-06 2003-09-05 Jfe Steel Kk High tensile strength galvanized, cold rolled steel sheet having excellent balance in strength-ductility and production method thereof
JP4716856B2 (en) * 2005-11-10 2011-07-06 日新製鋼株式会社 Method for producing high-strength galvannealed steel sheet with excellent ductility
JP5082451B2 (en) * 2006-01-24 2012-11-28 Jfeスチール株式会社 Method for producing high-strength cold-rolled steel sheet excellent in deep drawability and ductility, and method for producing high-strength hot-dip galvanized steel sheet using the cold-rolled steel sheet
JP4589880B2 (en) * 2006-02-08 2010-12-01 新日本製鐵株式会社 High-strength hot-dip galvanized steel sheet excellent in formability and hole expansibility, high-strength alloyed hot-dip galvanized steel sheet, method for producing high-strength hot-dip galvanized steel sheet, and method for producing high-strength alloyed hot-dip galvanized steel sheet

Also Published As

Publication number Publication date
JP2009144225A (en) 2009-07-02

Similar Documents

Publication Publication Date Title
JP5194841B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and manufacturing method thereof
JP5315956B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP5709151B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP5418168B2 (en) High-strength cold-rolled steel sheet excellent in formability, high-strength hot-dip galvanized steel sheet, and production method thereof
JP4893844B2 (en) High-strength hot-dip galvanized steel sheet excellent in formability and impact resistance and method for producing the same
JP5821260B2 (en) High-strength hot-dip galvanized steel sheet excellent in formability and shape freezing property, and method for producing the same
JP5504737B2 (en) High-strength hot-dip galvanized steel strip excellent in formability with small variations in material within the steel strip and method for producing the same
US20140234655A1 (en) Hot-dip galvanized steel sheet and method for producing same
JP2010275627A (en) High-strength steel sheet and high-strength hot-dip galvanized steel sheet having excellent workability, and method for producing them
JP2006199979A (en) Bake hardenable hot rolled steel sheet with excellent workability, and its manufacturing method
KR101445465B1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and spot weldability and process for producing same
JP5256690B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and impact resistance and method for producing the same
JP5141235B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and manufacturing method thereof
JP5141232B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and manufacturing method thereof
JP5251207B2 (en) High strength steel plate with excellent deep drawability and method for producing the same
JP5256689B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP2004002909A (en) Complex metallographic structure type high tensile strength hot-dip galvanized cold rolled steel sheet with excellent deep drawability and stretch-flange formability, and manufacturing method
JP2009235531A (en) High strength steel sheet having excellent deep drawability, aging resistance and baking hardenability, and to provide method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100823

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5141232

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees