JP5256689B2 - High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof - Google Patents
High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof Download PDFInfo
- Publication number
- JP5256689B2 JP5256689B2 JP2007277039A JP2007277039A JP5256689B2 JP 5256689 B2 JP5256689 B2 JP 5256689B2 JP 2007277039 A JP2007277039 A JP 2007277039A JP 2007277039 A JP2007277039 A JP 2007277039A JP 5256689 B2 JP5256689 B2 JP 5256689B2
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- hot
- galvanized steel
- strength
- dip galvanized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910001335 Galvanized steel Inorganic materials 0.000 title claims description 25
- 239000008397 galvanized steel Substances 0.000 title claims description 25
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 229910000734 martensite Inorganic materials 0.000 claims description 53
- 229910000831 Steel Inorganic materials 0.000 claims description 32
- 229910001566 austenite Inorganic materials 0.000 claims description 32
- 239000010959 steel Substances 0.000 claims description 32
- 238000001816 cooling Methods 0.000 claims description 26
- 229910000859 α-Fe Inorganic materials 0.000 claims description 18
- 238000000137 annealing Methods 0.000 claims description 15
- 230000000717 retained effect Effects 0.000 claims description 15
- 238000005246 galvanizing Methods 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 13
- 229910052802 copper Inorganic materials 0.000 claims description 8
- 229910052750 molybdenum Inorganic materials 0.000 claims description 8
- 229910052759 nickel Inorganic materials 0.000 claims description 8
- 229910052758 niobium Inorganic materials 0.000 claims description 8
- 229910052720 vanadium Inorganic materials 0.000 claims description 8
- 238000005275 alloying Methods 0.000 claims description 6
- 238000005098 hot rolling Methods 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 5
- 239000010960 cold rolled steel Substances 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 5
- 229910052725 zinc Inorganic materials 0.000 claims description 5
- 239000011701 zinc Substances 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 238000005097 cold rolling Methods 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 230000000694 effects Effects 0.000 description 14
- 238000005096 rolling process Methods 0.000 description 13
- 230000009466 transformation Effects 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 238000005728 strengthening Methods 0.000 description 7
- 229910052804 chromium Inorganic materials 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000007747 plating Methods 0.000 description 6
- 229910001562 pearlite Inorganic materials 0.000 description 5
- 238000003303 reheating Methods 0.000 description 5
- 238000009749 continuous casting Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 229910001563 bainite Inorganic materials 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 238000005266 casting Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Landscapes
- Coating With Molten Metal (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、自動車、電気などの産業分野で使用される加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法に関する。 The present invention relates to a high-strength hot-dip galvanized steel sheet excellent in workability used in industrial fields such as automobiles and electricity, and a method for producing the same.
近年、地球環境の保全の見地から、自動車の燃費向上が重要な課題になっている。このため、車体材料である鋼板を高強度化して薄肉化し、車体そのものを軽量化しようという動きが活発になってきている。しかしながら、一般的には、鋼板の高強度化は鋼板の延性の低下、すなわち加工性の低下を招くことから、高強度と高加工性を併せ持ち、さらに耐食性にも優れる溶融亜鉛めっき鋼板が望まれている。 In recent years, improving the fuel efficiency of automobiles has become an important issue from the viewpoint of conservation of the global environment. For this reason, the movement to increase the strength and thickness of the steel sheet, which is the body material, and to reduce the weight of the vehicle body has become active. However, in general, increasing the strength of a steel sheet causes a decrease in the ductility of the steel sheet, that is, a decrease in workability. Therefore, a hot dip galvanized steel sheet having both high strength and high workability and excellent corrosion resistance is desired. ing.
このような要望に対して、これまで、フェライトとマルテンサイトからなるDP(Dual Phase)鋼や残留オーステナイトの変態誘起塑性を利用したTRIP(Transformation Induced Plasticity)鋼などの複合組織型の高強度溶融亜鉛めっき鋼板が開発されている。例えば、特許文献1には、質量%で、C:0.05〜0.15%、Si:0.3〜1.5%、Mn:1.5〜2.8%、P:0.03%以下、S:0.02%以下、Al:0.005〜0.5%、N:0.0060%以下、残部がFeおよび不可避的不純物からなり、さらに(Mn%)/(C%)≧15かつ(Si%)/(C%)≧4を満たし、フェライト中に体積率で3〜20%のマルテンサイトと残留オーステナイトを含む加工性の良い高強度合金化溶融亜鉛めっき鋼板が提案されている。しかし、こうした複合組織型の高強度溶融亜鉛めっき鋼板は、一軸引張りで求まる伸びElは高いが、穴拡げ加工などで必要な伸びフランジ性に劣るという問題がある。 In response to these demands, high strength molten zinc of composite structure type, such as DP (Dual Phase) steel composed of ferrite and martensite and TRIP (Transformation Induced Plasticity) steel using transformation induced plasticity of retained austenite, has been developed so far. Plated steel sheets have been developed. For example, Patent Document 1 includes mass%, C: 0.05 to 0.15%, Si: 0.3 to 1.5%, Mn: 1.5 to 2.8%, P: 0.03% or less, S: 0.02% or less, Al: 0.005 to 0.5. %, N: 0.0060% or less, the balance is Fe and inevitable impurities, and (Mn%) / (C%) ≧ 15 and (Si%) / (C%) ≧ 4 are satisfied. A high-strength galvannealed steel sheet with good workability containing 3 to 20% martensite and retained austenite has been proposed. However, such a high-strength hot-dip galvanized steel sheet of the composite structure type has a problem that it has a high elongation El obtained by uniaxial tension, but is inferior in stretch flangeability required for hole expansion processing.
そこで、伸びフランジ性に優れた高強度溶融亜鉛めっき鋼板として、特許文献2には、質量%で、C:0.02〜0.30%、Si:1.50%以下、Mn:0.60〜3.0%、P:0.20%以下、S:0.05%以下、Al:0.01〜0.10%、残部がFeおよび不可避的不純物よりなる鋼を、Ac3変態点以上で熱間圧延後、酸洗、冷間圧延し、連続焼鈍溶融亜鉛めっきラインにおいて、再結晶温度以上かつAc1変態点以上に加熱保持し、その後、溶融亜鉛浴に至るまでの間において、Ms点以下に急冷して、鋼板中に部分的あるいは全部分マルテンサイトを生成させ、次いで、Ms点以上の温度であって少なくとも溶融亜鉛浴温度および合金化炉温度に加熱して、部分的あるいは全部焼戻しマルテンサイトを生成させる伸びフランジ性に優れた高強度溶融亜鉛めっき鋼板の製造方法が開示されている。
しかしながら、特許文献2に記載された高強度溶融亜鉛めっき鋼板では、優れた伸びフランジ性が得られるが、一軸引張りで求まる引張強度TSとElの積、すなわちTS-Elバランスが低いのみならず、降伏強度YSとTSの比である降伏比YR(=YS/TS)が高く加工性に問題がある。 However, in the high-strength hot-dip galvanized steel sheet described in Patent Document 2, excellent stretch flangeability is obtained, but not only the product of tensile strength TS and El obtained by uniaxial tension, that is, the TS-El balance is low, The yield ratio YR (= YS / TS), which is the ratio between the yield strength YS and TS, is high and there is a problem in workability.
本発明は、TS-Elバランスが高く、伸びフランジ性に優れ、かつYRの低い加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法を提供することを目的とする。 An object of the present invention is to provide a high-strength hot-dip galvanized steel sheet having a high TS-El balance, excellent stretch flangeability, and low YR workability, and a method for producing the same.
本発明者らは、TS-Elバランスが高く、具体的にはTS×El≧19000MPa・%、伸びフランジ性に優れ、具体的には後述する穴拡げ率λ≧70%、かつYRの低い、具体的にはYR<75%である加工性に優れた高強度溶融亜鉛めっき鋼板について鋭意検討を重ねたところ、以下のことを見出した。 The present inventors have a high TS-El balance, specifically TS × El ≧ 19000 MPa ·%, excellent in stretch flangeability, specifically, a hole expansion ratio λ ≧ 70% described later, and a low YR, Specifically, the present inventors have made extensive studies on a high-strength hot-dip galvanized steel sheet excellent in workability with YR <75%, and found the following.
i) 成分組成を適正化した上で、面積率で、フェライトを20〜87%、マルテンサイトと残留オーステナイトを合計で3〜10%、焼戻しマルテンサイトを10〜60%含むミクロ組織とすることにより、優れた伸びフランジ性のみならず、高いTS-Elバランスと低いYRを達成できる。 i) By optimizing the component composition, by making the microstructure containing 20 to 87% ferrite, 3 to 10% total martensite and residual austenite, and 10 to 60% tempered martensite in terms of area ratio In addition to excellent stretch flangeability, high TS-El balance and low YR can be achieved.
ii) こうしたミクロ組織は、焼鈍時に750〜950℃の加熱温度から(Ms点-100℃)〜(Ms点-200℃)の温度域に強制冷却し、その後再加熱し、溶融亜鉛めっきを施すことによって得られる。ここで、Ms点とは、オーステナイトのマルテンサイト変態が開始する温度のことであり、冷却時の鋼の線膨張係数の変化から求めることができる。 ii) These microstructures are forcibly cooled from a heating temperature of 750 to 950 ° C. to a temperature range of (Ms point −100 ° C.) to (Ms point −200 ° C.) during annealing, and then reheated and hot dip galvanized. Can be obtained. Here, the Ms point is a temperature at which martensitic transformation of austenite starts, and can be obtained from a change in the coefficient of linear expansion of steel during cooling.
本発明は、このような知見に基づきなされたもので、質量%で、C:0.05〜0.3%、Si:0.01〜2.5%、Mn:0.5〜3.5%、P:0.003〜0.100%、S:0.02%以下、Al:0.010〜1.5%、N:0.007%以下を含み、残部がFeおよび不可避的不純物からなる成分組成を有し、かつ、面積率で、フェライトを20〜87%、マルテンサイトと残留オーステナイトを合計で3〜10%、焼戻しマルテンサイトを10〜60%含むミクロ組織を有する加工性に優れた高強度溶融亜鉛めっき鋼板を提供する。 The present invention has been made based on such findings, and in mass%, C: 0.05 to 0.3%, Si: 0.01 to 2.5%, Mn: 0.5 to 3.5%, P: 0.003 to 0.100%, S: 0.02 %: Less than, Al: 0.010-1.5%, N: 0.007% or less, the balance is composed of Fe and unavoidable impurities, and in area ratio, ferrite is 20-87%, residual with martensite Provided is a high-strength hot-dip galvanized steel sheet excellent in workability having a microstructure containing a total of 3 to 10% austenite and 10 to 60% tempered martensite.
本発明の高強度溶融亜鉛めっき鋼板には、さらに、質量%で、Cr:0.005〜2.00%、Mo:0.005〜2.00%、V:0.005〜2.00%、Ni:0.005〜2.00%、Cu:0.005〜2.00%から選ばれる少なくとも1種の元素が含有されることが好ましい。さらにまた、質量%で、Ti:0.01〜0.20%、Nb:0.01〜0.20%から選ばれる少なくとも1種の元素やB:0.0002〜0.005%やCa:0.001〜0.005%、REM:0.001〜0.005%から選ばれる少なくとも1種の元素が含有されることがより好ましい。 In the high-strength hot-dip galvanized steel sheet of the present invention, further, in mass%, Cr: 0.005-2.00%, Mo: 0.005-2.00%, V: 0.005-2.00%, Ni: 0.005-2.00%, Cu: 0.005- It is preferable that at least one element selected from 2.00% is contained. Furthermore, by mass%, at least one element selected from Ti: 0.01 to 0.20%, Nb: 0.01 to 0.20%, B: 0.0002 to 0.005%, Ca: 0.001 to 0.005%, REM: 0.001 to 0.005% More preferably, at least one selected element is contained.
本発明の高強度溶融亜鉛めっき鋼板では、亜鉛めっきを合金化亜鉛めっきとすることもできる。 In the high-strength hot-dip galvanized steel sheet of the present invention, the galvanizing can be alloyed galvanizing.
本発明の高強度溶融亜鉛めっき鋼板は、例えば、上記の成分組成を有するスラブを、熱間圧延、冷間圧延を施して冷延鋼板とし、前記冷延鋼板に、750〜950℃の温度域に加熱して10s以上保持した後、750℃から10℃/s以上の平均冷却速度で(Ms点-100℃)〜(Ms点-200℃)の温度域に冷却し、350〜600℃の温度域に再加熱して1〜600s保持する条件で焼鈍を施した後、溶融亜鉛めっきを施す加工性に優れた高強度溶融亜鉛めっき鋼板の製造方法によって製造できる。 The high-strength hot-dip galvanized steel sheet of the present invention is, for example, a slab having the above component composition, hot-rolled, cold-rolled to obtain a cold-rolled steel sheet, and the cold-rolled steel sheet has a temperature range of 750 to 950 ° C. And then cooled to a temperature range of (Ms point -100 ° C) to (Ms point -200 ° C) at an average cooling rate of 750 ° C to 10 ° C / s or more, and 350 to 600 ° C. It can manufacture by the manufacturing method of the high intensity | strength hot-dip galvanized steel plate excellent in the workability which hot-dip galvanizes, after giving it the conditions which reheat to a temperature range and hold | maintain for 1 to 600 s.
本発明の高強度溶融亜鉛めっき鋼板の製造方法では、溶融亜鉛めっきした後に、亜鉛めっきを合金化処理することもできる。 In the manufacturing method of the high-strength hot-dip galvanized steel sheet of the present invention, after hot-dip galvanizing, galvanization can be alloyed.
本発明により、TS-Elバランスが高く、伸びフランジ性に優れ、かつYRの低い加工性に優れた高強度溶融亜鉛めっき鋼板を製造できるようになった。本発明の高強度溶融亜鉛めっき鋼板を自動車車体に適用することにより、自動車の軽量化や耐食性向上のみならず、衝突安全性向上を図ることができる。 According to the present invention, a high-strength hot-dip galvanized steel sheet having a high TS-El balance, excellent stretch flangeability, and excellent YR processability can be produced. By applying the high-strength hot-dip galvanized steel sheet of the present invention to an automobile body, not only weight reduction and corrosion resistance improvement of the automobile but also collision safety improvement can be achieved.
以下に、本発明の詳細を説明する。なお、成分元素の含有量を表す「%」は、特に断らない限り「質量%」を意味する。 Details of the present invention will be described below. “%” Representing the content of component elements means “% by mass” unless otherwise specified.
1)成分組成
C:0.05〜0.3%
Cは、オーステナイトを安定化させる元素であり、フェライト以外のマルテンサイトなどの第二相を生成させてTSを上昇させるとともに、TS-Elバランスを向上させるために必要な元素である。C量が0.05%未満では、フェライト以外の第二相の確保が難しくなり、TS-Elバランスが低下する。一方、C量が0.3%を超えると、溶接性が劣化する。したがって、C量は0.05〜0.3%、好ましくは0.08〜0.15%とする。
1) Component composition
C: 0.05-0.3%
C is an element that stabilizes austenite, and is an element that is necessary for generating a second phase such as martensite other than ferrite to raise TS and improve the TS-El balance. If the C content is less than 0.05%, it is difficult to secure a second phase other than ferrite, and the TS-El balance is lowered. On the other hand, if the C content exceeds 0.3%, the weldability deteriorates. Therefore, the C content is 0.05 to 0.3%, preferably 0.08 to 0.15%.
Si:0.01〜2.5%
Siは、鋼を固溶強化して、TS-Elバランスを向上させるのに有効な元素である。こうした効果を得るには、Si量を0.01%以上にする必要がある。一方、Si量が2.5%を超えると、Elの低下や表面性状、溶接性の劣化を招く。したがって、Si量は0.01〜2.5%、好ましくは0.7〜2.0%とする。
Si: 0.01-2.5%
Si is an effective element for improving the TS-El balance by solid-solution strengthening steel. In order to obtain such an effect, the Si amount needs to be 0.01% or more. On the other hand, if the amount of Si exceeds 2.5%, the El decreases, the surface properties, and the weldability deteriorate. Therefore, the Si content is 0.01 to 2.5%, preferably 0.7 to 2.0%.
Mn:0.5〜3.5%
Mnは、鋼の強化に有効であり、マルテンサイトなどの第二相の生成を促進する元素である。こうした効果を得るには、Mn量を0.5%以上にする必要がある。一方、Mn量が3.5%を超えると、第二相の過剰な増加や固溶強化によるフェライトの延性劣化が著しくなり、加工性が低下する。したがって、Mn量は0.5〜3.5%、好ましくは1.5〜3.0%とする。
Mn: 0.5-3.5%
Mn is an element that is effective in strengthening steel and promotes the formation of a second phase such as martensite. In order to obtain such effects, the Mn content needs to be 0.5% or more. On the other hand, if the amount of Mn exceeds 3.5%, the ductile deterioration of ferrite due to excessive increase of the second phase or solid solution strengthening becomes remarkable, and the workability deteriorates. Therefore, the Mn content is 0.5 to 3.5%, preferably 1.5 to 3.0%.
P:0.003〜0.100%
Pは、鋼の強化に有効な元素である。こうした効果を得るには、P量を0.003%以上にする必要がある。一方、P量が0.100%を超えると、粒界偏析により鋼を脆化させ、耐衝撃性を劣化させる。したがって、P量は0.003〜0.100%とする。
P: 0.003-0.100%
P is an element effective for strengthening steel. In order to obtain such an effect, the P amount needs to be 0.003% or more. On the other hand, if the P content exceeds 0.100%, the steel is embrittled by grain boundary segregation, and impact resistance is deteriorated. Therefore, the P content is 0.003 to 0.100%.
S:0.02%以下
Sは、MnSなどの介在物として存在して、耐衝撃性や溶接性を劣化させるため、その量は極力低減することが好ましい。しかし、製造コストの面からS量は0.02%以下とする。
S: 0.02% or less
Since S exists as inclusions such as MnS and deteriorates impact resistance and weldability, the amount is preferably reduced as much as possible. However, the amount of S is 0.02% or less from the viewpoint of manufacturing cost.
Al:0.010〜1.5%
Alは、フェライトを生成させ、TS-Elバランスを向上させるのに有効な元素である。こうした効果を得るには、Al量を0.010%以上にする必要がある。一方、Al量が1.5%を超えると、連続鋳造時のスラブ割れの危険性が高まる。したがって、Al量は0.010〜1.5%とする。
Al: 0.010-1.5%
Al is an element effective in generating ferrite and improving the TS-El balance. In order to obtain such an effect, the Al content needs to be 0.010% or more. On the other hand, if the Al content exceeds 1.5%, the risk of slab cracking during continuous casting increases. Therefore, the Al content is 0.010 to 1.5%.
N:0.007%以下
Nは、鋼の耐時効性を劣化させる元素である。特に、N量が0.007%を超えると、耐時効性の劣化が顕著となる。したがって、N量は0.007%以下とするが、少ないほど好ましい。
N: 0.007% or less
N is an element that degrades the aging resistance of steel. In particular, when the N content exceeds 0.007%, deterioration of aging resistance becomes remarkable. Therefore, the N content is 0.007% or less, but the smaller the amount, the better.
残部はFeおよび不可避的不純物であるが、以下の理由で、Cr:0.005〜2.00%、Mo:0.005〜2.00%、V:0.005〜2.00%、Ni:0.005〜2.00%、Cu:0.005〜2.00%、Ti:0.01〜0.20%、Nb:0.01〜0.20%、B:0.0002〜0.005%、Ca:0.001〜0.005%、REM:0.001〜0.005%が含有されることが好ましい。 The balance is Fe and inevitable impurities, but for the following reasons, Cr: 0.005-2.00%, Mo: 0.005-2.00%, V: 0.005-2.00%, Ni: 0.005-2.00%, Cu: 0.005-2.00% Ti: 0.01 to 0.20%, Nb: 0.01 to 0.20%, B: 0.0002 to 0.005%, Ca: 0.001 to 0.005%, REM: 0.001 to 0.005% are preferably contained.
Cr、Mo、V、Ni、Cu:それぞれ0.005〜2.00%
Cr、Mo、V、Ni、Cuは、焼鈍時における加熱温度からの冷却時にパーライトの生成を抑制し、マルテンサイトなどの生成を促進して鋼を強化させるのに有効な元素である。こうした効果を得るには、Cr、Mo、V、Ni、Cuから選ばれる少なくとも1種の元素の含有量を0.005%にする必要がある。一方、Cr、Mo、V、Ni、Cuのそれぞれの元素の含有量が2.00%を超えると、その効果が飽和し、コストアップを招く。したがって、Cr、Mo、V、Ni、Cuの含有量はそれぞれ0.005〜2.00%とする。
Cr, Mo, V, Ni, Cu: 0.005 to 2.00% each
Cr, Mo, V, Ni, and Cu are effective elements for suppressing the formation of pearlite during cooling from the heating temperature during annealing and promoting the formation of martensite and strengthening the steel. In order to obtain such an effect, the content of at least one element selected from Cr, Mo, V, Ni, and Cu needs to be 0.005%. On the other hand, when the content of each element of Cr, Mo, V, Ni, and Cu exceeds 2.00%, the effect is saturated and the cost is increased. Therefore, the contents of Cr, Mo, V, Ni, and Cu are each 0.005 to 2.00%.
Ti、Nb:それぞれ0.01〜0.20%
Ti、Nbは、炭窒化物を形成し、鋼を析出強化により高強度化するのに有効な元素である。こうした効果を得るには、Ti、Nbから選ばれる少なくとも1種の元素の含有量を0.01%以上にする必要がある。一方、Ti、Nbのそれぞれの元素の含有量が0.20%を超えると、過度に高強度化し、延性が低下する。したがって、Ti、Nbの含有量はそれぞれ0.01〜0.20%とする。
Ti, Nb: 0.01 ~ 0.20% each
Ti and Nb are effective elements for forming carbonitride and increasing the strength of steel by precipitation strengthening. In order to obtain such an effect, the content of at least one element selected from Ti and Nb needs to be 0.01% or more. On the other hand, if the content of each element of Ti and Nb exceeds 0.20%, the strength becomes excessively high and the ductility decreases. Therefore, the contents of Ti and Nb are 0.01 to 0.20%, respectively.
B:0.0002〜0.005%
Bは、オーステナイト粒界からのフェライトの生成を抑制し、マルテンサイト相などの第二相を生成させて高強度化を図る上で有効な元素である。こうした効果を得るには、B量を0.0002%以上にする必要がある。一方、B量が0.005%を超えると、その効果が飽和し、コストアップを招く。したがって、B量は0.0002〜0.005%とする。
B: 0.0002-0.005%
B is an element effective in suppressing the formation of ferrite from the austenite grain boundaries and generating a second phase such as a martensite phase to increase the strength. In order to obtain such effects, the B content needs to be 0.0002% or more. On the other hand, when the amount of B exceeds 0.005%, the effect is saturated and the cost is increased. Therefore, the B amount is 0.0002 to 0.005%.
Ca、REM:それぞれ0.001〜0.005%
Ca、REMは、いずれも硫化物の形態制御により加工性を改善させるのに有効な元素である。このような効果を得るには、Ca、REMから選ばれる少なくとも1種の元素の含有量を0.001%以上にする必要がある。一方、Ca、REMのそれぞれの元素の含有量が0.005%を超えると、鋼の清浄度に悪影響を及ぼす虞がある。したがって、Ca、REMの含有量はそれぞれ0.001〜0.005%とする。
Ca, REM: 0.001 to 0.005% each
Ca and REM are both effective elements for improving workability by controlling the morphology of sulfides. In order to obtain such an effect, the content of at least one element selected from Ca and REM must be 0.001% or more. On the other hand, if the content of each element of Ca and REM exceeds 0.005%, the cleanliness of steel may be adversely affected. Therefore, the Ca and REM contents are 0.001 to 0.005%, respectively.
2)ミクロ組織
フェライトの面積率:20〜87%
フェライトは、TS-Elバランスを向上させる。TS×El≧19000MPa・%とするには、フェライトの面積率を20%以上、好ましくは50%以上にする必要がある。なお、以下のマルテンサイトと残留オーステナイトの面積率が合計で3%以上および焼戻しマルテンサイトの面積率が10%以上より、フェライトの面積率の上限は87%である。
2) Microstructure Area ratio of ferrite: 20-87%
Ferrite improves TS-El balance. In order to satisfy TS × El ≧ 19000 MPa ·%, the area ratio of ferrite needs to be 20% or more, preferably 50% or more. Note that the total area ratio of martensite and retained austenite is 3% or more in total and the area ratio of tempered martensite is 10% or more, so the upper limit of the area ratio of ferrite is 87%.
マルテンサイトと残留オーステナイトの面積率:合計で3〜10%
マルテンサイトや残留オーステナイトは、鋼の強化に寄与するだけでなく、TS-Elバランスを向上させたり、YRを低下させる。このような効果を得るには、マルテンサイトと残留オーステナイトの面積率を合計で3%以上にする必要がある。しかしながら、マルテンサイトと残留オーステナイトの面積率が合計で10%を超えると、伸びフランジ性が低下する。したがって、マルテンサイトと残留オーステナイトの面積率は合計で3〜10%とする。
Martensite and retained austenite area ratio: 3-10% in total
Martensite and retained austenite not only contribute to strengthening of steel, but also improve TS-El balance and decrease YR. In order to obtain such an effect, the total area ratio of martensite and retained austenite needs to be 3% or more. However, when the area ratio of martensite and retained austenite exceeds 10% in total, stretch flangeability deteriorates. Therefore, the total area ratio of martensite and retained austenite is 3 to 10%.
焼戻しマルテンサイトの面積率:10〜60%
焼戻しマルテンサイトは、焼戻し前のマルテンサイトに比べて伸びフランジ性への悪影響が少ないため、優れた伸びフランジ性を維持しながら高強度化を図る上で有効な第二相である。このような効果を得るには、焼戻しマルテンサイトの面積率を10%以上にする必要がある。しかしながら、焼戻しマルテンサイトの面積率が60%を超えると、TS×El≧19000MPa・%が得られない。したがって、焼戻しマルテンサイトの面積率は10〜60%とする。
Tempered martensite area ratio: 10-60%
Tempered martensite is a second phase that is effective in increasing strength while maintaining excellent stretch flangeability because it has less adverse effects on stretch flangeability than martensite before tempering. In order to obtain such an effect, the area ratio of tempered martensite needs to be 10% or more. However, when the area ratio of tempered martensite exceeds 60%, TS × El ≧ 19000 MPa ·% cannot be obtained. Therefore, the area ratio of tempered martensite is 10 to 60%.
なお、マルテンサイト、残留オーステナイト、焼戻しマルテンサイト以外の第二相として、パーライトやベイナイトも含むことができるが、上記のフェライト、マルテンサイト、残留オーステナイト、焼戻しマルテンサイトの面積率が満足されていれば、本発明の目的を達成できる。また、伸びフランジ性の観点から、パーライトの面積率は3%以下であることが望ましい。 In addition, as a second phase other than martensite, retained austenite, and tempered martensite, pearlite and bainite can also be included. The object of the present invention can be achieved. Further, from the viewpoint of stretch flangeability, the area ratio of pearlite is preferably 3% or less.
ここで、フェライト、マルテンサイト、残留オーステナイト、焼戻しマルテンサイトの面積率とは、観察面積に占める各相の面積の割合のことで、鋼板の板厚断面を研磨後、3%ナイタールで腐食し、板厚1/4の位置をSEM(走査電子顕微鏡)で1000〜3000倍の倍率で観察し、市販の画像処理ソフトを用いて求めた。 Here, the area ratio of ferrite, martensite, retained austenite, and tempered martensite is the ratio of the area of each phase in the observed area, and after corroding the plate thickness section of the steel sheet, it corrodes with 3% nital, The position of the plate thickness 1/4 was observed with a SEM (scanning electron microscope) at a magnification of 1000 to 3000 times, and obtained using commercially available image processing software.
3)製造条件
本発明の高強度溶融亜鉛めっき鋼板は、例えば、上記の成分組成を有するスラブを、熱間圧延、冷間圧延を施して冷延鋼板とし、前記冷延鋼板に、750〜950℃の温度域に加熱して10s以上保持した後、750℃から10℃/s以上の平均冷却速度で(Ms点-100℃)〜(Ms点-200℃)の温度域に冷却し、350〜600℃の温度域に再加熱して1〜600s保持する条件で焼鈍を施した後、溶融亜鉛めっきを施すことによって製造できる。
3) Manufacturing conditions The high-strength hot-dip galvanized steel sheet of the present invention is, for example, a slab having the above component composition subjected to hot rolling and cold rolling to form a cold-rolled steel sheet. After heating to a temperature range of ℃ and holding for 10 s or more, it is cooled to a temperature range of (Ms point -100 ℃) to (Ms point -200 ℃) with an average cooling rate of 750 ℃ to 10 ℃ / s, 350 It can be manufactured by applying hot dip galvanization after annealing in a temperature range of ˜600 ° C. and annealing for 1 to 600 s.
焼鈍時の加熱条件:750〜950℃の温度域に10s以上保持
焼鈍時の加熱温度が750℃未満、あるいは保持時間が10s未満では、オーステナイトの生成が不十分となり、その後の冷却で十分な量のマルテンサイトなどの第二相を確保できなくなる。また、加熱温度が950℃を上回るとオーステナイトが粗大化し、冷却時のフェライトの生成が抑制され面積率で20%以上のフェライトが得られなくなる。したがって、焼鈍時の加熱は、750〜950℃の温度域に10s以上保持とする。保持時間の上限は、特に規定しないが、600s以上の保持を行っても、その効果が飽和し、コストアップを招くので、保持時間は600s未満とすることが好ましい。
Heating conditions during annealing: If the heating temperature during holding annealing is less than 750 ° C or holding time is less than 10 s in the temperature range of 750 to 950 ° C for more than 10 s, austenite formation will be insufficient, and sufficient amount for subsequent cooling The second phase such as martensite cannot be secured. On the other hand, when the heating temperature exceeds 950 ° C., austenite becomes coarse, and the formation of ferrite during cooling is suppressed, and ferrite with an area ratio of 20% or more cannot be obtained. Therefore, the heating at the time of annealing is maintained for 10 seconds or more in the temperature range of 750 to 950 ° C. The upper limit of the holding time is not particularly defined, but even if holding for 600 s or more, the effect is saturated and the cost is increased, so the holding time is preferably less than 600 s.
焼鈍時の冷却条件:750℃から10℃/s以上の平均冷却速度で(Ms点-100℃)〜(Ms点-200℃)の温度域に冷却
加熱後は、750℃から10℃/s以上の平均冷却速度で冷却する必要があるが、これは、平均冷却速度が10℃/s未満だと、パーライトが多量に生成し、必要な量の焼戻しマルテンサイト、マルテンサイトおよび残留オーステナイトが得られないためである。冷却速度の上限は、特に規定しないが、鋼板形状が悪化したり、(Ms点-100℃)〜(Ms点-200℃)の冷却停止温度域に冷却を制御することが困難になるため、200℃/s以下とすることが好ましい。冷却の停止温度は、その後の再加熱、溶融亜鉛めっき、めっき相の合金化処理時に生成されるマルテンサイト、残留オーステナイト、焼戻しマルテンサイトの量を制御する本発明で最も重要な条件の一つである。すなわち、冷却停止時にマルテンサイトと未変態オーステナイトの量が決まり、その後の熱処理で、マルテンサイトが焼戻しマルテンサイトになり、未変態オーステナイトがマルテンサイトまたは残留オーステナイトとなって、鋼の強度、TS-Elバランス、伸びフランジ性、YRを左右する。冷却の停止温度が(Ms点-100℃)を超えると、マルテンサイト変態が不十分となり、未変態オーステナイトの量が多くなり、最終的にマルテンサイトと残留オーステナイトの面積率が合計で10%を超え、伸びフランジ性が低下する。一方、冷却の停止温度が(Ms点-200℃)未満では、オーステナイトのほとんどがマルテンサイト変態し、未変態オーステナイトの量が少なくなり、最終的にマルテンサイトと残留オーステナイトの面積率が合計で3%未満となり、TS-Elバランスが劣化したり、YRが増加する。したがって、焼鈍時の冷却は、750℃から10℃/s以上の平均冷却速度で(Ms点-100℃)〜(Ms点-200℃)の温度域に冷却の条件で行う必要がある。
Cooling conditions during annealing: After cooling and heating in the temperature range of (Ms point -100 ° C) to (Ms point -200 ° C) with an average cooling rate of 750 ° C to 10 ° C / s or more, 750 ° C to 10 ° C / s It is necessary to cool at the above average cooling rate. However, if the average cooling rate is less than 10 ° C / s, a large amount of pearlite is generated, and the required amount of tempered martensite, martensite and retained austenite are obtained. It is because it is not possible. The upper limit of the cooling rate is not particularly specified, but it is difficult to control the cooling to the cooling stop temperature range from (Ms point -100 ° C) to (Ms point -200 ° C), although the steel plate shape deteriorates, It is preferable to be 200 ° C./s or less. The cooling stop temperature is one of the most important conditions in the present invention for controlling the amount of martensite, retained austenite, and tempered martensite generated during subsequent reheating, hot dip galvanizing, and alloying treatment of the plating phase. is there. That is, the amount of martensite and untransformed austenite is determined when cooling is stopped, and in the subsequent heat treatment, martensite becomes tempered martensite, untransformed austenite becomes martensite or retained austenite, and the strength of the steel, TS-El It affects the balance, stretch flangeability and YR. When the cooling stop temperature exceeds (Ms point -100 ° C), the martensitic transformation becomes insufficient, the amount of untransformed austenite increases, and finally the area ratio of martensite and residual austenite becomes 10% in total. Exceeding, stretch flangeability is reduced. On the other hand, when the cooling stop temperature is less than (Ms point -200 ° C), most of the austenite undergoes martensitic transformation, the amount of untransformed austenite decreases, and finally the total area ratio of martensite and residual austenite is 3 Less than%, TS-El balance deteriorates and YR increases. Therefore, it is necessary to perform cooling at the time of annealing in the temperature range of (Ms point-100 ° C.) to (Ms point-200 ° C.) at an average cooling rate of 750 ° C. to 10 ° C./s or more.
焼鈍時の再加熱条件:350〜600℃の温度域に1〜600s保持
10℃/s以上の平均冷却速度で(Ms点-100℃)〜(Ms点-200℃)の温度域に冷却後は、350〜600℃の温度域で1s以上保持の再加熱を行うことにより、冷却時の生成したマルテンサイトが焼戻されて、面積率で10〜60%の焼戻しマルテンサイトが生成し、優れた伸びフランジ性を維持しながら高強度化を達成できる。再加熱温度が350℃未満あるいは保持時間が1s未満では、焼戻しマルテンサイトの面積率が10%未満となって、伸びフランジ性が劣化する。また、再加熱温度が600℃を超えるあるいは保持時間が600sを超えると、冷却時の生成した未変態オーステナイトがパーライトやベイナイトに変態し、最終的にマルテンサイトと残留オーステナイトの面積率が合計で3%未満となり、TS-Elバランスが劣化したり、YRが増加する。したがって、焼鈍時の再加熱は、350〜600℃の温度域に1〜600s保持の条件で行う必要がある。
Reheating conditions during annealing: Hold for 1 to 600 s in the temperature range of 350 to 600 ° C
After cooling to the temperature range of (Ms point -100 ° C) to (Ms point -200 ° C) with an average cooling rate of 10 ° C / s or more, reheat the sample for 1s or more in the temperature range of 350 to 600 ° C. Thus, the martensite generated during cooling is tempered to produce tempered martensite with an area ratio of 10 to 60%, and high strength can be achieved while maintaining excellent stretch flangeability. If the reheating temperature is less than 350 ° C. or the holding time is less than 1 s, the area ratio of tempered martensite is less than 10%, and stretch flangeability deteriorates. In addition, when the reheating temperature exceeds 600 ° C. or the holding time exceeds 600 s, the untransformed austenite generated during cooling is transformed into pearlite or bainite, and finally the total area ratio of martensite and residual austenite is 3 Less than%, TS-El balance deteriorates and YR increases. Therefore, it is necessary to perform reheating at the time of annealing in the temperature range of 350 to 600 ° C. for 1 to 600 s.
その他の製造方法の条件は、特に限定しないが、以下の条件で行うのが好ましい。 The conditions for other production methods are not particularly limited, but the following conditions are preferable.
スラブは、マクロ偏析を防止するため、連続鋳造法で製造するのが好ましいが、造塊法、薄スラブ鋳造法により製造することもできる。スラブを熱間圧延するには、スラブをいったん室温まで冷却し、その後再加熱して熱間圧延を行ってもよいし、スラブを室温まで冷却せずに加熱炉に装入して熱間圧延を行うこともできる。あるいはわずかの保熱を行った後に直ちに熱間圧延する省エネルギープロセスも適用できる。スラブを加熱する場合は、炭化物を溶解させたり、圧延荷重の増大を防止するため、1100℃以上に加熱することが好ましい。また、スケールロスの増大を防止するため、スラブの加熱温度は1300℃以下とすることが好ましい。 The slab is preferably produced by a continuous casting method in order to prevent macro segregation, but can also be produced by an ingot-making method or a thin slab casting method. To hot-roll the slab, the slab may be cooled to room temperature and then re-heated for hot rolling, or the slab may be charged in a heating furnace without being cooled to room temperature. Can also be done. Alternatively, an energy saving process in which hot rolling is performed immediately after performing a slight heat retention can also be applied. When heating the slab, it is preferable to heat to 1100 ° C. or higher in order to dissolve carbides and prevent an increase in rolling load. In order to prevent an increase in scale loss, the heating temperature of the slab is preferably 1300 ° C. or lower.
スラブを熱間圧延する時は、圧延温度の確保の観点から、粗圧延後の粗バーを加熱することもできる。また、粗バー同士を接合し、仕上圧延を連続的に行う、いわゆる連続圧延プロセスを適用できる。仕上圧延は、冷間圧延・焼鈍後の加工性を低下させたり、異方性を増大させる原因となるバンド組織の形成を防ぐために、Ar3変態点以上の仕上温度で行う。また、圧延荷重の低減や形状・材質の均一化のために、仕上圧延の全パスあるいは一部のパスで摩擦係数が0.10〜0.25となる潤滑圧延を行うことが好ましい。 When hot rolling a slab, the rough bar after rough rolling can be heated from the viewpoint of securing the rolling temperature. Moreover, what is called a continuous rolling process which joins rough bars and performs finish rolling continuously can be applied. Finish rolling is performed at a finishing temperature equal to or higher than the Ar 3 transformation point in order to prevent the formation of a band structure that causes a decrease in workability after cold rolling / annealing and an increase in anisotropy. Further, in order to reduce the rolling load and make the shape and material uniform, it is preferable to perform lubrication rolling with a friction coefficient of 0.10 to 0.25 in all passes or a part of the finishing rolling.
熱間圧延後の鋼板は、温度制御や脱炭防止の観点から、450〜700℃の巻取温度で巻取ることが好ましい。 The steel sheet after hot rolling is preferably wound at a winding temperature of 450 to 700 ° C. from the viewpoint of temperature control and prevention of decarburization.
巻取り後の鋼板は、スケールを酸洗などにより除去した後、好ましくは圧下率40%以上で冷間圧延され、上記の条件で焼鈍され、溶融亜鉛めっきが施される。 The steel sheet after winding is removed by scale pickling or the like, then cold-rolled preferably at a rolling reduction of 40% or more, annealed under the above conditions, and hot dip galvanized.
溶融亜鉛めっきは、亜鉛めっきを合金化しない場合はAl量を0.12〜0.22%含む、あるいは亜鉛めっきを合金化する場合はAl量を0.08〜0.18%含む440〜500℃のめっき浴中に鋼板を浸漬後、ガスワイピングなどによりめっき付着量を調整して行う。亜鉛めっきを合金化する場合は、その後、さらに450〜600℃で1〜30秒間の合金化処理を施す。 In hot dip galvanizing, if the galvanizing is not alloyed, the amount of Al is 0.12-0.22%, or if the galvanizing is alloyed, the steel plate is placed in a 440-500 ° C plating bath containing 0.08-0.18% of Al. After dipping, the plating adhesion amount is adjusted by gas wiping or the like. In the case of alloying galvanizing, an alloying treatment is further performed at 450 to 600 ° C. for 1 to 30 seconds.
溶融亜鉛めっきを施した後の鋼板、あるいはさらに亜鉛めっきの合金化処理を施した後の鋼板には、形状矯正や表面粗度の調整などを目的に調質圧延を行うことができる。また、樹脂や油脂コーティングなどの各種塗装処理を施すこともできる。 The steel sheet after the hot dip galvanization or the steel sheet after the galvanization alloying treatment can be subjected to temper rolling for the purpose of shape correction, adjustment of surface roughness, and the like. Moreover, various coating processes, such as resin and oil-fat coating, can also be given.
表1に示す成分組成の鋼A〜Sを転炉により溶製し、連続鋳造法でスラブとした後、仕上温度900℃で板厚3.0mmに熱間圧延を行い、圧延後10℃/sの冷却速度で冷却し、600℃の巻取温度で巻取った。次いで、酸洗後、板厚1.2mmに冷間圧延し、連続溶融亜鉛めっきラインにより、表2、3に示す焼鈍条件で焼鈍後、460℃のめっき浴中に浸漬し、付着量35〜45g/m2のめっきを形成し、520℃で合金化処理を行い、冷却速度10℃/秒で冷却し、めっき鋼板1〜44を作製した。なお、表2、3に示すように、一部のめっき鋼板では、合金化処理を行わなかった。そして、得られためっき鋼板について、上記の方法でフェライト、マルテンサイト、残留オーステナイト、焼戻しマルテンサイトの面積率を測定した。また、圧延方向と直角方向にJIS5号引張試験片を採取し、JIS Z 2241に準拠して引張試験を行った。さらに、150mm×150mmの試験片を採取し、JFST 1001(鉄連規格)に準拠して穴拡げ試験を3回行って平均の穴拡げ率λ(%)を求め、伸びフランジ性を評価した。 Steels A to S having the composition shown in Table 1 were melted in a converter and made into a slab by a continuous casting method, and then hot-rolled to a sheet thickness of 3.0 mm at a finishing temperature of 900 ° C. and 10 ° C./s after rolling. And cooled at a winding temperature of 600 ° C. Next, after pickling, it is cold rolled to a plate thickness of 1.2 mm, and after annealing under the annealing conditions shown in Tables 2 and 3 by a continuous hot dip galvanizing line, it is immersed in a plating bath at 460 ° C., and the adhesion amount is 35 to 45 g. / m < 2 > plating was formed, alloyed at 520 [deg.] C., and cooled at a cooling rate of 10 [deg.] C./sec to produce plated steel sheets 1 to 44. As shown in Tables 2 and 3, some of the plated steel sheets were not alloyed. And about the obtained plated steel plate, the area ratio of a ferrite, a martensite, a retained austenite, and a tempered martensite was measured by said method. In addition, a JIS No. 5 tensile test piece was taken in a direction perpendicular to the rolling direction, and a tensile test was performed in accordance with JIS Z 2241. Further, a test piece of 150 mm × 150 mm was collected and subjected to a hole expansion test three times in accordance with JFST 1001 (Iron Standard) to obtain an average hole expansion ratio λ (%), and the stretch flangeability was evaluated.
結果を表4、5に示す。本発明例であるめっき鋼板は、いずれもTS×El≧19000MPa・%でTS-Elバランスが高く、穴拡げ率λ≧70%で伸びフランジ性に優れ、YR<75%でYRが低いことがわかる。 The results are shown in Tables 4 and 5. Each of the plated steel sheets according to the present invention has a high TS-El balance with TS × El ≧ 19000 MPa ·%, excellent expansion flangeability with a hole expansion ratio λ ≧ 70%, and a low YR with YR <75%. Recognize.
Claims (8)
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007277039A JP5256689B2 (en) | 2007-10-25 | 2007-10-25 | High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof |
TW097140611A TWI406966B (en) | 2007-10-25 | 2008-10-23 | High tensile strength galvanized steel sheet excellent in workability and method for manufacturing the same |
PCT/JP2008/069699 WO2009054539A1 (en) | 2007-10-25 | 2008-10-23 | High-strength hot-dip zinc plated steel sheet excellent in workability and process for manufacturing the same |
KR1020107006053A KR20100046057A (en) | 2007-10-25 | 2008-10-23 | High-strength hot-dip zinc plated steel sheet excellent in workability and process for manufacturing the same |
EP08841619.3A EP2202327B1 (en) | 2007-10-25 | 2008-10-23 | Method for manufacturing a high-strength galvanized steel sheet with excellent formability |
EP20168476.8A EP3696292B1 (en) | 2007-10-25 | 2008-10-23 | A high tensile strength galvanized steel sheet with excellent formability and anti-crush properties and method of manufacturing the same |
US12/682,801 US20100218857A1 (en) | 2007-10-25 | 2008-10-23 | High tensile strength galvanized steel sheet excellent in formability and method for manufacturing the same |
KR1020137001334A KR101399741B1 (en) | 2007-10-25 | 2008-10-23 | High-strength hot-dip zinc plated steel sheet excellent in workability and process for manufacturing the same |
CN200880111198.3A CN101821419B (en) | 2007-10-25 | 2008-10-23 | High-strength hot-dip zinc plated steel sheet excellent in workability and process for manufacturing the same |
CA2697226A CA2697226C (en) | 2007-10-25 | 2008-10-23 | High tensile strength galvanized steel sheet excellent in formability and method for manufacturing the same |
US14/321,989 US9458521B2 (en) | 2007-10-25 | 2014-07-02 | High tensile strength galvanized steel sheets excellent in formability and methods of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007277039A JP5256689B2 (en) | 2007-10-25 | 2007-10-25 | High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009102714A JP2009102714A (en) | 2009-05-14 |
JP5256689B2 true JP5256689B2 (en) | 2013-08-07 |
Family
ID=40704693
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007277039A Active JP5256689B2 (en) | 2007-10-25 | 2007-10-25 | High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5256689B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5483562B2 (en) * | 2010-02-26 | 2014-05-07 | 株式会社神戸製鋼所 | High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability |
JP5537394B2 (en) * | 2010-03-03 | 2014-07-02 | 株式会社神戸製鋼所 | High strength steel plate with excellent warm workability |
JP5510057B2 (en) * | 2010-05-10 | 2014-06-04 | 新日鐵住金株式会社 | Hot-dip galvanized steel sheet and manufacturing method thereof |
JP5765092B2 (en) | 2010-07-15 | 2015-08-19 | Jfeスチール株式会社 | High yield ratio high-strength hot-dip galvanized steel sheet with excellent ductility and hole expansibility and method for producing the same |
CN103842545A (en) * | 2011-09-28 | 2014-06-04 | 杰富意钢铁株式会社 | High strength steel plate and manufacturing method thereof |
CN105463319A (en) * | 2015-11-30 | 2016-04-06 | 丹阳市宸兴环保设备有限公司 | Steel plate for oil conveying pipe |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3840864B2 (en) * | 1999-11-02 | 2006-11-01 | Jfeスチール株式会社 | High-tensile hot-dip galvanized steel sheet and manufacturing method thereof |
JP3870868B2 (en) * | 2002-07-23 | 2007-01-24 | Jfeスチール株式会社 | Composite structure type high-tensile cold-rolled steel sheet excellent in stretch flangeability, strength-ductility balance and strain age hardening characteristics, and method for producing the same |
JP4473587B2 (en) * | 2004-01-14 | 2010-06-02 | 新日本製鐵株式会社 | Hot-dip galvanized high-strength steel sheet with excellent plating adhesion and hole expandability and its manufacturing method |
JP4408386B2 (en) * | 2004-04-19 | 2010-02-03 | 新日本製鐵株式会社 | High-strength steel with fine grain structure |
JP4445365B2 (en) * | 2004-10-06 | 2010-04-07 | 新日本製鐵株式会社 | Manufacturing method of high-strength thin steel sheet with excellent elongation and hole expandability |
-
2007
- 2007-10-25 JP JP2007277039A patent/JP5256689B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009102714A (en) | 2009-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5402007B2 (en) | High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof | |
KR101399741B1 (en) | High-strength hot-dip zinc plated steel sheet excellent in workability and process for manufacturing the same | |
CN109072380B (en) | Steel sheet, plated steel sheet, and method for producing same | |
JP5493986B2 (en) | High-strength steel sheet and high-strength hot-dip galvanized steel sheet excellent in workability and methods for producing them | |
JP5821260B2 (en) | High-strength hot-dip galvanized steel sheet excellent in formability and shape freezing property, and method for producing the same | |
CA2742671C (en) | High-strength cold-rolled steel sheet having excellent formability, high-strength galvanized steel sheet, and methods for manufacturing the same | |
JP6179461B2 (en) | Manufacturing method of high-strength steel sheet | |
US9617614B2 (en) | Method for manufacturing high strength steel sheet having excellent formability | |
JP4737319B2 (en) | High-strength galvannealed steel sheet with excellent workability and fatigue resistance and method for producing the same | |
JP5333298B2 (en) | Manufacturing method of high-strength steel sheet | |
JP5194841B2 (en) | High-strength hot-dip galvanized steel sheet with excellent formability and manufacturing method thereof | |
JP6458833B2 (en) | Manufacturing method of hot-rolled steel sheet, manufacturing method of cold-rolled full hard steel sheet, and manufacturing method of heat-treated plate | |
US11946111B2 (en) | Steel sheet, coated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing heat-treated steel sheet, method for producing steel sheet, and method for producing coated steel sheet | |
WO2014020640A1 (en) | High-strength hot-dip galvanized steel sheet having excellent moldability and shape fixability, and method for manufacturing same | |
JP5765116B2 (en) | High-strength hot-dip galvanized steel sheet excellent in deep drawability and stretch flangeability and method for producing the same | |
JP5256690B2 (en) | High-strength hot-dip galvanized steel sheet excellent in workability and impact resistance and method for producing the same | |
CN108779536B (en) | Steel sheet, plated steel sheet, and method for producing same | |
JP2015113504A (en) | High strength hot-dip galvanized steel sheet excellent in processability and method for manufacturing the same | |
KR20120099517A (en) | High-strength hot-dip galvanized steel sheet with excellent processability and spot weldability and process for producing same | |
JP2013049901A (en) | Hot-rolled steel sheet for cold-rolled steel sheet and hot-rolled steel sheet for hot-dipped galvanized steel sheet superior in processability and material stability, and method for producing the same | |
JP4855442B2 (en) | Low yield ratio alloyed hot dip galvanized high strength steel sheet manufacturing method | |
JP5256689B2 (en) | High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof | |
JP5853884B2 (en) | Hot-dip galvanized steel sheet and manufacturing method thereof | |
JP5141232B2 (en) | High-strength hot-dip galvanized steel sheet with excellent formability and manufacturing method thereof | |
JP2011080126A (en) | Hot-dip galvannealed steel sheet and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100823 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120321 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120327 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121225 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130326 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130408 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160502 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5256689 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |